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Abstract. We analyze the size vs. security trade-o�s that are available when selecting parameters for
perfectly correct key encapsulation mechanisms based on NTRU.

1 Introduction.

Three of the submissions to the NIST post-quantum standardization e�ort are key encapsulation mechanisms
based on NTRU. A number of objective measures might be used to compare them, e.g.:

• Size � The number of bytes in a public key and/or ciphertext.
• Security � The cost of a particular attack.
• E�ciency � The cost of using a scheme on a particular CPU.

Each of the NTRU submissions � NTRUEncrypt, NTRU-HRSS-KEM, and NTRU Prime � recommend
a small number of concrete parameter sets. One might plot these parameter sets on a size vs. security
vs. e�ciency graph to see the impact of the decisions each team has made in the design of their KEM.
Unfortunately, there would be some di�culties in interpreting such a graph. For example, a direct comparison
of Streamlined NTRU Prime and NTRU-HRSS-KEM on a size vs. security vs. e�ciency graph would mask
a fourth variable:

• Tightness of the security reduction.

Worse yet, a comparison of either Streamlined NTRU Prime or NTRU-HRSS-KEM with NTRUEncrypt
would mask a �fth variable:

• Correctness.

While it is di�cult to compare the precise KEMs that were submitted to NIST, there are KEMs in the
span of the three submissions that are easy to compare. Here we consider variants of NTRU-HRSS-KEM
and NTRUEncrypt that have correctness and tightness properties identical to those of Streamlined NTRU
Prime. We plot parameter sets for these variants, and parameter sets for Streamlined NTRU Prime, on size
vs. security graphs to see the impact of several design decisions. In particular, our graphs make clear:

1. the impact of using �xed-weight vector sampling routines instead of uniform vector sampling routines;
2. the impact of using a prime modulus instead of a power of two modulus; and
3. the impact of using the ring Z[x]/(xn − x− 1) instead of the ring Z[x]/(xn − 1).

Among the cryptosystems we consider is the variant of NTRU-HRSS-KEM proposed by Saito, Xagawa,
and Yamakawa in [10]. We leave the full size vs. security vs. e�ciency analysis to future work.

Availability of software and data. The source code used to produce the data used in this paper can be found
at https://github.com/ntru-hrss/parameters.

? Date: November 30, 2018

https://github.com/ntru-hrss/parameters


Acknowledgements. Thanks to Keito Xagawa for discussions related to Section 5.1. Thanks to Daniel J.
Bernstein for providing the motivation to create size vs. security graphs (in [2]).

Outline of this document. General background on NTRU is provided in Section 2. Public key encryption
schemes based on ntru-hrss are described in Section 3. Public key encryption schemes based on ntru-hps

are described in Section 4. IND-CCA2 KEMs are described in Section 5. Our size vs. security graphs are
described in Section 6. Figures 9 and 10 are size vs. security graphs for the NTRUEncrypt and NTRU-HRSS-
KEM variants. The same data is plotted against Streamlined NTRU Prime parameter sets in Figures 11 and
12. We conclude with some remarks on speci�c parameter sets in Section 7.

2 Preliminaries.

Notation. We denote the n-th cyclotomic polynomial by Φn. Note that Φ1 = x − 1 and if n is prime then
Φn = xn−1+xn−2+ · · ·+1 and Φ1Φn = xn−1. We write z mod (`,w) for the reduced representative of the
equivalence class z+(`,w). This is the unique element of z+(`,w) of degree < degw with coe�cients between
b−`+1

2 c and b
`−1
2 c. We denote the reduce representative of the multiplicative inverse of z in Z[x]/(`,w), when

it exists, by (1/z) mod (`,w). For a �nite set S and a domain separation string dom we de�ne a random
oracle x 7→ SampleS(x, dom). In algorithms we use �←� to denote assignment and �←$� to denote sampling
from the uniform distribution.

Parameters for ntru-hps. We refer to the original ntru scheme, as de�ned by Ho�stein, Pipher, and Silver-
man [7], as ntru-hps. The scheme is parameterized by three coprime integers (n, p, q) and four sample spaces
(Lf ,Lg,Lr,Lm). It makes use of a ring R = (Zn,+,~). Elements of this ring are written as polynomials in
x, e.g. a = a0 + a1x + · · ·+ an−1x

n−1. The ~ operation is cyclic convolution:

u ~ v =

(
n−1∑
i=0

uix
i

)
~

n−1∑
j=0

vjx
j

 =

n−1∑
i=0

n−1∑
j=0

uivjx
(i+j) mod n.

Bold face letters that appear in our description of ntru will be treated either as elements of Z[x] or as
elements of R, as convenient. It is not hard to see that u ~ v = v ~ u = uv mod (Φ1Φn). In fact, R ∼=
Z[x]/(Φ1Φn). The four sample spaces are subsets of R.

The ntru-hps one-way function. An ntru-hps private key is a pair (f , fp) with f ∈ Lf and

fp ~ f ≡ 1 (mod p). (1)

A corresponding public key is h ∈ R for which there exists g ∈ Lg with

h ~ f ≡ pg (mod q). (2)

The ntru-hps one-way function is described in Figure 1.

