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Abstract

This paper introduces a new form of elliptic curves in generalized Hu�'s model. These

curves endowed with the addition are shown to be a group over a �nite �eld. We present

formulae for point addition and doubling point on the curves, and evaluate the computa-

tional cost of point addition and doubling point using projective, Jacobian, Lopez-Dahab

coordinate systems, and embedding of the curves into P1×P1 system. We also prove that

the curves are birationally equivalent to Weierstrass form. We observe that the compu-

tational cost on the curves for point addition and doubling point is lowest by embedding

the curves into P1×P1 system than the other mentioned coordinate systems and is nearly

optimal to other known Hu�'s models.
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1 Introduction

Elliptic curves are algebraic curves and have been widely studied in number theory and cryp-
tography [22, 18, 7, 17, 21]. The study of elliptic curves could be of various areas: Algebra,
Algebraic Geometry, Number Theory, Diophantine problems, and so on. Lang [25] mentions in
his book that

”It is possible towrite endlessly on elliptic curves. (This is not a treat.)”

In 1995, Andrew Wiles proved the Fermat's Last Theorem using proof of the modularity con-
jecture for semistable elliptic curves [32]. The use of elliptic curves have commercialized and
are studied extensively for its application in cryptography [15, 8, 9].

The plane curves of degree 3 are known as cubics and have the general form of

Ax3 +Bx2y + Cxy2 +Dy3 + Ex2 + Fxy +Gy2 +Hx+ Iy + J = 0.

Elliptic curves are non-singular cubic curves and have points de�ned over a �eld K [14, 30].
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In the mid-1980s, Koblitz and Miller independently proposed Elliptic Curve Cryptography
(ECC) using the Elliptic Curve Discrete Logarithmic Problem (ECDLP) [23, 26]. The ECC pro-
vides better security when compared to Di�e-Hellman (DH) key exchange and Rivest-Shamir-
Adleman (RSA) algorithm, but the underlying arithmetic group is more tedious, which makes
the study particularly interesting for systems with con�ned computing power and memory [24].

Some of the famous forms of elliptic curves existing in literature are Weierstrass cubics
[14, 30], Hessian curves [6, 21], Jacobi quartics [7], Montgomery [27], Edwards [4, 5, 13, 2, 11]
and Hu�'s curve [18]. There has been a lot of development to these models of elliptic curves,
for instance, Joye et al. studied Hu�'s model for elliptic curves in 2010 [22]. In 2012, Wu and
Feng also carried out research on Hu�'s curves in [33]. A year later, Binary Hu�'s curves were
investigated by Devigne and Joye [12]. In 2015, He et al. [17] studied generalized Hu�'s curves.
The recent study on Hu�'s curves was done by Orhon and Hisil in [29]. The di�erent families
of Hu�'s elliptic curves studied over the past decade are listed below.

1. The curves over a �eld K, char(K) 6= 2 by Joye et al. in [22] are of the form of:

ax(y2 − 1) = by(x2 − 1),where a2 − b2 6= 0,

2. The generalized Hu�'s curves over a �eld K, char(K) 6= 2 by Joye et al. in [22] are of the
form of:

ax(y2 − d) = by(x2 − d),where abd(a2 − b2) 6= 0,

3. The generalized Hu�'s curves over a �eld K, char(K) 6= 2 by Wu and Feng in [33] are of
the form of:

x(ay2 − 1) = y(bx2 − 1),where ab(a− b) 6= 0,

4. The binary Hu� curves over a �eld K, char(K) = 2 by Joye et al. in [12] are of the form
of:

ax(y2 + y + 1) = by(x2 + x+ 1),where ab(a− b) 6= 0,

5. The generalized binary Hu� curves over a �eld K, char(K) = 2 by Joye et al. in [22] are
of the form of:

ax(y2 + fy + 1) = by(x2 + fx+ 1),where abf(a− b) 6= 0,

6. The generalized Hu�'s curves over a �eld K, char(K) 6= 2 by Ciss and Sow in [10] are of
the form of:

ax(y2 − c) = by(x2 − d),where abcd(a2c− b2d) 6= 0.

7. The generalized Hu�'s curves over �nite �eld K, char(K) 6= 2 by Orhon and Hisil in [29]
are of the form of:

y(1 + ax2) = cx(1 + dy2) where, acd(a− c2d) 6= 0.
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We can also �nd similar progress of other elliptic curves. For instance, after the introduction
of Edwards curve in [13] by Harold Edwards, it became an active area of research resulting in
an extensive literature [3, 4, 5, 19, 1, 2].

In this paper, we introduce a new form of elliptic curves in generalized Hu�'s model over a
�eld K, char(K) 6= 2 which are of the form

E(K) : ax
(
y2 + xy + f

)
= by

(
x2 + xy + g

)
,

where a, b, f, g ∈ K and abfg(a − b) 6= 0. We show that the curves satisfy axioms of an
abelian group under addition operation. Furthermore, we provide formulae for point addition
and doubling point in a�ne, projective, Jacobian, Lopez-Dahab coordinates, embedding of the
curve into P1 × P1, and including an estimate of the number of points on E over a �eld K. We
also evaluate computational cost in each coordinate systems and compare computational cost
with other known Hu�'s curves.

