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Abstract Maximally nonlinear Boolean functions in n variables, where n is even,
are called bent functions. There are several ways to represent Boolean functions.
One of the most useful is via algebraic normal form (ANF). What can we say
about ANF of a bent function? We try to collect all known and new facts related
to ANF of a bent function. A new problem in bent functions is stated and studied:
is it true that a linear, quadratic, cubic, etc. part of ANF of a bent function can
be arbitrary? The case of linear part is well studied before. In this paper we prove
that a quadratic part of a bent function can be arbitrary too.

Keywords: Boolean function, bent function, linear function, quadratic function,
homogeneous function.

1 Introduction

Recall that Boolean functions in even number of variables that are on the maximal
possible Hamming distance from the set of all affine Boolean functions are called
bent functions. Bent functions play an important role in constructions of symmet-
ric ciphers since they help to defend ciphers against linear cryptanalysis. It is well
known that every Boolean function can be in the unique way represented in its
Algebraic Normal Form (ANF). This representation is used very often for property
description and realization of a Boolean function. It is known that bent functions
are far from classification. And no conditions on ANF of a Boolean function are
known in order to say that it is bent.

In this paper we collect all known and new facts related to ANF of a bent
function answering the question — which it can be? We deal with algebraic degrees
of bent functions from different classes, classifications of ANFs for small number
of variables, consider homogeneous, symmetric and rotation symmetric ANFs of
bent functions. A new problem in bent functions is stated and studied: is it true
that an arbitrary homogeneous Boolean function of degree k in n variables (n is
even) is a k-degree part in ANF of some bent function in n variables? For small
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k it can be formulated like this. Is it true that linear (quadratic, cubic, etc.) part
of ANF of a bent function can be arbitrary? For sure, this question is interesting
nor only for bent functions.

It is well known that a linear part in ANF of a bent function can be arbitrary.
Moreover, any linear function can be added to a bent function without changing its
property to be bent. In this paper we prove that a quadratic part of a bent function
can also be arbitrary. Namely, we prove that an arbitrary quadratic homogeneous
Boolean function in n variables is a quadratic part of some bent function in n
variables, where n is even, n > 6. Several ideas for the general case of the problem
are discussed.

2 Definitions

We use the following standard notation.

F5 — the vector space over Fo;

f,g:Fy — Fy — Boolean functions;

dist(f,g9) — Hamming distance between f and g, i. e. the number of coordinates
in which their vectors of values differ;

z = (z1,...,2n) — a binary vector;

@ — addition modulo 2 (XOR);

(z,y) = 21y1 ® ... ® xnyn — the standard inner product modulo 2;

Wiy) = 2 pern (=1)@»®/ (@) the Walsh — Hadamard transform of a Boolean
function f;

(a,z) ®b — an affine function in variables z1, ..., Tn;

bent function — a Boolean function in n variables (n is even) that is on the
maximal possible distance from the set of all affine functions. This distance is
equal to 271 — 2(n/2)—1

Ayn — the set of all affine functions in n variables;

By, — the set of all bent functions in n variables.
Any Boolean function can be uniquely represented in its algebraic normal form

(ANF):
n
f(xl,...,xn): @ @ Qiy,.yigy Tiy oo Tiy | D ao,
k=11%1,...,7k
where for each k indices 41,...,i; are pairwise distinct and sets {i1,...,i;} are
exactly all different nonempty subsets of the set {1,...,n}; coefficients a;, .. s,,

ap take values from F3. In Russian mathematical literature it is usually called a
Zhegalkin polynomial in honor of Ivan Zhegalkin (1869-1947), a mathematician who
introduced this representation in 1927.

For a Boolean function f the number of variables in the longest item of its
ANF is called the algebraic degree of a function (or briefly degree) and is denoted
by deg(f). A Boolean function is affine, quadratic, cubic and so on if its degree is
not more than 1, or equal to 2, 3, etc.
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3 Degree of a bent function

In what follows let n be an even number. According to O.Rothaus (1966, 1976)
[21] and V. A. Eliseev, O. P. Stepchenkov (1962) [31] it holds

Theorem 1 Degree deg(f) of a bent function f in n > 4 variables is not more than
n/2. If n =2 a bent function is quadratic.

One can find a proof of this fact in the book [5] of T. W. Cusick and P. Stanica.