Ehps(h, r,m)

1. c← (rh + m) mod (q,Φ1Φn)
2. return c

Dhps(f , fp, c)

1. a← cf mod (q,Φ1Φn)
2. m′ ← afp mod (p,Φ1Φn)
3. return m′

Fig. 1: The ntru-hps one-way function.

If f , fp, and h are such that Equations (1) and (2) are satis�ed and c = Ehps(h, r,m), then in Line 1 of
Dhps(f , fp, c) we have a ≡ pr ~ g + m ~ f (mod q). If

|pr ~ g + m ~ f |∞ < q/2. (3)

then this equivalence modulo q can be promoted to an equality in Z[x], and it follows that Dhps(f , fp, c) = m.
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Parameters for ntru-hrss. We will refer to the variant of ntru that was proposed by Hülsing, Rijnveld,
Schanck, and Schwabe [9] as ntru-hrss. The parameters of ntru-hrss di�er from the parameters of ntru-
hps as follows: The parameters n, p, and q are chosen so that Φn is irreducible modulo p and modulo q; the
polynomials in Lf , Lg, Lr, and Lm are chosen to have degree at most n− 2; and the elements of Lf and Lg
are required to satisfy a �non-negative correlation� property, which we will describe momentarily.

The ntru-hrss one-way function. An ntru-hrss private key is (f , fp) with f ∈ Lf and

fpf ≡ 1 (mod (p,Φn)). (4)

A corresponding public key is a polynomial h ∈ R for which there exists g ∈ Lg with

h ~ f ≡ pΦ1 ~ g (mod q). (5)

We also de�ne a function Lift : R → R by

Lift(m) = Φ1 ((m/Φ1) mod (p,Φn)) . (6)

Note that Lift(m) ≡ 0 (mod Φ1) and that Lift(m) ≡m (mod (p,Φn)). The ntru-hrss one-way function is
described in Figure 2.

Ehrss(h, r,m)

1. c← (rh + Lift(m)) mod (q,Φ1Φn)
2. return c

Dhrss(f , fp, c)

1. a← cf mod (q,Φ1Φn)
2. m′ ← afp mod (p,Φn)
3. return m′

Fig. 2: The ntru-hrss one-way function.

If f , fp, and h are such that Equations 4 and 5 are satis�ed and c = Ehrss(h, r,m), then in Line 1 of
Dhrss(f , fp, c) we have a ≡ pΦ1 ~ r ~ g + Φ1 ~ s ~ f (mod q) where s = (m/Φ1) mod (p,Φn). If

|pΦ1 ~ r ~ g + Φ1 ~ s ~ f |∞ < q/2. (7)

then this equivalence modulo q can be promoted to an equality in Z[x], and it follows that Dhrss(f , fp, c) ≡
Lift(m) mod (p,Φn).

The x 7→ 1 homomorphism. The �evaluate at 1� map, x 7→ 1, is a ring homomorphism from Z[x] to
Z with kernel (Φ1). Since R ∼= Z[x]/(Φ1) × Z[x]/(Φn), the map that we obtain by treating an element
of R as a polynomial in x and evaluating it at 1 is a ring homomorphism from R to Z. This has some
unfortunate consequences for ntru-hps. Public keys reveal potentially useful information about private
keys: h(1) = pg(1)/f(1) mod q. Ciphertexts reveal potentially useful information about messages: c(1) =
r(1)h(1)+m(1) mod q. The amount of information revealed depends on the choice of the sample spaces Lf ,
Lg, Lr, and Lm. The main di�erence between ntru-hps and ntru-hrss is in how the x 7→ 1 homomorphism
is treated. The extra multiplications by Φ1 in the de�nition of ntru-hrss are there to ensure that h(1) = 0
and c(1) = 0 regardless of the choice of sample spaces.

Geometry and ~-multiplication. We will need some basic geometric facts in our discussion of perfect cor-
rectness. Let u,v,w ∈ R. The inner product of u and v is 〈u,v〉 =

∑n−1
i=0 uivi. The conjugate of u

is u = u0 +
∑n−1
i=1 un−ix

i. Note that u + v = u + v and u ~ v = u ~ v. Moreover, for 0 ≤ k < n,
〈xk,u〉 = uk = 〈1,xk ~ u〉 and by bilinearity of the inner product 〈u~ v,w〉 = 〈u,v ~w〉. The 2-norm of u
is |u|2 =

√
〈u,u〉. The max-norm of u is |u|∞ = maxi |〈xi,u〉|. The max-norm of a ~-product satis�es

|u ~ v|∞ ≤ |u|2|v|2. (8)
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To see this note that |u ~ v|∞ = maxi |〈xi ~ u,v〉|, and |〈xi ~ u,v〉| ≤ |xi ~ u|2|v|2 by Cauchy�Schwarz.
Equation (8) follows because both ~-multiplication with x and conjugation are 2-norm preserving. Equality
holds when u = xi ~ v for some i.