The rest of the paper is organized as follows. In section 2, we show that the introduced
a new form elliptic curves in generalized Hu�'s model are commutative groups over a �nite
�eld; and give formulae for point addition and doubling points for a�ne, projective, Jacobian,
and Lopez-Dahab coordinate systems. Furthermore, the next section is on embedding of Hu�'s
model of elliptic curve into P1×P1 system and its computational cost. In section 4, we provide
an estimate of the number of points on E(K) with a toy example. We also show that the new
form of Hu�'s curves are birationally equivalent to Weierstrass form in section 5. In section
6, we give computational cost analysis and comparison for the curves on di�erent coordinate
systems and other forms of Hu�'s curve in literature. Finally, we give conclusion remarks in
Section 7.

2 Generalized Hu�'s Model

Let K be a �nite �eld of characteristic 6= 2. We de�ne an elliptic curve, denote it by E over K
as

E(K) : ax
(
y2 + xy + f

)
= by

(
x2 + xy + g

)
, (2.1)

where a, b, f, g ∈ K and abfg(a−b) 6= 0 . The −invariant of E is given by
256(a2f2+abfg+b2g2)

3

a2b2f2g2(af+bg)2
.The

in�ection point (0, 0, 1) of E(K) has the tangent line as bgy = afx, that passes through the
curve with the multiplicity of 3, thus O = (0 : 0 : 1) is a neutral point of E(K). Furthermore,
we denote group law as ⊕. Figure 2.1 shows that the line passing through the points P and Q,
and intersecting at the third point R on E(K).
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Figure 2.1: An example of the elliptic curve E(K)

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) and R = (X3 : Y3 : Z3) be three points
on E(K). Then, P ⊕ Q could be obtained by the line connecting R and O that intersects at
the third point 	R on E(K) such that P ⊕ Q = 	R which implies that P ⊕ Q ⊕ R = O. In
particular, the inverse of the point P is 	P = (X1 : Y1 : −Z1). It is clear that the curve E(K)
posses commutative law. We note that there are three points at in�nity, namely (1 : 0 : 0),
(0 : 1 : 0) and (a : b : 0) on E(K), and the sum of any two points at in�nity equals to the
third point. For any point (X1 : Y1 : Z1), when Z1 6= 0, for some real number α and γ bounded
by the �eld K, we observe that

(1 : 0 : 0) ⊕ (X1 : Y1 : Z1) = (αZ2
1 : −X1Y1 : X1Z1) and

(0 : 1 : 0) ⊕ (X1 : Y1 : Z1) = (−X1Y1 : γZ2
1 : Y1Z1).

Furthermore, we note that

(a : b : 0) ⊕ (X1 : Y1 : Z1) = (0 : 1 : 0) ⊕ (αZ2
1 : −X1Y1 : X1Z1), therefore

(a : b : 0)⊕ (X1 : Y1 : Z1) =

{
(a : b : 0) if (X1 : Y1 : Z1) = (0 : 0 : 1)

(−αY1Z1 : −γX1Z1 : X1Y1) otherwise
.

We have doubling point if P = Q, thus the line connecting P and Q is the tangent at the
point P .

2.1 A�ne Formulae

This subsection provides explicit formulae for the group law for the elliptic curve de�ned by
equation (2.1).

Let P = (x1, y1), Q = (x2, y2) and R = (x3, y3) be the three di�erent points on E(K) such
that R is obtained by connecting a line through P and Q. Let the secant line joining P and
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Q has the slope de�ned as λ =
y2 − y1
x2 − x1

. Thus, y = λx + β is the equation of the secant line

passing through the points P , Q and R, where β = y1 − λx1. For the curve equation (2.1), we
can replace y with λx+ β. Then,

ax((λx+ β)2 + x(λx+ β) + f) = b(λx+ β)

(x2 + x(λx+ β) + g).This implies that

x
(
af + aβ2

)
+ x2(aβ + 2aβλ)

+x3
(
aλ+ aλ2

)
= (bgβ + x

(
bβ2 + bgλ

)
+ x2(bβ + 2bβλ) + x3

(
bλ+ bλ2

)
. (2.2)

Let
A = aβ − bβ + 2aβλ− 2bβλ

and
B = aλ− bλ+ aλ2 − bλ2.

Then, equation (2.2) becomes

−bgβ + x
(
af + aβ2 − bβ2 − bgλ

)
+ Ax2 +Bx3 = 0 (2.3)

.

We now note that

x1 + x2 + x3 = −A
B
, (2.4)

−x3 = x1 + x2 +
aβ − bβ + 2aβλ− 2bβλ

aλ− bλ+ aλ2 − bλ2
,

substituting β = y1 − λx1 and λ =
y2 − y1
x2 − x1

.

x3 = −
(
x1 + x2 +

(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)

)
= −x1 − x2 −

(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)
,

which simpli�es to

x3 = −(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
. (2.5)

We claim, by symmetry that
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y3 = −(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)
. (2.6)

Thus, this is an evidence that the curve E(K) has three points P = (x1, y1), Q = (x2, y2)
and R = (x3, y3). We observe that inverse of the point R is 	R = (−x3,−y3). We note that
the point R = (x3, y3) is computed only when x1 6= x2, y1 6= y2 and x1 − x2 + y1 − y2 6= 0 and
the addition formula used in the a�ne coordinate system could not be employed for doubling
points since x1 6= x2 and y1 6= y2.