Obviously, a Boolean function of degree less or equal to one can not be bent. It
is easy to see that there exist bent functions of all other possible degrees from 2 to
n/2 if n > 4 (just use the Maiorana — McFarland construction for this, see [15]).
E. g. the quadratic Boolean function f(z1,...,2n) = 2122 B 2324 B ... D Tpn_1Tn I8
bent for any even n.

There are many generalizations of bent functions. One very natural of them
is a generalization over finite fields, namely over prime fields. In 1985, P. V. Ku-
mar, R. A. Scholtz, and L. R. Welch proposed [11] this generalization, aiming to
construct g-valued bent sequences applicable in CDMA systems.

Take integer ¢ > 2, the imaginary unit i = v/—1, and a primitive complex root
of unity w = *™/9 of degree ¢q. Consider a g-valued function f : Fg — Fq. The
Walsh — Hadamard transform of a function f is the complex function

Wi (y) = Z W@ for every  y e FD, (1)
zeFy

where the inner product and addition + are taken modulo g. Denote the absolute
value of a complex number c by |c|. Given positive integer ¢, a function f : Fy — F,
is called a g-valued bent function if |Wy(y)| = q"/? for every y € Fg. If ¢ = p, where

p is a prime number, such a function is usually called p-ary bent function.

In 2004 X. D. Hou [10] determined the bound for p-ary bent functions.

Theorem 2 If f is a p-ary bent function (p is prime) in n variables,

(p—Dn

1.
5 +

deg(f) <

If f is weakly regular, then
(p—D)n

deg(f) < 5

Recall that for a bent function f the dual function fin n variables is defined by
the equality Wy (y) = 2"/2(~1)7 W) This definition is correct since We(y) = +2n/2
for any vector y. Recall that fis bent too. It holds f: f.

Note that if deg(f) = n/2 then deg(f) = n/2. In general, the following fact is
well known, see for instance chapter 1] of C. Carlet.

Theorem 3 Let f be an arbitrary bent function in n variables. Then

n/2 —deg(f)
n/2 —de >
/ 9(f) deg(F) 1
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4 All variables take part in ANF of a bent function

A Boolean function f in n variables has a degenerate (fictitious) variable x; if for
any vector b € Fy it holds f(b) = f(b@® e;), where e; is a vector of weight 1 with
i-th coordinate being nonzero. In other words, a variable is fictitious if and only
if it does not occur in ANF of f. A Boolean function is nondegenerate if it has no
fictitious variables. The following fact is well known.

Theorem 4 A bent function in n variables is nondegenerate, i.e. all variables are
presented in its ANF.

It is easy to prove it using the definition of a bent function as a function being
on the maximum possible distance from all affine functions.

In 2013 A. Gorodilova (Frolova) proved a more strong result related to Kasami
bent functions [7]. A Boolean function in n variables we call k-nondegenerate if
for each product of any k pairwise different variables there exists a monomial in
ANF of f that contains all variables from this product. For instance, the product
r1zsx9 we find in ANF like this: ... ®x12204%x5%9 @ ... The maximal such number
k for a Boolean function f we call its order of nondegeneracy. Theorem [ can be
reformulated like this: for any bent function the order of nondegeneracy is at least
1. A.Gorodilova proved |[7]

Theorem 5 The order of nondegeneracy of an arbitrary Kasami Boolean function of
degree d equals d — 3 or d — 2.

5 Can ANF of a bent function be homogeneous?

Yes, it can be. The subclass of homogeneous bent functions was introduced by
C. Qu, J. Seberri and J. Pieprzyk in 2000, [20].

A bent function is called homogeneous if all monomials of its ANF are of the
same degree. Let us briefly discuss the known facts about homogeneous bent func-
tions. C. Qu, J. Seberri and J. Pieprzyk proved [20] that there are 30 homogeneous
bent functions of degree 3 in 6 variables. Some partial results on classification of
cubic homogeneous bent functions in 8 variables were obtained by C.Charnes,
U.Dempwolff and J.Pieprzyk, |3].

C. Charnes, M. Rotteler and T. Beth [4] have proved the following fact.

Theorem 6 There exist cubic homogeneous bent functions in each even number of
variables n for n > 6.

