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Abstract. We generalize and abstract the problem of extracting a wit-
ness from a prover of a special sound protocol into a combinatorial prob-
lem induced by a sequence of matroids and a predicate, and present a
parametrized algorithm for solving this problem.
The parametrization provides a tight tradeoff between the running time
and the extraction error of the algorithm, which allows optimizing the
parameters to minimize: the soundness error for interactive proofs, or
the extraction time for proofs of knowledge.
In contrast to previous work we bound the distribution of the running
time and not only the expected running time. Tail bounds give a tighter
analysis when applied recursively and concentrated running time.

1 Introduction

A three-message public-coin protocol [6,1] is defined to be special sound by
Cramer et al. [4] if a witness can be computed efficiently from two accepting
transcripts with a common first prover message, but distinct verifier messages.
This notion generalizes a property of Schnorr’s proof of knowledge of a discrete
logarithm [8].

In the natural generalization of Cramer et al.’s notion we require that the ac-
cepting transcripts form a tree, i.e., the executions are identical to start with and
then successively branch to form a tree, where the messages at each branching
point are “independent”. The notion of independence is protocol dependent, but
it is readily captured using matroids and usually corresponds to inequality [8]
or linear independence [2].

Recall that in proofs of knowledge [3] we consider the prover as a deterministic
next-message function to allow rewinding. Moreover, in public coin protocols the
verifier’s messages do not depend on the prover’s messages, so we can consider
the prover and verifier jointly as a predicate on a sequence of verifier messages.

We construct and analyze an algorithm that extracts a tree such that every
path satisfies the predicate and the children of each node is a basis relative to a
given matroid. This reduces the problem of constructing a knowledge extractor
for a special-sound protocol to the inherently protocol-dependent construction
of a procedure that computes a witness from such a tree of accepting transcripts.
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2 Contributions

Our work is motivated by, and addresses, a real-world need to give an exact proof
of security for a complete electronic voting system. We are not aware of prior
work that is sufficiently rigorous, general, flexible, and exact to be used as the
toolbox we need, but given how well researched the area is the main contribution
is perhaps the complete and coherent nature of our treatment with applications
in both theory and practice.

3 The Extraction Problem

Given are matroids M0, . . . ,Mr, with ground sets S0, . . . , Sr respectively. We
consider an unordered complete tree such that the children of a node at depth
i−1 are identified (or more precisely labeled) with the elements of Si. To ensure
that this is a tree and not a forest we require that S0 is a singleton set. The
element it contains is mostly used as a placeholder for the root, but it is essential
that it remains a variable for applications in general settings.

The predicate that captures both the computations performed by the prover
during execution and the computations performed by the verifier to reach a
verdict then has the form ρ :

∏
i∈[0,r] Si → {0, 1}. An explicit description

parametrized by a prover is given in Definition 13.
The goal is to find a subtree such that: for every inner node at depth i − 1

its children is a basis of Mi, and the predicate ρ evaluates to 1 on every path in
the subtree from the root to a leaf.

3.1 What Can We Expect?

The required tree structure implies that any extractor must find at least d =∏
i∈[r] di accepting executions, where di is the rank of Mi. If we treat ρ as an

oracle, then a first guess might be that the expected number of queries of an
optimal extractor is O (d/∆), where ∆ = Pr [ρ(v) = 1] for a randomly chosen
v ∈

∏
i∈[0,r] Si.

However, we also need to take into account the restrictions imposed by the
matroids on the nodes at each level. Consider a node u at depth i−1. In general
we cannot expect to simply pick a basis of Mi to be children of u and extend
them to paths accepted by ρ, since the conditional probabilities of success for the
children are not necessarily sufficiently large. One natural idea is to sequentially
identify children and build both a basis B for Mi and recursively build subtrees
for which the children are the roots.

Suppose that we are in the process of doing this and have an independence
set B of j < di children for which we have extracted subtrees. Then the next
child of u must be chosen in Si \ span(B), so without a deeper understand-
ing of the distribution of accepting paths we must accept an additive loss of
ωMi,j = |span(B)|/|Si| in the success probability. Collecting statistics about the
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distribution of accepting paths precise enough to avoid this has similar complex-
ity as solving the extraction problem itself and is therefore too costly. Thus, a
somewhat more realistic goal for an efficient extractor is an expected running
time of O (d/(∆− ε)), where ε =

∑
i∈[r] ωMi and ωMi = maxj∈[di] ωMi,j .

Minimizing ε is important for protocols where we do not care about the run-
ning time of the extractor and only use it as a probabilistic proof to argue that
a witness exists. This establishes ε as the soundness error of the protocol viewed
as an interactive proof. However, if we view the protocol as a proof of knowledge,
then the running time of the extractor plays an important role, since it influences
the running time of a security reduction of an invoking protocol, which in turn
determines the running time of an algorithm that breaks a complexity assump-
tion. Minimizing ε aggressively increases the constant factor of the running time
drastically.

3.2 On the Distribution of the Running Time

In the discussion above we have only considered the expected running time µ of
a potential extractor X . When this is not enough, the standard approach is to
apply Markov’s inequality and conclude that X completes within time 2µ with
probability at least 1/2, so the number of attempts we need to extract a witness
has geometric distribution with probability 1/2.

However, the discussion above suggests that the running time of an extractor
may be quite concentrated from scratch due to the large number of relatively
independent samples needed to extract the tree. To see this, consider a tree
where the accepting paths are uniformly distributed. Then we would expect the
number of samples needed by the extractor to have (almost) negative binomial
distribution with parameter d =

∏
i∈[r] di and probability ∆− ε.

Unfortunately, the tree is constructed by the adversary, so for many nodes
the conditional probability ∆′ of finding an extension to an accepting path may
be very low. Any unsupervised attempt to simply call a recursive routine that
extracts a subtree at such a point will give a running time that is at best geo-
metrically distributed with probability ∆′. Given even a moderately large d, the
probability of encountering such a node is high, and the total running time would
then be a sum that is dominated by the running times of the extractions from
such nodes (see Jansson [7] for how bounds on sums of geometric distributions
with different probabilities behave).

In other words, every strategy must have a mechanism to interrupt all sub-
routine calls that take too long to complete. Thus, we may hope that the number
of queries made is essentially a constant times a random variable with negative
binomial distribution with parameter d1 and probability ∆−ε, where the scaling
factor depends on the cost of a recursive call, and this is the type of result we
achieve.
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3.3 Strategy

The basic case at depth r − 1 for a depth r tree consists of simply sampling
accepting leafs. It is easy to see that this requires a number of queries that has
negative binomial distribution.

The general strategy is relatively natural and recursive, so we describe it
as if we start at the root. We sample paths until we find an accepting path v.
Consider the child u of the root in such a path. If the conditional probability of
finding an accepting path through u is δu, then Markov’s inequality implies that
it is at least α∆ with probability 1− α for α ∈ (0, 1).

We can invoke the algorithm recursively using u as a root and interrupt the
execution if it takes too long, but if the recursive call is costly it is worthwhile
to first validate that u is reasonably good.

