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Abstract. Identity concealment and zero-round trip time (0-RTT) connection are two
of current research focuses in the design and analysis of secure transport protocols, like
TLS1.3 and Google’s QUIC, in the client-server setting. In this work, we introduce a
new primitive for identity-concealed authenticated encryption in the public-key setting,
referred to as higncryption, which can be viewed as a novel monolithic integration of
public-key encryption, digital signature, and identity concealment. We present the security
definitional framework for higncryption, and a conceptually simple (yet carefully designed)
protocol construction.

As a new primitive, higncryption can have many applications. In this work, we focus on
its applications to 0-RTT authentication, showing higncryption is well suitable to and
compatible with QUIC and OPTLS, and on its applications to identity-concealed authen-
ticated key exchange (CAKE) and unilateral CAKE (UCAKE). In particular, we make a
systematic study on applying and incorporating higncryption to TLS. Of independent in-
terest is a new concise security definitional framework for CAKE and UCAKE proposed in
this work, which unifies the traditional BR and (post-ID) frameworks, enjoys composabil-
ity, and ensures very strong security guarantee. Along the way, we make a systematically
comparative study with related protocols and mechanisms including Zheng’s signcryption,
one-pass HMQV, QUIC, TLS1.3 and OPTLS, most of which are widely standardized or
in use.

1 Introduction

Identity concealment and zero-round trip time (0-RTT) option are two of current
research focuses in design and analysis of cryptographic systems (particularly, se-
cure transport protocols for the client-server setting). By identity concealment,
we mean that the transcript of protocol run should not leak participants’ iden-
tity information, which is now deemed to be an important privacy concern and
is mandated or recommended by a list of widely standardized and deployed cryp-
tographic protocols like TLS1.3 [16], QUIC [40], EMV [8], etc. Furthermore, in-
formally speaking, a player enjoys forward ID-privacy if its ID-privacy preserves
even when its static secret-key is compromised. By 0-RTT option, we mean that
when the client has a previously retrieved or cached public key of the server, it
can optionally transmit encrypted information already in the first flow of the pro-
tocol run. 0-RTT connection is highly desirable because of its significant impact
on connection latency, a critical issue in most HTTP(S) content acquisitions. This
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option is supported by QUIC and is now under discussion by the IETF TLS1.3
working group.

The QUIC protocol, developed by Google and already implemented with Chrome
in 2013, currently stands as one of the most promising solutions to decreasing
latency while intending to provide security properties similar with TLS [30]. Ac-
cording to Google’s measurement, currently at least 75% of all QUIC connections
use 0-RTT mode. Unfortunately, QUIC and TLS1.3 (which is underway) are now
only supporting 0-RTT mode without client authentication. One of the major ob-
stacles (among others) hindering the deployment of 0-RTT client authentication,
from our point of view, is that the literature lacks a cryptographic mechanism that
soundly and practically integrates public-key encryption, entity authentication and
ID-concealment into a single primitive. It has become a consensus that, in order
for QUIC to be ubiquitous, a suitable mechanism for 0-RTT client authentication
is needed.

A straightforward solution for 0-RTT client authentication is to encrypt client’s
0-RTT data and signature using server’s public-key. However, this approach has
several drawbacks and is unsatisfactory.

– Firstly, such a direct composition may not be sound enough and may bring
some security concerns. For example, consider the DHIES-based solution: {X =
gx, EncK(m, sig)}, where the receiver has public-key B = gb, Enc is a CCA-
secure symmetric encryption with K being derived from CDH(X,B), sig is
sender’s signature on message m. If an adversary learns (m, sig), or learns
the DH-exponent x (that is allowed to be exposed in our security model), it
can re-encrypt (m, sig), potentially leading to sender impersonation or causing
two un-matching sessions to share the same 0-RTT data and peer view. The
underlying reason is that the composition of ID-concealment, encryption and
entity authentication is quite loose.

– Secondly, directly composing public-key encryption and digital signature may
not be efficiency economic. On the other hand, a tailored protocol construction
usually not only has efficiency improvements, but also can have much more
advantageous features, as witnessed by the ongoing CAESAR competition [9]
on authenticated encryption (AE) even though AE can be generally achieved
by composing CPA-secure encryption and MAC.

– Thirdly, viewing the cryptographic mechanism, which integrates ID-concealment,
public-key encryption and entity authentication, as a separate primitive may
conceptually simplify the design and analysis of complex protocols. However,
the proper modeling of ID-concealed authenticated encryption and key-exchange
may not be so obvious and deserves explorations, as already witnessed by the
modeling of composition of encryption and authentication [1,2,14,20,21].
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– Fourthly, sender’s signature leaves to the receiver an undeniable proof of session
participance, while in many application scenarios certain kind of deniability is
more desirable for privacy considerations.

In the public-key setting, authenticated encryption refers to signcryption [48],
which is also standardized by ISO-29150. It is shown that signcryption is function-
ally equivalent to one-pass authenticated key-exchange [35,13,20], which in turn
has applications in asymmetrical key-wrapping [21]. Zheng’s signcrytion [48,2,17]
and one-pass HMQV (HOMQV) [24,21] are briefly described in Appendix A.
There, it is clear that sender’s public identity information (including its certificate)
has to be sent in clear, as otherwise the receiver cannot derive the shared key. It
would be interesting to note that, even though signcryption (1997) and one-pass
MQV (1995) have been invented for about two decades, the issue of ID conceal-
ment was not considered for them up to now, whether for protocol construction or
for security definition. It is also interesting to note that HOMQV enjoys “receiver
deniability”, in the sense that the session transcript (in particular, the authenti-
cation value σ) can be simulated from public parameters and receiver’s secret-key.
In comparison, the session transcript of Zheng’s signcryption is undeniable, as the
authentication value s corresponding to sender’s signature cannot be generated by
the receiver. In addition, Zheng’s signcryption suffers from the x-security defined
in [21]:1 the leakage of the DH-exponent x causes the exposure of sender’s static
secret-key a or the pre-shared secrecy PS (for Zheng’s signcryption, both a and
PS are exposed). This leads us to the following motivation question.

Can we come up with a cryptographic mechanism, simultaneously enjoying: (1) forward
ID-privacy, (2) being relatively as efficient as HOMQV, (3) receiver deniability, and (4)
x-security?

Motivating Question 1

Authenticated key-exchange (AKE), in particular Diffie-Hellman (DH), plays a
fundamental role in modern cryptography, bridging public-key cryptography and
symmetric-key cryptography, and is the backbone of a list of network security
protocols that are widely standardized and used. Up to now, the most efficient
AKE protocols are (H)MQV [35,26] and OAKE [46], but none of them consid-
ers ID-concealment. For AKE protocols in the client/server setting, both TLS1.3
and QUIC mandate ID-concealment. The protocol structure of QUIC, briefly de-
scribed in Appendix A, is conceptually simple and enjoys the advantages of effi-
ciency, receiver deniability, and deployment flexibility. However, QUIC (without
0-RTT connection) does not enjoy forward ID-privacy. Specifically, the compro-
mising of server’s static secret-key will expose the shared-key K1 for encrypting

1 This is actually named as y-security in [21], where the player pidB plays the role of sender.
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server’s DH-component Y , consequently losing server’s ID-privacy. The core au-
thentication mechanism of TLS1.3 is based on the SIGMA scheme [25], which is
also briefly described in Appendix A. For presentation simplicity, by TLS1.3 we
mean the core authentication mechanism presented there. TLS1.3 uses signature
for server authentication, which brings the following effects. On the one hand, when
implementing with DSA, it can be less efficient than QUIC, and suffers from the
shortcoming of DSA-type signature (i.e., the exposure of random nonce, which can
be offline generated and stored for online signature generation, will cause exposure
of static secret-key). On the other hand, the use of signature loses receiver denia-
bility. Since its sixth version, TLS1.3 incorporates the OPTLS protocol [28], which
is actually an dual version of basic mechanism of the deniable IKE (DIKE) pro-
tocol proposed in [45,47]. Both DIKE and OPTLS are also described in Appendix
A. Briefly speaking, DIKE/OPTLS is as efficient as QUIC, but enjoys forward
ID-privacy. But none of QUIC, TLS1.3 and DIKE/OPTLS enjoys x-security, in
the sense that the exposure of DH-exponent in a session exposes the session-key
(for QUIC and TLS1.3) or server’s ID (for OPTLS). By comparison, (H)MQV and
OAKE have x-security. This leads to the following motivation question.

Can we come up with new AKE schemes, simultaneously enjoying: (1) forward
ID-privacy, (2) efficiency comparable to (H)MQV/OAKE and even better than
QUIC/OPTLS, (3) x-security, (4) receiver deniability, and (5) being free of signatures?

Motivating Question 2

1.1 Contributions

In this work, we systematically solve the above two motivating questions, with
novel ID-concealed authentication mechanism and new security definitional frame-
works.

For the first motivating question, we introduce a new primitive, referred to
as identity-hiding signcryption (higncryption, for short). We present the security
definitional framework for higncryption, and a practical and conceptually simple
(yet carefully designed) construction of higncryption, with detailed comparisons
with Zheng’s signcryption and HOMQV. We suggest that, as a new primitive,
higncryption is of independent value and can have many applications. A direct
application of higncryption is one-pass ID-concealed AKE, which in turn has ap-
plication to key-wrapping. We make in-depth discussions on its applications to
0-RTT authentication (showing higncryption is well suitable and compatible to
QUIC and OPTLS), and to server-only authenticated and confidential channel
establishment (SACCE) as defined in [27]. Compared to QUIC and TLS1.3 as
described in Appendix A, the higncryption-based SCAAE is more efficient, sig-
natureless, has forward ID-privacy and receiver deniability, strong resilience to



5

exposure of intermediate state, and enjoys flexible implementations and deploy-
ments.

For the second motivating question, we first observe that existing security defi-
nitional frameworks for AKE cannot be well applied to ID-concealed authenticated
key-exchange, on the following grounds. On the one hand, traditional AKE secu-
rity definition critically relies upon users’ identities to define session matching,
which lies at the heart of AKE security definition. On the other hand, existing
security frameworks usually do not consider ID-privacy or treat it separately from
AKE security. This motivates us to present a new security definition framework,
for both ID-concealed key-exchange with mutual authentication (referred to as
CAKE for presentation simplicity) and ID-concealed key-exchange with unilateral
authentication (referred to as UCAKE), and make in-depth discussions and clar-
ifications. Then, we present protocol constructions for both CAKE and UCAKE,
along with detailed discussions and comparisons with QUIC, TLS1.3 and HMQV.

All the protocols developed in this work are provably secure under standard
assumptions in the random oracle model. In order to support more efficient and
flexible deployments while still preserving provable security, we introduce a new
family of problems and assumptions related to a variant of the DL-problem, re-
ferred to as flexible DL (FDL) problem, which are proven to hold in the generic
group model and might be of independent interest (e.g., to leakage-resilient cryp-
tography).

2 Preliminaries

If S is a finite set then |S| is its cardinality, and x← S is the operation of picking
an element uniformly at random from S. If S denotes a probability distribution,
x ← S is the operation of picking an element according to S. We overload the
notion for probabilistic or stateful algorithms, writing C ← Alg to mean that
algorithm Alg runs and outputs value named C. If α is neither an algorithm nor
a set then x ← α is a simple assignment statement. A string or value α means a
binary one, and |α| is its binary length. For two strings x, y ∈ {0, 1}∗, x||y denotes
their concatenation.

Let G′ be an abelian group of order N , and G = 〈g〉 be a unique subgroup
of G′ generated by the generator g of prime order q. Throughout this work, the
group law is written multiplicatively, and the length of q, i.e., |q|, serves as the
security parameter. Denote by 1G the identity element of G′, by G \ 1G the set of
elements of G except 1G, and by t = N/q the cofactor value. When instantiated
with groups based on elliptic curves, G′ is the group of points E(L) on an elliptic
curve E defined over a finite field L, and G is a subgroup of E(L) of prime order
q. For elliptic curve based groups, the cofactor t is typically very small.
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The discrete logarithm (DL) assumption over G says that given X = gx, for
x ← Z∗q , no probabilistic polynomial-time (PPT) DL-solver algorithm can out-
put x with non-negligible probability. The computational Diffie-Hellman (CDH)
assumption says that given X = gx, Y = gy, for x, y ← Z∗q , no probabilistic
polynomial-time CDH-solver algorithm can compute CDH(X, Y ) = gxy with non-
negligible probability. The Gap Diffie-Hellman (GDH) assumption [36] says that
the CDH assumption holds, even if the CDH solver is equipped with a decisional
Diffie-Hellman (DDH) oracle for G and g, where on arbitrary input (U, V, Z) ∈ G3

the DDH oracle outputs 1 if and only if Z = CDH(U, V ).

2.1 Authenticated Encryption with Associated Data

Briefly speaking, an authenticated encryption with associated data (AEAD) scheme
transforms a message M and a public header information H (e.g., a packet header,
an IP address, etc) into a ciphertext C in such a way that C provides both privacy
(of M) and authenticity (of C and H) [38]. In practice, when AEAD is used within
cryptographic systems, the associated data is usually implicitly determined from
the context (e.g., the hash of the transcript of protocol run or some pre-determined
states).

AEAD security. Let SE = (Kse,Enc,Dec) be a symmetric encryption scheme.
The probabilistic polynomial-time algorithm Kse takes a security parameter κ as
input and samples a key K from a finite and non-empty set K

⋂
{0, 1}κ. For presen-

tation simplicity, we assume K ← K = {0, 1}κ. The polynomial-time encryption
algorithm Enc : κ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} and the (deterministic)
polynomial-time decryption algorithm Enc : κ× {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}
satisfy: for any K ← K, any associate data H ∈ {0, 1}∗ and any message M ∈
{0, 1}∗, if EncK(H,M) outputs C 6= ⊥, then DncK(C) always outputs M . Here,
we assume the ciphertext C bears the associate data H in plain.

Let A be an adversary. Table 1 describes a security game for AEAD. We define
the advantage of A to be Advaead

SE (A) =
∣∣2 · Pr[AEADA

SE returns true]− 1
∣∣. We

say that the SE scheme is AEAD-secure, if for all sufficiently large κ the advantage
of any probabilistic polynomial-time adversary is negligible.

main AEADA
SE: procedure Enc(H,M0,M1): procedure Dec(C′):

K ← Kse If |M0| 6= |M1|, Ret ⊥ If σ = 1 ∧ C′ /∈ C then
σ ← {0, 1} C0 ← EncK(H,M0) Ret DecK(C′)
σ′ = AEnc,Dec C1 ← Enc(H,M1) Ret ⊥
Ret (σ′ = σ) If C0 = ⊥ or C1 = ⊥, Ret ⊥

C ∪← Cσ; Ret Cσ

Table 1: AEAD security game
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The above AEAD security is quite strong. In particular, it means that, after
adaptively seeing a polynomial number of ciphertexts, an efficient adversary is
infeasible to generate a new valid ciphertext in the sense its decryption is not
“⊥”. Also, for two independent keys K,K ′ ← Kse and any message M and any
header information H, Pr[DecK′(EncK(H,M)) 6= ⊥] is negligible.

The AEAD security definition is based on that in [39,37], with the following
modifications: the length-hiding requirement is removed while header information
integrity property is added. In this work, we assume users’ identities and public-
key information to be of equal length; otherwise, we need length-hiding AEAD as
defined in [37,27].

In general, AEAD schemes can be built upon the composition of a CPA-secure
symmetric encryption scheme and a MAC scheme [3]. But until recently, authenti-
cated encryption has been recognized as an important distinct cryptographic prim-
itive both in cryptographic research and in cryptographic standardizations (e.g.,
the ongoing CAESAR competition [9]). The reasons are as follows [14]. Firstly,
there are inappropriate composition of symmetric encryption and MACs that re-
sult in insecure AEAD schemes [3,24]. Secondly, there are constructions of AEAD
that escape the generic composition paradigm, and in most cases a tailored solu-
tion can be noticeably more efficient or have other advantages compared to the
generic composition paradigm. Finally, recognizing authenticated encryption as a
distinct cryptographic primitive may conceptually simplify the design of complex
protocols that require both privacy and authenticity, as witnessed by the design
and analysis of secure channel establishment with AEAD in TLS/SSL [27], QUIC
[30], EMV [8], etc. Currently, the most popular AEAD scheme in use may be
GCM-AES [34].

2.2 General Forking Lemma

Lemma 1 (General forking lemma [4]). Fix an integer q̂ ≥ 1 and a set O
of size λ. Let C be a randomized algorithm that on input U, d1, · · · , dq̂ returns a
pair, the first element of which is an integer in the range 0, · · · , q̂ and the second
element of which we refer to as a side output. Let IG be a randomized algorithm
that we call the input generator. The accepting probability of C, denoted acc, is
defined as

Pr[J ≥ 1 : U ← IG; d1, · · · , dq̂ ← O; (J, σ)← C(U, d1, · · · , dq̂)]

The forking algorithm FC associated with C is the randomized algorithm that takes
input U and proceeds as follows:
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Algorithm 1 The Forking Algorithm FC(U)
1: Pick coins ρ for C at random
2: d1, · · · , dq̂ ← O
3: (J, σ)← C(U, d1, · · · , dq̂; ρ)
4: if J = 0 then
5: return (0,⊥,⊥)
6: end if
7: d′J , · · · , d′q̂ ← O
8: (J ′, σ′)← C(U, d1, · · · , dJ−1, d

′
J , · · · , d′q̂; ρ)

9: if J = J ′ ∧ dJ 6= d′J then
10: return (1, σ, σ′)
11: else
12: return (0,⊥,⊥)
13: end if

Let

frk = Pr [b = 1 : U ← IG; (b, σ, σ′)← FC(U)] .

Then

frk ≥ acc

(
acc

q̂
− 1

λ

)
. �

3 Flexible Discrete Logarithm (FDL) and Related
Problems

In this section, we introduce a class of problems that generalize the traditional
DL and related problems, study their complexity in the generic group model, and
discuss their applications and consequences.

We first prove the following lemma, which could be viewed as a generalized
version of the Schwartz-Shoup lemma [42,43,33,31].

Lemma 2. Let Xi, 1 ≤ i ≤ k, be a well-spread distribution over a subset Si ⊆ Z∗q
with min-entropy λi = −log(maxx∈Si(Pr[Xi = x])) > ω(log |q|), which means
Pr[Xi = x] is negligible for any x ∈ Zq (when the security parameter |q| is suffi-
ciently large). Let P (X1, · · · , Xk) be a non-zero multivariate polynomial over Zq
of total degree d, where d and k are polynomials in |q| (usually, they are small
constants). The probability P (x1, · · · , xk) = 0, when xi taken independently from
Xi (i.e., xi ← Xi) for 1 ≤ i ≤ k, is at most d(2−λ1 + · · ·+ 2−λk).

Proof. We prove this lemma by induction on k. Firstly, a univariate polynomial
(i.e., for the case of k = 1) over the Zq has at most d roots, and thus Pr[P (x1) =
0] ≤ d2−λ1 for x1 ← X1.

Secondly, consider the case of k = 2. Let e ≥ 1 be the maximal degree of x2
in any term in P (x1, x2). The polynomial P (x1, x2) can be viewed as a univariate
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polynomial of degree e: P2(x2) = cex
e
2 + ce−1x

e−1
2 + · · · + c1x2 + c0, where ci,

1 ≤ i ≤ e, is a univariate polynomial in x1 of degree at most d − i, and ce is
non-zero. There are at most d − e solutions of x1 for ce = 0. Accordingly, there
are at most d − e solutions of x1 for ce = ce−1 = · · · = c0 = 0, which causes
P2 to be a zero polynomial. This event occurs with probability (d − e)2−λ1 . On
the other hand, if this event does not occur (i.e., for any value x1 under which
P2(x2) is non-zero), there are at most e solutions of x2 for P2(x2) = 0. Thus, for
x1 ← X1 and x2 ← X1, Pr[P (x1, x2) = 0] ≤ (d− e)2−λ1 + (1− (d− e)2−λ1)e2λ2 ≤
(d− e)2−λ1 + e2λ2 < d(2−λ1 + 2−λ2).