What about the homogeneous bent functions of higher degree? It was obtained
that for n > 3, there are no homogeneous bent functions in n variables of the
maximal possible degree n/2, see the paper of T. Xia, J. Seberry, J. Pieprzyk, and
C. Charnes [32].

In 2007 Q. Meng, H. Zhang, M. C. Yang, and J. Cui generalized some previous
results and proved [16|
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Theorem 7 For any nonnegative integer k, there exists a positive integer N such
that for n > 2N there exist no n-variable homogeneous bent functions having degree
(n/2) — k or more, where N is the least integer satisfying

Ne1 . [N+1 N+1 N+1

But what is the tight upper bound on the degree of a homogeneous bent
function? For now there is no answer to this question. There is only

Conjecture (Q. Meng, et al. 2007). For every k > 1, there is N > 2 such that
homogeneous bent functions of degree k of n variables exist for every even n > N.

In 2010 Q. Meng, L. Chen and F.-W. Fu presented partial results towards
the conjectured nonexistence of homogeneous rotation symmetric bent functions
having degree more than 2.

Let us describe several ideas on visualization of ANFs of homogeneous bent
functions. In 2002 C. Charnes, M. Rotteler and T. Beth [4] proposed a simple
method to get all 30 homogeneous bent functions of degree 3 in 6 variables. They
proposed to consider so called Nagy graphs. Nagy graph (or intersection graph)
Iy, k) can be defined like this: its vertices are all unordered k-element subsets of
{1,2,...,n}; an edge connects vertices iff the corresponding subsets have exactly
one common element.

The authors of [4] proposed the following steps in search of homogeneous bent
functions in 6 variables: 1) find a maximal clique in I 3y; 2) take the complement
to it in the graph; 3) for every vertex {4, j, k} of the complement put an item z;z;xy,
to the ANF; 4) get a homogeneous Boolean function of degree 3; the checking shows
that it is bent.

Several researchers were thinking about generalization of this method on the
case of arbitrary graph I, ;). P. Stanica (2017) proposed to study the comple-
ments of maximal cliques of the graphs I'1¢ 4y, I{12,4) (do they produce homoge-
neous quartic functions?) and {125y, I(14,5) (What about quintic functions?).

In 2018 A. Shaporenko [23] has studied this question. First, what are the
maximal cliques in Iy )7 A. Shaporenko proved that the clique of size k + 1
not necessarily exists in every I, ). And if it exists it is not necessary maximal.
For instance in I'g 3y the maximal clique is of size 7. It was proven that if n =
k(k+1)/2 then the clique of size k+1 is maximal in graph I, 1. It was shown that
homogeneous Boolean functions obtained from I'(19 4y and {25 7) by the mentioned
method are not bent [23]. So, till now there are no other examples of homogeneous
bent functions obtained in such way.

6 Can ANF of a bent function be symmetric?

A Boolean function f in n variables is called symmetric if for any permutation = on

its coordinates it holds f(z) = f(w(z)). It is the strongest symmetric property for

a Boolean function. One can easily obtain that there are exactly 2”71 symmetric

Boolean functions since the value f(z) depends only on the Hamming weight of z.
In 1994 P. Savicky [22] classified all symmetric bent functions.
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Theorem 8 There are only four symmetric bent functions in n variables: f(z), f(z)®

1, flz)® Z:L:lxi and f(x) ® i x; ® 1, where f(z) = é éé ;.

i=1 i=1j7=i+1

In 2006 Y. Zhao and H. Li [33] discussed a kind of bent functions that have
symmetric properties with respect to some variables.

7 When ANF of a bent function is rotation symmetric?

Rotation symmetry generalizes the symmetric property of a function; it is not so
strong. In 1999 J. P. Pieprzyk and C. X. Qu [18] introduced this new concept of the
rotation symmetry of a Boolean function and have applied it in studying of hash
functions. Note that there were other related papers of E. Filiol and C. Fountain
[8], of J. P. Pieprzyk [17].

Let p be a cyclic permutation on coordinates xj ...z, defined as

o(x1,...,Tn—1,%n) = (Tn,z1,...,2n—1) for all z.