We can do this by sampling random paths through u and sample a new
node if we do not encounter sufficiently many accepting paths within a given
number of attempts. We then balance the cost of sampling against the cost of
failed attempts to execute the strategy recursively. For nodes close to the root
sampling is relatively cheap compared to the cost of an interrupted execution.

This strategy gives a number of parameters for each recursive call. A param-
eter α determines how close to ∆ we want δu to be. A parameter β captures
the additional loss we have if we validate the candidate, since we cannot do this
perfectly. The probability that validation gives the right result is determined
by a parameter γ, and finally a parameter λ determines the probability that a
recursive call completes.

We derive expressions for the extraction error and the expected value, and
give a tail bound for the number of queries made by the extractor in terms of
these parameters. This allows choosing good parameters for an exact security
analysis of any special-sound protocol.

4 Matroids and Trees

We denote a matroid with ground set S and independence sets I by M =
(S, I). For completeness we provide one standard way of formalizing matroids
in Section A. We denote the matroid with a singleton ground set {u} and in-
dependence set {∅, {u}} by {u}. The two most common examples of matroids
in the literature are essentially vector spaces over finite fields and matroids that
capture inequality, but the ground sets may be restricted for practical reasons.

Example 1 (Vector Space as Matroid). A vector space ZNq over a finite field Zq,
where q is prime, can be viewed as a matroid

(
ZNq , I

)
, where I is the set of all

sets of linearly independent vectors.

Example 2 (Inequality Matroid). The inequality matroid (S, I) over a ground set
S has as independent set I the set of all subsets of S of size at most two.

In the above examples every submatroid of the same rank has the same
cardinality, which means that the fraction |A|/|S| is the same for every flat A of

4



a given rank. In our applications we need this fraction to remain exponentially
small, but we relax the requirement to make room for oddities introduced in
cryptographic protocols.

Definition 1 (Subdensity). Let M = (S, I) be a matroid of rank d. Then its
ith subdensity is ωM,i if |A|/|S| ≤ ωM,i for every flat A of rank i− 1, and it has
maximal subdensity ωM = ωM,d.

Note that we have ωM,1 = 0 for every non-trivial matroid M, since span(∅) =
∅. In Example 1 the ith subdensity is qi−N−1 and in Example 2 the 2nd sub-
density is 1/|S|. We introduce some additional notation that allow us to consider
a list of matroids as a tree.

Definition 2 (Matroid Tree). The matroid tree associated with a list of ma-
troids M = ({v0},M1, . . . ,Mr), is the vertex-labeled rooted unordered directed
tree of depth r such that: the root is labeled v0 and every node at depth i− 1 has
edges to |Si| children which are uniquely labeled with the elements of Si.

Although a matroid tree is unordered, the children of each node are labeled
uniquely, so we may abuse notation and identify a node with its label. We also
use M to denote both the matroid tree and the list of matroids with which it is
associated.

Definition 3 (Basis). A basis of a matroid tree M of depth r is a maximal
subgraph such that for every i ∈ [r] the set of children of every node at depth
i− 1 is a basis of Mi.

5 Predicates On Paths

As explained above, we abstract from the details of protocols by capturing the
computations performed by the prover and verifier in a protocol to reach a verdict
as a predicate. Definition 13 gives a concrete predicate for any given prover.

Definition 4 (Predicate). An M-predicate, where M is a matroid tree, is a
function of the form ρ :

∏
i∈[0,r] Si → {0, 1}.

Definition 5 (Accepting Basis). A basis B of a matroid tree M is ρ-accepting
for an M-predicate ρ if ρ(v) = 1 for each path v of maximal length in B.

6 Accepting Basis Extractors

For a matroid tree M we let S =
∏
i∈[0,r] Si, where Mi = (Si, Ii) and S0 = {v0}

for some v0. We define ∆ρ(M) = |{ρ(v) = 1 | v ∈ S}|/|S|, and when M is clear
from the context we drop M and write ∆ρ.

Let D and D′ be distributions over N. We say that D is bounded by D′ if D
stochastically dominates D′, i.e., if for random variables X and X ′ distributed
according to D and D′, respectively, and every x ∈ N: Pr [X ≤ x] ≥ Pr [X ′ ≤ x].
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Definition 6 (Accepting Basis Extractor). A probabilistic polynomial time
oracle algorithm Xκ parametrized by κ ∈ {0, 1}∗ is a (εκ,Dκ(∆))-accepting basis
extractor with extraction error εκ for a matroid tree M, where Dκ(∆) for fixed
κ is a family of distributions on N parametrized by ∆ ∈ [0, 1], if for every M-
predicate ρ : S → {0, 1} and ∆ρ(M) ≥ ∆0 > εκ: X ρ(·)κ (M, ∆0) outputs a ρ-
accepting basis of M, where the distribution of the number of ρ(·)-queries is
bounded by Dκ(∆0).

This definition is more precise than the definition of a proof of knowledge in
that it bounds the distribution, and not only the expected value, of the number
of queries made by the extractor. It also allows modifying the extractor and the
corresponding extraction error εκ and distribution Dκ(∆0) using the parameter
κ, but we require a lower bound ∆0 on the accept probability ∆ρ as an explicit
input to the extractor to guarantee the expected behavior.

We stress that the extraction error εκ is a property related to a particular
algorithm and parameter κ and is neither necessarily the soundness error nor
the knowledge error of the protocol from which the matroid tree is derived. It
merely provides an upper bound on both when the running time is not too large
and a witness can be efficiently computed from an extracted accepting basis.

7 Constructing Accepting Basis Extractors

We split the description of extractors into subroutines and analyze them sepa-
rately to emphasize the structure of the main algorithm and the interplay be-
tween the parameters that we consider below. When convenient we use gen-
erating functions to describe distributions, e.g., a distribution D over N has
probability generating function GD(z).

7.1 Notation for Bounds

Consider a random variable X taking values in N that has distribution D(s,∆)
parametrized by s ∈ N+ and ∆ ∈ [0, 1]. Recall that the negative binomial dis-
tribution is parametrized in this way and that its tail bound does not depend
on ∆. This property is shared by the distributions we encounter, so we denote
by tDs(k) a tail bound that satisfies Pr

[
X ≥ kµD(s,∆)

]
≤ tDs(k), where µD(s,∆) is

the expected value of D(s,∆). We similarly think of hD
s(k) = 1− tDs(k) as a head

bound.
We need to express optimal parameters to head bounds as functions. We

denote the smallest possible k that satisfies a certain lower bound λ by

kD

s(λ) = min{k ∈ (1,∞) | hD

s(k) ≥ λ} .

When s is fixed we drop it from our notation and consider the distribution to
carry this information, e.g., D0(∆) could be defined as D(s,∆) in which case
tD0(k) = tDs(k) and similarly for other quantities.