Now, supposing this lemma holds for case of k − 1, we consider the case of
k. Let ϑ ≥ 1 be the maximal degree of xk in any term in P (x1, · · · , xk). The
polynomial P (x1, · · · , xk) can be viewed as a univariate polynomial Pk(xk) of
degree ϑ, where the coefficient of the term xϑ is a polynomial eϑ(x1, · · · , xk−1)
of degree at most d − ϑ. According to the assumption, Pr[eϑ(x1, · · · , xk−1) =
0] ≤ (d − ϑ)(2−λ1 + · · · + 2−λk−1)), which is also the probability upper-bound for
causing Pk to be a zero polynomial. On the other hand, conditioned on this event
does not occur (i.e., for all values (x1, · · · , xk) under which Pk is non-zero), there
are at most ϑ solutions of xk for Pk(xk) = 0. As λi > ω(log |q|), 1 ≤ i ≤ k,
and d and k are polynomial in |q|, we have d(2−λ1 + · · · + 2−λk < 1 (when |q|
is sufficiently large). In summary, for xi ← Xi, 1 ≤ i ≤ k, Pr[P (x1, · · · , xk) =
0] ≤ (d − ϑ)(2−λ1 + · · · + 2−λk−1)) + (1 − (d − ϑ)(2−λ1 + · · · + 2−λk−1)))ϑ2λk ≤
(d− ϑ)(2−λ1 + · · ·+ 2−λk−1)) + ϑ2λk < d(2−λ1 + · · ·+ 2−λk). �

Let X and Y (resp., Z) be well-spread distributions over some subsets of of Z∗q
(resp., the uniform distribution over Z∗q ) with min-entropy λX and λY respecitvely.
The flexible discrete logarithm (FDL) problem is to compute x from X = gx for
x ← X . The flexible CDH (FCDH) problem is to compute CDH(X = gx, Y y)
for x ← X and y ← Y . The flexible DDH (FDDH) problem is to distinguish
(X = gx, Y = gy, gxy) and (X, Y, gz), for x← X , y ← Y and z ← Z∗q . The flexible
gap Diffie-Hellman (FGDH) problem is to compute CDH(X = gx, Y = gy) for
x ← X and y ← Y with the aid of a DDH oracle. The flexible gap DL (FGDL)
problem is to distinguish between gxy and gz, for x ← X , y ← Y and z ← Z∗q ,
with the aid of a DDH oracle. Notice the difference between FGDL and FDDH,
where for solving FGDL the values gx and gy are not given as input.

Clearly, traditional problems of DL, CDH, DDH, GDH are special cases of their
flexible counterparts, when X and Y are constrained to the uniform distribution
over Z∗q with min-entropy log(q−1). The work [10] introduces a variant of the DDH
problem, referred to as hybrid DDH (HDDH) for presentation simplicity, where
X is a well-spread distribution over Z∗q while Y is the uniform distribution over
Z∗q , which is a special case of FDDH and can be viewed as a hybrid of FDDH and
traditional DDH. Similarly, we can define hybrid CDH (CDH), resp., hybrid GDH



10

(HGDH), where X is a well-spread distribution over Z∗q while one of X and Y is
the uniform distribution over Z∗q . Actually, as shall see, what we need in this work,
only for flexible efficient deployment of protocols, are the HGDH assumption and
the FGDL assumption, where FGDL assumption is used only for proving forward
ID-privacy of the flexible implementations.

Next, we study the complexity of FDL and related problems in the generic
group model [43,31]. Roughly speaking, an algorithm is generic if it does not use
the encoding of the group elements. It can only use group elements for group
operations and relation verifications. There are many groups for which the fastest
DL solver algorithms are generic. For example, general elliptic curves; general
hyper-elliptic curves of genus 2; and subgroups of prime order q in Z∗p when (p−
1)/q is so large that sieving methods are inefficient [41].

For presentation simplicity, in the following analysis we use Maurer’s generic
group model [31] that is actually equivalent to Shoup’s model [43,22], and only
count the complexity of generic steps where each generic step corresponds to an
access to the generic group oracle for performing one group operation or one re-
lationship verification. Also, we disregard the probability of simply and correctly
guessing x or y, which happens with probability of max{2−λX , 2−λY} that is neg-
ligible.

Theorem 1. For an algorithm of τ generic steps for solving the FGDH problem,
its success probability is upper bounded by τ 3(2−λX + 2−λY ) in the generic group
model.

Proof. In Maurer’s generic group model for solving the FGDH problem, the generic
group oracle (GG-oracle)O originally keeps three internal states (1, x, y) in a list L,
where x (resp., y) is taken independently according to the well-spread distribution
X (resp., Y). For presentation simplicity, we denote by L[i] the value stored in the
i-th entry of L, and we assume L[1] = 1, L[2] = x and L[3] = y. The adversary
is given the indices of (1, x, y) in L, i.e., (1, 2, 3), and has black-box access to the
GG-oracle O. For the i-th GG-oracle access corresponding to a group operation,
the value computed by the GG-oracle O can be viewed as a linear polynomial of
the form Fi(x, y) = aix+ biy + ci, where ai, bi, ci ∈ Zq are determined by previous
GG-oracle accesses. The value Fi is not returned to A directly, but is stored into
a position in the internal list L where the position index for storing Fi is indicated
by A. A is always given the ability of verifying equality relation, by which A
queries O with (i, j) and gets result whether L[i] = L[j] or not. For adversary
against FGDH problem, the adversary A is additionally allowed to query the GG-
oracle with (i, j, k), and GG-oracle returns 1 if and only if L[i]L[j] = L[k] which
corresponds to the DDH oracle.

As discussed in [31], in this generic group model we only need to consider non-
adaptive adversaries, and there are only two approaches for A to succeed (other
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than simply guessing x or y that is disregarded in the analysis). One is to cause
two different Fi and Fj to collide, in the sense that aix+ biy + ci = ajx+ bjy + cj
where (ai, bi, ci) 6= (aj, bj, cj). In other words, (ai−aj)x+ (bi− bj)y+ (ci− cj) = 0.
By Lemma 2, this event can occur with probability at most C2

τ (2−λX + 2−λY ).
Another approach for A to succeed is to cause, for some (i, j, k), the non-zero

polynomial FiFj−Fk = 0 (if the polynomial FiFj−Fk is a zero-polynomial, it leaks
nothing). That is, (aix+ biy+ ci)(ajx+ bjy+ cj)− (akx+ bky+ ci) = 0 for x← X
and y ← Y . Note that FiFj − Fk is a quadratic polynomial. According to Lemma
2 by setting d = 2, this event occurs with probability at most C3

τ (2(2−λX + 2−λY )).
Note that C2

τ (2−λX + 2−λY ) + C3
τ (2(2−λX + 2−λY )) < τ 3(2−λX + 2−λY ). �

Corollary 1. For an algorithm of τ generic steps for solving the FCDH, resp.,
FDL, problem, its success probability is upper bounded by τ 2(2−λX + 2−λY ), resp.,
τ 22−λX , in the generic group model.

Proof. For solving FCDH problem in the generic group model, as no DDH oracle
is rendered to the adversary, A can only perform equality verification via oracle
access (besides group operations). In this case, we only need to consider the proba-
bility that two different polynomials Fi = aix+biy+ci and Fj = ajx+bjy+cj collide
for x← X and y ← Y . This event occurs with probability at most τ 2(2−λX+2−λY ).

For solving FDL problem in the generic group model, the GG-oracle O origi-
nally keeps (1, x) in its internal list, where x ← X . The adversary succeeds only
when two different polynomials Fi = aix+ ci and Fj = ajx+ cj collide. This event
occurs with probability at most τ 22−λX according to Lemma 2. �

Theorem 2. For an algorithm of τ generic steps for solving the FDDH problem,
its success probability is upper bounded by 1

2
+τ 2(2−λX +2−λY + 1

q−1) in the generic
group model.

Proof. In Maurer’s generic group model for solving the FDDH problem, the GG-
oracle O originally keeps (1, x, y, T0, T1) in its internal list, where x (resp., y)
is taken independently according to the well-spread distribution X (resp., Y),
z ← Z∗q and Tb = xy and T1−b = z for a random bit b ← {0, 1}. The goal of the
adversary A is to guess the random bit b.

For the i-th GG-oracle access corresponding to a group operation, the value
computed byO can be viewed as a quadratic polynomial of the form Fi(x, y, xy, z) =
aix+biy+cixy+diz+ei, where ai, bi, ci, di, ei ∈ Zq that are determined by previous
GG-oracle accesses. Define Gi(x, y, z) = Fi(x, y, xy, z). The advantage obtained by
A (over simply guessing the random bit b) is the probability of making two dif-
ferent polynomials Gi(x, y, z) and Gj(x, y, z) colliding. The non-zero polynomial
Gi(x, y, z) − Gj(x, y, z) is of degree 2. According to Lemma 2, A succeeds with
probability at most 1

2
+ τ 2(2−λX + 2−λY + 1

q−1). �
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Theorem 3. For an algorithm of τ generic steps for solving the FGDL problem,
its success probability is upper bounded by 1

2
+τ 3(2−λX +2−λY + 1

q−1) in the generic
group model.

Proof. In Maurer’s generic group model for solving the FGDL problem, the GG-
oracle O originally keeps (1, T0, T1) in its internal list for Tb = xy and T1−b = z,
where b← {0, 1}, x (resp., y) is taken independently according to the well-spread
distribution X (resp., Y) and z ← Z∗q . Note that O does not directly keep the
value x or y. The goal of the adversary A is to guess the random bit b, with the
aid of a DDH oracle.

For the i-th GG-oracle access corresponding to a group operation, the value
computed by O can be viewed as a quadratic polynomial of the form Fi(xy, z) =
aixy + biz + ci, where ai, bi, ci ∈ Zq that are determined by previous GG-oracle
accesses. Define Gi(x, y, z) = Fi(xy, z). The advantage obtained by A (over simply
guessing the random bit b) is the probability of: (1) for some (i, j), making two
different quadratic polynomials Gi(x, y, z) and Gj(x, y, z) colliding (i.e., Gi−Gj =
0); or (2) for some (i, j, k), making the (non-zero) quartic polynomial GiGj−Gk =
0. According to Lemma 2, the advantage is at most 1

2
+C2

τ (2(2−λX +2−λY + 1
q−1))+

C3
τ (4(2−λX + 2−λY + 1

q−1)) < 1
2

+ τ 3(2−λX + 2−λY + 1
q−1). �

Remark. The complexity of FDL and related problems shows that they are hard
for polynomial-time algorithms at least in the generic group model. We remark
that the upper-bounds proved in the above theorems and corollaries are quite
loose, where we have given the solver algorithms the benefit of the doubt, and
have assumed that the algorithm will succeed with any collision. In a related work
by Schnorr [41], it is shown that if x is drawn uniformly at random from a subset
H ⊂ Z∗q of size |H| ≤

√
|q|, the success probability upper-bound of a τ generic-

step DL-solver is about τ
|H| (not τ2

|H| as established with usual analysis), which

implies that DL defined over a random subset of size
√
|q| is as hard as traditional

DL defined over Z∗q ! But the result [41] critically relies on uniform distribution
over the subset H, while our result is for any distribution with super-logarithmic
min-entropy.

The result about FDL and related problems has two consequences. On the
one hand, it indicates that cryptosystems based on the traditional DL and related
problems have strong resilience to randomness leakage, in the sense they are still se-
cure as long as super-logarithmic min-entropy remains with each exponent secrecy.
On the other hand, it allows more flexible and efficient implementations of cryp-
tosystems based on DL and related problems. For example, user’s static secret-key
is still drawn uniformly at random from Z∗q , while the ephemeral DH-exponents
could be taken in different (super-polynomial size) subsets of Z∗ according to the
task criticality and application scenarios.



13

4 Strong Security Model for Higncryption

An identity-hiding sign encryption (higncryption) scheme HC, with associated
data, is specified by four polynomial-time algorithms: setup, keygen, higncrypt and
unhigncrypt.

setup: is a PPT algorithm that takes the security parameter κ as input and
outputs the system parameter params to be used in the scheme. We assume
the security parameter is always (maybe implicitly) encoded in params.

key-gen: is a PPT algorithm that takes the system parameter params as input
and outputs a public-private key pair (pk, sk) used for higncryption and un-
higncryption. For presentation simplicity, we assume params is included in pk.
In this work, we assume each user has a single key pair (pk, sk), which is used
both for higncryption and for unhigncryption.

higncrypt: is a PPT algorithm that takes, as input, a sender’s private key sks,
the sender’s public identity information pids = (ids, pks, certs) where certs is
sender’s certificate issued by a certificate authority (CA), a receiver’s public
identity information pidr = (idr, pkr, certr), message M ∈ {0, 1}∗ and asso-
ciated data H ∈ {0, 1}∗ to be higncrypted. It returns a higncryptext C, or
symbol ⊥ indicating higncryption failure. The associated data H, if any, ap-
pears in clear in the higncryptext C 6= ⊥. In this work, we allow a user to
highcrypt a message to itself; that is, pids = (ids, pks, certs) may be equal to
pidr = (idr, pkr, certr). Also, we assume that some offline-computable interme-
diate randomness, e.g., DH-exponents, used in generating the higncryptest C
is specified and stored in a variable ST C that could be exposed to allow for a
more robust security definition.

unhigncrypt: is a deterministic polynomial-time algorithm that takes, as input,
a receiver’s private key skr, the receiver’s public identity information pidr =
(idr, pkr, certr), and a higncryptext C. It outputs either (pids,M) or an error
symbol ⊥. Note that, unlike in traditional unsigncryption, unhigncrypt does
not take sender’s public identity information pids as input.

The correctness for a higncryption scheme requires that, for all sufficiently large
security parameter κ, any key pairs (pks, sks) and (pkr, skr) output by key-gen(1κ),
it holds unhigncrypt(skr, pidr, higncrypt(sks, pids, pidr, H,M)) = (pids,m) for any
H,M ∈ {0, 1}∗ such that higncryption(sks, pids, pidr, H,M) 6= ⊥.
We now present the strong security model for higncryption in the multi-user

setting, where each user possesses a single key pair for both higncryption and
unhigncrypton and can higncrypt messages to itself, and the adversary is allowed
to adaptively register (dishonest) users.
Let n be the number of users in the system, where n is polynomial in the security

parameter κ. The key pairs of all the honest parties in the system are generated
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by the challenger according to the specified key generation algorithm. The ad-
versary is given the public keys of all the honest users initially, and can register
arbitrary public keys (for dishonest parties) on its own. Denote by HONEST (reps.,
DISHONEST) the set of public identity information for all the honest (resp., dis-
honest) parties in the system. Throughout this work, denote by pidi, 1 ≤ i ≤ n,
the pubic identity information of user idi, and by pids (resp., pidr) the public
identity information of the sender (resp., the receiver). The adversary is also given
access to HO, UHO, EXO and Corrupt oracles, as specified below.

HO: On input (pids, pidr, H,M) where pidr ∈ HONEST
⋃

DISHONEST and pidr
may be equal to pids,H,M ∈ {0, 1}∗, HO returns higncrypt(sks, pids, pidr, H,M))
if pids ∈ HONEST, otherwise, returns ⊥. HO also stores, in private, some spec-
ified offline-computable intermediate randomness (in generating C) into ST C
in order to allow for later EXO query against C.

UHO: On input (pidr, C), UHO returns unhigncrypt(skr, pidr, C)) if pidr ∈ HONEST,
otherwise, returns ⊥.

EXO (exposure oracle): On input C 6= ⊥, EXO returns the value stored in ST C ,
i.e., the offline-computable intermediate randomness used in generating C, if C
was output by an earlier HO query. Otherwise, ⊥ is returned. This renders the
adversary additional power, in contrast to traditional security definition of sign-
crypiton, and reflects the reality of bad randomness, various side-channel at-
tacks and deployment in hostile environments (plagued with spyware or virus)
where offline-computable values are more vulnerable to adversarial exposure.

Corrupt: On input pidi ∈ HONEST, 1 ≤ i ≤ n, this oracle returns the private key
ski of user idi.

Outsider unforgeability. Informally, the goal of an outsider unforgeability ad-
versary AOU against HC is to forge a valid higncryptext created by an uncorrupted
honest user pids∗ for another uncorrupted honest user pidr∗ , where pids∗ may be
equal to pidr∗ , 1 ≤ r∗, s∗ ≤ n. Toward this goal, AOU is allowed to issue HO, UHO,
EXO and Corrupt queries. At the end of its execution, AOU outputs (pidr∗ , C

∗) as
its forgery, where pidr∗ ∈ HONEST and the associated data contained in C∗ in
clear is denoted H∗. The advantage of AOU for breaking outsider unforgeability,
denoted AdvAOU ,HC, is defined to be the probability of the following conditions
hold:

– unhigncrypt(skr∗ , pidr∗ , C
∗) = (pids∗ ,M

∗), where pids∗ ∈ HONEST.
– AOU has not issued Corrupt(pids∗) query or Corrupt(pidr∗) query. But AOU

is allowed to query EXO(C∗) to expose the intermediate randomness used in
generating C∗.

– C∗ was not the output of HO(pids∗ , pidr∗ , H
∗,M∗) issued by AOU . But AOU is

still allowed to query HO(pids′ , pidr′ , H
′,M ′) for (pids′ , pidr′ , H

′,M ′) 6= (pids∗ , pidr∗ , H
∗,M∗),
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in particular (pids∗ , pidr∗ , H
′,M∗) whereH ′ 6= H∗, and can even query HO(pids∗ , pidr∗ , H

∗,M∗)
as long as the output returned is not equal to C∗. Also, parts of C∗ (e.g., H∗)
may appear in previous outputs of HO.

In traditional definitions of unforgeability for signcryption, AOU is required to
output (pids∗ , pidr∗ ,M

∗, C∗) as its forgery at the end of its execution, which im-
plies that it “knows” the victim user pids∗ and the message M∗ being signcrypted.
By comparison, our formulation does not make such a requirement. That is, AOU
may know neither pids∗ nor M∗, even if (pidr∗ , C

∗) is a valid forgery. Our security
definition allows the exposure of ST C∗ , i.e., the intermediate randomness used
for generating the target higncryptext C∗, which is also not allowed in traditional
security definitions of signcryption. In addition, security of associated data was
not considered in traditional security definitions of signcryption, while strong un-
forgeability for the associated data is ensured by our definition. Consequently,
our unforgeability formulation provides much more comprehensive and stronger
security guarantee.

A higncryption scheme HC has outside unforgeability, if for any PPT adversary
AOU its advantage AdvAOU ,HC is negligible for all sufficiently large security pa-
rameters. The definition of inside unforgeability is identical to that of outside
unforgeability, except that oracle query Corrupt(pidr∗) is allowed to the adversary.

Insider confidentiality. Informally, the goal of an insider confidentiality adver-
sary AIC is to break the confidentiality of the message as well as the public identity
information higncrypted to an uncorrupted honest target receiver by any (pos-
sibly corrupted) honest sender, even if AIC is allowed to corrupt the sender and
to expose the intermediate randomness used for generating other highcyptexts.
For presentation simplicity, throughout this work we assume that all the users
in the system have public identity information of equal length. But our security
model and protocol constructions can be extended to the general case of different
lengths of identities, by incorporating length-hiding authenticated encryption in
the underlying security model and protocol constructions.