Theorem 1. Let E(K) be a elliptic curve de�ned by equation (2.1) with abfg(a − b) 6= 0
and points P , Q and O = (0, 0) on E(K) . O is a neutral point. Then E has the following
properties:

1. If P = O, then P ⊕Q = Q.

2. Otherwise, if Q = O, then P ⊕Q = P.

3. Otherwise, let P = (x1, y1) and Q = (x2, y2).

4. If −x1 = x2 and −y1 = y2, then P ⊕Q = O.

5. Otherwise, let

x3 = − (x1−x2)(y1(x1+y1)−y2(x2+y2))
(y1−y2)(x1−x2+y1−y2) and y3 = − (y1−y2)(x2

1+x1y1−x2(x2+y2))
(x1−x2)(x1−x2+y1−y2) .

Then P ⊕Q = (−x3,−y3)

Proof. Parts (1) and (2) are a similar concept and is easy to see. For (1), P is the neutral
point (0,0), then the line through P and Q intersects E with the of 3, as P , Q and −Q.
To obtain P ⊕ Q, one must take the inverse of the third point of the intersection. Thus,
−(−Q) = Q. The similar proof follows for (2). Part (4) is also easily obtained. If P = (x1, y1)
and Q = (x2, y2) = (−x1, y1) then the third point of intersection of P and Q is O. The inverse
of O is −O = O. To prove (5), we take the algebraic step. We note that if points P = (x1, y1)
and Q = (x2, y2) are two distinct points on E and neither of them equivalent to O, then the line
through points P and Q has the slope as λ. The line equation could be written as y = λx+ β,
where β = y1 − λx1. Substituting the line equation in E(K) gives us the equation (2.3). It is
clear that x1 and x2 are two roots of the above cubic equation; thus, we can write,

(x− x1)(x− x2)(x− x3) = x3 + (−x1 − x2 − x3)x2

+ (xx2 + x3x2 + x1x3)x− x1x2x3.

Then the proof follows the derivation of equation (2.5) and equation (2.6).
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We now de�ne a point of in�nity on E(K) as O = (0, 0). For the point P = (x1, y1), we
have 	P = (−x1,−y1). Thus, it follows that

x3 = −(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)

= −(x1 −−x1) (y1 (x1 + y1)−−y2 (−x2 − y2))
(y1 −−y2) (x1 −−x2 + y1 −−y2)

= −(x1 + x1) (y1 (x1 + y1) + y1 (−x1 − y1))
(y1 −−y1) (x1 −−x1 + y1 −−y1)

= − (2x1) (0)

(2y1) (2x1 + 2y1)
= 0,

and

y3 = −(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)

= −(y1 −−y1) (x21 + x1y1 −−x1 (−x1 − y1))
(x1 −−x1) (x1 −−x1 + y1 −−y1)

= −(2y1) (x21 + x1y1 + x1 (−x1 − y1))
(x1 + x1) (x1 + x1 + y1 + y1)

= − (2y1) (0)

(2x1) (2x1 + 2y1)
= 0.

Thus P ⊕ (	P ) = O.

Corollary 2. The identity O is always on the elliptic curve de�ned by

E : ax(y2 + xy + f) = by(y2 + xy + g)

where abfg(a− b) 6= 0.

Theorem 3. A line cutting E(K) at three distinct points namely P ,Q and R. The associative
law on these points is equivalent to O = (0, 0).

Proof. We now show that the curve E(K) holds associative law, that is P ⊕ (Q ⊕ R) = (P ⊕
Q)⊕R.
For x-coordinates,

we have

Q⊕R =
(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
and by equation (2.5),
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P =
(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
then

P ⊕ (Q⊕R) = −(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
+

(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
.

= 0

It follows that,

(P ⊕Q)⊕R = −(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
+

(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
= 0

For y-coordinates, we have

P ⊕ (Q⊕R) = −(y2 − y3) (x22 + x2y2 − x3 (x3 + y3))

(x2 − x3) (x2 − x3 + y2 − y3)

+
(y2 − y3) (x22 + x2y2 − x3 (x3 + y3))

(x2 − x3) (x2 − x3 + y2 − y3)
.

= 0

and

(P ⊕Q)⊕R = −(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)
+

(y1 − y2) (x21 + x1y1 − x2 (x2 + y2))

(x1 − x2) (x1 − x2 + y1 − y2)
= 0

In both scenario we get O. Now to get �nal point we must re�ect O on O (that is, O ⊕ O),
however O is the neutral point thus, we have

(P ⊕Q)⊕R = P ⊕ (Q⊕R).
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2.2 Doubling Point

The slope of the tangent line on the curve de�ned by equation (2.1), could be computed by
implicit di�erentiation, thus by di�erentiation of E(K) with respect to x, we have

af + 2axy + ay2 + ax2y′ + 2axyy′ = 2bxy + by2 + bgy′ + bx2y′ + 2bxyy′

y′ =
af + 2axy + ay2 − 2bxy − by2

bg − ax2 + bx2 − 2axy + 2bxy
.

For the point P = (x1, y1), we can describe the slope as

λp =
af + 2ax1y1 + ay21 − 2bx1y1 − by21
bg − ax21 + bx21 − 2ax1y1 + 2bx1y1

=
af + (a− b)y1 (2x1 + y1)

bg − (a− b)x1 (x1 + 2y1)
.

Let

A1 = afx1 + (2af + bg + (a− b)x21) y1, A2 = 3(a− b)x1y21 + 2(a− b)y31,
A3 = (bg − (a− b)x1 (x1 + 2y1))

and

B1 = (af + (a− b)y1 (2x1 + y1)), B2 = 2(−a+ b)x31 + bgy1 + 3(−a+ b)x21y1,
B3 = x1 (af + 2bg + (−a+ b)y21).