6



However, if instead the value of k is fixed, and s appears as a parameter,
then we can increase hD

s(k) by increasing s which gives

sDβ(γ) = min{s ∈ N+ | hD

s(1/β) ≥ γ} ,

where we replace k by β = 1/k for notational convenience. Note that changing
s changes the distribution. We have the following two concrete tail bounds

tNBs (k) = e−(1−1/k)
2ks/2

tCGs (k) = e−(k−1−ln k)s

for the negative binomial distribution NB(s,∆) for some probability ∆, and a
product of s compound geometric distributions (see Definition 29), respectively.
The (shifted) geometric distribution is denoted Geo(∆). At one point we also
need to bound below the expected value, i.e., we need a bound of the form
Pr
[
X ≤ µNB(s,∆)/k

]
≤ nNB

s (k), where nNB
s (k) = e−(k−1)

2 s
3k . Due to asymmetry

this bound is slightly weaker. (See Theorem 8 and Theorem 7.)

7.2 Basic Algorithms

Definition 7 (Basic Extractor). The basic extractor oracle algorithm B takes
input (M, ∆0), where M = (M0,M1), and proceeds as follows:

1. Set B = ∅.
2. Repeat while |B| < d1:

(a) Sample v ∈ S0 × (S1 \ span(B)) randomly.
(b) If ρ(v) = 1, then set B = B ∪ {v1}.

3. Return B.

Lemma 1 (Basic Extractor). The algorithm B is a (ωM1
,NB(d1, ∆

′
1))-accepting

basis extractor for M, where ∆′1 = ∆0 − ωM1
.

Proof. The probability that a randomly sampled v satisfies ρ(v) = 1 is at least
∆0−ωM1

> 0 by assumption from which the claimed distribution of the number
of queries made follows immediately.

Remark 1. The algorithm ignores the input ∆0 and the result could be sharp-
ened to say that the distribution of the number of queries to the oracle is bounded
by NB(d1, ∆ρ−ωM1

). We choose the above exposition to keep a uniform interface
and structure with the algorithms that follow below.

In the analysis of the basic extractor and the algorithms below we need to
consider the conditional probability that a node can be extended to an accept-
ing path. Thus, we define δu = Pr [ρ(V ) = 1 |V1 = u ], where V is uniformly
distributed in S.

Definition 8 (Basic Sampler). The basic sampler oracle algorithm BS takes
input (M, B,∆0), where B ∈ I1 is not a basis and ∆0 ∈ (0, 1], and repeats:
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1. Sample v ∈ S0 × (S1 \ span(B))×
∏
i∈[2,r] Si randomly.

2. If ρ(v) = 1, then return v1.

Lemma 2 (Basic Sampler). If ∆ρ ≥ ∆0 > ωM1
, then the distribution of the

number of queries to ρ(·) made by BSρ(·)(M, B,∆0) is bounded by GBS(M,∆0)(z) =
GGeo(∆′1)(z), where ∆

′
1 = ∆0 − ωM1

. Furthermore, if U denotes its output, then
Pr [δU ≥ α∆′1] ≥ 1− α.

Proof. A sample satisfies ρ(v) = 1 with probability at least ∆′1, so the number
of samples needed is bounded by Geo(∆′1). For the second claim we let V be
uniformly distributed in S and let U be the node denoted by v1 in the algorithm.
Set B⊥ = S1 \ span(B). Then by definition we have

Pr [U = u] = Pr [V1 = u |ρ(V ) = 1 ∧ V1 ∈ B⊥ ] and
δu = Pr [ρ(V ) = 1 |V1 = u ∧ V1 ∈ B⊥ ]

so

Pr [U = u] /δu =
Pr [V1 = u ∧ V1 ∈ B⊥]
Pr [ρ(V ) = 1 ∧ V1 ∈ B⊥]

which implies

E [1/δU ] =
∑
u∈B⊥

Pr [U = u] /δu ≤
1

∆′1

∑
u∈B⊥

Pr [V1 = u] ≤ 1

∆′1
.

Markov’s inequality then implies that Pr [δU < α∆′1] = Pr [1/δU > 1/(α∆′1)] ≤ α
so Pr [δU ≥ α∆′1] ≥ 1− α.

Definition 9 (Sample Validator). The sample validator oracle algorithm
Vs,k proceeds as follows on input (M, ∆0), where s ∈ N+, k ∈ (1,∞), and
∆0 ∈ (0, 1]:

1. Set h = 0 and c = 0.
2. While h < s and c < sk/∆0:

(a) Sample v ∈
∏
i∈[0,r] Si randomly.

(b) Set h = h+ ρ(v) and c = c+ 1.
3. If h = s, then return 1 and otherwise return 0.

Lemma 3 (Sample Validator). The number of queries made by Vρ(·)s,k (M, ∆0)

is bounded by sk/∆0. If ∆ρ ≥ ∆0, then Pr
[
Vρ(·)s,k (M, ∆0) = 1

]
≥ hNB

s (k), and if

∆ρ <
∆0

k , then Pr
[
Vρ(·)s,k (M, ∆0) = 1

]
≤ nNB

s (k).

Proof. Note that if the bound c < sk/∆0 is removed, then the number of oracle
calls has distribution bounded by NB(s,∆ρ), since each sample v satisfies ρ(v) =
1 with probability at least ∆ρ and we only exit the loop when h = s. The claims
now follow directly from the tail and head bounds of the negative binomial
distribution (see Theorem 8).
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The validating sampling algorithm repeatedly samples paths until an accept-
ing path is found. This is repeated until the first element of the found path is
considered good by the validation algorithm.

Definition 10 (Validating Sampler). The validating sampler oracle algo-
rithm VSα,β,γ proceeds as follows on input (M, B,∆0), where α, β, γ ∈ (0, 1),
∆0 ∈ (0, 1], and B ∈ I1 is not a basis:

1. Define ∆′1 = ∆0 − ωM1
, k = 1/β and s = sNBβ (γ).

2. Repeat:
(a) Compute v1 = BSρ(·)(M, B,∆0).
(b) If Vρ(v0,·)s,k

(
({v1},M2, . . . ,Mr), α∆

′
1

)
= 1, then return v1.

Lemma 4 (Validating Sampler). If ∆ρ ≥ ∆0 > ωM1 , then the distribution
of the number of queries of VSρ(·)α,β,γ(M, B,∆0) is bounded by

GVS(M,α,β,γ,∆0)(z) = GGeo((1−α)γ)
(
GBS(M,∆0)(z)z

sNBβ (γ)/∆1

)
,

where ∆′1 = ∆0−ωM1 and ∆1 = αβ∆′1, and its output U satisfies Pr [δU ≥ ∆1] ≥
φ(α, β, γ), where φ(α, β, γ) = 1− αβnNB

s (1/β)/((1− α)γ).

Proof. We know from Lemma 2 that the distribution of the number of queries
made by BSρ(·) in a given iteration is bounded by BS(M, ∆0). Lemma 3 implies
that the number of queries made by Vρ(v0,·)s,k is upper bounded by ks/(α∆′1) =
sNB

β (γ)/∆1 so the distribution of the total number of queries in the ith iteration
is bounded by

f(z) = GBS(M,∆0)(z)z
sNBβ (γ)/∆1 .