– Phase 1: AIC is allowed to issue HO, UHO, EXO and Corrupt queries.

– Challenge: At the end of phase 1, AIC outputs two equal length messages
(M0,M1), an associated data H∗, and two pairs of public identity informa-
tion of equal length (pids∗0 , pidr∗) and (pids∗1 , pidr∗) where pids∗0 , pids∗1 , pidr∗ ∈
HONEST, and submits them to the challenger. The challenger chooses a ran-
dom bit σ ← {0, 1}, and givesAIC the challenge higncryptext C∗ = higncrypt(sks∗σ , pids∗σ , pidr∗ , H

∗,Mσ).

– Phase 2:AIC can continue executing as in phase 1, except asking UHO(pidr∗ , C
∗)

or EXO(C∗) or Corrupt(pidr∗) that will cause AIC to trivially win the game.
But AIC is allowed to issue Corrupt(pids∗0) and Corrupt(pids∗1), which captures
forward ID-privacy.
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– Guess: Finally, AIC outputs a bit σ′. AIC wins the game, if σ′ = σ.

A higncryption scheme HC has insider confidentiality, if for any PPT adver-
sary AIC and all sufficiently large security parameters, the adversary’s advantage
defined below is negligible:

AdvAIC ,HC = |2 · Pr[σ′ = σ]− 1| .

In the above security definition, if it is required to hold pid∗s0 = pid∗s1 it is degen-
erated to the traditional insider confidentiality of signcryption, which is referred
to as insider message confidentiality here. The definition of outside confidentiality
is identical to that of inside confidentiality, except that neither Corrupt(pid∗s0) nor
Corrupt(pid∗s1) is allowed.

5 Protocol Construction of Higncryption

In this section, we present a practical and conceptually simple (yet carefully de-
signed) scheme integrating both higncryption and one-pass identity-Concealed Au-
thenticated Key-Exchange (CAKE, for short), which consists of the following four
algorithms, setup, keygen, higncrypt and unhigncrypt.
Setup. On a security parameter κ, setup(1κ) returns params = (G′, N,G, g, q)

specifying the underlying group over which the GDH assumption holds (as defined
in Section 2).
Key generation. On the parameters params, for each honest user i, 1 ≤ i ≤ n,

keygen takes xi ← Z∗q , sets pki = gxi ∈ G and ski = xi, and outputs the key-
pair (pki, ski). The binding between user identity idi and its public-key pki is
authenticated by a certificate certi issued by CA. Throughout this paper, unless
otherwise stated, we assume that CA does not mandate proof-of-possession or
proof-of-knowledge (POP/POK) of secret key during public key registration, but it
performs sub-group membership check for each registered public key, i.e., checking
pki ∈ G \ 1G.

2

Higncryption. Let SE = (Kse,Enc,Dec) be an AEAD scheme, where K is the
key space of Kse, h : {0, 1}∗ → {0, 1}l∩Z∗q be a cryptographic hash function where
l = d|q|/2e, M ∈ {0, 1}∗ be the message to be higncrypted with associated data H,
and KDF : G × {0, 1}∗ → {0, 1}∗ be a key derivation function. For presentation
simplicity, we denote by Alice the sender who possesses public identity information
pidA = (idA, pkA = A = ga ∈ G, certA) and secret-key skA = a← Z∗q , and by Bob
the receiver who possesses public identity information pidB = (idB, pkB = B =
gb ∈ G, certB) and secret-key skB = b ← Z∗q . higncrypt(skA, pidA, pidB, H,M)
works as follows:
2 The subgroup test can be waived, if oracle access to EXO is denied in the security model of higncryp-

tion.
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– Take x← Z∗q , and compute X = gx ∈ G, d = h(X, pidA, pidB), and X ′ = Xd.
The DH-exponent x can be generated offline, and is specified to be stored into
ST C that may suffer from adversarial exposure.

– Compute X = AX ′ = AXd,3 and pre-shared secrecy PS = CDH(X,B) =
Ba+xd ∈ G.

– Derive keys (K1, K2) = KDF (PS,X||pidB),4 where K1 ∈ K, K2 is empty for
higncryption, or K2 ∈ K for one-pass CAKE and in this case the joint distribu-
tion of (K1, K2) is computationally indistinguishable from uniform distribution
over K ×K.

– Compute CAE ← EncK1(H, pidA||X||M). Notice that the DH-component X is
sent being encrypted.

– Finally, send the higncryptext C = (H,X,CAE) to the receiver.

Unhigncryption. After receiving C = (H,X,CAE), unhigncrypt(skB = b, pidB, C)
works as follows:

– Compute the pre-shared secrecy PS = CDH(B,X) = X
b ∈ G, and derive the

keys (K1, K2) = KDF (PS,X||pidB).
– Run DecK1(H,CAE). If DecK1(H,CAE) returns⊥, abort; otherwise, get {pidA =

(idA, A, certA), X,M)}.
– Compute d = h(X, pidA, pidB). IfX = AXd and pidA is valid, accept (pidA,M);

otherwise, abort.

This integrated scheme of higncryption and one-pass CAKE is also presented in
Fig. 1 (page 18). Below, we make some clarifications about the construction.

Note on subgroup test of X. In the above protocol description, we have assumed
the receiver checks thatX is in the subgroupG of order q inG′. The basic technique
for performing such a subgroup test is to verify X ∈ G′\1G and X

q
= 1G. However,

if the cofactor t is small, e.g., G′ = Z∗p such that p = 2q + 1 is a prime, or G is
the subgroup of an elliptic curve over a finite field where the cofactor t is typically
a small constant or just 1, the subgroup test of X can be essentially reduced to

check X ∈ G′ and X
t 6= 1G, which guarantees X is not in a small subgroup of

G′ of the order being a factor of t (though it may not fully ensure X ∈ G). In
practice, we recommend the following protocol variant with embedded subgroup

test, where PS = Bt(a+xd) = X
tb

and the receiver will abort if X 6∈ G′ or PS = 1G.
We note that subgroup test can be waived, if the EXO queries are disallowed in
security definition.

3 An alternative way is to set X = AdX, which does not sacrifice provable security. We prefer to
setting X = AXd, for the reason that, as we shall see in Sectioin 7, it allows more flexible and
efficient implementations.

4 Other ways to set the session-key K2 for one-pass CAKE: K2 = KDF (PS,X||pidA||pidB) or K2 =
KDF (PS,X||pidA||pidB).
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pidA
PKA : A = ga

SKA : a← Z∗q

pidB

PKB : B = gb

SKB : b← Z∗q

x← Z∗q , X = gx

d = h(X, pidA, pidB)

X = AXd, PS = Ba+xd

(K1,K2) = KDF (PS,X||pidB)

H,X,CAE ← EncK1(H, pidA||X||M))

PS = X
b

(K1,K2) = KDF (PS,X||pidB)

DecK1(H,CAE) = (pidA, X,M)

d = h(X, pidA, pidB)

Accept if pidA is valid and X = AXd

Fig. 1: Protocol structure of Higncryption

On the computation of d. In order to prevent or mitigate replay attack (which is
nevertheless inevitable for any signcryption or one-pass AKE), a solution is to put a
time-stamp tA into the input of d, i.e., d = h(X, pidA, pidB, tA), and let tA be a part
of the associated data H or the message M . In addition, it appears that putting the
message M into the input of d could possibly relax the security requirement on the
underlying symmetric encryption used; but we wouldn’t prefer to such a variant
on the following grounds: (1) it may damage the modularity and independence of
computing X from computing C, e.g., the offline pre-computability of X without
knowing M ; (2) AEAD already exists in most systems for secure communications.

One-pass CAKE. It is shown in [21,20] that signcryption implies one-pass AKE
by setting the message M just to be the random session-key. But the session-
key derived this way is dependent of the key generated for signcryption. When
casting our higncryption scheme into one-pass identity-concealed authenticated
key-exchange (CAKE), we set the session-key to be K2 that is computationally
independent of the key K1 used for higncryption; that is, the exposure of K1 does
not affect the session-key security.5 The analysis in [21,20] can be straightforwardly
extended to show that this is a secure one-pass AKE. Compared to one-pass
HMQV (HOMQV) [21], all the security properties of HOMQV remain with our
higncrypiton-based one-pass CAKE, but our one-pass CAKE provides identity
concealment.

5 Another variant is to set the session-key of one-pass CAKE to be KDF (K1, X||pidA||pidB) or
HKDF − Extend(K1, X||pidA||pidB). This provides extra security guarantee, as X is exchanged
in the encrypted form.
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Flexible implementation. Our higncryption scheme allows much flexible imple-
mentations, according to priorities and tradeoffs among security and efficiency
in different application scenarios. Let X be a well-spread distribution over some
subsets of of Z∗q with min-entropy λX > ω(log |q|). For flexible implementations
of higncryption, the only modification is: X = gx where x is taken according to
X (rather than Z∗q ). As we shall show, provable security still holds with such a
flexible implementation of higncryption.

In practice, at one’s own discretion according to task criticality and applica-
tion scenarios, the sender can take x ← {0, 1}d|q|/4e ∩ Z∗q (referred to as light-

higncryption), or x ← {0, 1}d|q|/2e ∩ Z∗q (referred to as medium-higncryption), or
just x ← Z∗q (referred to as full -higncryption). For example, if |q| = 512, we sug-
gest |x| = 128 = |q|/4, i.e., light-higncryption, may suffice for many applications,
e.g., those based on low-power devices like smart-phones where efficiency takes
priority over security, or those based on devices with a trusted module to protect
sender’s static secret-key. In this case, the sender only performs about 1.75 expo-
nentiations, compared to 2.5 (resp., 2) exponentiations in full - (resp., medium-)
higncryption. For applications based on low-power devices like smart-phones, we
may recommend to use medium-higncryption, where x ← {0, 1}d|q|/2e ∩ Z∗q . Note
that the security of medium-higncrption, even if sender’s static secret-key skA = a
is exposed to adversary, is not reduced to solving half a DL-problem. Actually,
computing X, letting along the exponent x, from X ′ = Xh(X) seems already to be
hard.

6 Security Proof of Higncryption

Assume KDF be a pseudorandom function with the following RO property, to
get a value KDF (PS,$) where PS ∈ G and $ ∈ {0, 1}∗ the only way is to
query the oracle KDF with input (PS,$). For presentation simplicity, in the
security analysis, we simply assume KDF to be a random oracle. The security
analysis can be straightforwardly extended to the case that the output of the
KDF oracle is pseudorandom (i.e., KDF is an RO with pseudorandom output).
We assume the hash function h also to be a random oracle. As we concentrate on
the security of the higncryption scheme, for presentation simplicity, for now we
assume K1 = KDF (PS,X||pidB) (i.e., the session-key K2 for one-pass CAKE is
set to be empty). Throughout this work, for presentation simplicity, we also write
CDH(U, ·) simply as CDH(pid, ·) when U denotes the public-key of user pid.

Theorem 4. The higncryption scheme presented in Fig. 1 satisfies outsider un-
forgeability and insider confidentiality in the random oracle model, under the
AEAD security and the GDH assumption.
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Security proof of outsider unforgeability Suppose that, after a series of
adaptive oracle queries to HO, UHO, EXO and Corrupt, the forger AOU outputs,
with non-negligible probability, a tuple (pidr∗ , C

∗) where C∗ contains in clear the
associated data H∗, satisfying:

– unhigncrypt(skr∗ , pidr∗ , C
∗) = (pids∗ ,M

∗), but C∗ was not the output of HO(pids∗ , pidr∗ , H
∗,M∗)

issued by AOU . Note that AOU is still allowed to query HO(pids′ , pidr′ , H
′,M ′)

for (pids′ , pidr′ , H
′,M ′) 6= (pids∗ , pidr∗ , H

∗,M∗), and can even query HO(pids∗ , pidr∗ , H
∗,M∗)

as long as the output returned is not equal to C∗.

– pids∗ , pidr∗ ∈ HONEST, andAOU has not issued Corrupt(pids∗) or Corrupt(pidr∗).
But EXO(C∗) is allowed.

We assume the pair of honest users (pids∗ , pidr∗), for which successful forgery
occurs with non-negligible probability, are fixed in advance, which can actually
be correctly guessed with probability at least 1

n2 where n is the number of users
in the system. We also assume that (pidr∗ , C

∗) is the first successful forgery out-
put by AOU ; that is, it did not query UHO(pidr, C) such that (pidr, C) is also
a valid forgery before outputting (pidr∗ , C

∗). All these assumptions are only for
presentation simplicity.

Given (pids∗ , pidr∗), the goal is to compute CDH(pks∗ , pkr∗), conditioned on that
unforgeability is broken with non-nelgigible probability, where pks∗ (resp., pkr∗) is
the public-key of the sender (resp., receiver) included in pids∗ (resp., pidr∗). We
present the proof directly for the case of pids∗ = pidr∗ , which is commonly viewed
as the relatively harder case. The proof can be straightforwardly extended to the
case of pids∗ 6= pidr∗ .

Specifically, the simulator S takes (params, pidA) as input, where the public-key
included in pidA is denoted as A = ga for a ← Z∗q that is unknown to S, and

its goal is to compute CDH(A,A) = ga
2

with the help of a DDH oracle. Note
that computing CDH(A,A) is as hard as breaking the standard CDH assumption
[32]. Toward this goal, S sets the public-key for user s∗ = r∗ to be A, and sets
the public and secret keys for all the other honest users in the system on its own.
As a consequence, S can act on behalf of all the honest users except pidA. Below
we focus on the simulation of pidA by S to deal with oracle queries made by the
forger AOU against pidA.

We first note that S can perfectly handle all Corrupt queries allowed in the security
game, where Corrupt(pids∗) or Corrupt(pidr∗) is disallowed.

Consider a query HO(pids, pidr, H,M), where pidr is the public identity infor-
mation of an arbitrary user in the system with public-key pkr. First note that, if
pids ∈ DISHONEST, the output of HO(pids, pidr, H,M) is simply defined to be
“⊥”. Also, if pids ∈ HONEST but pids 6= pidA, this oracle query can be perfectly
handled by the simulator itself. Hence, we only consider the case of pids = pidA,
i.e., HO(pidA, pidr, H,M). If pidr ∈ HONEST but pidr 6= pidA, let pkr = B = gb
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where b← Z∗q is the secret-key actually set by the simulator itself. For this case, S

works as the honest pidA does, except that PS = CDH(X,B) is computed as X
b
.

Otherwise (i.e., pidr 6∈ HONEST or pidr = pidA), S computes X = gx and X =
AXd, where x← Z∗q and d = h(X, pidA, pidr); S then sets K1 to be a string taken
uniformly at random from K of AEAD, computes CAE = EncK1(H, pidA||X||M),
and returns C = (H,X,CAE) as the output of HO(pidA, pidr, H,M). S also stores
the tuple (X||pidr, K1) into a list LDDH maintained by S itself and initiated to
be empty. Note that in the later case, S cannot compute the pre-shared secrecy
PS = CDH(X, pkr) and consequently KDF (PS,X||pidr). In order to keep the
consistency of the random oracle KDF , from now on whenever the adversary AOU
makes an oracle query of the form KDF (PS ′, X||pidr), based on the list LDDH S
checks whether PS ′ = CDH(X, pkr) with the DDH oracle; if yes, it returns the
pre-set value K1.

In any case, the DH-exponent x ← Z∗q stored in ST C is generated by the sim-
ulator S itself. As a consequence, S can perfectly handle all the EXO queries. So
far, all the simulation for HO, Corrupt and EXO is perfect.

For a query UHO(pidr, C = (H,X,CAE)) made byAOU , we only consider the case
of pidr ∈ HONEST and pidr = pidA, as the rest cases can be perfectly handled by
the simulator (note that, if pidr ∈ DISHONEST, UHO simply outputs “⊥”). S first
checks whether C was ever output by HO(pids, pidA, H,M) for some M ∈ {0, 1}∗
and pids ∈ HONEST, and outputs (pids,M) if so. Otherwise, for each KDF
oracle query of the form KDF (PS,X||pidA) made by AOU , the simulator checks
whether PS = CDH(X,A) by the aid of the DDH oracle. If so, the simulator
gets K1 = KDF (PS,X||pidA), uses K1 to decrypt CAE, and returns the result
to AOU . Otherwise, S returns “⊥” indicating C is an invalid higncryptext (for
user pidr). Denote by “failure” the event that, for some (pidA, C = (H,X,CAE))
queried to UHO by AOU , the simulator outputs “⊥” while UHO(pidA, C) does
not. Conditioned on the “failure” event does not occur, the simulation for UHO is
perfect. Below, we show that the “failure” event can occur with at most negligible
probability.

Note that the failure event has already ruled out the possibility that C was
the output of HO(pidi, pidA, H,M) for arbitrary pidi ∈ HONEST and arbitrary
(H,M). We now consider the possibility that C = (H,X,CAE) is the output of
HO(pidi, pidj, H,M) made by AOU for pidj 6= pidA (and arbitrary pidi, H,M).
For this case, as X||pidj 6= X||pidA, it means that the shared-key generated
by the random oracle KDF for computing CAE and that for decrypting CAE
(when dealing with UHO(pidA, C) in defining the “failure” event) are indepen-
dent. By the security of AEAD as discussed in Section 2.1, UHO(pidA, C) outputs
⊥ with overwhelming probability. Thus, when the “failure” event occurs w.r.t.
UHO(pidA, C = (H,X,CAE)) where pidA is the receiver, with overwhelming prob-
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ability it holds: (1) C was not ever output by the HO oracle; (2) AOU did not make
the KDF (PS,X||pidA) query for PS = CDH(X,A); and (3) (H,CAE) make up
a valid AEAD ciphertext w.r.t. K1 = KDF (CDH(X,A), X||pidA).

We further consider two cases. (1) K1 = KDF (CDH(X,A), X||pidA) was set by
the simulator S when dealing with a query HO(pidA, pidA, H

′,M ′). In this case, S
sets K1 without querying the KDF oracle (but using its DDH oracle to ensure in-
consistency of KDF ). This implies that by the KDF security, with overwhelming
probability, X is part of the output of HO(pidA, pidA, H

′,M ′) generated by the
simulator. Denote by (H ′, X,C ′AE) the output of the simulator S when dealing
with HO(pidA, pidA, H

′,M ′). Note that (H ′, C ′AE) is the only AEAD ciphertext
output by S w.r.t. K1. As we assume C = (H,X,CAE)) was not ever output by
the HO oracle, it means that (H ′, C ′AE) 6= (H,CAE). This implies AOU has output
a new valid AEAD ciphertext (H ′, C ′AE) w.r.t. K1, which can occur with negligible
probability by the AEAD security. (2) Otherwise, with overwhelming probability,
K1 was neither set by S nor ever defined for the KDF oracle. In this case, also by
the AEAD security, “failure” occurs with negligible probability. We conclude that
the failure event can occur with at most negligible probability, and consequently
the view of AOU in the simulation is computationally indistinguishable from that
in the real attack game. Thus, successful forgery occurs also with non-negligible
probability in the simulation.

Denote by (pidr∗ , C
∗ = (H∗, X

∗
, C∗AE)) the successful forgery output by AOU ,

satisfying unhigncrypt(skr∗ , pidr∗ , C
∗) = (pids∗ ,M

∗) and C∗ was not ever output by
HO(pids∗ , pidr∗ , H

∗,M∗), where pids∗ and pidr∗ are the uncorrupted honest users
that are assumed to have been correctly guessed by the simulator for presentation
simplicity. Recall that we are considering pids∗ = pidr∗ = pidA.