For ntru-hrss we also need to bound the max-norm of three term products of the form Φ1~u~v. The
proof of [9, Lemma 1] shows that if 〈x ~ v,v〉 ≥ 0 then

|Φ1 ~ u ~ v|∞ ≤
√
2|u|2|v|2. (9)

When v is such that 〈x ~ v,v〉 ≥ 0 we say that v has the non-negative correlation property.

Sample spaces. Typical ntru-hps instantiations take the four sample spaces to be sets of polynomials
of degree ≤ n − 1 with coe�cients in between b−p+1

2 c and bp−12 c, i.e. sets of reduced representatives of
Z[x]/(p,Φ1Φn). The instantiations we consider below use polynomials of degree ≤ n− 2, i.e. sets of reduced
representatives of Z[x]/(p,Φn). We de�ne

T = {z ∈ R : z = z mod (p,Φn)} .

The subset of T with non-negative correlation, needed for ntru-hrss, is

T+ = {z ∈ T : 〈x ~ z, z〉 ≥ 0} .

The subset of T with coe�cients that sum to zero, needed for our ntru-hps instantiation, is

T0 = {z ∈ T : z(1) = 0} .

We will also consider sets of vectors of �xed 2-norm:

T (d) = {z ∈ T : |z|22 = d}, T+(d) = T (d) ∩ T+, and T0(d) = T (d) ∩ T0.

When p = 3 we will refer to T (d) and T+(d) as sets of �xed-weight vectors. The �xed-weight sets contain
vectors of hamming weight d. When p = 3 we will refer to T0(d) as a set of �xed-type vectors. We will
assume that d is even in this case. The �xed-type sets contain vectors that have exactly d/2 coe�cients equal
to +1 and d/2 coe�cients equal to −1.

Clean parameters. We say that a parameter set (n, p, q,Lf ,Lg,Lr,Lm) is clean if 1) p is prime, 2) Φn is
irreducible modulo p and modulo q, 3) Lf , Lg, Lr, and Lm are all subsets of T , and 4) all d > 1 that divide
q satisfy d > bp/2c. The fourth condition ensures that the content (g.c.d. of coe�cients) of an element of T
is coprime with q, and allows us to eliminate some invertibility tests.

3 OW-CPA public key encryption schemes from ntru-hrss.

ntru-hrss was originally presented as a probabilistic public key encryption (PPKE) scheme [9]. This scheme
is reproduced in Figure 3. The deterministic public key encryption (DPKE) scheme in Figure 4 was pre-
sented by Saito, Xagawa, and Yamakawa in [10]. Here we consider more general parameters than have been
considered in previous work and we state the general versions of the correctness theorems.

Remark 1. The polynomial pΦ1gfq has coe�cients that sum to zero, so h has coe�cients that sum to a
multiple of q. A small space-saving optimization is to drop the coe�cient hn−1 before transmission; the
recipient can recover it as hn−1 = −

∑n−2
i=0 hi mod q. The same can be done for c. We assume that this

optimization is used when we calculate the size of ntru-hrss public keys and ciphertexts.
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KeyGen1(seed)

1. g← SampleLg(seed, domg)
2. f ← SampleLf (seed, domf)
3. fq ← (1/f) mod (q,Φn)
4. fp ← (1/f) mod (p,Φn)
5. h← (pΦ1gfq) mod (q,Φ1Φn)
6. return dk = (f , fp), ek = h

Enc1(h, coins,m) with m ∈ Lm

1. r← SampleLr(coins, domr)
2. c← (rh + Lift(m)) mod (q,Φ1Φn)
3. return c

Dec1((f , fp), c)

1. a← (cf) mod (q,Φ1Φn)
2. m′ ← (afp) mod (p,Φn)
3. if m′ 6∈ Lm return ⊥
4. else return m′

Fig. 3: A probabilistic public key encryption scheme using the ntru-hrss one-way function.

KeyGen2(seed)

1. g← SampleLg(seed, domg)
2. f ← SampleLf (seed, domf)
3. fq ← (1/f) mod (q,Φn)
4. fp ← (1/f) mod (p,Φn)
5. h← (pΦ1gfq) mod (q,Φ1Φn)
6. hq ← (1/h) mod (q,Φn)
7. return dk = (f , fp,hq), ek = h

Enc2(h, (r,m)) with r ∈ Lr,m ∈ Lm

1. c← (rh + Lift(m)) mod (q,Φ1Φn)
2. return c

Dec2((f , fp,hq), c)

1. a← (cf) mod (q,Φ1Φn)
2. m′ ← (afp) mod (p,Φn)
3. b← (c− Lift(m′)) mod (q,Φn)
4. r′ ← (bhq) mod (q,Φn)
5. if (r′,m′) 6∈ Lr × Lm return ⊥
6. else return (r′,m′)

Fig. 4: A deterministic public key encryption scheme using the ntru-hrss one-way function.

3.1 Correctness for the ntru-hrss PPKE and DPKE schemes.

Line 2 of Enc1(h, coins,m) computes Ehrss(h, r,m), for some r determined by coins, and Lines 1-2 of
Dec1((f , fp), c) compute Dhrss(f , fp, c). A proof of correctness largely follows the reasoning around Equation
(7). Parameters must be chosen such that the following three conditions are satis�ed:

1. Equations (4) and (5) hold for all ((f , fp),h) output by KeyGen1;
2. The inequality (7) holds for all f ∈ Lf , g ∈ Lg, r ∈ Lr, and s ∈ T ; and
3. For all m ∈ Lm it is the case that m = Lift(m) mod (p,Φn).