Lemma 2 implies that if Ui denotes the output of BSρ(·) in the ith iteration,
then Pr [δUi ≥ α∆′1] ≥ 1−α. From Lemma 3 and how k and s are defined in the
algorithm we know that provided that δUi ≥ α∆′1 the validator outputs 1 with
probability at least hNB

s (k) ≥ γ. Thus, the distribution of the number of samples
considered is bounded by Geo((1 − α)γ). This implies that GGeo((1−α)γ)(f(z))
bounds the distribution of the total number of queries as claimed.

Similarly to the previous claim we have Pr [δUi < αβ∆′1] < αβ for every i

from Lemma 2. Denote by Ai the output of Vρ(v0,·)s,k

(
({Ui},M2, . . . ,Mr), α∆

′
1

)
,

i.e., it is the indicator variable for the event that VSα,β,γ returns Ui. Then
Lemma 3 implies that Pr [Ai = 1 |δUi < αβ∆′1 ] ≤ nNB

s (k) which gives

Pr [δUi < αβ∆′1 |Ai = 1] <
αβnNB

s (1/β)

Pr [Ai = 1]
≤ αβnNB

s (1/β)

(1− α)γ
·

7.3 Recursive Algorithm

We now have the subroutines we need. We sequentially sample good candidates
for roots of accepting bases of subtrees and make sure that the roots are inde-
pendent with respect to M1. If extracting an accepting basis for a subtree takes
too long, then we interrupt the execution and find a new candidate.
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To be able to seamlessly talk about both the basic sampler and the validating
sampler, the distributions of queries, and bounds on their outputs we use the
following notation. The sampling algorithm is defined by:

Sρ(·)α,β,γ(M, B,∆) =

{
BSρ(·)(M, B,∆) if β = 1

VSρ(·)α,β,γ(M, B,∆) otherwise

The distribution of the number of queries (for a fixed oracle) is denoted by:

S(M, α, β, γ,∆) =

{
BS(M, ∆) if β = 1
VS(M, α, β, γ,∆) otherwise

The domain of the bounding function φ(α, β, γ) is extended to β ∈ (0, 1] by
setting φ(α, β, γ) = 1− α when β = 1.

Definition 11 (Recursive Extractor). Let M = (M0, . . . ,Mr) be a matroid
tree and assume that R is a (ε1,D1(∆))-accepting basis extractor for matroid
trees of the form ({v1},M2, . . . ,Mr), where v1 ∈ S1. The recursive extractor
Rκ[R], where κ = (α, β, γ, λ), α, λ, γ ∈ (0, 1), β ∈ (0, 1], proceeds as follows on
input (M, ∆0).

1. Set ∆1 = αβ(∆0 − ωM1
), k = kD1(λ), and µ = µD1(∆1).

2. Set B = ∅, and T = ∅.
3. While |B| < d1:

(a) Compute v1 = Sρ(·)α,β,γ(M, B,∆0).
(b) Extract subtree t = Rρ(v0,·)

(
({v1},M2, . . . ,Mr), ∆1

)
, but interrupt the

execution and set t = ⊥ if it attempts to make more than kµ queries.
(c) If t 6= ⊥, then set B = B ∪ {v1} and T = T ∪ {t}.

4. Return the accepting basis tree T .

Remark 2 (Reusing Samples). The accepting paths with common prefix drawn
by the sampling algorithm may be re-used by the extractor, but this will only
make a difference deep down in the tree due to the relatively large number of
additional accepting paths that need to be found higher up in the tree and
the fact that paths from the sampler may have to be discarded. To keep the
presentation simple we only use this fact in the proof of Theorem 1 to get slightly
better results.

Lemma 5 (Recursive Extractor). The algorithm Rκ[R] is a (ε0,D0(∆))-
accepting basis extractor, where ε0 = ε1/(αβ) + ωM1

and

GD0(∆0)(z) =

d1∏
i=1

GGeo(φλ)
(
GS(M,α,β,γ,∆0)(z)z

kD1 (λ)µD1(∆1)
)
,

defined by φ = φ(α, β, γ) and ∆1 = αβ(∆0 − ωM1
).
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Proof. From Lemma 2 and Lemma 4 we know that the number of queries made
in Step 3a has distribution bounded by S(M, α, β, γ,∆0).

Denote the candidate node in the ith iteration by Ui, i.e., the value denoted
v1 in the algorithm, and denote the output of Rρ(v0,·)

(
({Ui},M2, . . . ,Mr), ∆1

)
in the ith iteration (or ⊥ if it is interrupted) by Ti. Then both Lemma 2 and
Lemma 4 imply that we have Pr [δUi ≥ ∆1] ≥ φ, and by our choice of scalar k
we have Pr [Ti 6= ⊥ |δUi ≥ ∆1 ] ≥ λ, so Pr [Ti 6= ⊥] ≥ φλ. This means that the
distribution of the number of iterations is bounded by Geo(φλ), and we need d1
successes.

Corollary 1 (Recursive Extractor). The distribution D0(∆) satisfies

µD0(∆0) =


d1

(1−α)λ

(
α 1
∆1

+ kD1(λ)µD1(∆1)

)
if β = 1

d1
φλ

(
αβ+sNBβ (γ)

(1−α)γ
1
∆1

+ kD1(λ)µD1(∆1)

)
otherwise

tD0

d1
(k) ≤ tCGd1(k) for k ∈ (1,∞) .

Proof. The expected value follows from linearity and Wald’s equation [10] (or
directly from Lemma 8). More precisely, it follows from the equalities µGeo(φλ) =
1/(φλ), ∆′1 = ∆0 − ωM1

, ∆1 = αβ∆′1, and

µS(M,α,β,γ,∆0) =


1
∆′1

if β = 1

1
(1−α)γ

(
1
∆′1

+
sNBβ (γ)

∆1

)
otherwise

and the fact that φ = 1 − α when β = 1. The tail bound follows directly from
Theorem 7 for this type of compound geometric distribution.

7.4 Accepting Basis Extractor

We now let the recursive extractor R invoke itself recursively until it suffices
to invoke the basic extractor B. For each additional recursive call needed, there
is growth in the extraction error, but this only depends on the quantity ν =
1/(αβ), apart from the matroid subdensity which is fixed. Given a fixed ν we
may optimize all other parameters to minimize the expected number of queries,
since our tail bound does not depend on the expected value. All we need to do
this is the rank of the matroid and a bound on the distribution of the number
of queries needed in the next recursive call.