For (pidr∗ , C
∗ = (H∗, X

∗
, C∗AE)) to be a successful forgery, AOU must have made

the RO query h(X∗, pids∗ , pidr∗) = d∗ such that X
∗

= pks∗X
∗d∗ = AX∗d

∗
that

will be checked in computing unhigncrypt(skr∗ , pidr∗ , C
∗), where X∗ may be gen-

erated by the adversary itself. Otherwise, unhigncrypt(skr∗ , pidr∗ , C
∗) returns ⊥

with overwhelming probability in the random oracle model. Then, similar to the
above argument for showing failure occurs with negligible probability in the UHO
simulation, by the underlying AEAD security AOU must have made the RO query
to get KDF (CDH(X

∗
, pkr∗), X

∗||pidr∗) = KDF (CDH(X
∗
, A), X

∗||pidA) = K∗1 .

The intuitive next idea is to rewind AOU to the point that it just made the
RO query h(X∗, pids∗ , pidr∗) = h(X∗, pidA, pidA), and returns back a new random
output d∗′. Then, by the general forking lemma [4], with non-negligible proba-

bility AOU will also output a successful forgery (pidr∗ , C
∗′ = (H∗′, X

∗′
, C∗′AE)) in

the second run after re-winding, where X
∗′

= AX∗d
∗′

, and will make the query

KDF (CDH(X
∗′
, pkr∗), X

∗′ ||pidr∗) = KDF (CDH(X
∗′
, A), X

∗′ ||pidA). It means
that the simulator S can get α = CDH(X

∗
, pkr∗) = CDH(X

∗
, A) = (AX∗d

∗
)a =
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AaX∗d
∗a, and β = CDH(X

∗′
, pkr∗) = (AX∗d

∗′
)a = AaX∗d

∗′a. From (α, β), S can
compute γ = CDH(X∗, pidr∗) = CDH(X∗, A) = (α/β)(d

∗−d∗′)−1
. Finally, S com-

putes CDH(A,A) = α/(γd
∗
), which violates the GDH assumption.

Unfortunately, a subtlety for correctly applying the forking lemma [4] is buried,
and has been overlooked, in the above reasoning. The subtlety is specific to
our higncryption construction, and its clarification might be of independent in-
terest and be instrumental in analyzing future constructions of higncryption or
other identity-hiding cryptographic schemes. Specifically, to apply the forking
lemma, we need to ensure that the RO query KDF (CDH(X

∗
, pkr∗), X

∗||pidr∗) =
KDF (CDH(X

∗
, A), X

∗||pidA) must be posterior to the RO query d∗ = h(X∗, pids∗ , pidr∗) =
h(X∗, pidA, pidA).
Denote by PS∗ = CDH(X

∗
, pkr∗) = CDH(X

∗
, A), where X

∗
= AX∗d

∗
is the

value appeared in the successful forgery. In the random oracle model, there is only
one approach for AOU to make KDF (PS∗, X

∗||pidr∗) prior to h(X∗, pids∗ , pidr∗).
In more detail, suppose (H,X

∗
, CAE) = higncrypt(pidi, pidr∗ , H,M), where pidr∗ =

pidA, pidi ∈ DISHONEST or pidi ∈ HONEST but corrupted. Denote by
pki = C = gc, X

∗
= CXdi

i = Cgxidi where di = h(Xi, pidi, pidr∗). That is,
the target X

∗
(appeared in the successful forgery) has already appeared in a

former output of higncrypt(pidi, pidr∗ , H,M) for some pidi 6= pids∗ , satisfying
X
∗

= CXdi
i = AX∗d

∗
. Such an event is referred to as collision event. With this

event, prior to the oracle query h(X∗, pids∗ , pidr∗) = d∗, the KDF (PS∗, X
∗||pidr∗)

oracle query was either made by the adversary AOU itself or by the honest yet cor-
rupted user pidi. In either case, the adversary can compute PS∗ = CDH(X

∗
, A),

where X
∗

is either generated directly by AOU (on behalf dishonest or corrupted
user pidi) or derived by corrupting pidi and exposing xi.
The observation here is that, in the RO model, the collision event can occur

with at most negligible probability. Specifically, for any pair of (pidi, pidj, X) 6=
(pidi′ , pidj′ , X

′), the probability Pr[pkiX
h(X,pidi,pidj) = pki′X

′h(X′,pidi′ ,pidj′ )] ≤ 2−l,
where l is the output length of h. As the adversary AOU is of polynomial-time t,
the probability that A could cause the collision event to occur during its attack is
negligible (specifically, at most C2

t · 2−l < t2 · 2−(l+1)). This saves the applicability
of the forking lemma to higncryption, and then finishes the proof of outsider
unforgeability.

Security proof of insider confidentiality For presentation simplicity, we as-
sume the challenger C has already correctly guessed the target receiver pidr∗ , which
happens with probability 1

n
. The input of C is (B,X∗), where B,X∗ ← G \ 1G.

Denote by B = gb and X∗ = gx
∗
, where b, x∗ ← Z∗q that are however unknown

to C. The goal of the challenger C is to compute CDH(B,X∗) with the aid of a
DDH oracle. Towards this goal, C sets the public-key of the target receiver to be
B, i.e., pkr∗ = B. C generates and sets the public/secret key pairs for all the rest
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users in the system by itself, and will act on behalf of them. As a consequence, C
can perfectly handle the oracle queries made by the adversary AIC against all the
users other than pidr∗ = pidB. Similar to the proof of outsider unforgeability, C
well simulates the target receiver pidB with the aid of its DDH oracle.

When AIC outputs two equal length messages (M0,M1), the associated data
H and two pairs of public identity information of equal length (pid∗s0 , pidr∗) and
(pids∗1 , pidr∗), where pids∗0 , pids∗1 , pidr∗ ∈ HONEST and it is assumed that pidr∗ =
pidB, the challenger C chooses a random bit σ ← {0, 1} and sets the target hign-
cryptext C∗ as follows. For presentation simplicity, denote by A = pks∗σ the public-
key of the user s∗σ. Notice that it may be the case that pids∗σ = pidr∗ and thus
A = B. C makes oracle query to get d∗ = h(X∗, pids∗σ , pidr∗) = h(X∗, pidA, pidB),

where X∗ is the input of C, and computes X
∗

= AX∗d
∗
. C checks whether the

oracle query KDF (CDH(X
∗
, pkr∗), X

∗||pidr∗) = KDF (CDH(X
∗
, B), X

∗||pidB)
has been made, with the aid of its DDH-oracle. If so, it outputs “failure”. Oth-
erwise, it chooses K1 uniformly at random from the key space K of AEAD,
stores the tuple (X

∗||pidB, K1) into the list LDDH , computes and returns C∗AE =
EncK1(H, pids∗σ ||X∗||Mσ). From this point on, with the aid of its DDH oracle and

the list LDDH , whenever C findsAIC makes the queryKDF (CDH(X
∗
, B), X

∗||pidB)
it just returns K1 and records CDH(X

∗
, B).

First observe that, in the random oracle model, X∗d
∗

= gx
∗d∗ is distributed uni-

formly at random over G \ 1G, where x∗ ← Z∗q and h is assumed to be an RO.

Consequently, X
∗

= AX∗d
∗

is distributed uniformly over G\1G, even if AIC knows
sks∗0 and sks∗1 by user corruptions. This ensures that, on the one hand, C outputs

“failure” with negligible probability; and on the other hand, X
∗

perfectly hides
the sender’s identity information, even if both of pids∗0 or pids∗1 are corrupted.
Then, by the AEAD security, to win the insider confidentiality game in the RO
model, AIC has to make the oracle query KDF (CDH(X

∗
, B), X

∗||pidB) with
non-negligible probability. We remark that X

∗
being of distribution computation-

ally indistinguishable from uniform distribution over G \ 1G suffices for the proof
here. For flexible implementations of higncryption where x is taken over a well-
spread distribution with min-entropy greater than ω(log |q|), by the flexible gap
DL (FGDL) assumption introduced in Section 3, X∗d

∗
(and consequently X

∗
) has

distribution computationally indistinguishable from the uniform distribution over
G \ 1G in the RO model.

Then, C rewinds AIC to the point of making the oracle query h(X∗, pidA, pidB),
and redefines d∗′ = h(X∗, pidA, pidB), where d∗′ is taken uniformly at random from
the range of h that is different from d∗ with overwhelming probability, and re-runs
AIC from this rewinding point. By the forking lemma, with also non-negligible
probability, AIC will make the oracle query KDF (CDH(X

∗′
, B), X

∗′||pidB) in

the repeated run, where X
∗′

= AX∗d
∗′

. From α = CDH(X
∗
, B) = AbX∗bd

∗
and
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β = CDH(X
∗′
, B) = AbX∗bd

∗′
, C computes CDH(X∗, B) = (α/β)(d

∗−d∗′)−1
, which

violates the GDH assumption.

7 Discussion and Applications of Higncryption

7.1 Brief Comparison

A brief comparison, among m-higncrypton (referring to medium higncryption),
higncryption, (Zheng’s) signcryption, and HOMQV, is given in Table 2. There, we
only count the number of modular exponentiations (denoted “exp.” in the table)
for efficiency comparison.

m-higncryption higncryption signcryption HOMQV

efficiency
sender 2exp. 2.5 exp. 1 exp. 2 exp.
receiver 1.5 exp. 1.5 exp. 2 exp. 1.5 exp.

forward-ID
√ √

" "
x-security

√ √
"

√

receiver-deniability
√ √

"
√

Table 2: Comparison with Zheng’s signcrypton and HOMQV

7.2 Application to QUIC

We note that higncryption is well compatible with the 0-RTT mode of QUIC, and
can be easily implemented. Below, we first review the QUIC protocol according
to the specifications given in [30]. Here, for presentation simplicity, the following
protocol description does not fully coincide with (and omits many of) the technical
details of QUIC.
QUIC supports two connection modes [30]: 1-RTT handles the case when the

client tries to achieve a connection with a server for the first time in a particular
time period. 0-RTT considers the case when the client is trying to connect to a
server that it has already established at least one connection within that time
period. In the initial connection within a time period, the server generates and
sends to the client a state information stk, which is an AEAD encryption of the
concatenation of the client’s IP address (IPC , IPS, portC , portS) and the time-stamp
of the server tsS. stk plays a role similar to that of the session ticket in TLS, which
can be used by the client in later 0-RTT connection (as long as it does not expire
and the client does not change its IP-address).
After getting stk and server’s public identity information denoted pidB here, the

basic structure of QUIC with higncryption based 0-RTT connection is presented
in Fig. 2. There, tsC is client’s time-stamp, kstk is the AEAD key for generating stk
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by the server. γ is an indicator variable newly introduced here, which is set to be
1 (resp., 0) for 0-RTT with (resp., without) client authentication. “{ }K” denotes
AEAD encryption using key K, where the associated data contains the initial
vector of AEAD, cid and packet sequence numbers.K1 is derived from CDH(X,B)
and some auxiliary information determined by the session transcript (including cid,
pkt, nonc, stk, X, pidB, etc). The application key K2 is derived from CDH(X,Y )
and some auxiliary information (including cid, nonc, pkt, cY , etc). Note that, while
K1 does not provide perfect forward security (PFS) and the security against key
compromising impersonation (KCI) attacks, the final application key K2 does.

pidA
PKA : A = ga

SKA : a← Z∗q

pidB
PKB : B = gb

SKB : b← Z∗q
kstk ← K

pkt = (IPC , IPS , portC , portS)

cid← {0, 1}64, r ← {0, 1}160, nonc = (tsC , r)

x← Z∗q , X = gx, d = h(X, pidA, pidB , stk, auxd)

X = AXd

pkt, cid, nonc, stk, X, {γ, pidA, X, early data}K1

y ← Z∗q
cY = {Y = gy}K1 , {data}K2

Fig. 2: Basic structure of QUIC with higncryption based 0-RTT connection

In order for providing more robust binding of X to the session it resides in
and for preventing replay attacks, we set d = h(X, pidA, pidB, stk, auxd), where
auxd ∈ {0, 1}∗ is recommended to include cid and nonc. At the server side, it uses
a mechanism, called the strike-register, to make sure that it does not process the
same connection twice, by keeping track of used client’s nonces within a limited
amount of time in accordance with client’s time-stamp tsC . A server rejects a con-
nection request from a client if its nonc is already included in its strike register
or contains a time-stamp that is outside the allowed time range. Including client
time-stamp tsC in nonc also allows the server to detect clients whose clocks are too
out-of-sync with the server (and hence vulnerable to expired certificates). For ap-
plication scenarios where timing information may constitute a privacy concern, we
may also suggest to get nonc, particularly tsC , protected by the AEAD encryption,
rather than being sent in clear.
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7.3 Application to SACCE

Our higncryption also implies a two-round server-only authenticated and confi-
dential channel establishment (SACCE) as defined in [27]. In this setting, only the
server (corresponding to the sender in the higncryption scheme) possesses pub-
lic/private key pair, and needs to authenticate itself to an anonymous client. This
is the typical application scenario for TLS and QUIC. Our higncrypton can be
adapted into a two-pass SACCE scheme, with the following modifications: (1) the
public identity information of the receiver is replaced with a randomly generated
DH-component; and (2) AEAD is replaced with a stateful length-hiding authen-
ticated encryption (SLHAE) as defined in [27]. The higncryption based SACCE
protocol is briefly described in Fig. 3, where K = KDF (CDH(X, Y ), X||Y ).

pidB
PKB : B = gb

SKB : b← Z∗q
x← Z∗q X = gx

y ← Z∗q , Y = gy

e = h(X,Y, pidB)
Y = BY e, {pidB , Y = gy, data}K

Fig. 3: Basic structure of higncryption-based SCAAE

We note that our higncrypton-based SCAAE is secure in accordance with the
security definition given in [27], under the SLHAE security and the GDH assump-
tion in the random oracle model. Here, we briefly highlight some key points for
the SCAAE security proof.

– The session label (X, Y ) determines, actually commits to, the session-identifier
(X, Y, pidB). Specifically, given Y = BY h(X,Y,pidB) no PPT algorithm can out-
put, with non-negligible probability, (X ′, Y ′, pidC) 6= (X, Y, pidB) such that
Y = BY h(X,Y,pidB) = CY ′h(X

′,Y ′,pidC) in the random oracle model assuming h is
an RO, where C is the public-key of pidC .

– For server authentication, security is reduced to computing CDH(X,B) with
the aid of DDH-oracle (and under the SLHAE security), where X is the DH-
component sent by the honest client in the test-session.

– For channel security, where server’s static secret-key is allowed to be exposed
for ensuring forward security, security is reduced to solving CDH(X, Y ), where
X (resp., Y ) is the DH-component generated in the test-session (resp., its
matching session).
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Compared to QUIC and TLS1.3 as described in Appendix A, the higncryption-
based SCAAE is more efficient, signatureless, has forward ID-privacy and receiver
deniability, strong resilience to exposure of intermediate state (whether y or b+ye,
but not both of them), and enjoys flexible implementations and deployments.

7.4 Full TLS Handshake: The First Solution

Based on higncryption, DIKE [45,47] and QUIC, we present the first solution for
full TLS handshake, which is described in Fig. 4. In subsequent sections, we will
develop more efficient solutions.
In the protocol description, “{ }K” denotes AEAD encryption using key K,

“{ }∗K” (resp., “{ }+K”) means it is optionally generated and sent only for 0-RTT
(resp., 0.5-RTT) mode. SFIN (resp., CFIN) denotes server’s (resp., client’s) finish
message as in TLS1.3. The key K0 is derived from CDH(X,B) and auxiliary
input (determined from public transcript and possibly pre-shared state). 1-RTT
HS is a variable, which is set to be (pidA, X) in the case of mutual authentication
without 0-RTT, and is set to be empty in all the rest cases. The key K1 and the
session-key K are derived from CDH(X,Y )) and auxiliary input, in a way that
K1 and K are computationally independent as is done in TLS1.3 or QUIC. The
key K2 is derived from both CDH(X,B) and CDH(X,Y ) and auxiliary input.

pidA
PKA : A = ga

SKA : a← Z∗q

pidB

PKB : B = gb

SKB : b← Z∗q
kstk ← K

pkt = (IPC , IPS , portC , portS)

cid← {0, 1}64, r ← {0, 1}160, nonc = (tsC , r)

x← Z∗q , X = gx, d = h(X, pidA, pidB , stk, auxd)

X = AXd

pkt, cid, nonc, stk, X, {γ, pidA, X, 0-RTT data}∗K0

y ← Z∗q
Y = gy, {pidB ,MACK2(X,Y, pidB , SFIN)}K1 , {0.5-RTT data}+K

{1-RTT HS, CFIN}K1 , {data}K

Fig. 4: First solution of TLS based on higncryption

For presentation simplicity, we have only presented 0-RTT with client authenti-
cation. Incorporating 0-RTT connection without client authentication is straight-
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forward, where γ is set to “0”, X is set to be X = gx, and 1-RTT HS is set to be
empty. For mutual authentication without 0-RTT, 1-RTT HS contains (X, pidA);
otherwise, 1-RTT HS is empty. For unilateral authentication mode, X is set to be
X = gx, and 1-RTT HS is set to be empty. We stress that, though some messages
have different forms according to the modes of protocol run, however, all of these
different modes of protocol run are well unified within a single protocol structure
in a modular and flexible way.

8 A New Security Definitional Framework for
Identity-Concealed Authenticated Key-Exchange
(CAKE)

8.1 Motivation

Traditional CK-framework [11] and its variants (e.g., the post-ID CK-framework
[12], eCK [29] and more) are not applicable to the analysis of CAKE. Session
matching, which is at the heart of defining AKE security in the CK-framework,
critically relies on the fact that players’ identities and public-keys are exchanged
in clear, and thus can be publicly verified merely according to session transcripts.
Public verification of session matching is, in turn, crucial for provable composition
with subsequent symmetric-key cryptographic primitives [11,7].
In the BR-framework [5], session matching is defined w.r.t. two sessions of identi-

cal session transcripts. Security according to the BR-framework requires that two
sessions of different transcripts must have different session keys (otherwise, the
security can be trivially broken). This causes limited applicability, or over strict
security model and much more complex analysis, in order to deal with some issues
as discussed below.

– An adversary could possibly cause two un-matching sessions: one complete
session, and one incomplete session where the last message is simply dropped
by the adversary, to be of the same session-key.

– For AKE protocols (like the TLS1.3 handshake) where some protocol messages
are encrypted by a probabilistic symmetric encryption scheme using keys de-
rived from some preliminary shared key (PSK), e.g., PSK = CDH(X, Y ), an
adversary could get PSK in one session (e.g., by a state reveal query), and
then uses PSK to re-encrypt plaintext messages of the exposed session in an-
other session, which could also cause two sessions of different transcripts to
have the same session-key.

– In practice, for AKE protocols deployed in a complex system, the protocol
messages being exchanged may bear some non-critical values whose loss or
modification may be tolerated in some application scenarios, which, however,
cannot be permitted in the BR-framework.
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Identity privacy for secure transport protocols, where the resultant session-key
has already been used before session completion, was also formulated in some
existing works (e.g., [8]), but being separated from the security definition for au-
thenticated key-exchange or channel establishment.
Note that most secure transport protocols have (even intertwined) multiple stages.