A Boolean function f in n variables is rotation symmetricif f(z) = f(p(z)) for all z €

F3. There are several useful techniques for working with rotation symmetric Boolean

functions, like the short ANF or SANF. To get ANF from SANF just take all cyclic

shifts of it. For instance, the SANF of a rotation symmetric Boolean function

T1T2 B Toxs B 314 B T174 in 4 variables is x1x2, or briefly can be written as 12.
Let us discuss results on rotation symmetric bent functions.

Classification of rotation symmetric bent functions for small n was done by
P. Stanica and S. Maitra in 2003, 2008, see [24], [25].

e If n =4 there are 8 rotation symmetric bent functions in 4 variables. Their
SANFs (up to a linear part) are 13, 12 + 13.

e If n = 6 there are 48 rotation symmetric bent functions. All of them can
be presented by the following 12 functions (free of linear terms): 14, 12 & 13 &
14,134 013 © 14, 124 013 ® 14, 124 © 12 @ 14, 134 © 12 ¢ 14, 123 ® 135 @ 14,
12391350120 13¢ 14, 1230 134 1350 13 @ 14, 1230 134 @ 135 @ 12 ¢ 14,
123912491350 126 14, 123 ® 124 ¢ 1356 13 @ 14. We list them here in SANF.
Then to get 48 rotation symmetric functions in 6 variables one can add a rotation
symmetric affine part of 4 types: zero, one, ©1 & ... @xp 0or 1 B ... P xy B 1.

e If n = 8. P. Stanica and S. Maitra found among the 22! rotation symmetric
Boolean functions in 8 variables that exactly 15104 of them are bent functions.

There are exactly 8 homogeneous rotation symmetric bent functions in 8 vari-
ables: 15, 15@ 12, 15® 13, 15@ 14, 150 120 13, 150 12 @ 14, 15 13 © 14,
159 12 @ 13 & 14. Let us note that it is easy to see some group structure in this
construction. Indeed, let us take some basis of an Abelian group G isomorphic to
Z3; denote basic vectors by formal symbols “127, “13”, “14”. Then SANFs of all
homogeneous bent functions in 8 variables are exactly elements of the set “15” ®G.

e If n =10. P. Stanica and S. Maitra studied this case in [25]. But to classify all
rotation symmetric bent functions in 10 variables is still difficult. It was obtained
that there are 12 homogeneous rotation symmetric bent functions in 10 variables
of degree 2. All of them are here: 16, 1612, 16 ® 13, 1614, 16 ® 15, 16 12® 15,
16013014, 16012013014, 16012013015, 16012014015, 16 13® 14 15,
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160129 13® 146 15. They have not found homogeneous rotation symmetric bent
functions of the greater degree. Then, they proposed a conjecture: There are no
homogeneous rotation symmetric bent functions of degree 3 or more. There is a some
progress in proving of this conjecture in works of P. Stanica.

For a homogeneous degree d rotation symmetric Boolean function f with its
SANF given by @le Bi, where 3; = T Ty ~--xk5;> (assume that kY) =1 for
all 1), deﬁne a sequence dy), j = 1,2,...,kl@l, by d;l) = kj@l - kj(l). Let df =
maxm{dg.l)}, that is, the largest distance between two consecutive indices in all
monomials of f. The next theorem was proved by P. Stanica in [26].

Theorem 9 The following hold for a homogeneous rotation symmetric Boolean func-
tion f of degree > 3 in n > 6 variables:

(i) if the SANF of f is x1--- x4, then f is not a bent function;

(i1) if the SANF of f is x1x2 -+ g_12q ® 1T2 - - Tg—1Zq+1, then f is not bent, as-
suming: (n —2)/4 > |n/d], if n # 1 (mod d); n/4 > |n/d], if n =1 (mod d);

(ii1) in general, if dy < (n/2 —1)/|n/d|, then f is not bent.

In 2009 D. K. Dalai, S. Maitra and S. Sarkar [6] have analyzed combinato-
rial properties related to the Walsh — Hadamard spectra of rotation symmetric
Boolean functions in even number of variables. These results were then applied
in studying of rotation symmetric bent functions. Constructions of quadratic and
cubic rotation symmetric bent functions can be found in the paper of G. Gao,
X. Zhang, W. Liu and C. Carlet [9]. For example, they construct the first infi-
nite class of cubic rotation symmetric bent functions. In 2014 new constructions
of rotation symmetric bent functions via idempotents were proposed by C. Carlet,
G. Gao and W. Liu, see [2]. Namely, they found the first infinite class of such
functions of degree more than 3.