Theorem 1 (Extractor). For every ν1, . . . , νr−1 > 1 there exist parameters
κi = (αi, βi, γi, λi) such that the oracle algorithm Xκ = Rκ1

[Rκ2
[· · ·Rκr−2

[B] · · · ]],
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is a (ε0,D(∆0))-accepting basis extractor for matroid trees of depth r where:

ε0 =
∑
i∈[r]

ωMi
∏

j∈[i−1]

νj (extraction error) (1)

µD0(∆0) ≤
c0
∏
j∈[r] dj

∆0 − ε0
(expected number of queries) (2)

tD0

d1
(k) ≤ tCGd1(k) for k > 1 , (tail bound) (3)

where the constant c0 is defined by cr−1 = 1 and ci = fS(di+1, νi+1, ci+1) for
i = r − 2, . . . , 0, using

fBS(d, ν, c) =
ν2

(ν − 1)
·min{k/hCG

d (k)} · c

fVS(d, ν, c) = min
α,s,k

{
ν

φ(α, να, γ)

(
1 + s

(1− α)hNB
s (να)hCG

d (k)
· di
Di+1,r

+
k

hCG

d (k)
· c
)}

fS(d, ν, c) = min
{
fBS(d, ν, c), fVS(d, ν, c)

}
,

with Di,r =
∏
j∈[i,r] dj, α ∈ (0, 1/ν), s ∈ N+, and k ∈ (1,∞).

Both strategies give convoluted expressions, but we choose to not simplify,
since they tell a story and are readily computed numerically. The first factor in
fBS(d, ν, c) represents how aggressively we use Markov’s bound, i.e., how good
we want a sample to be. The second factor represents the tradeoff between the
number of attempts needed to complete a recursive call and how long it is allowed
to run. This factor appears as a term in the second factor of the validating
sampling strategy as well, but here it is balanced with the first term where s
represents how many samples are used for validation. This is only worthwhile
when Di+1,r and c are large.

Note that it is easy to compute optimal parameters for the algorithm for
any concrete protocol. We prove a slightly stronger result where we exploit the
special properties of leaves.

Proof (Theorem 1). The tail bound follows directly from Corollary 1.

Bounding the extraction error. If we set ζi = αiβi for i ∈ [r − 1] and ζr = 1,
then we have ∆i = ζi(∆i−1 − ωMi) for i ∈ [r] which expands to

∆r = ∆0

∏
i∈[r]

ζi −
∑
i∈[r]

ωMi
∏
j∈[i,r]

ζj .

The basic extractor requires that∆r−1−ωMr = ∆r > 0 to work, so the extraction
error is given by

ε0 =
∑
i∈[r]

ωMi∏
j∈[i−1] ζj

=
∑
i∈[r]

ωMi
∏

j∈[i−1]

νj .

12



Deriving parameters. Next we consider the problem of deriving αi, βi, γi, and λi
from ζi. Define Xκ,i = Rκi [Rκi+1

[· · ·Rκr−2
[B] · · · ]]. We will express the expected

running time of Xκ,i on the form ciDi+1,r/∆i for a constant ci provided that
its oracle ρi(·) and input (Ni, ∆i) are reasonably good. More precisely, it is
called with an oracle of the form ρi(·) = ρ(v0, . . . , vi−2, ·) and a matroid tree
Ni = ({vi−1},Mi, . . . ,Mr) for some values vi ∈ Si. Denote by ∆0 the original
estimated probability used as input to Xκ,1 and define

∆′i = ∆i−1 − ωMi , ∆i = ζi∆
′
i and εi = ζi(εi−1 − ωMi)

for i ∈ [r].

Basic sampling strategy. Consider first the strategy where the non-validating
sampler is used, i.e., we have βi = 1 and ζi = αi. If we exploit the fact that the
path through the sampled node can be re-used we have

µDi−1(∆i−1) =
di

(1− αi)λi
kDi(λi)µDi(∆i)

=
dik

Di(λi)

(1− αi)λi
· ciDi+1,r

∆i − εi

=
kDi(λi)

(1− αi)λi
· ci ·

Di,r

αi(∆i−1 − εi−1)

=
1

αi(1− αi)
· k

Di(λi)

λi
· ci ·

Di,r

∆i−1 − εi−1
.

If we choose an optimal λi, then

ci−1 =
1

αi(1− αi)
· k

Di(λi)

λi
· ci = fBS(di, νi, ci) .

Validating sampling strategy. Next we consider the strategy where samples are
validated before use and we are not extracting leaves in the recursive call, i.e.,
we have i < r− 2, βi < 1, and ζi = αiβi. In this case re-using leaves has limited
value and we have

µDi−1(∆i−1) =
di
φiλi

(
ζi + sNBβi(γi)

(1− αi)γi
1

∆i
+ kDi(λi)µDi(∆i)

)
=

di
ζiφiλi

(
ζi + sNBβi(γi)

(1− αi)γi
1

∆i−1 − εi−1
+ kDi(λi)

ciDi+1,r

∆i−1 − εi−1

)
=

1

ζiφi

(
ζi + sNBβi(γi)

(1− αi)γiλi
· di
Di+1,r

+
kDi(λi)

λi
· ci
)

Di,r

∆i−1 − εi−1

If we choose parameters optimally, then we have

ci−1 =
1

ζiφi

(
ζi + sNB

βi
(γi)

(1− αi)γiλi
· di
Di+1,r

+
kDi(λi)

λi
· ci
)
≤ fVS(di, νi, ci) .
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Leaves allow sharper bounds. Recursive calls deep in the tree are special in two
ways. Firstly, the distribution of the number of queries is negative binomial, so
a slightly sharper head bound hNB

dr
(k), instead of hCG

dr
(k), can be used to bound

the probability that B completes in time kµDr−1(∆r−1).
Secondly, and more importantly for the second strategy it is worthwile to re-

use paths from the sampler in the recursive call if dr is large. This gives a mutual
dependency between the parameters of recursive calls at depth r−2 and r−1, but
fortunately the advantage of re-use diminishes quickly, so it suffices to consider
this for Xν,r−2. In this case we have cr−1 = max{1, dr − 1− sNBβr−2

(γr−2)}/dr.

7.5 Interpretation

In the following we assume that ∆0 is a tight lower bound of ∆ρ, since this is a
setup assumption in our approach. The expected running time of the extractor
is poly/(∆0 − ε0) as expected for a proof of knowledge with knowledge error ε0.

We may choose νi arbitrarily close to one and conclude that a witness can
be extracted provided that ∆0 is slightly larger than ε =

∑
i∈[r] ωMi , which

coincides with our intuition about the soundness of special-sound protocols in
general, i.e., to convince a verifier of a false statement it suffices in general to
guess a challenge value correctly in at least one round. This is optimal in the
sense that it is necessary to exploit dependencies between the rounds in the
protocol to establish a smaller soundness error.

Note that Bellare and Goldreich’s definition of a proof of knowledge [3] is sat-
isfied regardless of how small we make νi > 1. However, if we choose νi based on a
given∆0 such that ε0 < ∆0, then the expected number of queries of the extractor
has the form f(∆0)/(∆0 − ε0), where f(∆0) grows superexponentially when ∆0

approaches ε. Conversely, we may set νi ≈ 2 to minimize the expected running
time of the extractor and accept an extraction error of the form

∑
i∈[r] 2

i−1ωMi .
This begs the question: What is the knowledge error of the protocol?