We claim that

x2 = − A3 (A1 + A2)

(af + bg + (−a+ b)x21 + (a− b)y21) (af + (a− b)y1 (2x1 + y1))
(2.7)

and

y2 = − B1 (B2 +B3)

(af + bg + (−a+ b)x21 + (a− b)y21) (bg − (a− b)x1 (x1 + 2y1))
(2.8)

are the second coordinates of the point of intersection for the tangent line at P .
We can prove our claim by simply checking the slope given by

λ =
y2 − y1
x2 − x1

and by simpli�cation, we can obtain

λ =
af + (a− b)y1 (2x1 + y1)

bg − (a− b)x1 (x1 + 2y1)

which have the same slope as λp.
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2.3 Projective formulae

Let x =
X

Z
, y =

Y

Z
and Z = 1 [14, 30], then the a�ne coordinate of equation (2.1) becomes,

a
X

Z

(
Y 2

Z2
+
XY

Z2
+ f

)
= b

Y

Z

(
X2

Z2
+
XY

Z2
+ g

)
.

Finally, multiplying by Z3 on both the sides to get rid of denominators and achieve the projec-
tive form of the curve equation

E(K) : aX
(
Y 2 +XY + fZ2

)
= bY

(
X2 +XY + gZ2

)
, (2.9)

where a, b, f, g ∈ K and abfg(a− b) 6= 0.
For the point P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of intersection known

as R = (U3, V3,W3) of the line joining P and Q has the coordinates as follows:

U3 =(X2Z1 −X1Z2)
2(Y2Z

2
1(X2 + Y2)− Y1Z2

2(X1 + Y1))

V3 =(Y2Z1 − Y1Z2)
2(X2Z

2
1(X2 + Y2)−X1Z

2
2(X1 + Y1))

W3 =− Z1Z2(X2Z1 −X1Z2)(Y2Z1 − Y1Z2)(Z1(X2 + Y2)− Z2(X + Y1)). (2.10)

For doubling points, the coordinates are as follows:

U2 = −(X1(a− b)(X + 2Y1)− bgZ2
1)2

(Y1(a− b)(X1 + Y1)(X1 + 2Y1) + Z2
1(afX1 + (2af + bg)Y1))

V2 = −(Y1(a− b)(2X1 + Y1) + afZ2
1)2

(−X1(a− b)(X1 + Y1)(2X1 + Y1) + Z2
1(X1(af + 2bg) + bgX1))

W2 = Z1(Y1(a− b)(2X1 + Y1) + afZ2
1)(−X1(a− b)(X1 + 2Y1) + bgZ2

1)

(−(a− b)(X2
1 − Y 2

1 ) + (af + bg)Z2
1). (2.11)

Theorem 4. Let K be a �nite �eld of characteristic 6= 2. Let P1 = (X1, Y1, Z1) and P2 =
(X2, Y2, Z2) be two points on E(K). Then, the addition formula given by equation 2.10 is valid
provided that X1Z2 6= X2Z1, Y1Z2 6= Y2Z1 and X1Z2 + Y1Z2 6= X2Z1 + Y2Z1.

Proof. Let P1 and P2 be �nite points, we can write P1 = (x1, y1), and P2 = (x2, y2), where
(x1, y1) 6= (0, 0) and (x2, y2) 6= (0, 0) . The point addition given by the equations (4.5) and
(4.6) is only valid if x1 6= x2, y1 6= y2 and x1 − x2 + y1 − y2 6= 0, which translate to projective
coordinates as X1Z2 6= X2Z1, Y1Z2 6= Y2Z1 and X1Z2 + Y1Z2 6= X2Z1 + Y2Z1, respectively.

It remains to analyze that the condition is satis�ed at the in�nity points. The points at
in�nity are (1 : 0 : 0), (0 : 1 : 0) and (a, b, 0), if P1 or P2 ∈ {(1 : 0 : 0), (0 : 1 : 0)},
then X1Z2 6= X2Z1, Y1Z2 6= Y2Z1 and X1Z2 + Y1Z2 6= X2Z1 + Y2Z1 is not satis�ed. Since
P1 /∈ {O, (1 : 0 : 0), (0 : 1 : 0)} then the addition law is valid for P2 = (a : b : 0) as
mentioned earlier.
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2.3.1 Computational cost analysis on Projective Coordinates

We evaluate the e�ciency of point addition and doubling point on the curve E(K). The
computation cost ratio between a square (s) and multiplication (m) is typically s = 0.8m. We
omit other operations such as (a) and (d) as computation cost is lower.

Projective coordinates may be preferred for faster arithmetic than the a�ne formula. The
a�ne formulae are given by equation (2.5) and (2.6) for the addition of two di�erent points on
E(K) is described by equation (2.10).

We let the cost of a multiplication be m and the cost of a square be s in the �eld K. Then,
we have

m1 = X1Z2, m2 = X2Z1, m3 = Y1Z2, m4 = Y2Z1,

m5 = m4(m2 +m4), m6 = m3(m1 +m3), m7 = m2(m2 +m4), m8 = m1(m1 +m3),
m9 = −Z1Z2,

s1 = (m2 −m1)
2, s2 = (m4 −m3)

2,

U3 = s1(m5 −m6), V3 = s2(m7 −m8), W3 = m9(m2 −m1)(m4 −m3)(m2 +m4 −m1 −m3).