8 A linear part of ANF of a bent function can be any

It is well known that the class of bent functions is closed under addition of affine
functions and under affine transformations of variables. In other words it holds

Theorem 10 For any bent function g in n variables (n is even, n > 2) the function
g (@) =g(Az®b) B e1x1 ... Denan ®d

is also bent, where A is a nonsingular matriz, b, ¢ are arbitrary binary vectors, d is a
constant from Fa.

Functions ¢g and ¢’ are called EA-equivalent.

Recall [27], [29] that we can not “add” to a bent function something else to
preserve the property to be bent, since for any non affine Boolean function f there
exists a bent function g such that f @ g is not bent.
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9 A quadratic part of ANF of a bent function can be any

Here we present a new result obtained together with my student E. Ponomareva.
We prove that an arbitrary quadratic homogeneous Boolean function in n variables
is a quadratic part of some bent function in n variables, where n is even, n > 6.
To prove this fact, we need the following statements.
In [13] one can find

Proposition 1 There exist exactly 156 nonisomorphic graphs with 6 vertices.
In [12] all these graphs can be found. Let us prove first the following result.

Proposition 2 An arbitrary quadratic homogeneous Boolean function in 6 variables
is a quadratic part of some bent function in 6 variables.

Proof Let us put into the correspondence to an arbitrary quadratic homogeneous
Boolean function f in 6 variables a graph Gy on 6 vertices by the following rule:
vertices correspond to variables; there is an edge between two vertices if and only
if the product of corresponding variables belongs to ANF of f.

Consider only those quadratic homogeneous Boolean functions that correspond
to nonisomorphic graphs. It is clear that if a quadratic homogeneous function f is
a quadratic part of some bent function then any quadratic homogeneous function
f’ with graph G isomorphic to G is also a quadratic part of some bent function.
It holds since any permutation on vertices produce an affine transformation of
variables and hence by Theorem does not change a property of a function to
be bent.

According to Proposition [I] there are exactly 156 nonisomorphic graphs with 6
variables. We prove the statement by listing in Appendix 1 all 156 corresponding
(to graphs) homogeneous quadratic Boolean functions and cubic parts that can be
added to them in order to get a bent function in every case. So, the function equal
to the sum of the quadratic function from the second column and cubic function
from the third column of the table is always bent. Thus, we prove the statement.
O

The following iterative construction was proposed by O. Rothaus (1966, 1976)
and J. Dillon (1974), see [31].

Theorem 11 Let f', ", " be bent functions in n variables such that f' & f" & f"”
is a bent function too. Then

9(x, 2011, 2n12) = f(2)f" () @ f(2)f" (2) @ [ () " ()&

o1 f () @ 2pg 1 f () ©® engaf (@) © Tnpaf" (2) ® Tpp1Tn g2

is a bent function in n + 2 variables.
Now let us prove the main result of this section.

Theorem 12 An arbitrary quadratic homogeneous Boolean function in n variables is
a quadratic part of some bent function in n variables, where n is even, n = 6.
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Proof Let us prove it by induction.

For n = 6 the result follows from Proposition

Suppose that it is proven for some n. Consider the case of n+ 2 variables. Let =
be a vector of variables (z1,...,2n). Assume that ¢(z,Tn+1,Tn+2) is an arbitrary
homogeneous quadratic Boolean function in n + 2 variables. If ¢ is identically
zero, then by Theorem [f] there exists a cubic homogeneous bent function in every
number of variables.

Let us consider a nonzero g. Since it is nonzero, there exists at least one item
in its ANF. W.l.o.g. suppose that ANF of ¢ contains item xy,4+12n42. Otherwise by
renumbering of variables we turn to this case. So, q(z, Tp11, Tnt+2) is of the form:

q(x, Tpt1, $n+2) = h(fL’) (&%) a(.’E)l’n+1 (&) b(m)mn+2 D Tn+1Tn+2,

where h is a homogeneous quadratic Boolean function in n variables, a, b are some
linear functions in n variables.