For example, the protocol run of QUIC within a time period is naturally divided
into multiple stages: the original stage without 0-RTT connection, and subsequent
stages with possible 0-RTT connections. For TLS1.3, its run can also be naturally
divided into multiple stages: the original handshake, and subsequent resumption
handshakes. A new security definitional framework for multi-stage key-exchange
(MSKE) protocols is recently introduced in [18,15,7], and has proved its power-
fulness in analyzing secure transport protocols like QUIC [18] and TLS1.3 [15].
Nevertheless, we notice that the MSKE framework is also not well applicable
to identity-concealed authenticated key-exchange (CAKE), particularly for the
classic deployment of AKE where key-exchange protocol is run only once at the
beginning, i.e, in a single stage, and ceases as soon as the key is established and
conveyed to the subsequent secure channel protocol.
Firstly, ID-privacy was not considered in the MSKE framework [18,15,7]. Sec-

ondly, to apply the MSKE framework to analyzing a CAKE protocol, we need to
allow the adversary to expose the intermediate key, denoted kid, used to encrypt
player’s identity information, as is done in [18,15,7]. This means that we have to
divide the protocol run of the CAKE protocol (corresponding to a single stage
in the standard deployment of AKE) into several stages, where the partial pro-
tocol run upon agreeing kid should be treated as one stage [18,15]. In the MSKE
framework, it is assumed that during the protocol run once a stage is finished, the
protocol execution is immediately suspended and gives the control to adversary.
This leads to several negative effects, as discussed below.

– The division of a single CAKE protocol run into multiple stages may be un-
natural and even unrealistic. It may be the case that the messages sent by a
player in one round (in a single flow or even in a single packet) may have to
be divided into different stages. For example, with our CAKE protocol imple-
mentations, the DH-component and the accompanying AEAD ciphertext sent
in the same round have to be divided into different stages: the DH-component
belongs to an anterior stage which agrees on the key kid (that will be exposed
to adversary to argue the security of the subsequent stage), while the AEAD
ciphertext belongs to the subsequent stage.

– It may result in unnatural modeling of secrecy exposure. Specifically, the in-
termediate key kid is usually transient, particularly compared to some offline
computable and stored values like DH-exponents and static secret-keys. If we
allow the adversary the ability to expose so temporal secrecy like kid, no secu-
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rity guarantee can be made. On the other hand, if the ephemeral secrecy like
kid is allowed to be exposed but the exposure of long-lived states (like DH-
exponents that can be offline pre-computed and stored) is denied, as is made
in [18,15], it leads to unnatural or unrealistic modeling of secrecy exposure.

Thirdly, in this work we focus on definitional framework allowing a powerful
concurrent man-in-the-middle (CMIM) adversary with adaptive party registration
and strong capability of secrecy exposure. We note that in the formulation of the
MSKE framework [18,15], the adversary isn’t allowed to adaptive register users,
has limited capability of secrecy exposure (where exposing DH-exponent is denied
and static secret-key exposure isn’t distinguished from user corruption), and is
required to indicate the authentication type upon session initiation.
Thus, it would be much desirable to develop a definitional framework for identity-

concealed authenticated key-exchange, which enjoys the following advantages si-
multaneously:

Composability. Session matching is publicly checkable, thus salvaging the com-
posability.

Conciseness. Integration of both AKE security and identity privacy, thus sim-
plifying security definition and analysis.

Unification. Unifying the dominant frameworks of CK, post-ID CK and BR.
Robustness and Versatility. Allowing a more powerful concurrent man-in-the-

middle (CMIM) adversary with adaptive party registration and strong capa-
bility of secrecy exposure. And implying a list of important security proper-
ties in reality, like unknown key share (UKS), key compromise impersonation
(KCI), concurrent non-malleability (CNM), perfect forward security (PFS),
strong resilience to secrecy exposure, some of which are beyond the CK or BR
framework.

8.2 System Setting

Suppose {U1, · · · , Un} = HONEST
⋃

DISHONEST are all the users in the system,
where the public/secret key pairs for honest users in HONEST (resp., DISHONEST)
are set by the system (resp., the adversary itself), where the certificates for all the
users are generated by a single certificate authority (CA). There is also a set
CORRUPTED ⊆ HONEST for indicating honest yet corrupted users. All the sets
HONEST, DISHONEST and CORRUPTED may be initialized to be non-empty,
and adaptively evolve during the attack. For presentation simplicity, n denotes
the largest number of users in these sets. For a user Ui, 1 ≤ i ≤ n, its public
identity information pidi = (idi, pki, certi), where idi is Ui’s identity, pki is its
public-key and certi is its certificate that contains a signature on (idi, pki) made
by the CA. Again, we assume the public identity information for all the users to
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be of equal length (otherwise, we need length-hiding AEAD as underlying building
tool in the protocol construction).

In the following description of adversarial setting, each session has a session-
identifier sid that is simply assigned by an incremental counter. Setting session
identifiers via a counter is only for distinguishing messages being delivered to dif-
ferent sessions, which is just an artefact in the security model. Each session, with
session-identifier sid, keeps in private a local state peersid (for indicating the inter-
acting peer player), a local state STsid (for storing intermediate randomness) and
a local state SKsid (for storing session-key), all of which are originally initialized
to be the empty string (meaning “undefined”) and are assigned during the session
run according to protocol specifications.

We say a session held at user Ui is complete or completed if Ui has successfully
finished that session with resultant session-key, where Ui has sent or received the
last message of that session. We say a session is incomplete (or on-going), if the
session owner is still waiting for the next protocol message. We say a session
is aborted, if it stops in the middle of session run because of some abnormal
event (e.g., failure in authentication, etc) according to the protocol specifications.
Whenever a session is aborted, all its local states are removed from memory.
Whenever a session sid is completed, STsid is removed from memory but SKsidI

is still kept in private. A session can also be expired, and for expired sessions the
session-keys are also canceled.

8.3 Adversarial Setting

An adversary A against (a two-party) CAKE protocol is a concurrent man-in-
the-middle (CMIM), who takes as input the security parameter and the public
identity information for all the honest users in HONEST at the onset of its attack,
and gets access to the following oracles:

Initiator: This oracle keeps a counter CTRI that is initiated to be 0, and keeps in
private a random bit σ ← {0, 1} (that is also embedded into the oracle Responder
to be specified below).

– When receiving a special “(Start, Ui)” instruction, 1 ≤ i ≤ n, for an honest yet
uncorrupted user Ui ( i.e., Ui ∈ HONEST \ CORRUPTED upon receiving this
query6 (otherwise, it ignores the instruction), it sets CTRI := CRTI+1, creates
a session for the user Ui with session-identifier sidI = CTRI , and returns back
(sidI ,msg

(1)
sidI

), where msg
(1)
sidI

denotes the first protocol message for the session
sidI kept at Initiator for the initiator user Ui indicated by the adversary. It also
creates, and keeps in private, a local state peersidI (for indicating the peer it

6 But Ui may still be possibly corrupted after this query.
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is interacting), a local state STsidI (for storing intermediate randomness) and
a local state SKsidI (for storing session-key) for session sidI .

– Upon receiving an instruction of the form “(sidI ,msg
∗
I )”, it treats msg∗I as

the incoming message for session sidI , and promptly responds back the next
protocol message (according to protocol specification) if msg∗I is not the last
protocol message for that session; otherwise, it works according to the protocol
specification.

– Upon receiving an instruction of the form “(sidI , ST-Exposure)”, it returns back
the value stored in STsidI , if session sidI is not completed; otherwise, it ignores
this instruction.

– Upon receiving “(Test, Ut0 , Ut1)” for Ut0 , Ut1 ∈ HONEST, where 1 ≤ t0 6= t1 ≤
n, it sets Ut = Utσ , and acts just as receiving the “(Start, Ut)” instruction,
where the session-identifier set is denoted as sidT for presentation simplicity.

– Upon receiving “(sidI , SK-exposure)”, it returns back the session-key SKsidI ,
if sidI 6= sidT and sidI has been completed yet not expired. If sidI = sidT , it
returns SKsidT if σ = 1, otherwise it returns a value taken uniformly at random
from {0, 1}sklen where sklen is the length of session-key.

Responder: This oracle keeps a counter CTRR that is initiated to be 0, and embeds
in private the same random bit σ used by Initiator.

– When receiving an instruction “(Start, Uj,msg
(1)
R )”, 1 ≤ j ≤ n, for an honest

yet uncorrupted user Uj (otherwise, it ignores the instruction), it sets CTRR :=
CRTR+1, creates a session for the user Uj with session-identifier sidR = CTRR,

treats msg
(1)
R as the first-round incoming protocol message for session sidR and

returns back (sidR,msg
(2)
R ), where msg

(2)
R denotes the second-round protocol

message of session sidR kept at Responder for the responder user Uj indicated
by the adversary. It also creates, and keeps in private, a local state peersidR , a
local state STsidR , and a local state SKsidR for session sidR. We remark that
the same user can be indicated to be both initiator (in one session held at
Initiator) and responder (in another session held at Responder).

– Upon receiving an instruction “(sidR,msg
∗
R)”, it treats msg∗R as the incom-

ing message for session sidR, and responds back promptly the next protocol
message if msg∗R is not the last protocol message of that session.

– Upon receiving “(sidR, ST-Exposure)” instruction, it returns back the value
stored in STsidR , if session sidR is not completed; otherwise, it ignores this
instruction.

– Upon receiving “(Test, Ut0 , Ut1 ,msg
(1)
R )” for Ut0 , Ut1 ∈ HONEST, where 1 ≤

t0 6= t1 ≤ n, it sets Ut = Utσ , and acts just as receiving the “(Start, Ut,msg
(1)
R )”

instruction, where the session-identifier set is denoted as sidT for presentation
simplicity. We stress that the Test-type query can be made by the adversary
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for only once during its attack, exclusively against Initiator or Responder(but
not both of them).

– Upon receiving “(sidR, SK-exposure)”, it returns bask the session-key SKsidR

if sidR 6= sidT and the session sidR has been completed yet not expired. If
sidR = sidT , SKsidT is returned if σ = 1, otherwise a value taken uniformly at
random from {0, 1}sklen is returned.

Peer: Upon on an input “sid”, it returns back the value stored in peersid, if sid is
an existing session held at Initiator or Resonder (otherwise, the query is ignored).7

StaKey: Upon receiving “Ui”, 1 ≤ i ≤ n, this oracle returns back the static
secret-key of Ui if Ui ∈ HONEST; otherwise, it ignores the query.

Corrupt: Upon receiving “Ui”, 1 ≤ i ≤ n, if Ui ∈ HONEST (otherwise, the query is
ignored) this oracle returns back all the information (including static secret-key, in-
termediate randomness, and session-keys, etc) in the memory part (maintained by
Initiator and/or Responder) for Ui, and sets CORRUPTED = CORRUPTED

⋃
{Ui}.

That is, we allow the adversary to adaptively corrupt honest users.
Register: Upon a query “(Ui, honest), where Ui is a new user not in HONEST

⋃
DISHONEST

when the query is made, it generates the public/secret key pair and gets the cer-
tificate for Ui (with the aid of CA), returns back the public identity informa-
tion of Ui (including its identity, public-key and certificate), and sets HONEST =
HONEST

⋃
{Ui}. Upon a query “((Uj, pkj), dishonest) for a new user Uj, it gets

the certificate for (Uj, pkj) (with the aid of CA), returns back the public identity
information of Uj, and sets DISHONEST = DISHONEST

⋃
{Uj}. That is, we allow

the adversary to adaptively register users in the system. Note that each user can-
not have multiple certificates (with the same CA), but the adversary can register
a dishonest user with the public-key of an honest user.

During its attack, the adversary A schedules all the oracle queries adaptively as
it wishes. At end end of the attack, A outputs a bit σ′.

8.4 CAKE Security Definition

In our model, the label of a session is defined to be a substring of the session
transcript. For example, the session label for CAKE in Fig. 7 is defined to be
(X,Y ). Two sessions are matching, if they have the same session label.
Let sidT be the completed test-session held at the user Ut = Utσ with peersidT =
Uk ∈ HONEST, 1 ≤ k ≤ n, where Ut may be identical to Uk. Denote by sid′T its
matching session (in case the matching session exists), which may be still on-going.
We say the test-session is exposed during the attack, if any of the following events
occurs:

7 Note that the value returned may be an empty string, in case the peer of that session has not been
determined.
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– Ut0 or Ut1 is corrupted via the Corrupt query,8 or STsidT was exposed via the
(STsidT , ST-exposure) query.9

– The static secret-key of Uk is exposed.10

– The query (sid, SK-exposure), sid = sidT or sid = sid′T (in case the matching
session exists), was issued.

– The query Peer(sid′T ) was issued.

Note that, for unexposed test-session, it may be the case: both the static secret-key
of Ut0 and that of Ut1 are exposed, and STsid′T is exposed.

Definition 1 (Strong CAKE-security). A two-party key-exchange protocol is
strongly CAKE-secure, if for any PPT adversary A as defined above, and for any
sufficiently large security parameter, it holds:

Label-security: Any of the following events occurs with negligible probability:
– There exist more than two sessions of the same session label.
– There exist two matching sessions: session sid held at user Ui and session
sid′ held at user Uj, such that any of the following events occurs:
• Ui and Uj play the same session role (i.e., both of them are initiators or

responders).
• SKsid 6= SKsid′.
• peersid 6= ⊥ ∧ peersid 6= Uj, or peersid′ 6= ⊥ ∧ peersid′ 6= Ui.

11

We remark that label-security is w.r.t. arbitrary PPT adversaries who can,
in particular, expose the static secret-keys of all honest users and expose the
local states of all existing sessions.

ID-concealed session-key (ICSK) security: On condition that the test-session
sidT (held at the uncorrupted user Ut) is completed and unexposed, the follow-
ing quantities all are negligible:
Impersonation security: The probability that the test-session has no match-

ing session.
ID-SK indistinguishability: |Pr[σ′ = σ] − 1

2
|. Note that, this in particular

implies both perfect forward security (PFS) and forward ID-privacy, as the
static secret-keys of both Ut0 and Ut1 could be exposed.

8 However, exposing the static secret-key of Ut0 and/or that Ut1 , via the StaKey oracle, does not
necessarily expose the test-session.

9 If Utσ = Uk, i.e., the session holder and session peer are the same user for the test-session, STsidT is
allowed to be exposed.

10 In case the matching session sid′T exists, this can be relaxed that either static secret-key of Uk or
STsid′

T
is unexposed.

11 It implies that: (1) If both sid and sid′ are complete, then peersid = Uj ∧ peersid′ = Ui. (2) if both of
these two matching sessions are incomplete, it could be peersid = peersid′ = ⊥. (3) if only one session
(w.l.o.g., the session sid) is completed while the other session (say, sid′) is incomplete, it could be:
peersid = Uj but peersid′ = ⊥. The last case models the asynchronism between defining peersid and
defining peersid′ , or the unavoidable dropping message attacks by adversary.
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Discussion. In a sense, the session label could be viewed as a concurrent non-
malleable commitment to players’ identities and session-key. In particular, label-
security implies the security against unknown key share (UKS) attack. ICSK-
security integrates both identity concealment and a strong AKE security. Note
that, as the static secret-keys of both Ut0 and Ut1 could be exposed, impersonation
security (resp., ID-SK indistinguishability) implies security against KCI attacks
(resp., perfect forward security and forward ID-privacy). Entity authentication,
implied by label security and impersonation security together, is very strong, which
says that the CMIM adversary cannot impersonate an honest user in a session no
matter whether the matching session exists or not. Label security, together with
ID-SK indistinguishability, implies that: there are at most two sessions can be
matching, and matching sessions have matched peer view and the same session-
key, and unmatched sessions must have different (computatinally independent)
session-keys.

The security definition in accordance with CK or BR framework can be viewed
as a special case of our CAKE-security formulation. When being cased into the
CK-framework (resp., BR-framework), the session label needs to include players’
identity information (resp., the whole session transcript). Note also that, in the
security model of CAKE, the adversary indicates the session holder when starting
a session run, but does not necessarily indicate the peer player for the session.
However, the session peer can be exposed via oracle queries to Peer. This way
of formulation, on the one hand, allows a more powerful adversary, and on the
other hand, incorporates the post-ID CK-framework [12] (where peer identity is
not necessarily known at the start of session run) as a special case.

In general, we can treat ID-indistinguishability (ID-IND) and SK-indistinguishability
(SK-IND) separately w.r.t. two test-sessions: one for defining ID-IND and one for
SK-IND, by embedding a pair of independent random bits (rather than a single
random bit σ). In this case, we can allow the adversary to have more powerful
ability of secrecy exposure. For presentation simplicity, we prefer to the proposed
more concise formulation.

8.5 Adaption to Unilateral CAKE (UCAKE)

The security definitional framework for CAKE protocols with mutual authenti-
cation can be adapted to CAKE protocols with unilateral authentication, which
is referred to as unilateral CAKE (UCAKE). This is actually the most common
application scenario of secure transport protocols like SSL/TLS and QUIC. For
presentation simplicity, we assume only the responder (server) authenticates it
to the initiator (client), while the client may not necessarily possess public iden-
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tity information. 12 In this setting, for a session sidR run at Responder, the local
variable peersidR is always empty indicating “undetermined”.
The adversarial setting is the same as that for CAKE with mutual authentication,

except that: (1) the output of either Corrupt(Ui) or StaKey(Ui), for an initiator
user Ui who does not possess public-key, includes a special symbol “⊥” in the
place allocated for static secret-key. (2) We additionally allow the adversary to
register honest or dishonest users without public identity information, where no
CA gets involved. (3) For the pair of users (Ut0 , Ut1) specified by the adversary
in the test-query, we require that either both of them have public-keys or both
of them do not; and if the test-query is against Responder they must both have
public-keys.13

Note that the client may still possess public identity information, and we still
allow the adversary to indicate the session holder when starting a session at Ini-
tiator. The reasons are as follows. Firstly, it is for presentation consistency with
the definitional framework of CAKE security. Secondly, like in SSL/TLS, a client
user usually does not know whether its authentication is required or not when
starting the session run of handshake, which may be dependent upon the request
of the server. Thirdly, for the sake of privacy protection, a client may want to be
anonymous firstly with a UCAKE protocol run, and then reveals its public iden-
tity information (but protected with some key derived from the first UCAKE run)
and makes authentication in a later stage, e.g., in the re-negotiation or resumption
phase of SSL/TLS. In this sense, our presentation is concise yet better reflects the
reality, gives more power to adversary, and enjoys ease of future model extensions.
Let sidT be the completed test-session held at the user Ut = Utσ , where peersidT =
Uk ∈ HONEST (in case sidT is run at Initiator) or peersidT is an empty string
representing undefined (if sidT is run at Responder). Denote by sid′T its matching
session held by a user Uj (in case the matching session exists), which may still be
on-going. We say the test-session is exposed for UCAKE during the attack, if any
of the following events occurs:

– Ut0 or Ut1 is corrupted via the Corrupt query, or STsidT was exposed via the
(STsidT , ST-exposure) query.14

– The query (sid, SK-exposure), sid = sidT or sid = sid′T , was issued.
– sidT is run at Initiator but the static secret-key of Uk is exposed.15

12 In general, a client can possess public identity information. In this case, it just does not use its identity
information in the run of UCAKE, but may reveal its identity information when client authentication
is required in a later stage, e.g., in a renegotiation or resumption session of TLS.

13 Actually, if the test-query is against Initiator, specifying the pair of users (Ut0 , Ut1) does not make
sense for UCAKE. The treatment here is for presentation consistency with the definitional framework
of CAKE.

14 If we only require session-key indistinguishability, STsidT can be exposed if sidT is run at Responder.
15 If the matching session sid′T exists, it can be relaxed that either of secret-key of Uk or STsid′

T
is

unexposed.
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– sidT is run at Responder but any of the following holds: the matching session
sid′T does not exist, or Uj (i.e., the session owner of sid′T ) is corrupted, or STsid′T
is exposed, or the query Peer(sid′T ) was issued.