Therefore, the total cost of point addition on the curve E(K) is 14m+ 2s.
For the doubling point as described by equation (2.11), we have

s1 = Z2
1 , s2 = X2

1 , s3 = Y 2
1 ,

m1 = X1(a− b)(X1 + 2Y1), m2 = (X1 + Y1)(X1 + 2Y1), m3 = s1(afX1 + Y1(2af + bg)),
m4 = (a− b)Y1m2, m5 = Y1(a− b)(2X1 + Y1)

m6 = (X1 + Y1)(2X1 + Y1), m7 = s1((af + 2bg)X1 + bgY1), m8 = −X1m6(a− b),
m9 = (m5 + afs1)((a− b)(s2 + s3) + s1(af + bg))

U2 = −(m1 − bgs1)2(m3 +m4), V2 = −(m5 + afs1)
2(m7 +m8), W2 = −m1m9Z1.

Therefore, the total cost of doubling point on the curve E(K) is 13m+ 5s.

2.4 Jacobian formulae

Let x =
X

Z2
, y =

Y

Z3
and Z = 1 [14, 30]. Then the a�ne coordinate given by equation (2.1)

after simpli�cation becomes,

E(K) : aX(Y 2 +XY Z + fZ6) = bY (XZ2 +XY Z + gZ6),

where a, b, f, g ∈ K and abfg(a− b) 6= 0.
For the point P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of intersection known

as R = (U3, V3,W3) of the line joining P and Q has the coordinates as follows:
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U3 = −Z1Z2

(
X2Z

2
1 −X1Z

2
2

)
2
(
Y 2
2 Z

6
1 +X2Y2Z

6
1Z2 − Y1Z6

2 (Y1 +X1Z1)
)
,

V3 = −
(
Y2Z

3
1 − Y1Z3

2

)
2
(
X2Y2Z

5
1 +X2

2Z
5
1Z2 −X1Z

5
2 (Y1 +X1Z1)

)
,

W3 = Z2
1Z

2
2

(
Y2Z

3
1 − Y1Z3

2

) (
X2Z

3
1Z2 −X1Z1Z

3
2

) (
Y2Z

3
1 +X2Z

3
1Z2 − Z3

2 (Y1 +X1Z1)
)
.

For doubling points, the coordinates are as follows:

U2 = −Z1

(
2X1Y1(−a+ b) + (−a+ b)X2

1Z1 + bgZ5
1

)
2(

2(a− b)Y 3
1 + 3(a− b)X1Y

2
1 Z1 + afX1Z

7
1 + Y1Z

2
1

(
(a− b)X2

1 + (2af + bg)Z4
1

))
,

V2 = −
(
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ6
1

)
2(

3(−a+ b)X2
1Y1Z1 + 2(−a+ b)X3

1Z
2
1 + bgY1Z

5
1 +X1

(
(−a+ b)Y 2

1 + (af + 2bg)Z6
1

))
,

W2 = Z3
1

(
2(−a+ b)X1Y1 + (−a+ b)X2

1Z1 + bgZ5
1

) (
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ6
1

)(
(a− b)Y 2

1 + (−a+ b)X2
1Z

2
1 + (af + bg)Z6

1

)
.

The costs of point addition and doubling point on the curve E(K) are 32m+4s and 29m+5s,
respectively.

2.5 Lopez-Dahab formuale

Let x =
X

Z
, y =

Y

Z2
and Z = 1 [14, 30]. Then the a�ne coordinate given by equation (2.1)

after simpli�cation becomes,

E(K) : aX(Y 2 +XY Z + fZ5) = bY (XZ2 +XY + gZ6),

where a, b, f, g ∈ K and abfg(a− b) 6= 0.
For the point P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of intersection known

as R = (U3, V3,W3) of the line joining P and Q has the coordinates as follows:

U3 = −Z1Z2 (X2Z1 −X1Z2)
2
(
Y 2
2 Z

4
1 +X2Y2Z

4
1Z2 − Y1Z4

2 (Y1 +X1Z1)
)
,

V3 = −
(
Y2Z

2
1 − Y1Z2

2

)
2
(
X2Y2Z

3
1 +X2

2Z
3
1Z2 −X1Z

3
2 (Y1 +X1Z1)

)
,

W3 = Z2
1Z

2
2 (X2Z1 −X1Z2)

(
Y2Z

2
1 − Y1Z2

2

) (
Y2Z

2
1 + Z2

(
X2Z

2
1 − Z2 (Y1 +X1Z1)

))
.

For doubling points, the coordinates are as follows:

U2 = −Z1

(
2(−a+ b)X1Y1 + (−a+ b)X2

1Z1 + bgZ3
1

)
2(

2(a− b)Y 3
1 + 3(a− b)X1Y

2
1 Z1 + afX1Z

5
1 + Y1Z

2
1

(
(a− b)X2

1 + (2af + bg)Z2
1

))
,

V2 = −
(
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ4
1

)
2(

3(−a+ b)X2
1Y1Z1 + 2(−a+ b)X3

1Z
2
1 + bgY1Z

3
1 +X1

(
(−a+ b)Y 2

1 + (af + 2bg)Z4
1

))
,

W2 = Z2
1

(
2(−a+ b)X1Y1 + (−a+ b)X2

1Z1 + bgZ3
1

) (
(a− b)Y 2

1 + 2(a− b)X1Y1Z1 + afZ4
1

)(
(a− b)Y 2

1 + (−a+ b)X2
1Y

2
1 + (af + bg)Z4

1

)
.