Consider the quadratic homogeneous Boolean function h(z) @ a(z)b(z) in n
variables. By induction, there exists a cubic homogeneous Boolean function c(z)
such that f'(z) = c(z) ® h(z) @ a(x)b(z) is a bent function in n variables. Let
f/(z) = f'(z)®a(z) and f”(z) = f'(z) ®b(z). According to Theorem [L0] functions
", """ are bent too. Note that f' @ f”” @ f" is also bent by the same reason.

Then, by Theorem [I1] a Boolean function

9(@, 2ni1,2n42) = f' (@) f"(x) © f'(2) [ () @ " (2) /" (2)

Sxni1f (2) & znt1 f (€)@ wngaf (2) ® mnraf" (2) @ Tny12nyo

is a bent function in n + 2 variables. We see that

9(x, 2nt1, 2nv2) = (@) (f (@) @a(2)@f (2)(f (2)@b(2)@(f (x)@a(e)) (f (x)@b(x))

Szni1f (2) & zn1(f (2) © a(2)) ® Tnyaf () © zni2(f (z) ® b(2) ® Tng12nio =

f'(z) ® a(@)b(z) © a(z)Tnt1 © b(2)Tni2 © Tnt1Tnya.
Hence, we get a bent function
9(x, Tpy1,Tny2) = c(z)Dh(x)Ba(z)Tn+1D0(2)Tn1+20Tn4+12n+2 = c(x)Bq(T, Tnt1, Tnt2)
in n + 2 variables with prescribed quadratic part ¢(x, Tn41, Tnt2). O
Remark. Note that a cubic part for the fixed quadratic function g(z, zn+1, Tn+2)
was found easy enough. Moreover it was “‘reused” from the previous step of in-

duction. May be it can be explained by “a high degree of freedom” in construction
of bent function’s ANF? We think so.
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10 Can a k-degree part of ANF of a bent function be any?

Is it true that the cubic part of a bent function can be arbitrary?

e In case n = 6 the answer is no, since there exists only three classes of
nonequivalent cubic bent functions: 123+14+25+36, 123+245+12+14+26+35+45
and 123 + 245 + 346 + 14 + 26 + 34 + 35 + 36 + 45 + 46, but there are five classes
of nonequivalent homogeneous cubic Boolean functions in 6 variables. So, we need
to have items of the next degree in order to have a possibility to “put” all variants
of the cubic part in a bent function.

e Case n = 8 is still open. The problem is that the existing classification of
quartic bent functions in 8 variables (obtained by P. Langevin and G. Leander in
2011, see [14]) does not include the list of representatives of EA-classes.

We think it is a very interesting open problem to study in the general case.

11 Bent decomposition problem in terms of ANF

In 2011 we have formulated the following hypothesis, see [28].

Hypothesis 1. Any Boolean function in n variables of degree not more than n/2 can
be represented as the sum of two bent functions in n variables (n is even, n = 2).

The problem to prove or disprove this hypothesis is known now as the Bent sum
decomposition problem, see |31]. It is closely connected to the problem of asymptotic
of the number of all bent functions.

This question appeared in 2011 while iterative bent functions were studied.
For now the following is known in relation to this hypothesis.

e Hypothesis is confirmed for n = 2,4,6 (see [28] and [19]).

e Hypothesis was proved for quadratic Boolean functions, Maiorana—McFarland
bent functions, partial spread functions, see [19].

e A weakened variant of the hypothesis was proved: any Boolean function of
degree not more than n/2 can be represented as the sum of constant number of
bent functions in n variables, see [30].

Hypothesis 1 can be reformulated like this: an arbitrary ANF of degree not more
than n/2 can be divided into two parts — every part gives the ANF of a bent function.

Here we just give an idea that follows from Hypothesis 1 (assuming it holds):
k-degree part of the ANF of a bent function “tends” to be arbitrary. It is necessary that
n

n/2

at least 2< ) different variants of k-degree part of ANF should be realized

n
in a bent function. Recall that the total number of all such variants is 2 <n/ 2> .

12 Conclusion

It is very interesting to study what are relations between ANF and polynomial rep-
resentation of a bent function? And is it possible to define a bent function through
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the conditions on ANF? Of course these questions are interesting in respect to an
arbitrary class of cryptographic Boolean functions, not only to bent.

The author is very grateful to E.Ponomareva for valuable contribution in prov-
ing of Theorem [12}
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