The inverses in Lines 3 and 4 of KeyGen1 exist when the parameters are clean. The �rst condition is satis�ed
when these inverses exist. The second and third conditions imply that Dhrss(f , fp, Ehrss(h, r,m)) = m for all
key pairs output by KeyGen1, all r ∈ Lr, and all m ∈ Lm. The second condition must be enforced through
the choice of q and the sample spaces; we will provide examples in the following section. The third condition
holds so long as Lm ⊆ T , hence it holds for clean parameters. With these conditions the proof of Theorem
1 is a routine calculation.

Theorem 1. Suppose that (n, p, q,Lf ,Lg,Lr,Lm) is a clean parameter set. Further suppose that (7) is
satis�ed for all f ∈ Lf , g ∈ Lg, r ∈ Lr, and s ∈ T . Then for all (dk, ek) = ((f , fp),h) output by KeyGen1,
all coins ∈ {0, 1}∗, and all m ∈ Lm We have

m = Dec1(dk,Enc1(ek, coins,m)),

i.e. (KeyGen1,Enc1,Dec1) is a correct probabilistic public key encryption scheme.

Theorem 2. With the conditions of Theorem 1 (KeyGen2,Enc2,Dec2) is a correct deterministic public key
encryption scheme.

Proof. For the purpose of correctness, Enc1 and Enc2 di�er only in whether r is provided as an input. The
�rst two lines of Dec2 are identical to the �rst two lines of Dec1. From these observations and Theorem
1 we have m′ = m in Line 2 of Dec2(dk,Enc2(h, (r,m)). Observe that Enc2(h, (r,m)) ≡ rh + Lift(m)
(mod (q,Φn)), and the inverse in Line 6 of KeyGen2 exists when the parameters are clean. It follows that the
value r′ computed in Lines 3− 4 of Dec2 satis�es r′ ≡ (rh)hq ≡ r (mod (q,Φn)). This establishes that r′ is
the reduced representative of the equivalence class r+(q,Φn). Finally note that r ∈ T , so r mod (q,Φn) = r
and r′ = r. ut
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3.2 Correctness criteria for speci�c sample spaces.

Suppose that we take Lf ,Lg ⊆ T+ and Lr ⊆ T . In (7), we have r, s ∈ T and f ,g ∈ T+. Thus Equation (9)
and the triangle inequality imply that

|pΦ1 ~ r ~ g + Φ1 ~ s ~ f |∞ ≤
√
2 (p|r|2|g|2 + |s|2|f |2) . (10)

We can obtain an upper bound on this quantity by maximizing over the relevant sample spaces. Note that

max
u∈T
|u|2 = bp/2c

√
n− 1 (11)

There are two important families of parameter sets, which we will refer to as uniform and �xed norm.

Uniform: If we consider clean parameters with Lf = Lg = T+ and Lr = T , then the assumptions of
Theorems 1 and 2 are satis�ed so long as q > 2

√
2(p + 1)bp/2c2(n − 1). This follows from (7) and (10) by

using (11) to bound each of |f |2, |g|2, |r|2, and |s|2. When p = 3 the condition is simply q > 8
√
2(n− 1).

Fixed norm: We can do better by taking Lf = Lg = T+(d) and Lr = T (d). Then we know that |f |2 = |g|2 =

|r|2 =
√
d. Using (11) for a bound on the |s|2 term yields q > 2

√
2
(
pd+ bp/2c

√
d(n− 1)

)
.

4 OW-CPA public key encryption schemes from ntru-hps.

In this section we present variants of ntru-hps that mirror the ntru-hrss variants above as closely as
possible. To the best of our knowledge the encryption schemes presented in Figures 5 and 6 have not
appeared elsewhere. That said, the only novelties are the elimination of invertibility tests in key generation
and use of reduction modulo Φn in decapsulation.

KeyGen3(seed)

1. g← SampleLg(seed, domg)
2. f ← SampleLf (seed, domf)
3. fq ← (1/f) mod (q,Φn)
4. fp ← (1/f) mod (p,Φn)
5. h← pgfq mod (q,Φ1Φn)
6. return dk = (f , fp), ek = h

Enc3(h, coins,m) with m ∈ Lm

1. r← SampleLr(coins, domr)
2. c← rh + m mod (q,Φ1Φn)
3. return c

Dec3((f , fp), c)

1. a← cf mod (q,Φ1Φn)
2. m′ ← afp mod (p,Φn)
3. if m′ 6∈ Lm return ⊥
4. else return m′

Fig. 5: A probabilistic public key encryption scheme using the ntru-hps one-way function.