The costs of point addition and doubling point on the curve E(K) are 32m+6s and 26m+5s,
respectively.
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3 Embedding of Hu�'s Model of Elliptic Curves into P1×P1

It is noted that computational cost is higher while using projective, Jocobian or Lopez-Dahab.
Thus changing the form of the curve could yield a better result.

Theorem 5. The elliptic curve E(K) : ax(y2 + xy + f = by(x2 + xy + g) could be written has

E(K) : x(y2 − c) = y(x2 − d) where c =
−af
a− b

and d =
bg

a− b
.

Proof. We have E(K) : ax(y2 + xy + f = by(x2 + xy + g) has

axy2 + ax2y + afx− bx2y − bxy2 − bgy = 0,

axy2 − bxy2 + afx+ ax2y − bxy2 − bgy = 0,

x(ay2 − by2 + af) + y(ax2 − bx2 − bg) = 0,

x((a− b)y2 + af)− y(−x2(a− b) + bg) = 0,

�nally, we can scale the equations by a− b since a− b 6= 0. We obtain E(K) of the following
forms,

x((a− b)y2 + af)

a− b
− y(−x2(a− b) + bg)

a− b
= 0

x

(
y2 +

af

a− b

)
− y

(
−x2 +

bg

a− b

)
= 0.

Let c =
−af
a− b

and d =
bg

a− b
then we can simplify the equation as follows,

xy2 − cx− yx2 + yd = 0

E(K) : x(y2 − c) = y(x2 − d).

We note that the elliptic curve given by E(K) : ax(y2 − c) = by(x2 − d) is a generalized
Hu�'s elliptic curve by Ciss and Sow [10].

3.1 E�ciency of Elliptic curve E(K) : x(y2 − c) = y(x2 − d)

According to Ciss and Sow [10], their model of Hu�'s elliptic curve is

E(K) : ax(y2 − c) = by(x2 − d) (3.1)

where abcd(a2c − b2d) 6= 0. We can see that the proposed curve given by equation (3.1) has
uni�ed formulas for point addition and doubling point. The model by Ciss and Sow has uni�ed
formulas for point addition and doubling point. According to Ciss and Sow [10], the point
addition on the curve is given by equation (3.2) and the doubling point is given by equation
(3.3).
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(x1, y1) + (x2, y2) =


x3 =

d(x1 + x2)(c+ y1y2)

(d+ x1x2)(c− y1y2)
,

y3 =
c(y1 + y2)(d+ x1x2)

(c+ y1y2)(d− x1x2)
.

(3.2)

[2](x1, y1) =


x3 =

2dx1(c+ y21)

(d+ x21)(c− y21)
,

y3 =
2cy1(d+ x21)

(c+ y21)(d− x21)
.

(3.3)

As shown by Ciss and Sow in [10] the total cost of point addition and doubling point is
12m+4d and 7m+5s+4d. The same results will be there for the proposed curve since point
addition, and doubling point formulas do not include curve constant ′a′ and ′b′.

3.2 Embedding of E(K) : ax(y2 − c) = by(x2 − d) into P1 × P1

The projective closure of elliptic curve de�ned by equation (3.1) in P1 × P1 is given by

E(K) = {(X : Z), (Y : T ) ∈ P1 × P1 : aXZ(Y 2 − cT 2) = bTY (X2 − dZ2)}. (3.4)

The formula for point addition and doubling point then corresponds to the following:

((X1 : Z1), (Y1 : T1)) + ((X2 : Z), (Y2 : T2)) =

{(d(XZ1 +X1Z2)(cT1T2 + Y1Y2) : (cT1T2 − Y1Y2)(dZ1Z2 +X1X2)),

(c(T2Y1 + T1Y2)(dZ1Z2 +X1X2) : (cT1T2 + Y1Y2)(X1X2 − dZ1Z2))}. (3.5)

[2]((X1 : Z1), (Y1 : T1)) =

{(2dX1Z1(cT
2
1 + Y 2

1 ) : (cT 2
1 − Y 2

1 )(dZ2
1 +X2

1 )),

(2cT1Y1(dZ
2
1 +X2

1 ) : −(cT 2
1 + Y 2

1 )(X2
1 − dZ2

1))}. (3.6)

Cost for Point Addition

m1 = X1X2, m2 = dZ1Z2, m3 = cT1T2, m4 = Y1Y2,

m5 = T1Y2, m6 = X2Z1, m7 = X1Z2, m8 = T2Y1.
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X3 = d(XZ1 +X1Z2)(cT1T2 + Y1Y2) = d(m3 +m4)(m6 +m7)

Z3 = cT1T2 − Y1Y2)(dZ1Z2 +X1X2) = (m3 −m4)(m1 +m2)

Y3 = c(T2Y1 + T1Y2)(dZ1Z2 +X1X2) = c(m8 −m5)(m6 +m7)

T3 = cT1T2 + Y1Y2)(X1X2 − dZ1Z2) = −(m3 +m4)(m1 −m2) (3.7)

The total cost is 12m+ 6a+ 4d which is same as using projective coordinates .
Cost for Doubling Point

s1 = X2
1 , s2 = Y 2

1 , s3 = T 2
1 , s4 = Z2

1

X3 = 2dX1Z1(cT
2
1 + Y 2

1 ) = 2dX1Z1(cs3 + s2)

Z3 = (cT 2
1 − Y 2

1 )(dZ2
1 +X2

1 ) = (cs3 − s2)(s1 + ds4)

Y3 = 2cT1Y1(dZ
2
1 +X2

1 ) = 2cT1Y1(s1 + ds4)

T3 = −(cT 2
1 + Y 2

1 )(X2
1 − dZ2

1) = −(cs3 + s2)(s1 − ds4) (3.8)

The total cost comes to 6m + 4s + 4a + 4d, which is less than the cost given by Ciss and
Sow and projective coordinates on by equation (3.4). Using embedding of E(K) : ax(y2 − c) =

by(x2−d) into P1×P1 and c =
−af
a− b

and d =
bg

a− b
have improved the proposed elliptic curves

computational cost. One can notice that the curve described by Ciss and Sow has higher cost
when computing 2P then found by embedding E(K) into P1 × P1.