A protocol is said to be a proof of knowledge with knowledge error ε∗ if there
is an extractor that outputs the witness in expected time poly/(∆ρ − ε∗). On
the one hand we can make ε∗ arbitrarily close to ε (and it cannot be smaller),
but on the other hand this causes a drastic loss in security in terms of the
running time of the extractor. Squeezing ε∗ in this way is arguably an abuse of
the definition, but we still think that it is more natural to view the knowledge
error as a property of the extractor and not of the protocol.

7.6 Counting Predicate Queries Suffices

We have no control over how the prover distributes its running time over the
execution of the protocol. Counting queries may be viewed as the worst case
where the vast majority of the work is performed right before the last round.

Above we have ignored all overhead costs in the extraction algorithms and
focused on the number of oracle queries. The only potentially non-linear opera-
tion performed by the algorithms that is not already captured by the evaluation
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of the predicate is sampling from the complement of a flat in a matroid. Note
that small subdensity does not imply that verifying independence is efficient.
Consider the following definition.

Definition 12 (Sampling Cost). Let M be a matroid of rank d. Then M has
sampling cost cM if there exists a probabilistic algorithm Alg with running time
cM such that setting a0 = ∅ and computing (ai, bi) = Alg(ai−1) for i = 1, . . . , d
gives a uniformly distributed basis {b1, . . . , bd} of M.

The value ai is used to store any pre-computation used by Alg to complete
the task within the required time. One can give more precise running times for
the extractors by including the cost for sampling in the the analysis, but we
choose to not do this, since for the matroids of protocols the running time of the
sampling algorithm is typically linear in i with a unit cost that is a multiplication
in a field or similar.

8 Special Soundness

We can now express a general form of special soundness using matroid trees.
Note that the message spaces and what usually appears as the knowledge er-
ror in concrete presentations are captured by the ground sets, ranks, and the
subdensities of the matroids.

Recall that 〈P∗,Vc〉(x) denotes the verdict of V regarding an interaction with
a prover P∗ on common input x and using a random tape c = (v1, . . . , vr) of
challenges. The following definition instantiates our abstract predicate.

Definition 13 (Prover Predicate). The prover predicate ρ[P∗] for a public-
coin protocol (P,V) is defined by ρ[P∗](v) = 〈P∗,Vc〉(v0), where c = (v1, . . . , vr).

Definition 14 (Accepting Transcript Tree). A rooted unordered directed
tree T with vertex labels `(·) is an accepting transcript tree for V if every leaf has
depth r and for every path (u0, . . . , ur) in T : (vu0 , au0 , . . . , vur , aur ) is accepting,
and `(ui) = (vui , aui).

Note that vu0
corresponds to the instance of the execution. This notation

makes more sense when one considers the protocol as embedded into a larger
protocol where the instance is chosen as the result of a random process under
the influence of the adversary. We need a convenient notation to project the
labels of the tree to their verifier message parts to allow us to state conditions
on accepting transcript trees.

Definition 15 (Challenge Tree). The challenge tree C(T ) of an accepting
transcript tree T with vertex labels `(·) has the same nodes and vertices, but
labels defined by `′(u) = v, where `(u) = (v, a).

Definition 16 (Special Soundness). A (2r+1)-message public coin-protocol
(P,V) is

(
(M1, . . . ,Mr), p

)
-special-sound for an NP relation R, where Mi =
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(Si, Ii) is a matroid, if the ith message of V is chosen randomly from Si, and
there exists a witness extraction algorithm W that given an accepting transcript
tree T such that C(T ) is basis subtree of ({x},M1, . . . ,Mr) outputs a witness w
such that (x,w) ∈ R in time p.

9 Piece-wise Special Soundness

Some protocols require multiple rounds of extraction because matroids and val-
ues that need to be extracted may depend on what have been extracted so far.
This is often the case where multiple witnesses can be extracted in principle, but
only one witness can be extracted without violating a computational assumption,
e.g., proofs of shuffles [5,9].

This does not quite fit into the framework we have presented, since the ma-
troids are fixed, but we can still capture the extraction properties of such pro-
tocols in a way that has the same flavor as special soundness. To this end we
decompose an NP relation.

Definition 17 (Decomposable NP Relation). An NP relation R has a de-
composition (R1[·], . . . ,Rk[·]), where Rj [·] is a family of NP relations if (x,w) ∈ R
if and only if there exists y1, . . . , yk such that (x, yj) ∈ Rj [y1, . . . , yj−1] for j ∈ [k].

The idea is now that we can think of a protocol as special-sound if we can
decompose the NP relation into a number of steps and device an extractor for
each step using the approach already presented. This may seem complicated,
but turns out to be convenient and preserves the strong properties of special
soundness.

Definition 18 (Piece-wise Special Soundness). A (2r + 1)-message public
coin-protocol (P,V) is piece-wise (M[·], p)-special-sound for an NP relation R
with decomposition (R1[·], . . . ,Rk[·]), where Mj [·] is a family of matroid trees of
depth r if (P,V) is (Mj [z], pj)-special-sound for Rj [z] for every z = (y1, . . . , yj)
such that (x, yl) ∈ Rl[y1, . . . , yl−1] for l ∈ [j], and p =

∑
j∈[k] pj.

Although the parametrized matroids have the same ground sets, the sets of
independence sets may differ. It is natural to abuse notation and think of a
piece-wise special sound protocol as being special sound, but the decomposition
of the NP relation and parametrized matroids must be provided along with the
algorithms that compute a witnesses from accepting transcript trees.
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A Matroids

We recall one set of definitions for matroids and some of their properties.

Definition 19 (Matroid). A matroid is a pair (S, I) of a ground set S and a
set I ⊂ 2S of independence sets such that:

1. I is non-empty,
2. if A ∈ I and B ⊂ A, then B ∈ I, and
3. if A,B ∈ I and |A| > |B|, then there exists an element a ∈ A \ B such that
{a} ∪B ∈ I.

Definition 20 (Submatroid). Let (S, I) be a matroid and S′ ⊂ S. The sub-
matroid induced by S′ is the pair (S′, I ′) defined by I ′ = I ∩ 2S

′
.

Definition 21 (Basis). Let (S, I) be a matroid. A set B ∈ I such that B∪{x} 6∈
I for every x ∈ S \B is a basis.
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Definition 22 (Rank). The rank of a matroid (S, I) is the unique cardinality
of each basis in I.

Definition 23 (Rank of Set). Let (S, I) be a matroid and A ⊂ S. The rank
rank(A) of A is the rank of the submatroid induced by A.

Definition 24 (Span and Flats). Let (S, I) be a matroid and A ⊂ S. The
span of A is defined by span(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)} and A is
a flat if span(A) = A.

B Generic Bounds on Random Variables

We use two standard bounds in this paper depending on how much we know
about a distribution and how important it is to give a tight bound. Markov’s
inequality can be applied to any distribution for which the expected value can
be estimated. There are many variations of Chernoff’s bound depending on what
is most convenient and how precisely it is stated. We state the bounds in their
traditional forms.

Theorem 2 (Markov’s Inequality). Let X be a non-negative random vari-
able over R with expected value µ and let k ∈ (1,∞). Then Pr [X ≥ kµ] ≤ 1

k .