In other words, for the completed test-session sidT run at Responder to be un-
exposed, the following conditions must hold simultaneously: (1) The matching
session sid′T exists at an uncorrupted honest client user Uj. (2) The adversary
didn’t make the query Peer(sid′T ). (3) Neither Ut0 nor Ut1 is corrupted, but the
static secret-keys of both Ut0 and Ut1 can be exposed (which particularly implies
perfect forward security and forward ID-privacy). (4) Neither STsidT nor STsid′T is
exposed.£5¤Neither the session-key of sidT nor that of sid′T is exposed. For the
test-session sidT run at Initiator to be unexposed, the following must hold simulta-
neously: (1) The static secret-key of the peer user Uk is unexposed. (2) The local
state of STsidT is unexposed (but the local state of STsid′T of the matching session
can be exposed). (3) Neither Ut0 nor Ut1 is corrupted. (4) Neither the session-key
of sidT nor that of sid′T is exposed.

Definition 2 (UCAKE-security). A two-party key-exchange protocol is strongly
UCAKE-secure, if for any PPT adversary A as defined above, and for any suffi-
ciently large security parameter, it holds:

Label-security: Any of the following events occurs with negligible probability:

– There exist more than two sessions of the same session label.

– There exist two matching sessions: session sid held at user Ui and session
sid′ held at user Uj, 1 ≤ i, j ≤ n, such that any of the following events
occurs:

• Ui and Uj play the same session role (i.e., both of them are initiators or
responders).
• SKsid 6= SKsid′.
• peersid 6= ⊥

∧
peersid 6= Uj if Uj is the responder, or peersid′ 6= ⊥

∧
peersid′ 6=

Ui if Ui is the responder.

ID-concealed session-key (ICSK) security: Supposing the test-session sidT
(held at the uncorrupted user Ut) is completed and unexposed, the following
quantities all are negligible:

Impersonation security: The probability that the test-session sidT has no
matching session, on condition that sidT is run at Initiator.

ID-SK indistinguishability: |Pr[σ′ = σ]− 1
2
|.
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9 Protocol Construction and Security Analysis of
UCAKE

In this section, we present a two-round protocol for identity-concealed authenti-
cated key-exchange with unilateral authentication (UCAKE), and prove its secu-
rity in accordance with our strong UCAKE-security definiton (Definition 2).

9.1 Protocol Construction of UCAKE

Let (G′, N,G, g, q) specify the underlying group over which the GDH assumption
holds. For each honest user i, 1 ≤ i ≤ n, its secret-key ski is set to be xi ← Z∗q ,
and its public-key pki is set to be gxi . The binding between user identity idi and
its public-key pki is authenticated by a certificate certi issued by a certificate
authority (CA). Throughout this paper, unless otherwise stated, we assume that
the CA does not mandate proof-of-possession or proof-of-knowledge (POP/POK,
for short) of secret key during public key registration, but it performs sub-group
membership check for each registered public key, i.e., checking pki ∈ G \ 1G.

16

Let SE = (Kse,Enc,Dec) be an AEAD scheme, where K = {0, 1}κ is the key
space of Kse, h : {0, 1}∗ → {0, 1}l ∩ Z∗q be a cryptographic hash function where
l = d|q|/2e, and KDF : G × {0, 1}∗ → {0, 1}κ × {0, 1}κ be a key derivation
function. For presentation simplicity, we denote by Alice the anonymous client who
does not necessarily possesse public identity information, and by Bob the server
who possesses public identity information pidB = (idB, pkB = B = gb, certB) and
secret-key skB = b← Z∗q . The protocol structure of UCAKE is depicted in Fig. 5
(page 40), where HB is the associated data for encrypting pidB||Y .17 For a session
run, the local state STsid is specified to be the DH-exponent y (if sid is run at
Responder) or x (if sid is run at Initiator), which can be offline computed and
stored.
We assume the server always performs subgroup membership test for the incom-

ing DH-exponent X explicitly or implicitly. The explicit subgroup test is to verify
that X ∈ G′ \1G and Xq = 1G. The implicit subgroup test is to check X ∈ G′ and
X t 6= 1G, which guarantees X is not in a small subgroup of G′ of the order being
a factor of t (though it may not fully ensure X ∈ G). In practice, we recommend
the following protocol variant with implicit subgroup test, where PS = X t(b+ye)

and the server will abort if X 6∈ G′ or PS = 1G. Such an implicit subgroup test
costs almost for free when G is the subgroup of an elliptic curve over a finite field,
where the cofactor t is typically a small constant or just 1. We note that the sub-
group test can be waived, if oracle query to EXO is denied in the UCAKE-security
definition.
16 The subgroup test can be waived, if no ephemeral secrecy is exposed.
17 In reality, the associated data is usually implicitly determined from the context (e.g., the hash of the

transcript of protocol run or some pre-determined states).
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pidB

PKB : B = gb

SKB : b← Z∗q
x← Z∗q
X = gx X

y ← Z∗q , Y = gy

e = h(X,Y, pidB)

Y = BY e, PS = Xb+ye

(K1,K2) = KDF(PS,X‖Y )

Session-key is set to be K2

HB , Y , CB = EncK1(HB , Y ‖pidB)

PS = Y
x

(K1,K2) = KDF(PS,X‖Y )

DecK1(HB , CB) = (Y, pidB)

e = h(X,Y, pidB)

Check correctness of pidB and Y = BY e, and abort if not

Session-key is set to be K2

Fig. 5: Protocol structure of UCAKE

In the above protocol description, we used an abstract key-derivation function
KDF . An alternative way to set the session-keyK2 is:K2 = KDF (PS,X||Y ||pidB).
In practice, KDF can be instantiated with HKDF as in TLS1.3, or with the two-
stage key derivation process via HMAC as specified by NIST SP800-56C. For
such KDF instantiations, some random nonces and other auxiliary information
may need to be exchanged, which are put into the input of KDF. In general, the
AEAD ciphertext CB can also encrypt some data directly, or as in 0.5-RTT mode
of TLS1.3 the server uses the session-key K2 to encrypt application data before
the client confirms the session-key. The session-key could also be set to be K1. In
these cases, we need to use the ACCE security model.

9.2 Security Analysis of UCAKE

Theorem 5. The protocol presented in Fig. 5 is strongly UCAKE-secure, under
the AEAD security and the GDH assumption in the random oracle model.

Proof. For a session run of the protocol described in Fig. 5, define its label to
be X||Y . We first prove the following lemma, which says that Y is actually a
commitment to (X, Y, pidB).
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Lemma 3. Assuming h : {0, 1}∗ → {0, 1}l ∩ Z∗q is an RO, where l = d|q|/2e,
no PPT algorithm can output {aux ∈ {0, 1}∗, Y ∈ G, pidj = (idj, pkj, certj)}
and {aux′ ∈ {0, 1}∗, Y ′ ∈ G, pidk = (idk, pkk, certk)}, where {aux, Y, pidj} 6=
{aux′, Y ′, pidk} and 1 ≤ j, k ≤ n, such that pkjY

h(aux,Y,pidj) = pkkY
′h(aux′,Y ′,pidk).

Proof (of Lemma 3). For any pair of different {aux, Y, pidj} and {aux′, Y ′, pidk},
the probability that pkjY

h(aux,Y,pidj) = pkkY
′h(aux′,Y ′,pidk) is 1

2l−1 assuming h :
{0, 1}∗ → Z∗q is a random oracle. Then, for any PPT algorithm who makes at
most t oracle queries to h, where t is polynomial in |q|, the probability it outputs
a pair of different {aux, Y, pidj} and {aux′, Y ′, pidk} such that pkjY

h(aux,Y,pidj) =

pkkY
′h(aux′,Y ′,pidk) is at most t2

2l−1 , which is negligible. �
We first prove the label-security. It is straightforward that, with overwhelming

probability, no more than two sessions (run at Initiator and Responder) can have
the same label. Let session sid held at user Ui and session sid′ held at user Uj, 1 ≤
i, j ≤ n, are matching (i.e., they have the same session label X||Y ). Note that, for
honestly generated X and Y , with overwhelming probability X 6= Y , which holds
even if y is taken from a well-spread distribution over Z∗q with min-entropy greater

than ω(log |q|). Label matching (with inequality between X and Y ) implies that
Ui and Uj cannot play the same session role. As PS = CDH(X, Y ) and session-
key is derived from KDF (PS,X||Y ), we conclude that the two matching sessions
must have the same session-key. Finally, for presentation simplicity, suppose Ui
is the initiator and Uj is the responder w.r.t. the two matching sessions sid and
sid′ of the same session label X||Y , but peersid 6= Uj. Note that, in the session
sid′ held by the responder user Uj, it holds that Y = pkjY

h(X,Y,pidj). The fact
that peersid 6= Uj at the initiator user Ui means that: there exist a PPT adversary
who successfully opens Y = pkjY

h(X,Y,pidj) into (X, Y ′, pidk) in the session sid,
where pidk 6= pidj, which can occur with at most negligible probability according
to Lemma 3.
Next, we prove the ID-concealed session-key (ICSK) security. Let the test-session
sidT , held at the uncorrupted user Ut = Utσ for σ ← {0, 1}, is completed and
unexposed. We first prove the impersonation security. Specifically, suppose Ut is
an initiator (client) user and peersidT = Uk ∈ HONEST where Uk is a responder
user, but sidT has no matching session. Note that, for the test-session sidT run
at Initiator to be unexposed, the following must hold simultaneously: (1) The
static secret-key of the peer user Uk is unexposed. (2) The local state of STsidT is
unexposed (but the local state of STsid′T of the matching session can be exposed).
(3) Neither Ut0 nor Ut1 is corrupted. (4) Neither the session-key of sidT nor that
of sid′T (in case the matching session exists) is exposed. This implies that a PPT
adversary can impersonate the honest responder user Uk.
Denote by (X, Y

′
) the session label of sidT , and by (H ′B, C

′
B) the AEAD cipher-

text sent by A in the second round of the test-session. As we assume sidT has been
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successfully completed, it means that (H ′B, C
′
B) was decrypted to (pidk, Y

′) such

that Y
′

= pkkY
′h(X,Y ′,pidk), where Y ′ may be generated by A itself. We consider

two cases.
The first case, referred to as Case-1, is that Y

′
was sent by Uk in a session of

label (X ′, Y
′
), where X ′ 6= X as we assume no matching session exists for sidT . In

this case, Uk computed Y
′

= pkkY
h(X′,Y,pidk) where Y = gy for y ← Z∗q taken by

Uk itself. This means that Y
′

= pkkY
′h(X,Y ′,pkk) = pkkY

h(X′,Y,pidk) where X 6= X ′,
which occurs with at most negligible probability according to Lemma 3.
The second case, referred to as Case-2, is Y

′
was never sent by Uk (but may be

sent by another user in another session unmatched to sidT ). We have the following
lemma, which then establishes the impersonation security.

Lemma 4. Case-2 occurs with at most negligible probability, under the AEAD
security and the GDH assumption in the random oracle model.

Proof (of Lemma 4). Assuming there exists a PPT adversary A such that Case-2
occurs with non-negligible probability p, we construct another algorithm S who
can break the GDH assumption also with non-negligible probability under the
AEAD security in the RO model. S takes input (B,X), where B = gb and X = gx

for b, x ← Z∗q that are unknown to S, and its goal is to compute CDH(B,X)
with a DDH oracle. We assume A runs at most s sessions at either Initiator or
Responder, where s is polynomial in |q|. S randomly guesses the victim responder
user Uk by taking k ← {1, · · · , n}, hoping Uk is the victim responder user. With
probability 1

n
, the guess of S is correct. For presentation simplicity, we view the

victim Uk as user of public identity information pidB. S sets the public-key of Uk to
be the element B given in its input, i.e., pkk = B, and registers (idk, B) = (idB, B)
to get the certificate certk = certB via CA. S sets the public-key and secret-key
for any user Uj, 1 ≤ j 6= k ≤ n, by itself, and will act on its behalf. S embeds a
random bit σ ← {0, 1}, and runs A as a subroutine, and answers its oracle queries
as follows.
WhenA starts a session with the responder Uk via the oracle query “(Start, Uk, X

′)”,
where X ′ ∈ G, S works as follows: It generates Y = gy, y ← Z∗q , computes

Y = BY h(X′,Y,pidB), takes (K1, K2) ← {0, 1}κ × {0, 1}κ, and sends {HB, Y , CB =
EncK1(HB, pidB‖Y )} to A. S also stores {X ′||Y , (K1, K2)} into a list denoted
LDDH .18 Note that S cannot compute the pre-shared secrecy PS = CDH(X ′, Y )
and consequently KDF (PS,X ′||Y ), as it does not know the secret-key b. In or-
der to keep the consistency of the random oracle KDF , from now on whenever
the adversary A makes an oracle query of the form KDF (PS ′, X ′||Y ), based

on the stored list LDDH the simulator S checks whether PS ′/X ′yh(X
′,Y ,pidB) =

18 In the actual analysis, if {X ′||Y , (K1,K2)} has already been defined previously in LDDH , S will
abort, which occurs with at most negligible probability.
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CDH(B,X ′) with the aid of its DDH oracle DDH(B, ·, ·); if yes, it returns the
pre-set value (K1, K2).

Upon receiving “(Test, Ut0 , Ut1)” for uncorrupted Ut0 , Ut1 ∈ HONEST, where 1 ≤
t0 6= t1 ≤ n, it sets Ut = Utσ , S just sends X, the element given in its input, to A
as the first-round message of the test-session.

As S knows the secret-keys of all the other users except Uk, and Case-2 assumes
that secret-key of Uk is unexposed and no test-session exists for sidT , S can per-
fectly answer all the other queries made by A regarding StaKey, Corrupt, Register
and Peer. It is easy to check that the view of A under the run of S is identical
to that in its real attack, where KDF is assumed to be an RO. This means, with
non-negligible probability, Case-2 occurs in the simulation of S.

Denote by (X, Y
′
) the session label of the completed test-session sidT , and by

(H ′B, C
′
B) the AEAD ciphertext sent by A in the second round of sidT . Case-2

means that Y
′

was not generated by user pidB, but the decryption of (H ′B, C
′
B)

gives (pidB, Y
′) such that Y

′
= BY ′e for e = h(X, Y ′, pidB), where Y ′ = gy

′

may be generated by A itself. It also implies that A has made the oracle query
h(X, Y ′, B) to get e, as, otherwise, Y

′
= BY ′e holds (and consequently the test-

session can be successfully finished) only with negligible probability. Denote by

(K ′1, K
′
2) = KDF (CDH(X, Y

′
), X||Y ′). As we assume sidT has no matching ses-

sion and Y
′

was not sent by pidB in Case-2, with overwhelming probability the
AEAD ciphertext EncK′1(H

′
B, pidB||Y ′) was not sent in any existing session other

than the test-session. By the AEAD security, the adversary A must have made
the oracle query KDF (CDH(X, Y

′
), X||Y ′), from which S gets CDH(X, Y

′
) =

Xb+y′e.

S rewindsA to the point of RO query h(X, Y ′, pidB), and redefines h(X, Y ′, pidB) =
e′ ← {0, 1}l

⋂
Z∗q , and runs A from this rewinding point, where all RO queries to

h after the rewinding point are answered randomly and independently. According
to the general forking lemma [4], Case-2 occurs in the rewound run also with non-

negligible probability, from which S will get CDH(X, Y
′
) = Xb+y′e′ . Note that,

with overwhelming probability, e′ 6= e. By computing Xy′ = (Xb+y′e/Xb+y′e′)e−e
′

and Xb+y′e/Xy′e = Xb = CDH(X,B), S breaks the GDH assumption also with
non-negligible probability. �

Finally, we prove the ID-SK indistinguishability. For UCAKE protocol, we only
need to consider the ID-indistinguishability when the completed unexposed test-
session sidT is run at Responder. Note that, for the completed test-session sidT run
at Responder to be unexposed, the following conditions must hold simultaneously:
(1) The matching session sid′T exists at an uncorrupted honest client user Uj.
(2) The adversary didn’t make the query Peer(sid′T ). (3) Neither Ut0 nor Ut1 is
corrupted, but the static secret-keys of both Ut0 and Ut1 can be exposed. (4) Neither
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STsidT nor STsid′T is exposed.£5¤Neither the session-key of sidT nor that of sid′T
is exposed.

In this case, the first observation is that Y perfectly hides the responder’s iden-
tity in the random oracle model. Specifically, for any σ ∈ {0, 1}, any X ′ ∈ G,
and any pair of (pidt0 , pidt1), where 1 ≤ t0, t1 ≤ n and skt0 (resp., skt1) is
the static secret-key of pidt0 (resp., pidt1), it is easy to check that the follow-
ing distributions are identical in the random oracle model assuming h is an RO:
{(pidt0 , pidt1), (skt0 , skt1), X ′, Y σ = pktσY

h(X′,Y,pidtσ )} and {(pidt0 , pidt1), (skt0 , skt1), X ′, Ỹ },
where Ỹ ← G \ 1G and Y = gy for y ← Z∗q that is assumed to be unexposed. It
can also be easily seen that, if y is taken from a well-spread distribution over Z∗q
with min-entropy greater than ω(log |q|), Y computationally hides the responder’s
identity under the FGDL assumption in the random oracle model.

Then, by the AEAD security, to break the ID-SK indistinguishability, in the
random oracle model assuming KDF is an RO, A has to query KDF in order to
get the session-key of the test-session or its matching session. We further examine
two cases.

The first case is that the completed unexposed test-session sidT is run at Respon-
der. In this case, as the matching session sid′T must exist and neither STsidT nor
STsid′T is exposed, we show that the ability to break ID-SK indistinguishability im-
plies the ability to break the CDH assumption. Specifically, the simulator S takes
input (X, Y ), where X, Y ← G \ 1G, and its goal is to compute CDH(X, Y ) with
the aid of a DDH-oracle. Toward this goal, it sets the public-keys and secret-keys
for all the honest users, and runs A as a subroutine. S randomly guesses, with suc-
cessful probability at least 1

s
, the session sid′T matching to the test-session sidT , by

randomly taking i← {1, · · · , s}, where A is assumed to run at most s sessions at
either Initiator or Responder. For the i-th session run at Ininiator (i.e., the guessed
matching session sid′T ), S sends X (i.e., the value given in its input) in the first
round. When A makes the query “(Test, Ut0 , Ut1 , X)” for Ut0 , Ut1 ∈ HONEST re-
garding the test-session sidT , S sets Ut = Utσ where σ ← {0, 1} is the random bit
embedded in S, and sends Y = BY e (and the accompanying AEAD ciphertext)
in the second round of sidT , where e = h(X, Y, pidB) and Y is the value given
in the input of S. For presentation simplicity, denote by pidB (with public-key
B = gb where b ← Z∗q is generated by S itself) the responder user Ut who runs
the test-session sidT . To break the ID-SK indistinguishability, the above reasoning
has established that A has to make the RO query KDF (CDH(X, Y ), X||Y ), from
which S computes CDH(X, Y ) = (CDH(X, Y )/Xb)e

−1.

The second case is that the completed unexposed test-session sidT is run at Ini-
tiator. Recall that, for the test-session sidT run at Initiator to be unexposed, the
following must hold simultaneously: (1) The static secret-key of the peer user Uk is
unexposed. (2) The local state of STsidT is unexposed (but the local state of STsid′T
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of the matching session can be exposed). (3) Neither Ut0 nor Ut1 is corrupted.
(4) Neither the session-key of sidT nor that of sid′T is exposed. For presentation
simplicity, we assume the peer user Uk is pidB. Also note that the impersonation
security has already established that the matching session sid′ must exist at the
responder user pidB. In this case, we show that the ability to break ID-SK indis-
tinguishability implies the ability to break the GDH assumption. Specifically, the
simulator S takes input (X,B), where X,B ← G \ 1G, and its goal is to compute
CDH(X,B) with the aid of a DDH-oracle. Toward this goal, S randomly guess
the peer user pidB with successful probability 1

n
, whose public-key is just set to

be B, and sets the public-keys and secret-keys for all the other honest users in the
system. S runs A as a subroutine, and works as follows.