4 Rational Points on E(K)

We de�ne a new form of Hu�'s model of elliptic curves

E(Fq) : ax
(
y2 + xy + f

)
= by

(
x2 + xy + g

)
, (4.1)

where a, b, f, g ∈ Fq and abfg(a− b) 6= 0 by replacing the �eld K by Fq, where q is a prime in
the equation (2.1). We observe that for each x, the curve (4.1) yields at most two values for
y; and the point of in�nity (0, 0) is always on the curve E(Fq). Thus, we can set up an upper
bound for the number of rationals on E(Fq) as

#E(Fq) ≤ 2q + 1.

However, computing the exact number of points on the curve E(Fq) is a challenge to us.
However, Hasse's theorem [16] on elliptic curve E(Fq) provides an estimate for the number of
rational points over a �nite �eld Fq as
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| #E(Fq)− (q + 1) | ≤ 2
√
q.

For the understanding purpose, we discuss the following method:
The curve (4.1) can be written be as

E(Fq) : afx+
(
−bg + ax2 − bx2

)
y + (ax− bx)y2 = 0. (4.2)

This may be seen as a quadratic equation in y. The discriminant of (4.2) can be calculated by

∆ = −4afx(ax− bx) +
(
−bg + ax2 − bx2

)2
(4.3)

and y can be rational if and only if ∆ = r2 for some rational r. In this senario, we can easily
�nd some points on the curve (4.1) by simply assigning values of a, f and g and solving for b.
The following toy example shows how one can obtain y coordinates and compute point addition
and doubling point.

Example 6. Let q = 11. We then put a = 1, f = 1, x = 1 and g = −1 in the curve equation
(4.1). Then the discriminant of (4.1) becomes

r2 = −4a(ax− bx) + (−bg + ax2 − bx2)2,
r2 = −4(1− b) + 1,

r2 = 4b− 3. (4.4)

We note that 4b − 3 must be a rational square to obtain rational points on the elliptic curve.
When r = 1,the equation (4.4) gives b = 1 but we omit this value due to the initial condition,
abfg(a− b) 6= 0 of the elliptic curve E(F11). When r = 2, the equation (4.4) gives b = 3. Now
the curve equation (4.1) becomes E(F11) : x (y2 + xy + 1) = 3y (x2 + xy − 1). It is easy to
check that

E(F11) ={O, (0, 1), (1, 0), (1, 1), (1, 5), (3, 7), (4, 1), (4, 5), (5, 7), (6, 4),

(7, 6), (7, 10), (8, 4), (10, 1), (10, 6), (10, 10)},
so, #E(F11) = 16. Since P = (1, 1) ∈ E(F11) and Q = (10, 10) ∈ E(F11), one can easily
compute doubling point 2P = (8, 4) and 2Q =(3, 7) and point addition of the point P + 2Q =
(10, 6) and 2P + Q = (1, 5) on the curve E(F11) by using the equations (2.5), (2.6), (2.7) and
(2.8).

Lemma 7. If (x, y) is a rational point on

E(K) : ax
(
y2 + xy + f

)
− by

(
x2 + xy + g

)
= 0

and x 6= 0, y 6= 0, then (−x,−y) is also rational point on E(K).

Proof. It is clear that if (x, y) is rational, then (−x,−y) also rational. All we have to do is to
show that (−x,−y) is also on E(K). Substituting (−x,−y) in E(K) gives the following,

a(−x)
(
(−y)2 + (−x)(−y) + f

)
− b(−y)

(
(−x)2 + (−x)(−y) + g

)
= 0,

−ax
(
y2 + xy + f

)
+ by

(
x2 + xy + g

)
= 0,

E(K) : ax
(
y2 + xy + f

)
− by

(
x2 + xy + g

)
= 0.

Thus, (−x,−y) is also rational point on E(K).
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5 Birational Equivalence of the New Form of Hu�'s Curve

to Weierstrass Form.

In 1928, Nagell proposed a simpler procedure to construct birational equivalence in the speci�c
case of plane curves. Nagell's method failed in even characteristics. In [31], the author describes
how Nagell's method [28] could be modi�ed to suit any characteristics. One can visit chapter
8 of [20] for the details of Nagell's algorithm. This section shows how to acheive birational
equivalence of the elliptic curve described by equation (2.1) to Weierstrass curves.

Theorem 8. Let E(K) be a non-singular elliptic curve de�ned by the a�ne formulae de�ned
by equation (2.1). E(K) is birational equivalence to a Weierstrass form of

y2 = t3 + a2t
2 + a4t+ a6,

where t = x− A

BC
, A = a(a− b)f(af + bg),B = (a− b)bg(2af + bg) ,and C = b3g3.

Proof. It is easy to see that equation (2.1) is also equivalent to

axy2 + ax2y + axf = bx2y + bxy2 + byg.