KeyGen4(seed)

1. g← SampleLg(seed, domg)
2. f ← SampleLf (seed, domf)
3. fq ← (1/f) mod (q,Φn)
4. fp ← (1/f) mod (p,Φn)
5. h← (pgfq) mod (q,Φ1Φn)
6. hq ← (1/h) mod (q,Φn)
7. return dk = (f , fp,hq), ek = h

Enc4(h, (r,m)) with r ∈ Lr,m ∈ Lm

1. c← (rh + m) mod (q,Φ1Φn)
2. return c

Dec4((f , fp,hq), c)

1. a← (cf) mod (q,Φ1Φn)
2. m′ ← (afp) mod (p,Φn)
3. b← (c−m′) mod (q,Φn)
4. r′ ← (bhq) mod (q,Φn)
5. if (r′,m′) 6∈ Lr × Lm return ⊥
6. else return (r′,m′)

Fig. 6: A deterministic public key encryption scheme using the ntru-hps one-way function.
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4.1 Correctness for the ntru-hps PPKE and DPKE schemes.

Line 2 of Enc3(h, coins,m) computes Ehps(h, r,m), for some r determined by coins, and Lines 1-2 of
Dec1((f , fp), c) compute Dhps(f , fp, c) mod (p,Φn). A proof of correctness largely follows the reasoning around
Equation (3). The extra reduction modulo (p,Φn) allows us to replace the condition on (f , fp) that is ex-
pressed by Equation (1) with the more relaxed condition of Equation (4). As in Section 3.1, parameters must
be chosen such that three conditions are satis�ed:

1. Equations (4) and (2) hold for all ((f , fp),h) output by KeyGen3;
2. The inequality (3) holds for all f ∈ Lf , g ∈ Lg, r ∈ Lr, and m ∈ Lm; and
3. For all m ∈ Lm we have m = m mod (p,Φn).

The inverses in Lines 3 and 4 of KeyGen3 exist when the parameters are clean. However, this alone does not
imply that the Equation (2) is satis�ed. To see the issue, suppose that f(1) = 0 and that there does not
exist g ∈ Lg with g(1) = 0. The issue can be resolved by taking taking Lg to be a subset of T0. This has the
added bene�t of ensuring that h(1) = 0. The second condition can be enforced through the choice of q and
the sample spaces. The third condition holds so long as Lm ⊆ T , hence it holds for clean parameters.

Theorem 3. Suppose that (n, p, q,Lf ,Lg,Lr,Lm) is a clean parameter set and that Lg and Lm are sub-
sets of T0. Further suppose that (3) is satis�ed for all f ∈ Lf , g ∈ Lg, r ∈ Lr, and m ∈ Lm. Then
(KeyGen3,Enc3,Dec3) is a correct probabilistic public key encryption scheme.

Theorem 4. With the conditions of Theorem 3 (KeyGen4,Enc4,Dec4) is a correct deterministic public key
encryption scheme.

Remark 2. The condition Lm ⊆ T0 is not necessary for correctness, but it eliminates any impact that the
x 7→ 1 homomorphism might have on the one-wayness of the scheme.

4.2 Correctness conditions for speci�c ntru-hps parameter sets.

Equation (8) and the triangle inequality give

|pr ~ g + m ~ f |∞ ≤ p|r|2|g|2 + |m|2|f |2. (12)

Alternatively, the triangle inequality alone gives

|pr ~ g + m ~ f |∞ ≤ p|r|∞|g|1 + |m|1|f |∞. (13)

For ntru-hps we will only consider �xed norm parameter sets.

Fixed norm. Consider a clean parameter set with Lg,Lm ⊆ T0(d) and Lf ,Lr ⊆ T (d) for some positive, even,
integer d. The conditions of Theorems 3 and 4 are satis�ed so long as q > 2(p + 1)d. This follows directly
from Equation (12). The same condition applies when p = 3, Lg,Lm ⊆ T0(d), and Lf ,Lr ⊆ T . In this case
the condition follows from Equation (13).

5 IND-CCA2 KEM constructions.

Having de�ned OW-CPA PPKE and OW-CPA DPKE schemes from both ntru-hps and ntru-hrss, we
now have some freedom in constructing IND-CCA2 KEMs. The NTRUEncrypt and NTRU-HRSS-KEM
submissions to the NIST process both build KEMs from PPKE schemes. The NTRU Prime submission builds
a KEM from a DPKE scheme. Here we will focus on a OW-CPA DPKE to IND-CCA2 KEM conversion,
which is tight in the random oracle model, so that we can make fair comparisons with Streamlined NTRU
Prime parameter sets.

For our purposes, it is important to check that there are no interactions between the choice of the CCA
conversion and the choice of parameters. Such an interaction could a�ect the size vs. security graph. The
NTRUEncrypt and NTRU-HRSS-KEM submissions have such interactions:
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• The NTRU-HRSS-KEM submission includes a length-preserving hash of the message as part of the
ciphertext. This hash accounts for 141 bytes of an ntruhrss701 ciphertext. The size of this hash can be
reduced by changing how m is sampled (see [9, Section 5]), so the scheme has additional size vs. security
vs. e�ciency trade-o�s.

• The NAEP transformation used by the NTRUEncrypt submission is incompatible with �xed-type m.
Using �xed-type m, and optimizing q, can decrease size and increase security.