– As in the proof of Lemma 4, S perfectly simulates the user pidB with the aid of
the DDH-oracle, particularly ensuring the consistency in answering the queries
by A to the random oracle KDF .

– S sends X (i.e., the value given in its input) in the first round of sidT , upon
receiving the query “(Test, Ut0 , Ut1)” from A.

– For any session (including the matching session sid′T ) run by pidB at Responder,
S sends Y = BY e in the second round, where e = h(X ′, Y, pidB) and Y = gy

for y ← Z∗q that is generated by S itself but can be exposed to A. Note that
in the matching session sid′T , it holds that X ′ = X.

Again, in order to break the ID-SK indistinguishability in this case, the above rea-
soning has established thatA has to make the RO queryKDF (CDH(X, Y ), X||Y ),
from which S computes CDH(X,B) = CDH(X, Y )/Xye. This finishes the proof
of Theorem 5. �

Corollary 2. Let Y be a well-spread distribution over Z∗q with min-entropy λY >
ω(log |q|). The protocol described in Fig. 5, when y is taken according to Y,
is UCAKE-secure, under the AEAD security, the FGDH (actually HGDH) and
FGDL assumptions (as defined in Section 3), in the random oracle model.

Corollary 3 indicates much flexible implementations of the UCAKE protocol,
according to priorities and tradeoffs among security and efficiency. In practice,
at one’s own discretion (according to task criticality and application scenarios),
the responder can take y ← {0, 1}d|q|/4e ∩ Z∗q (referred to as light-UCAKE), or

y ← {0, 1}d|q|/2e ∩ Z∗q (referred to as medium-UCAKE), or just y ← Z∗q (referred
to as full -UCAKE). For example, if |q| = 512, we suggest |y| = 128 = |q|/4,
i.e., light-UCAKE, could suffice for many application scenarios. In this case, the
responder only performs about 1.75 exponentiations (compared to 2.5 exponenti-
ations in full -higncryption). For most application scenarios, we may recommend
to use medium UCAKE (M-UCAKE, for short). Note that, for M-UCAKE, com-
puting CDH(X, Y = BY h(X,Y,pidB)) is not reduced to solving half a DL problem
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w.r.t. Y where y ← {0, 1}d|q|/2e ∩Z∗q , even if the static secret-key b is exposed. Ac-

tually, given Y h(X,Y,pidB), it seems that no efficient way to even compute the DH-
component Y (letting alone the DH-exponent y), other than exclusively searching
over y ← {0, 1}d|q|/2e ∩ Z∗q .

9.3 Comparison and Discussion

A brief comparison among M-UCAKE, UCAKE, QUIC and DSA-TLS1.3 is given
in Table 3. Here, QUIC refers to the basic protocol structure presented in Fig.
11 (page 59). DSA-TLS1.3 refers to the SIGMA-based basic authentication mech-
anism of TLS1.3 described in Fig. 12, when the underlying server signature is
implemented with DSA.
For efficiency comparison, we only count the number of modular exponentiations

(denoted as “exp.” in the table). By “y-security”, we mean that the session-key
remains secure even if server’s DH-exponent y is exposed. By “forward-ID”, we
mean that server’s identity privacy holds even when server’s static secret-key is
exposed. By “sig-vulnerability”, we mean that the exposure of random nonce gen-
erated during signature computation will leak server’s static secret-key.

M-UCAKE UCAKE QUIC DSA-TLS 1.3

efficiency
server 2exp. 2.5 exp. 3 exp. 3 exp.
client 2.5 exp. 2.5 exp. 3 exp. 3.5 exp.

y-security
√ √

" "
forward-ID

√ √
"

√

sig-vulnerability ⊥ ⊥ ⊥
√

Table 3: Comparison among M-UCAKE, UCAKE, QUIC and DSA-TLS1.3

9.4 Full TLS Handshake: The Second Solution

In this section, based upon UCAKE, we develop more efficient protocol construc-
tion for full TLS handshake (with optionally 0.5-RTT authentication). The basic
protocol structure is presented in Fig. 6.
In the protocol description, “{ }K” denotes AEAD encryption using key K,

“{ }∗K” (resp., “{ }+K”) means it is optionally generated and sent only for 0-RTT
(resp., 0.5-RTT) mode. τA and τB denote some auxiliary information (like ran-
dom nonces, protocol version, extensions, system parameters, timing stamps, etc)
sent by pidA and pidB respectively, though they may not be necessary for prov-
able security. SFIN and CFIN are the “finish” messages sent by server and client
respectively, as is done in TLS1.3 or QUIC. We note that SFIN and CFIN (par-
ticularly, SFIN) may not be necessary for the provable security of UCAKE-based
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pidA
PKA : A = ga

SKA : a← Z∗q

pidB
PKB : B = gb

SKB : b← Z∗q

x← Z∗q τA, X = gx, {0-RTT data}∗K0

y ← Z∗q
e = h(τA, X, τB , Y, pidB)

τB , Y = BY e, {Y, pidB , SFIN}K1 , {0.5-RTT data}+K2

{CFIN, pidA, σA}K1 , {data}K2

Fig. 6: TLS handshake based on UCAKE

TLS. σA is the signature of the client on the hash of (plaintext) transcript up to
{CFIN, pidA}. Here, (pidA, σA) is sent only when server indicates client authenti-
cation in the second round. The key K0 is derived from CDH(X,B) and public
transcript including (pidA, pidB, X) and even pre-shared key if it is run in the
resumption model. The keys K1 and K2 are derived from PS = CDH(X, Y ) (and
public transcript), in a way that K1 and K2 are computationally independent as
is done in TLS1.3 or QUIC.19

10 Protocol Construction and Security Analysis of
CAKE with Mutual Authentication

In this section, we present the protocol constructions and security analysis for
identity-concealed authenticated key-exchange with mutual authentications, re-
ferred to as CAKE for presentation simplicity.
The basic protocol structure of CAKE is presented in Fig. 7, where the system

parameters are the same as in the construction of UCAKE. For a session run, the
local state STsid is specified to be the DH-exponent y (if sid is run at Responder) or
x (if sid is run at Initiator), which can be offline computed and stored. We assume
that each user always performs, explicitly or implicitly, subgroup membership test
for the incoming DH-exponent X or Y .
Again, at one’s own discretion (according to task criticality and application sce-

narios), user pidA (resp., pidB) can select x ← {0, 1}lA (resp., y ← {0, 1}lB),
where ω(log |q|) < lA, lB ≤ |q|, and lA and lB may not necessarily be equal. For
example, user pidA can set, according to task criticality and application scenarios,
lA = d|q|/4e, or lA = d|q|/2e, or lA = d3|q|/4e, or just lA = |q|. In practice, it may

19 If 0.5-RTT authentication is not run, the session-key K2 can be derived from PS and (the hash of)
the transcript up to {data}K2 .
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pidA
PKA : A = ga

SKA : a← Z∗q

pidB

PKB : B = gb

SKB : b← Z∗q

X = gx

d = h(X, pidA)

X = AXd

Y = gy

e = h(X,Y, pidB)

PS = X
b+ye

(K1,K2) = KDF(PS,X‖Y )

HB , Y = BY e, CB = EncK1(HB , Y ‖pidB)

PS = Y
a+xd

(K1,K2) = KDF(PS,X‖Y )

DecK1(HB , CB) = (pidB , Y )

Compute e = h(X,Y, pidB)

Check whether Y = BY e, and abort if not

Session-key is set to be K2

HA, CA = EncK1(HA, pidA‖X)

DecK1(HA, CA) = (pidA, X)

Compute d = h(X, pidA)

Check whether X = AXd, and abort if not

Session-key is set to be K2

Fig. 7: Basic Protocol Structure of CAKE

be recommended to set lA = lB = d|q|/2e+1. The session-key K2 could also be set
to be K1 (and in this case the provable security will rely upon the ACCE security
model), or K2 = KDF (PS,X||pidA||Y ||pidB). A generalized protocol structure
of CAKE is presented in Fig. 16, Appendix B (page 61).

10.1 Security Analysis of CAKE

Theorem 6. The protocol described in Fig. 7 is strongly CAKE-secure according
to Definition 1, under AEAD security and the GDH assumption in the Random
oracle model.

Proof. For each session run of the CAKE protocol (at either Initiator or Re-
sponder), define the session label to be “X||Y ”. Two sessions (whether they are
complete or not) are matching if they have the same session label. Note that,
for honestly generated X and Y , with overwhelming probability X 6= Y , which
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holds even if x and y are taken from some well-spread distributions over Z∗q with
min-entropy greater than ω(log |q|).
We first prove the label-security. Firstly, it is trivial to check that the probabil-

ity that more than two sessions share the same session label is negligible. Now,
consider any pair of matching sessions: session sid held at user Ui and session sid′

held at user Uj. Label matching (with inequality between X and Y ) implies that,
with overwhelming probability, Ui and Uj cannot play the same session role. As
PS = CDH(X,Y ) and session-key is derived from KDF (PS,X||Y ), we conclude
that the two matching sessions must have the same session-key.

Without loss of generality, assume that Ui (holding session sid) is initiator and
Uj (holding the matching session sid′) is responder. Next, we prove that the prob-
ability of peersid 6= ⊥ ∧ peersid 6= Uj, or peersid′ 6= ⊥ ∧ peersid′ 6= Ui, is negli-
gible. Note that, for CAKE protocol, it may be the case that peersid = Uj but
peersid′ = ⊥. Specifically, consider that the third-round message sent by the ini-
tiator Ui in session sid is dropped by adversary, which causes peersid = Uj but
peersid′ = ⊥. We note that such a cutting-last-message attack is unavoidable. Let
X = pkiX

h(X,pidi) (sent by Ui in session sid) and Y = pkjY
h(X,Y,pidj) (sent by

Uj in the matching session sid′), and suppose that peersid 6= ⊥ ∧ peersid 6= Uj, or
peersid′ 6= ⊥∧peersid′ 6= Ui. This implies that there exists a PPT adversary who can
successfully open Y = pkjY

h(X,Y,pidj) into (X,Y ′, pidk) for pidk 6= pidj in session

sid such that Y = pkjY
h(X,Y,pidj) = pkkY

′h(X,Y ′,pidk), or can open X = pkiX
h(X,pidi)

into (X ′, pidδ) for pidδ 6= pidi in session sid′ such that X = pkiX
h(X,pidi) =

pkδX
′h(X′,pidδ). However, according to Lemma 3, either case can occur with at

most negligible probability.

Let sidT be the completed unexposed test-session held at the user Ut = Utσ with
session-label X||Y and peersidT = Uk ∈ HONEST, 1 ≤ k ≤ n, where Ut may be
identical to Uk. Denote by sid′T its matching session (in case it exists), which may
be still on-going. As the test-session sidT is completed and unexposed, it means
that:

– Ut0 and Ut1 are not corrupted (but the static secret keys of them could be
exposed), and the static secret-key of peersidT = Uk is unexposed.

– The local state STsidT is unexposed if Ut 6= Uk (otherwise, STsidT is allowed to
be exposed), but STsid′T may be exposed.

– The session-key of either sidT or sid′T is unexposed;

– peersid′T is unexposed.

The ID-concealed session-key security is reduced to the AEAD security and the
GDH assumption in the random oracle model. Before proceeding the security
analysis, we first clarify the use of the DDH-oracle in ensuring the consistency of
the KDF random oracle. Specifically, we consider a simulator S who wants to
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simulate, with the aid of a DDH-oracle, the peer user peersidT of the test-session,
as well as the user Ut in the test-session sidT .

– If peersidT , which is denoted pidB of public-key B = gb in this case for pre-
sentation simplicity, runs (holds) a session sid in which it plays the responder
role, S gets access to the DDH-oracle DDH(B, ·, ·), and acts as follows. Note
that, when peersidT = Ut, sid can just be the test-session sidT . After receiving
X in the first round, S generates Y = gy and Y = BY e in the second round
where e = h(X,Y, pidB); S randomly generates (K1, K2) ← {0, 1}κ × {0, 1}κ
by itself, records {X||Y , (K1, K2)} in a list denoted LDDH ,20 uses K1 to get
the AEAD ciphertext (HB, CB), and finally sends {Y ,HB, CB} in the sec-
ond round of the session. From this point on, for each RO-query of the form
KDF (PS,X||Y ) made by the CMIM adversary A, where PS is supposed to be

CDH(X,Y ) = X
b+ye

, S computes Z = PS/X
ye

, and queries its DDH-oracle
with (B,X,Z): if the DDH-oracle outputs “yes” S returns the already stored
(K1, K2) to the adversary; otherwise, random answer is returned.

– If peersidT , which is denoted pidA of public-key denoted A = ga in this case for
presentation simplicity, runs/holds a session sid in which it plays the initiator
role, S gets access to the DDH-oracle DDH(A, ·, ·) and acts as follows. Note
that, when peersidT = Ut, sid can just be the test-session sidT . S generates
X = gx and sends X = AXd in the first round where d = h(X, pidA). After re-
ceiving the second-round message denoted {Y ,HB, CB}, S first checks whether
{X||Y , (K1, K2)} has already been stored in LDDH : if “yes”, S just uses K1 to
decrypt CB; if “not”, S randomly generates (K1, K2) ← {0, 1}κ × {0, 1}κ by
itself and records {X||Y , (K1, K2)} into the list LDDH . From this point on, for
each RO-query of the form KDF (PS,X||Y ) made by the CMIM adversary A,

where PS is supposed to be CDH(X,Y ) = Y
a+xd

, S computes Z = PS/Y
xd

,
and queries its DDH-oracle with (A, Y , Z): if the DDH-oracle outputs “yes” S
returns the already stored (K1, K2) to the adversary; otherwise, random answer
is returned.

– Simulation of the test-session sidT . Note that the above analysis has already
dealt with the test-session simulation when peersidT = Ut. Here, we only con-
sider the case of peersidT 6= Ut.
If sidT is run at Responder, denote by Ut = pidB the holder of the test-session
for presentation simplicity. For this case, the public-key B = gb and secret-
key b ← Z∗q of pidB are generated by the simulator S itself, as the secret-
key b may be exposed to adversary. S takes Y ← G \ 1G as input, and has
access to the DDH-oracle DDH(Y, ·, ·). After receiving X in the first round
of sidT , S generates Y = BY e where e = h(X,Y, pidB) and Y is the value

20 In the actual analysis, if {X||Y , (K1,K2)} has already been defined previously, S will abort, which
occurs with at most negligible probability.
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given in S’s input, and checks whether {X||Y , (K1, k2)} has been recorded in
LDDH : if “yes” S will abort, which occurs with at most negligible probability
in the RO model; if “not”, S randomly generates (K1, K2) by itself and records
{X||Y , (K1, K2)} into the list LDDH . From this point on, for each RO-query
of the form KDF (PS,X||Y ) made by the CMIM adversary A, where PS

is supposed to be CDH(X,Y ) = X
b+ye

, S computes Z = (PS/X
b
)e
−1

, and
queries its DDH-oracle with (Y,X,Z): if the DDH-oracle outputs “yes”, S
returns the already stored (K1, K2) to the adversary; otherwise, random answer
is returned.
If the test-session sidT is run at Initiator, denote by Ut = pidA the test-session
holder for presentation simplicity. For this case, the public-key A = ga and
secret-key a of pidA are generated by the simulator S itself, as the secret-
key a can be exposed to adversary. S takes X ← G \ 1G as input, and
gets access to the DDH-oracle DDH(X, ·, ·). In the first round of sidT , S
sends X = AXd, where d = h(X, pidA) and X is the value given in S’s in-
put. After receiving {Y , (HB, CB)} in the second round of the test-session, S
checks whether {X||Y , (K1, k2)} has been recorded in LDDH : if “yes” S just
uses K1 to decrypt CB, and proceeds further; if “not”, S randomly generates
(K1, K2) ← {0, 1}κ × {0, 1}κ by itself and records {X||Y , (K1, K2)} into the
list LDDH . From this point on, for each RO-query of the form KDF (PS,X||Y )

made by A, where PS is supposed to be CDH(X,Y ) = Y
a+xd

, S computes
Z = (PS/Y

a
)d
−1

, and queries its DDH-oracle with (X, Y , Z): if the DDH-
oracle outputs “yes” S returns the already stored (K1, K2) to the adversary;
otherwise, random answer is returned.

It is easy to check that,in the random oracle model where KDF is assumed
to be an RO, with overwhelming probability the simulation of peersidT and the
test-session by S is perfect.
Next, we prove the impersonation security. Suppose an efficient adversaryA could

successfully impersonate the honest user Uk in the completed and unexposed test-
session sidT , while no matching session exists. We distinguish two cases according
to whether sidT is run at Initiator or Responder, and present the outline of proof
based on the proof of Theorem 5.
The first case, denoted Case-1, is that sidT is run at Initiator. In this case, for

presentation simplicity, we denote by Ut = pidA the test-session holder and by
Uk = pidB the peer user peersidT . The proof in this case is similar to that in
the proof of Theorem 5 for UCAKE. Firstly, by Lemma 3, we have that with
overwhelming probability Y was never generated and sent by pidB in any existing
session. Then, the impersonation security is reduced to the AEAD security and the
GDH assumption in the RO model. Specifically, the GDH-solver S takes (B,X)
as input, where B,X ← G \ 1G, and its goal is to compute CDH(B,X) with
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the aid of DDH-oracle. Towards this goal, it randomly guesses the the peer user
peersidT = pidB with successful probability 1

n
, generates the public-keys and secret-

keys for all the honest users in the system except pidB whose public-key is set
to be B (i.e., the value given in S’s input). Similar to the proof of Theorem 5
and as clarified above regarding the simulation of peersidT and the test-session, S
can well simulate the actions of pidB. In the test-session sidT , S sets and sends
X = AXd for d = h(X, pidA) in the first round, where X is the value given in
S’s input. Denote by (Y ,HB, CB) the messages sent by the CMIM adversary A
in the second round of the test-session sidT . As the test-session is completed and
unexposed but has no matching session, by the AEAD security in the RO model,
A has to make the RO query KDF (PS,X||Y ), where it holds that Y = BY e

for some Y (encrypted in the AEAD ciphertext CB) and e = h(X,Y, pidB), from

which S can get PS = CDH(X,Y ) = Y
a+xd

.

For now, we assume pidA 6= pidB, and thus S knows the secret-key a of pidA.
Denoting by B = gb, X = gx and Y = gy, S can then compute CDH(X, Y ) =
(PS/Y

a
)d
−1

= Y
x

= (BY e)x = BxY ex. Note that, with overwhelming probabil-
ity, the RO-query d = h(X, pidA), made by S itself, is prior to the RO-query
e = h(X,Y, pidB). Then, by rewinding A and re-programming the random ora-

cle h(X,Y, pidB) = e′, with non-negligible probability A will send Y
′

= BY e′ in
the second round of the test-session sidT and successfully finish the test-session
in the rewound run according to the general forking lemma [4]. Again, by the

AEAD security in the RO model, S will obtain PS ′ = CDH(X,Y
′
) = Y

′a+xd
,

from which it can get CDH(X, Y
′
) = (PS ′/Y

′a
)d
−1

= Y
′x

= BxY e′x. Then, S
computes CDH(X, Y ) = (CDH(X, Y )/CDH(X, Y

′
))(e−e

′)−1
. Finally, S computes

CDH(B,X) = CDH(X, Y )/CDH(X, Y )e, which violates the GDH assumption.