Theorem 3 (Chernoff’s Inequalities). Let X1, . . . , Xn be independent bi-
nary random variables such that Pr [Xi = 1] = p and define X =

∑n
i=1Xi. Then

for every δ ∈ (0, 1):

Pr [X < (1− δ)np] < e−
δ2p
2 n and

Pr [X > (1 + δ)np] < e−
δ2p
3 n .

We remark that the slight asymmetry due to the factors 1/2 and 1/3 in the
exponents of the bounds is necessary.

C Generating Functions

Probability and moment generating functions are convenient ways to describe
distributions and derive bounds. They can be viewed as tools for manipulation of
formal power series, but they also have an analytic meaning where they converge.

Definition 25 (Probability Generating Function). The probability gener-
ating function of a random variable X over N is defined by GX(z) = E

[
zX
]
for

all z ∈ R for which this converges.

Theorem 4 (Properties of Probability Generating Functions).

1. If X is a random variable over N, then PX (k) =
(

1
k!

)
G(k)X (0), i.e., the prob-

ability generating function determines PX uniquely.

18



2. If X and Y are independent random variables over N with probability gen-
erating functions GX(z) and GY (·), then GX(z)GY (z) is the probability gen-
erating function of the sum X + Y .

Definition 26 (Moment Generating Function). The moment generating
function of a random variable X over N is defined by MX(θ) = E

[
eθX

]
for all

θ ∈ R for which this converges.

Theorem 5 (Properties of Moment Generating Functions).

1. If X is a random variable over N, then E
[
Xk
]
=M(k)

X (0), i.e., the moment
generating function determines all moments of PX uniquely, which in turn
determines PX uniquely.

2. If X and Y are independent random variables over N with moment gen-
erating functions MX(θ) and MY (θ), then MX(θ)MY (θ) is the moment
generating function of X + Y .

The following is a general form of Markov’s inequality from which Chernoff’s
inequality follows using the right choice of θ for the binomial distribution.

Theorem 6 (Cramér’s Theorem). Let X1, . . . , Xn be identically and inde-
pendently distributed random variables, and define Y =

∑n
i=1Xi. Then for every

a > µ and θ ∈ (0,∞) such thatMX1(θ) is finite:

Pr [Y ≥ na] ≤
(
MX1(θ)

eθa

)n
.

Proof. We apply Markov’s inequality and independence to get

Pr [Y ≥ na] = Pr
[
eθY ≥ eθna

]
≤

E
[
eθY
]

eθna
=
MY (θ)

eθna

=

∏
i∈[n]MXi(θ)

eθna
=

(
MX1

(θ)

eθa

)n
.

D Distributions

We are mainly interested in two related types of distributions: geometric distri-
butions and negative binomial distributions, where the latter appears as a sum
of the former, but we exploit the exponential distribution to bound compound
distributions. We write X ∼ D if a random variable X has distribution D.

D.1 Exponential Distribution

The exponential distribution is the archetypal continuous distribution with an
exponentially decreasing tail.
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Definition 27 (Exponential Distribution). The exponential distribution Exp(λ)
over (0,∞) is given by its cumulative distribution function F (x, λ) = 1− e−λx,
i.e., a random variable X ∼ Exp(λ) satisfies Pr [X ≤ x] = 1− e−λx.

Lemma 6 (Properties of the Exponential Distribution). If X ∼ Exp(λ),
then

E [X] = λ−1 , Var [X] = λ−2 , and MX(θ) =
λ

λ− θ
for θ < λ .

D.2 Geometric Distribution

Consider some experiment that succeeds with probability p, and fails with prob-
ability 1−p. A random variable with unshifted geometric distribution with prob-
ability p represents the number of failures before a successful attempt. When we
refer to the geometric distribution we mean the shifted variation, i.e., we count
the total number of attempts including the successful attempt.

Definition 28 (Geometric Distribution). A random variable X has geo-
metric distribution over {x ∈ N | x > 0} with probability p ∈ [0, 1], denoted
Geo(p), if PX (x) = (1− p)x−1p.

Lemma 7 (Properties of the Geometric Distribution). If X ∼ Geo(p),
then

E [X] =
1

p

Var [X] =
1− p
p2

FX(x) = 1− (1− p)x−1

GX(z) =
pz

1− (1− p)z

MX(θ) =
peθ

1− (1− p)eθ
for θ < − ln(1− p) .

D.3 A Compound Geometric Distribution

Distributions formed by letting the parameters of one distribution be chosen
according to another are called compound distributions. In general compound
distributions can only be bounded, but in some cases they can be described
concisely.

Definition 29 (Compound Geometric Distribution). A random variable
X has compound geometric distribution CG(c, p) where c ∈ Nk, c1 = 0, and
p ∈ (0, 1]k, if its probability generating function g1(z) is defined by the equations

gk(z) = zckfk(z)

gi−1(z) = zci−1fi−1(gi(z))

where fi(z) = GGeo(pi)(z).
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This distribution emerges naturally in Section 8 as the running time of an
algorithm that recursively identifies a sparse subtree which satisfies certain prop-
erties at each level. The geometric distribution captures the number of attempts
needed and the constants represent the added work needed after successful at-
tempts.

Lemma 8 (Properties of Compound Geometric Distribution). If X ∼
CG(c, p) and we let ck+1 = 1, then

E [X] =
∑
i∈[k]

∏
j∈[i]

1

pj
ci+1 and

GX(z) =
z
∑
i∈[k+1] ci

∏
i∈[k] pi

1−
∑
i∈[k] qi

∏
j∈[i+1,k] pjz

∑
l∈[i+1,k+1] cl

.

Proof. The claim about the expected value follows immediately from Wald’s
equation [10] (or by conditional expected values):

E [X] =
1

p1

(
1

p2

(
· · · 1

pk−1

(
1

pk
+ ck

)
+ ck−1 · · ·

)
+ c2

)
+ c1

=
∑
i∈[k]

∏
j∈[i]

1

pj
ci+1 .

We adopt the notation from Definition 29 and set qt = 1 − pt. We aim to
derive gt(z) = at(z)/bt(z) for t = k, . . . , 1. Note that we have

ak(z) = zckpkz = pkz
ck+ck+1

bk(z) = 1− qkz = 1− qkzck+1

and in general we have the relation

gt−1(z) =
pt−1z

ct−1gt(z)

1− qt−1gt(z)

from which we conclude

gt−1(z) =
pt−1z

ct−1at(z)

bt(z)

/(
1− qt−1at(z)

bt(z)

)
=

pt−1z
ct−1at(z)

bt(z)− qt−1at(z)
.

This defines at(z) = z
∑
l∈[t,k+1] cl

∏
j∈[t,k] pj . Resolving the recursion gives

bt(z) = 1−
∑
i∈[t,k]

qi
∏

j∈[i+1,k]

pjz
∑
l∈[i+1,k+1] cl

which concludes the proof.