The KEM in Figure 7 makes use parameters (n, p, q,Lf ,Lg,Lr,Lm) and algorithms (KeyGen,Enc,Dec)
that de�ne a correct DPKE. The parameter ` is the bit length of session key that is the output of the protocol.
The function H is a random oracle Lr × Lm → {0, 1}` and H ′ is a random oracle R× {0, 1}` → {0, 1}`.

CCAKeyGen()

1. seed←$ {0, 1}`
2. s←$ {0, 1}`
3. (dk′, ek)← KeyGen(seed)
4. dk ← (dk′, ek, s)
5. return (dk, ek)

CCAEncaps(ek)

1. coins←$ {0, 1}`
2. r← SampleLr(coins, domr)
3. m← SampleLm(coins, domm)
4. c← Enc(ek, (r,m))
5. K ← H((r,m))
6. return (c,K)

CCADecaps(dk, c) with dk = (dk′, ek, s)

1. result← Dec(dk′, c)
2. if result = ⊥ or c 6= Enc(ek, result)
3. then K ← H ′(c, s)
4. else K ← H(result)
5. return K

Fig. 7: A KEM that implicitly rejects invalid ciphertexts by producing a random session key.

The KEM in Figure 7 with (KeyGen,Enc,Dec) = (KeyGen2,Enc2,Dec2) was described by Saito, Xagawa,
and Yamakawa in [10]. See [10], and references therein, for security reductions.

5.1 Re-using partial results during re-encapsulation.

The re-encapsulation in Line 2 of CCADecaps may be able to re-use some values that are computed during
the decapsulation in Line 1 of CCADecaps. For instance, the value Lift(m′) that is computed in Line 3 of
Dec2 can be re-used in Line 1 of Enc2. More importantly, the value b that is computed in Line 3 of Dec2
(resp. Line 3 of Dec4) can be used to avoid the rather expensive computation of r~h in Line 1 of Enc2 (resp.
Line 1 of Enc4). The procedure for doing so is given in Figure 8. Proposition 1 shows that the procedure is
correct.

ReEnc2(b,m)

1. t← (−b(1)/n) mod q
2. c← b + tΦn + Lift(m) mod q
3. return c

ReEnc4(b,m)

1. t← (−b(1)/n) mod q
2. c← b + tΦn + m mod q
3. return c

Fig. 8: Re-encapsulation procedures that re-use the value b computed in Dec2 and Dec4.

Proposition 1. Suppose (n, p, q,Lf ,Lg,Lr,Lm) meet the conditions of Theorem 2, that ((f , fp,hq),h) is
a key pair generated using KeyGen2, and that c ∈ R. Suppose further that Dec2((f , fp,hq), c) outputs
some (r′,m′) ∈ Lr × Lm and not ⊥. Let b be the value produced in Line 3 of Dec2((f , fp,hq), c). Then
ReEnc2(b,m

′) = Enc2(h, (r
′,m′)).

Proof. From Line 4 of Dec2((f , fp,hq), c) we have r′ = (bhq) mod (q,Φn), hence b ≡ r′h (mod (q,Φn))
and ReEnc2(b,m

′) ≡ Enc2(h, (r
′,m′)) (mod (q,Φn)). Since b has degree at most n− 2, ReEnc2(b,m

′) has
degree n − 1 and is a reduced representative mod (q,Φ1Φn). To prove the claim it su�ces to show that
ReEnc2(b,m

′) ≡ Enc2(h, (r
′,m′)) (mod (q,Φ1)). Note that the right hand side is congruent to 0, and with

t = (−b(1)/n) mod q we have (b + tΦn + Lift(m′))(1) ≡ 0 (mod q). ut
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Remark 3. The analogous proposition for ReEnc4 needs the assumption that Lg ⊆ T0 and Lm ⊆ T0. The
proof is identical modulo the use of Lift.

Remark 4. The ReEnc2 and ReEnc4 functions do not need h, so implementations that use these routines can
omit h from the decapsulation key. Note that the decapsulation key will still contain a copy of hq.

6 Size vs. security comparisons.

Figures 9 and 10 depict size vs. security trade-o�s for the parameter sets discussed in Sections 3.2 and 4.2.
Figures 11 and 12 include Streamlined NTRU Prime parameter sets as well. Figures 13 and 14 show the
e�ect of using p ∈ {2, 3, 5} for uniform ntru-hrss with prime q.

In all of the graphs, size is measured as the total number of bytes in a public key plus the total number
of bytes in a ciphertext. For prime q parameter sets, we assume an optimal encoding of {0, 1, . . . , q − 1}n′

into dn′ log2(q)/8e bytes (n′ = n− 1 for ntru-hps and ntru-hrss, n′ = n for Streamlined NTRU Prime).
Streamlined NTRU Prime ciphertexts include a plaintext con�rmation hash that we have not included in
our size calculation.

The security estimates in Figures 9 and 11 are based on a �Core-SVP� model that uses 20.292β for the
cost of solving SVP in dimension β. See [1] for background on the Core-SVP model. The security estimates
in Figures 10 and 11 are based on an analysis of Howgrave-Graham's hybrid attack. Our analysis is similar
to those of [6,4,9].