The signs of a, b, f , and g are either positive or negative and never equal to zero. The curve
has O = (0, 0) as the point of in�ection. The curve has (0 : 1 : 0), the point at in�nity in
projective transformation. For simplicity, we take E(K) in the following form:

E(K) : (a− b)XY 2 + (a− b)X2Y + afXZ2 − bgY Z2 = 0.

In chapter 8 [20], Cassels states that an elliptic curve genus 1 with at least a rational point on
the curve and Weierstrass form is enough to get the birational equivalence to curve and where
O is a rational point on the Weierstrass curve. If the curve has an in�ectional tangent at point
O, then let O = (0 : 1 : 0). The linear transformation of co-ordinates is enough to take O to
O and the tangent the line at in�nity. We de�ne O = (0 : 0 : 1) an in�ection point on E(K).
We �rst map O to curve E(K)M .

Let

ψ = (X : Y : Z) 7−→ (U : V : W ) = (U :
af

bg
U +W, V ).

then with a little bit of help from mathematica, we have the following parameters:

A = a(a− b)f(af + bg),

B = (a− b)bg(2af + bg) ,

C = b3g3 ,

D = (a− b)b2g2.
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Then, we obtain E(K)M = AU3 + BU2W + DUW 2 − CV 2W = 0. One can note that EM

could be easily changed to the Weierstrass form. To return to Hu�s elliptic curve from E(K)M ,
one may apply the following map:

ψ−1 = (U : V : W ) 7−→ (X : Y : Z) = (X : Z :
−af
bg

X + Y ).

It is noted that (0 : 0 : 1) on E is mapped to (0 : 1 : 0) on E(K)M through ψ.
To obtain the Weierstrass a�ne form, we let

X = x, V =
A

C
y and Z =

C

A
then we can simplify the equation

E(K)M : y2 = x3 +
BC

A2
x2 +

DC2

A3
x.

After obtaining a�ne equation of EM , we let x = t+
A

BC
to get the following Weierstrass form

equation,

E(K)w : y2 = t3 + a2t
2 + a4t+ a6,

where

a2 =
3A3 +B2C2

A2BC
,

a4 =
3A5 + 2A2B2C2 +B2C4D

A3B2C2
,

a6 =
A5 + A2B2C2 +B2C4D

A2B3C3
.

6 Computational cost analysis

Each coordinate systems cost is summarized in Table 1 for point addition and doubling point
on standard coordinates for the elliptic curve (2.1).

Table 1: Computational cost comparison

Coordinates
Cost

Addition Doubling

Projective 14m + 2s 13m + 5s
Jacobian 32m + 4s 29m + 5s

Lopez-Dahab 32m + 6s 26m + 5s
Embedding E(K) into P1 × P1 12m 6m + 4s
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We note that the computational cost using the embedding E(K) into P1 × P1 is lowest
than the projective, Jacobian, and Lopez Dahab coordinate systems. Thus, we recommend
embedding E(K) into P1×P1 system as the cost is lowest for point addition and doubling point
on this curve.

To compare our results with other Hu�'s models, we have to take extra operations as a to
be addition/subtraction of curve constants and d as multiplication by curve constants.

Table 2: Computational cost comparison of other forms of Hu�'s curve

Source and the curve equation Addition Doubling

Wu, Feng [33] plus assuming b=1,
11m+d+14a 6m+5s+d+12a

X(aY 2 − Z2) = Y (X2 − Z2)
Joye, Tibouchi, Vergnaud [22],

6m+5s+13a 11m+14a
aX(Y 2 − Z2) = bY (X2 − Z2)

Orhon and Hisil [29],
10m+14a 8m+10a

Y T (Z2 + 2X2) = cXZ(T 2 + 2Y 2)
Orhon and Hisil [29],

10m+12a 8m+8a
Y T (Z2 +X2) = cXZ(T 2 + 2Y )

This work using projective coordinate,
14m+2s+2d+12a 13m+5s+2d+3a

aX(Y +XY + fZ2) = bY (X2 +XY + gZ2)
This work by embedding

aXZ(Y 2 − cT 2) = bTY (X2 − dZ2) 12m+6a+4d 6m+4s+4a+4d
into P1 × P1

We note that the computational cost on the curves described in this paper is nearly optimal
to other known Hu�'s model of elliptic curves [See in Table 2]. The results shown by Ciss and
Sow on their curves [10] could be improved from 7m + 5s + 4a + 4d to 6m + 4s + 4a + 4d for
the doubling point by embedding the curves into P1 × P1 system.

7 Conclusion

In this paper, we have introduced a new form of elliptic curves in generalized Hu�'s model. We
have presented formulae for point addition and doubling on a�ne, projective, Jacobian, Lopez-
Dahab coordinates, and embedding of the curves into P1 × P1 system. We have observed that
the computational cost for point addition and doubling point on the new form of Hu�'s model
of elliptic curves is lowest by embedding the curves into P1 × P1 system than other mentioned
coordinate systems. The results shown by Ciss and Sow on their curves have been improved
from 7m+ 5s+ 4a+ 4d to 6m+ 4s+ 4a+ 4d for the doubling point by embedding the curves
into P1×P1 system. The computational cost of the new form of Hu�'s curves is nearly optimal
to other known Hu�'s models. We leave it as future work for a concrete computational cost
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comparison with other Hu�'s, Weierstrass, Montgomery, and Edwards curves. Furthermore,
one can extend the study to supersingular elliptic curves and isogeny-based cryptography.
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