Lemma 9. If 0 < a ≤ b, then ea < 1 + eba.
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Proof. The proof follows by considering the Taylor expansion of ea:

ea − 1 = a+
a2

2
+
a3

3!
+
a4

4!
+ . . .

= a

(
1 +

a

2
+
a2

3!
+
a3

4!
+ . . .

)
< aea ≤ aeb .

Lemma 10 (Compound Geometric Distribution). If X ∼ CG(c, p) and
Y ∼ Exp(λ), where µ = E [X] and λ = 1/µ, thenMX(θ) <MY (θ) for θ < 1/µ.

Proof. Set Λ =
∑
l∈[2,k+1] cl. We use Lemma 9 (setting a = θ

∑
l∈[i+1,k+1] cl

and b = θΛ) to bound the statement from Lemma 12 in its form as a moment
generating function

eθΛMX(θ)−1 =
1−

∑
i∈[k] qi

∏
j∈[i+1,k] pje

θ
∑
l∈[i+1,k+1] cl∏

i∈[k] pi

>
∏
i∈[k]

1

pi
−
∑
i∈[k]

qi
∏
j∈[i]

1

pj

1 + θeθΛ
∑

l∈[i+1,k+1]

cl


=
∏
i∈[k]

1

pi
−
∑
i∈[k]

(1− pi)
∏
j∈[i]

1

pj
− θeθΛ

∑
i∈[k]

(1− pi)
∏
j∈[i]

1

pj

∑
l∈[i+1,k+1]

cl .

The constant term is essentially a telescoping sum which sums to one, i.e., we
have

∏
j∈[k]

1

pj
+
∑
i∈[k]

 ∏
j∈[i−1]

1

pj
−
∏
j∈[i]

1

pj

 = 1 .

The multiple of θeθΛ can be expressed similarly

∑
i∈[k]

∑
l∈[i+1,k+1]

cl

∏
j∈[i]

1

pj
−

∏
j∈[i−1]

1

pj


=

∑
l∈[2,k+1]

cl
∑

i∈[l−1]

∏
j∈[i]

1

pj
−

∏
j∈[i−1]

1

pj


=

∑
l∈[2,k+1]

cl

 ∏
j∈[l−1]

1

pj
− 1


=
∑
i∈[k]

∏
j∈[i]

1

pj
ci+1 −

∑
l∈[2,k+1]

cl

= µ− Λ .
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Thus, we have

eθΛMX(θ)−1 > 1− θeθΛ(µ− Λ)

which, using eθ > 1 + θ for θ > 0, finally gives the bound

MX(θ)−1 > e−θΛ − θ(µ− Λ)
> 1− θΛ− θ(µ− Λ) = 1− θµ

which can be restated asMX(θ) < 1/(1− θµ) = λ/(λ− θ) as claimed.

Theorem 7 (Cramér’s Theorem for Compound Geometric Distribu-
tions). If Xi ∼ CG(c, p) for i ∈ [n] are independently distributed and Y =∑
i∈[n]Xi with µ = E [X1], then for every k ∈ (1,∞):

Pr [Y ≥ nkµ] < e−n(k−1−ln k) .

Proof. Theorem 6 implies that for every θ < 1/µ :

Pr [Y ≥ knµ] ≤
(
MX1

(θ)

eθkµ

)n
.

From Lemma 10 we know thatMX1
(θ) < λ/(λ−θ) for all θ < λ, where λ = 1/µ,

and if we set θ = (1− k−1)/µ the claim follows.

D.4 Negative Binomial Distribution

Consider some experiment that succeeds with probability p, and fails with prob-
ability q = 1−p. A random variable X with negative binomial distribution with
probability p and success parameter s represents how many attempts are needed
to succeed s times.

Definition 30 (Negative Binomial Distribution). A random variable X
has negative binomial distribution, denoted NB(s, p), over {x ∈ N | x ≥ s} with
probability p and success parameter s if PX (k) =

(
k−1
s−1
)
(1− p)k−sps.

Lemma 11 (Properties of Negative Binomial Distribution). If X ∼
NB(s, p), then

E [X] = s/p

Var [X] = s(1− p)/p2 , and

MX(θ) =

(
peθ

1− (1− p)eθ

)s
for θ < − ln(1− p) .

Lemma 12 (Sum of Geometric Distributions). If Xi ∼ Geo(p) for i ∈ [s]
are independently distributed and X =

∑s
i=1Xi, then X ∼ NB(s, p).
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Proof. The multiplicative property of moment generating functions implies that

MX(θ) =

s∏
i=1

MXi(θ) =

(
peθ

1− (1− p)eθ

)s
,

which is the moment generating function of a binomial distribution with proba-
bility p and success parameter s.

Chernoff’s lower and upper bounds hold for negative binomial distribution
similarly to the binomial distribution, but the asymmetry in the bounds is re-
versed since a lower bound on a random variable of the former distribution
corresponds to an upper bound of one of the latter.

Theorem 8 (Chernoff’s Inequalities for Negative Binomial Distribu-
tion). If X ∼ NB(s, p) and µ = s/p, then for every k > 1

Pr [X > kµ] < e−(1−
1
k )

2 ks
2 and (4)

Pr [X < µ/k] < e−(k−1)
2 s

3k . (5)

Proof. To prove the first inequality we set m = kµ = ks/p, let Y1, . . . , Ym
be independent binary random variables such that Pr [Yi = 1] = p, and define
Y =

∑m
i=1 Yi. Then

Pr [X > kµ] = Pr [Y < s] ,

and the latter expression is of a convenient form to bound using Theorem 3. We
have E [Y ] = mp = ks, so s = µ′/k, where µ′ = E [Y ]. Thus, we set 1− δ = 1/k
and conclude that

Pr [Y < s] = Pr [Y < µ′/k] < e−
δ2µ′

2 = e−(1−
1
k )

2 ks
2 .

The second inequality is proved similarly by instead setting m = µ/k = s/(pk),
which gives s = kµ′ with correspondingly defined random variables Y1, . . . , Ym.
Setting 1 + δ = k then implies the inequality

Pr [X < µ/k] = Pr [Y > s] = Pr [Y > kµ′] < e−
δ2µ′

3 = e−(k−1)
2 s

3k .

E Stochastic Dominance and Bounding Distributions

One approach to compare distributions is to not only bound expected values,
variances, or probabilities of certain events, but instead find families of distri-
butions that are ordered stochastically. The advantage of this, when possible, is
that more structural information about the original distribution can be retained.
We only need first-order stochastic dominance over N.

Definition 31 (Stochastic Dominance). Let X and Y be random variables
over N. Then Y stochastically dominates X, denoted X � Y , if FX(z) ≤ FY (z)
for every z ∈ N.
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This is a somewhat confusing definition when the random variables encode
running times of algorithms, since providing a bound of a running time with dis-
tribution DX amounts to defining a distribution DY such that Y is stochastically
dominated by X. This motivates the following more natural definition.

Definition 32 (Bounding Distribution). Let DX and DY be distributions
over N. Then DX is bounded by DY if Y � X.
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