We have included a hybrid attack analysis because it shows � more clearly than the Core-SVP model
� that a small weight parameter can be detrimental to the size vs. security trade-o�. For our hybrid attack
analysis we assume that the cost of solving SVP in dimension β is 2C1(β) with C1(β) = (β/2e) log2(β)−β+16.
We assume that the cost of meet-in-the-middle search on K coe�cients is 2K·S(P )/2 where S(P ) is the
Shannon entropy of the probability distribution for a single coe�cient. For �xed-weight and �xed-type
vectors with parameter d we take P (0) = 1−d/n and P (1) = P (−1). Fixed-weight/type vectors do not have
independent and identically distributed (i.i.d.) coe�cients, so 2K·S(P ) is not necessarily a good approximation
to the size of the set of �typical� K-coe�cient patterns. Nevertheless, after comparing our results with [4],
which used a more re�ned estimate for the size of the set of typical K-coe�cient patterns, we believe that
the impact of the i.i.d. assumption is small for parameter sets with n/3 ≤ d ≤ 2n/3.

Our software provides several options for the cost of solving SVP in dimension β. Using a cost of 2C2(β)

with C2(β) = 0.000784314β2 + 0.366078β − 6.125 we have compared our security estimates for Streamlined
NTRU Prime parameter sets to those reported in [4, Appendix P]. Apart from the i.i.d. assumption, our
analysis di�ers from that of [4] in several important ways. First, we have not used the simulator of [5]. Second,
we have ignored the polynomial number of calls to the SVP solver that are made by BKZ (we cost a single
call). Third, we have omitted a factor of 27 from the cost of solving SVP. As expected, our security estimates
are lower than those of [4] for all 212 parameter sets listed in [4, Appendix P]. For the 178 parameter sets
with n/3 ≤ d ≤ 2n/3, our security estimates are between 3 and 7 bits lower1. The average discrepancy is
5.22 bits. The maximum discrepancy across all 212 parameter sets is 13 bits for a parameter set with weight
d = b0.07nc.

We have not incorporated the results of [11] into our hybrid attack cost estimates.

Filtering of parameter sets. Figures 9, 10, 11, and 12 only include parameter sets with p = 3. While p = 2
appears to be optimal in Figure 13, the very poor performance of p = 2 in Figure 14 leads us believe that
p = 3 is optimal. This is in line with Howgrave�Graham's recommendation in [8] and common practice.

For uniform ntru-hrss
2, we have included every clean parameter set with 449 ≤ n ≤ 941 and q the

smallest prime that provides correctness. We have also included every clean parameter set with 449 ≤ n ≤ 941
and q the smallest power of two that provides correctness.

1 This is after accounting for two errors in [4, Appendix P]. The security of sntrup2437541 was listed as 150, but it
should be 143. The security of sntrup4591761 was listed as 248, but it should be 236.

2 For our security analysis of these parameters we have used the non-uniform coe�cient distribution proposed in [9]
(P (0) = 6/16, P (1) = P (−1)). Using the uniform distribution would lead to a slight increase in security.
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For �xed norm ntru-hps and ntru-hrss, we have included every clean parameter set with 449 ≤ n ≤
941, d ∈ {b3n/8c, bn/2c, b3n/5c, b2n/3c} (or as close to these four values as possible), and q the smallest
prime that provides correctness. We have also included parameter sets with n and d of this form and q the
smallest power of two that provides correctness. The choice of weight parameters is somewhat arbitrary.
However, by comparing the relative position of points between Figures 9 and 10, one can see that the
hybrid attack has a greater impact on the relative security of parameter sets with d = b3n/8c than it does
on parameter sets with d ∈ {bn/2c, b3n/5c, b2n/3c}. We suspect that improved combinatorial attacks will
further separate these cases, and that the optimal choice of d lies in [n/2, 2n/3].

We have included all of the Streamlined NTRU Prime parameter sets that were listed in [4, Appendix P];
i.e. all parameter sets with (n, q) that are consistent with the requirements of the scheme, have 500 < n < 950,
and have n < q < 20000. The weight parameter of each parameter set is the minimum of 2bq/32c and 2bn/3c.
Some of these parameter sets have small weight or unnecessarily large q. For comparison with our ntru-
hps and ntru-hrss parameter sets, we have highlighted the Streamlined NTRU Prime parameter sets with
n/3 ≤ d ≤ 2n/3 and q < 18n.

7 Notes on speci�c parameter sets.

Naming conventions. We write ntruhrss[n], e.g. ntruhrss701, for an ntru-hrss parameter set with p = 3,
q = 2d7/2+log2(n)e, Lf = Lg = T+, and Lr = Lm = T . We write ntruhps[q][n], e.g. ntruhps2048509, for an
ntru-hps parameter set with p = 3, and d the largest even value that provides correctness when Lg = Lm =
T0(d) and Lf = Lr = T . We write sntrup[q][n] for Streamlined NTRU Prime parameter sets.