Note that the above proof of Case-1 assumes pidA 6= pidB. If pidA = pidB,
the input to S will only be B = gb, where b ← Z∗q that is unknown to S,

and its goal is to compute CDH(B,B) = gb
2
, which is as hard as solving the

CDH problem [32]. In the test-session sidT , S generates X = gx by itself (and
thus knowing x ← Z∗q ), and sends X = AXd = BXd in the first round where
d = h(X, pidA) = h(X, pidB). Similarly, by AEAD security in the RO model, S
can get PS = CDH(X,Y ) = Y

b+xd
= (BY e)b+xd and compute CDH(B, Y ) =

PS/Y
xd

= BbY be. By rewinding A and re-programming h(X,Y, pidB) = e′, S
can get PS ′ = CDH(X,Y

′
) = Y

′b+xd
= (BY e′)b+xd with non-negligible proba-

bility in the rewound run, and consequently CDH(B, Y
′
) = PS ′/Y

′xd
= BbY be′ .

Then, S computes CDH(B, Y ) = (CDH(B, Y )/CDH(B, Y
′
))(e−e

′)−1
, and finally

CDH(B,B) = CDH(B, Y )/CDH(B, Y )e, which violates the GDH assumption.

The second case, denoted Case-2, is that sidT is run at Responder. In this case,
for presentation simplicity, we denote by Ut = pidB the test-session holder, and by
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Uk = pidA the peer user peersidT . Let X||Y be the session label of sidT , where X
is sent by the CMIM adversary A who is impersonating the honest user pidA, and
Y is sent by the uncorrupted user pidB. Unlike the first case, X may be generated
and sent by the honest user pidA in an existing session unmatched to sidT . The
impersonation security in this case is still reduced to the AEAD security and the
GDH assumption in the RO model.

We first consider the case of pidA 6= pidB for Case-2. In this case, the GDH-
solver S takes (Y,A) as input, where Y,A ← G \ 1G, and its goal is to compute
CDH(Y,A) with the aid of DDH-oracle. Towards this goal, it randomly guesses the
peer user pidA with successful probability 1

n
, generates the public-keys and secret-

keys for all the honest users in the system except pidA whose public-key is set to
be A (i.e., the value given in S’s input). Similar to the proof of Theorem 5 and as
clarified above regarding the simulation for peersidT and the test-session, S can well
simulate pidA with the aid of DDH-oracle. In the test-session sidT , after receiving
X in the first round, it sets Y = BY e where e = h(X,Y, pidB) and Y is the
value given in S’s input. Then, S generates the accompanying AEAD ciphertext
(HB, CB), where the underlying keys (K1, K2) are set by S itself with the aid of
the DDH-oracle to ensure the consistency of KDF as clarified above regarding
peersidT simulation. Finally, S sends {Y ,HB, CB} in the second round of sidT .
Denote by (HA, CA) the AEAD ciphertext sent by the CMIM adversary A in the
third round of sidT , which is decrypted to be (pidA, X) by pidB using the key K1

such that X = AXd for d = h(X, pidA) as we assume sidT is complete. Note that,
in the RO model, with overwhelming probability the RO-query d = h(X, pidA)
has been made before A sends X in the first round of sidT ; otherwise, sidT will
fail in the third round with overwhelming probability (while sidT is assumed to
be complete). Also note that the RO-query h(X, pidA) may not be made by A
itself. For example, consider that: X and the RO-query h(X, pidA) are generated
and made by pidA in a non-matching session, where x is, however, exposed to A.

We first observe that (HA, CA) 6= (HB, CB) even if pidA = pidB. Otherwise,
(HA, CA) will be decrypted into (Y, pidB); but as Y is independent of X, the
probability X = BY h(Y,pidB) is negligible assuming h is RO. Note that, as we
assume the test-session has no matching session, the underlying AEAD-key K1

used in sidT is independent of the AEAD-keys in all the other sessions. By the
AEAD security in the RO model, conditioned on S successfully breaks the im-
personation security with non-negligible probability in Case-2, S will get PS =

CDH(X,Y ) = (AXd)b+ye, from which it computes CDH(Y,X) = (PS/X
b
)e
−1

=
AyXyd as we assume pidA 6= pidB and S knows b. According to the general
forking lemma, by rewinding A and re-programming h(X, pidA) = d′, with also

non-negligible probability S will get PS ′ = CDH(X
′
, Y
′
) = (AXd′)b+ye

′
, where

Y
′

= BY e′ is sent by S in the second round of the test-session (indicated by
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the query (Test, Ut0 , Ut1 , X
′
) made by A) in the rewound run. Note that, as the

RO-query h(X,Y, pidB) is posterior to h(X, pidA), rewinding and re-programming
h(X, pidA) = d′ causes re-programming h(X,Y, pidB) = e′. Then, S computes

CDH(Y,X
′
) = (PS ′/X

′b
)e
′−1

= AyXyd′ . Finally, S computes CDH(Y,X) =

(CDH(Y,X)/CDH(Y,X
′
))(d−d

′)−1
, and then CDH(Y,A) = CDH(Y,X)/CDH(Y,X)d,

which violates the GDH assumption.

Again, the above proof of Case-2 has assumed pidA 6= pidB. If pidA = pidB
where A = B, S takes input A← G \ 1G, and its goal is to compute CDH(A,A)
with DDH-oracle. For this case, under the AEAD security in the RO model, from
the KDF oracle S will get PS = CDH(X,Y ) = (AXd)b+ye = (AXd)a+ye for
the test-session sidT , where y ← Z∗q is generated by S itself and can be ex-

posed to adversary. S can then compute CDH(X,A) = PS/X
ye

= AaXad.
Similar to the analysis for the case of pidA 6= pidB, by rewinding A and re-
programming h(X, pidA) = d′, S can get PS ′ = CDH(X

′
, Y
′
) = (AXd′)a+ye

′
and

compute CDH(X
′
, A) = PS ′/X

′ye′
= AaXad′ . S then computes CDH(X,A) =

(CDH(X,A)/CDH(X
′
, A))(d−d

′)−1
, and CDH(A,A) = CDH(X,A)/CDH(X,A)d,

which violates the GDH assumption. This finishes the proof of impersonation se-
curity.

Finally, we prove the ID-SK indistinguishability. The proof of impersonation
security has already established that the test-session sidT has matching session
sid′T , where they share the same session label X||Y . The first observation is that,
as clarified with the proof of ID-SK indistinguishability for UCAKE, X and Y
perfectly hide players’ identities in the random oracle model. Then, by the AEAD
security, in order to break the ID-SK indistinguishability the CMIM adversary A
has to make the RO-query KDF (PS = CDH(X,Y ), X||Y ) with non-negligible
probability. It is then reduced to the GDH assumption in the RO model, where the
proof is similar to, but actually simpler than, the proof for impersonation security.
Specifically, in order to break the GDH assumption, the GDH-solver S does not
need to rewind the adversary A and re-program the random oracle h, by the fact
that the values X and Y are generated by the honest users in the matched sessions
sidT and sid′T . We distinguish two cases:

– If peersidT = Ut, with public-key A for presentation simplicity, the GDH-solver
S takes A as input and its goal is to compute CDH(A,A) with the oracle
DDH(A, ·, ·). S acts on behalf of peersidT , by honestly generating X = gx

(resp., Y = gy) in sidT (resp., sid′T ) and using its DDH-oracle to ensure KDF
consistency. After getting PS = CDH(X,Y ) = (AXd)a+ye, S can recover
CDH(A,A) with (x, y) known to it.

– If peersidT 6= Ut, where one of {peersidT , Ut} denotes pidA and the other denotes
pidB for presentation simplicity. The GDH-solver S takes as input (U, V ), where
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U, V ← G \ 1G, and its goal is to compute CDH(U, V ) with DDH-oracle. The
public-key and secret-key of Ut, as well as the DH-component to be sent by
peersidT in sid′T , are generated by S itself, while the public-key of peersidT
and the DH-component to be sent by Ut in sidT are set to be (U, V ), i.e., the
input given to S. From PS = CDH(X,Y ) = (AXd)b+ye and because S knows
either (a, y) or (b, x), S can compute CDH(U, V ) that is either CDH(B,X)
or CDH(A, Y ), which violates the GDH assumption. �

Corollary 3. Let X (resp., Y) be a well-spread distribution over Z∗q with min-
entropy min(λX , λY) > ω(log |q|). The protocol described in Fig. 5, when x (resp.,
y) is taken according to X (resp., Y), is strongly CAKE-secure, under the AEAD
security and the FGDH and FGDL assumptions in the random oracle model.

10.2 Full TLS Handshake: The Third Solution

In this section, based upon CAKE and higncrption, we present a full-fledged so-
lution for TLS handshake, combining 0-RTT mode, 0.5-RTT mode, uniliteral au-
thentication and mutual authentication. The basic protocol structure of the full-
fledged TLS handshake is presented in Fig. 8, where symbols are inherited from
Fig. 6 and Fig. 16.

pidA
PKA : A = ga

SKA : a← Z∗q

pidB
PKB : B = gb

SKB : b← Z∗q

x← Z∗q τA, X̃, {0-RTT HS, 0-RTT data}∗K0

y ← Z∗q
e = h(τA, X, τB , Y, pidB)

τB , Y = BY e, {Y, pidB , SFIN}K1 , {0.5-RTT data}+K2

{1-RTT HS, CFIN}K1 , {data}K2

Fig. 8: Full-fledged TLS handshake based on CAKE and higncryption

As in CAKE, at one’s own discretion (according to task criticality and application
scenarios), user pidA (resp., pidB) can select x ← {0, 1}lA (resp., y ← {0, 1}lB),
where ω(log |q|) < lA, lB ≤ |q|, and lA and lB may not necessarily be equal. For
example, user pidA can set, according to task criticality and application scenarios,
lA = d|q|/4e, or lA = d|q|/2e, or lA = d3|q|/4e, or just lA = d3|q|/4e. In practice,
it may be recommended to set lA = lB = d|q|/2e+ 1.
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In the protocol description, according to the modes of protocol run, some mes-
sages may have different forms. However, with CAKE and higncryption, all of these
different modes of protocol run are well unified within a single protocol structure
in a modular and flexible way.

– For mutual authentication with 0-RTT, X̃ = AXd for d = h(τA, X, pidA, pidB, pss),
where the pre-shared state pss is empty if client and server didn’t pre-share
some state before protocol run (which is mainly for TLS run in the PSK mode).
In this case, 0-RTT HS contains (X, pidA) while 1-RTT HS is empty, where the
first round constitutes a higncryption scheme.

– For mutual authentication without 0-RTT, X̃ = AXd for d = h(τA, X, pidA, pidB, pss)
and 1-RTT HS contains (X, pidA). This case actually corresponds to CAKE.

– For unilateral authentication mode, X̃ = gx, and both 0-RTT HS and 1-RTT
HS are empty.

The keyK0 is derived from CDH(X̃, B) and public transcript including (pidA, pidB, X)
and even pre-shared state if it is run in the resumption mode. The keys K1 and
K2 are derived from PS = CDH(X̃, Y ) (and public transcript and possibly pre-
shared state), in a way that K1 and K2 are computationally independent as is
done in TLS1.3 or QUIC.21
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A Related Protocols

A.1 Zheng’s Signcryption

Zheng’s signcrypton is briefly described in Fig. 9, where H : {0, 1}∗ → Zq is a
hash function.

pidA
PKA : A = ga

SKA : a← Z∗q

pidB

PKB : B = gb

SKB : b← Z∗q

x← Z∗q , PS = Bx

K = KDF (PS,A||B)

c← EncK(M)

r = H(M,A,B,K)

{pidA, c, r, s = x/(r + a)}

PS = (Agr)sb

K = KDF (PS,A||B)

DecK(c) = M

Accept if r = H(M,A,B,K)

Fig. 9: Protocol structure of Zheng’s signcryption

A.2 One-Pass HMQV (HOMQV)

The brief protocol structure of HOMQV, with sender authentication, is described
in Fig. 10, where the session-key is set to be K2.
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pidA
PKA : A = ga

SKA : a← Z∗q

pidB

PKB : B = gb

SKB : b← Z∗q

x← Z∗q , X = gx

d = h(pidB , X), PS = Bx+da

(K1,K2) = KDF (PS, pidA||pidB ||X)

σ = MACK1(0)

{pidA, X, σ}

d = h(pidB , X), PS = (XAd)b

(K1,K2) = KDF (PS, pidA||pidB ||X)

Accept if MACK1(0) = σ

Fig. 10: Protocol structure of HOMQV

A.3 Basic Mechanism of QUIC

The basic protocol structure of QUIC is presented in Fig. 11. The client is assumed
to have already possessed the public identity information of the server, as well as
a state information stk (that is an AEAD encryption of client’s IP-address and
server’s time-stamp) generated by the server in the initial connection. K1 is derived
from CDH(X,B) and some auxiliary input (determined by the public transcript
and stk), the session-key K2 is derived from CDH(X, Y ) and some auxiliary input.
“{ }K” denotes AEAD encryption using key K, and “{ }+K” means it is optionally
generated and sent only for 0-RTT mode. In actual protocol implementation of
QUIC, the client and server also generate and exchange some auxiliary public
information (like random nonces, client session identifier, etc), which are omitted
in the above basic protocol structure.

pidB
PKB : B = gb

SKB : b← Z∗q
x← Z∗q X = gx, {early data}+K1

y ← Z∗q
{Y = gy}K1 , {data}K2

Fig. 11: Basic structure of QUIC
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A.4 Basic Mechanism of TLS1.3

The basic authentication mechanism of TLS1.3 is presented in Fig. 12, which
is actually based on SIGMA [25]. σ is server’s signature on the hash of public
transcript, K1 used for encrypting (pidB, σ) and the session-key K2 are derived
from CDH(X, Y ) in a way that K1 and K2 are computationally independent.

pidB
PKB : B = gb

SKB : b← Z∗q
x← Z∗q X = gx

y ← Z∗q
Y = gy, {pidB , σ}K1 , {data}K2

Fig. 12: Basic authentication mechanism of TLS1.3

A.5 Basic Mechanism of Deniable IKE (DIKE)

The basic mechanism of DIKE, proposed and implied in [45,47], is presented in
Fig. 13, where K2 is derived from both gxb and gxy, K1 and the session-key K
are derived from gxy in a way that K2 and K are computationally independent.
In the actual protocol description in [47,45], MACK2(X, Y, pidB) is written as
H(Xb, Xy, X, Y, pidB). The works [45,47] put focus on deniability and authentica-
tion. It is shown that the session transcript of DIKE, together with the resultant
session-key, is forwardly deniable. In addition, deriving the session-key K merely
from gxy (and some auxiliary input determined from public transcript and shared
state) has the following advantages: (1) deniability, i.e., the session-key cannot be
served as a witness to session participance; (2) it renders the receiver a way to
quickly recover the encrypted data data, without having to first decrypt c1 and
check σ which can be performed in parallel with (even posterior to) decrypting c2.

A.6 Basic Mechanism of OPTLS

The basic mechanism of OPTLS is given in Fig. 14, where , K1 is derived from
gxy, K2 is derived from gxb, and K is derived from both gxb and gxy.

A.7 Basic Structure of (H)MQV and OAKE

The basic protocol structures of (H)MQV and OAKE are given in Fig. 15.
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pidB
PKB : B = gb

SKB : b← Z∗q
x← Z∗q X = gx

y ← Z∗q
Y = gy, c1 = {pidB , σ = MACK2(X,Y, pidB)}K1 , c2 = {data}K

Fig. 13: Basic Structure of DIKE

pidB
PKB : B = gb

SKB : b← Z∗q
x← Z∗q X = gx

y ← Z∗q
Y = gy, {pidB ,MACK2(X,Y, pidB)}K1 , {data}K

Fig. 14: Basic Structure of OPTLS

B Generalized Protocol Structure of CAKE

The generalized protocol structure of CAKE is depicted in Fig. 16 (page 63).
There, τA and τB denote some auxiliary information (like random nonces, protocol
version, extensions, system parameters, timing stamps,etc) sent by pidA and pidB
respectively; mA (resp., mB) denotes the set of extra messages to be encrypted by
user pidA (resp., pidB). In practice, mB should only contain non-critical messages
(e.g., a time-stamp) and could be encrypted with K2 as in 0.5-RTT mode of
TLS-1.3, as the peer’s (say, pidA’s) authentication has not been established at
the moment of sending CB. On the other hand, user pidA can safely include, to
its wish, any message in mA. The value auxA (resp., auxB) represents the set of
some auxiliary information taken into the input of d (resp., e), where pss denotes
some pre-shared state between client and server (e.g., the pre-shared key in the
resumption mode of TLS-1.3).
The generalized protocol structure of CAKE allows flexible implementations and

deployments in practice. In the basic version of CAKE, on which provable security
is to be conducted, auxA = auxB = mA = mB = ∅ (i.e., all of them are the empty
set ∅), which shows the provable security of CAKE does not depend upon these
values.
On the other hand, for a more robust version in practice, some of the following

implementations may come into operation, by the agreement of both parties and
according to the application scenarios.
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B̂, B, Y = gy

Â, A,X = gx

(H)MQV: KB̂ = (XAd)y+eb,KÂ = (Y Be)x+da,K = HK(KB̂) = HK(KÂ)

MQV: d = 2l + (X mod 2l), e = 2l + (Y mod 2l), l = |q|/2

HMQV: d = h(X, B̂), e = h(Y, Â), l = |q|/2

KEA: K = HK(Y a, Bx, Â, B̂) = HK(Ay, Xb, Â, B̂)

(T)OAKE: KB̂ = Afb+yXb+ey,KÂ = Bfa+xY a+ex,K = HK(KB̂) = HK(KÂ)

OAKE: e = h(Â, A, B̂, B,X, Y ), f = 0, l ≈ |q|

T-OAKE: e = h(Â, A, B̂, B,X, Y ), f = 1, l ≈ |q|

PKÂ : A = ga

SKÂ : a
PKB̂ : B = gb

SKB̂ : b

Fig. 15: Specifications of (H)MQV, KEA and (T)OAKE

– At the side of pidA, let auxA include a time-stamp tA ∈ mA (in this case the user
pidB will check the validity of tA after decryption of CA), and pidB (and some
other information from the server configuration like ciphersuits, parameters,
server configuration identifier, etc) in case it is known to user pidA before the
protocol starts, and some pre-shared state pss (e.g., when the protocol is run
in the resumption mode). In some application scenarios, auxA can also contain
a random nonce sent by the responder in an additional prior round.

– At the side of pidB, let auxB include X, and/or a time-stamp tB ∈ mB (in this
case the user pidA will check the validity of tB after decryption of CB).
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pidA
PKA = A = ga

SKA = a

pidB

PKB = B = gb

SKB = b

X = gx

d = h(X, pidA, auxA)

auxA ⊆ {pidB} ∪ τA ∪mA ∪ pss ∪HA

τA, X = AXd

Y = gy

e = h(Y, pidB , auxB)

auxB ⊆ {X, pidA, τA} ∪ τB ∪mB ∪ pss ∪HB
PS = X

b+ye

(K1,K2) = KDF(PS,X‖Y )

τB , Y = BY e, HB , CB = EncK1(HB , pidB‖Y ‖mB)

PS = Y
a+xd

(K1,K2) = KDF(PS,X‖Y )

DecK1(CB)→ (HB , pidB , Y,mB)

Compute e = h(Y, pidB , auxB)

Check whether Y = BY e, and abort if not
Session-key is set to be K2

HA, CA = EncK1(HA, pidA‖X‖mA)

DecK1(CA)→ (HA, pidA, X,mA)

Compute d = h(X, pidA, auxA)

Check whether X = AXd, and abort if not

Session-key is set to be K2

Fig. 16: General protocol structure of CAKE
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