Uniform ntru-hrss parameters. The prime q parameter sets in this family have fairly consistent size vs.
security trade-o�s. They are available at wide range of security levels, and there is little that distinguishes
any particular parameter set. On the other hand, there is a sharp discontinuity in the size vs. security graph
for parameter sets that use power of two q. The parameter set ntruhrss701 has the best size vs. security
trade-o� among uniform ntru-hrss parameter sets with power of two q.

Fixed-weight ntru-hrss parameters. It is unlikely that �xed-weight ntru-hrss parameter sets are more
e�cient than �xed-type ntru-hps parameter sets. Since the latter typically provide better size vs. security
trade-o�s, we have chosen not to highlight any �xed-weight ntru-hrss parameter sets.

Fixed-type ntru-hps parameters. Again, the prime q parameter sets in this family have fairly consistent
size vs. security trade-o�s for any particular weight. Some parameter sets with power of two q stand out as
having particularly good size vs. security trade-o�s. We have highlighted a few of these parameter sets.

1. The parameter set ntruhps2048509 has an excellent size vs. security trade-o�, especially considering the
weight parameter (254 = bn/2c) and the use of power of two q. With a Core-SVP cost estimate of 2106, it
is possible that an attack on the corresponding KEM would be as costly as key search on a block cipher
with a 128-bit key.

2. The parameter set ntruhps2048677 also has an excellent size vs. security trade-o�, especially considering
the use of power of two q. The weight parameter is fairly low (254 = d3n/8e), and may lower con�dence
in our security analyses. Nevertheless, the security analyses that we have considered place the parameter
set higher than ntruhrss701. The combined public key + ciphertext size of this parameter set is also 416
bytes smaller than that of ntruhrss701.

3. The parameter set ntruhps4096701 is among the best analogues for sntrup4591761 in terms of size and
security. The weight parameter (466 = b2n/3c) is higher than that of sntrup4591761 (286 = 1+ b3n/8c).
A more detailed comparison of the two might consider whether a low weight parameter is more or
less worrisome than the ring structure that Streamlined NTRU Prime was designed to avoid. A similar
parameter set was described in [3].
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4. The parameter set ntruhps4096821 provides an excellent size vs. security trade-o� and a high security
level. We have plotted this parameter set with weight 492 = b3n/5c, however the weight can be increased
to 510 = b0.622nc while preserving correctness. With a Core-SVP cost estimate of 2178 it is possible that
an attack on the corresponding KEM would be as costly as key search on a block cipher with a 192-bit
key.

Streamlined NTRU Prime parameters.

1. The parameter set sntrup4591761 was used as a case study in [4]. It was also recommended in the
NTRU Prime NIST submission. It has an excellent size vs. security tradeo�. Its weight parameter is
286 = b0.376 · nc.

2. The parameter set sntrup7541743 is a good analogue of sntrup4591761 with a larger weight parameter
(470 = b0.633 · nc).

3. The parameter sets sntrup11923709 and sntrup12241727 are good analogues of ntruhrss701. Both have
q > 16n, so by [4, Theorem 2.1] they are compatible with the use of uniform sampling routines.

4. The parameter set sntrup5167857 provides an excellent size vs. security trade-o� and a high security
level. It is a good point of comparison with ntruhrss4096821.
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Fig. 9: Size vs. security trade-o�s as described in Section 6. Lines connect parameter sets that use the same
n. All of the parameter sets use p = 3. The ��xed type d� parameter sets take Lg = Lm = T0(d) and
Lf = Lr = T . The ��xed weight d� parameter sets take Lf = Lg = T+(d), Lr = T (d), and Lm = T . All
parameter sets are clean, correct, and use the smallest q available. Security is evaluated using a Core-SVP
model.
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Fig. 10: Size vs. security trade-o�s as described in Section 6. Lines connect parameter sets that use the same
n. All of the parameter sets use p = 3. The ��xed type d� parameter sets take Lg = Lm = T0(d) and
Lf = Lr = T . The ��xed weight d� parameter sets take Lf = Lg = T+(d), Lr = T (d), and Lm = T . All
parameter sets are clean, correct, and use the smallest q available. Security is evaluated with respect to the
hybrid attack.
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Fig. 11: The data of Figure 9 plotted alongside Streamlined NTRU Prime parameters. The same Core-SVP
analysis has been applied to the Streamlined NTRU Prime parameters.
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Fig. 12: The data from Figure 10 plotted alongside Streamlined NTRU Prime parameters. The same hybrid
attack analysis has been applied to the Streamlined NTRU Prime parameters.
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Fig. 13: Size vs. security trade-o�s for ntru-hrss parameters with q prime and p ∈ {2, 3, 5}. Security is
evaluated using a Core-SVP model.



100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

H
y
b
ri
d
co
st
,
(b
/
2
e)
lo
g
2
(b
)
-
b
+
1
6
m
et
ri
c,
lo
g
sc
a
le

Communication cost (pk + ct bytes)

NTRU-HRSS, prime q, uniform, p=2
NTRU-HRSS, prime q, uniform, p=3
NTRU-HRSS, prime q, uniform, p=5

Fig. 14: Size vs. security trade-o�s for ntru-hrss parameters with q prime and p ∈ {2, 3, 5}. Security is
evaluated using with respect to the hybrid attack.
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