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Abstract. We explore a Byzantine Consensus protocol called Dfinity Consensus, recently published in
a technical report. Dfinity Consensus solves synchronous state machine replication among n = 2f + 1
replicas with up to f Byzantine faults. We provide a succinct explanation of the core mechanism of
Dfinity Consensus to the best of our understanding. We prove the safety and liveness of the protocol
specification we provide. Our complexity analysis of the protocol reveals the follows. The protocol
achieves expected O(f ×∆) latency against an adaptive adversary, (where ∆ is the synchronous bound
on message delay), and expected O(∆) latency against a mildly adaptive adversary. In either case, the
communication complexity is unbounded. We then explain how the protocol can be modified to reduce
the communication complexity to O(n3) in the former case, and to O(n2) in the latter.

1 Introduction

The Byzantine agreement/broadcast problem was first studied by Pease, Shostak, and Lamport in [13,11].
Dolev and Strong gave in [6] the first polynomial protocol in the synchronous and authenticated setting,
achieving f + 1 rounds and O(n3) communication. It has been shown that deterministic protocols are subject
to an f + 1 lower bound on round complexity [8,6] and a Ω(n2) lower bound on communication complexity [5].
Randomized protocols have been introduced and achieved expected O(1) round [14,3,7,10,1,4]. Only recently,
communication complexity has been improved to O(n2) with f < n/2 [1] and to O(n · poly log(n)) with
f < ( 1

2 − ε)n [4].

A recent publication of the DFINITY Technology Overviews Series [9] describes a blockchain consensus
mechanism. At its core is a Byzantine fault tolerant state machine replication protocol in the synchronous,
authenticated, and honest majority (n ≥ 2f + 1) setting called Dfinity Consensus. In this report, we explore
the Dfinity Consensus protocol to the best of our understanding. We will refer to the algorithm we extracted
by the name Dfnty. (We do not attempt to review the entire Dfinity blockchain consensus mechanism. Topics
such as group sampling, Sybil resistance, incentives, and gossiping are outside the scope of this report.)
Dfnty follows the randomized paradigm and achieves the follows. Against an adaptive adversary, the protocol
achieves expected O(f ×∆) latency (where ∆ is the synchronous bound on message delay, hence comparable
to O(f) rounds), and against a mildly adaptive adversary [12], expected O(∆) latency. However, we show
that in either case, an adversary can make the protocol’s communication complexity unbounded. We then
show a simple approach to improve the communication complexity to O(n2) per round, hence expected O(n3)
against an adaptive adversary, and O(n2) against a mildly adaptive one.

We remark that in the same settings, Abraham et al. solve in [1] synchronous state machine replication
against a static mildly adaptive adversary with O(n2) expected communication complexity and O(∆) expected
latency. Abraham et al. solve in [2] single-shot Byzantine Agreement, achieving the same complexities against
an adaptive adversary, and their solution can be applied to state machine replication if one desires.

2 Model and Notation

Synchrony and signatures. The network is assumed to be synchronous, i.e., a message sent at time t
arrives by time t+∆. We use 〈x〉p to denote a message x signed by replica p. For efficiency, it is customary
to sign the hash digest of a message.



Local state. A replica p keeps track of all valid iteration-k blocks in a set Bk.

Protocol for each replica p in iteration k.

1. Propose a block and wait. Arbitrarily select a certified Bk−1 ∈ Bk−1. Create Bk := 〈v, r, C(Bk−1)〉p and
broadcast it. Wait for 2∆ time.

2. Vote for the best ranked block(s). Let Bk be the best ranked block in Bk. If p has not voted for Bk, vote
for Bk and forward it to all replicas. If multiple blocks tie for the best rank, vote for and forward all of them.
Repeat this step until a certificate C(Bk) for some Bk is received.

3. Forward certificates. Upon receiving a certificate C(Bk), broadcast it and enter the next iteration.

4. Attempt to commit up to iteration (k − 2). If all valid Bk−1 ∈ Bk−1 have the same predecessor block
Bk−2, commit Bk−2 and its predecessors. . This step can be executed anytime after Step 1

Fig. 1. Dfnty consensus algorithm

Verifiable ranks. The Dfnty protocol runs in iterations. In each iteration, replicas are assigned random
ranks that can be verified by other replicas. Let rp(k) ∈ {0, 1}λ denote the rank of replica p in iteration k (λ
is a security parameter). rp(k) should be random, verifiable and unique. All three properties can be obtained
from verifiable random functions (VRF). In Dfnty, a smaller VRF output is a better rank. The replica with
the smallest rank in an iteration is called the leader of that iteration.

Block format. A block Bk produced by replica p in iteration k has the following format:

Bk = 〈v, r, C(Bk−1)〉p

where v denotes the proposed value, r = rp(k) is the proposer’s rank, and C(Bk−1) is a certificate for its
predecessor block Bk−1. A certificate is simply a set of f + 1 votes (using aggregate signatures for better
efficiency). We call a block B certified iff C(B) exists. The first block B1 = 〈v, r,⊥〉p contains no certificate
since it has no predecessor. Every subsequent block Bk must specify a predecessor block Bk−1 and include a
certificate for it. If Bl is an ancestor of Bk (l < k), we say Bk extends Bl. Blocks from the same iteration are
ranked by their proposers’ ranks.

3 Protocol

Upon entering a new iteration, every replica makes a proposal and waits for 2∆ time (Step 1). After the
wait, each replica votes for the best ranked block(s) it has received so far. Furthermore, whenever a replica
votes for a block, it also forwards the block to all other replicas. If a replica is forwarded a block with a rank
equal to or better than the best ranked block it has voted so far, it votes for the block (Step 2). This process
continues until a certificate is formed. As soon as an honest replica obtains a certificate, it broadcasts the
certificate to all other replicas and enters the next iteration (Step 3).

The protocol ensures three invariants.

I An honest leader’s block will be uniquely certified in an iteration.
II In each iteration, at least one block, but possibly many, will be certified.

III At the end of iteration k, if all iteration-(k − 1) blocks extend the same Bk−2, then Bk−2 is uniquely
extendable. i.e., no other iteration-(k − 2) block can be extended from then on.

Invariant I. This invariant is the key to Dfnty’s liveness. It makes sure an honest leader can make progress.
To see why it holds, we first point out that replicas enter an iteration within ∆ time apart from each other.
The first honest replica that transitions to the new iteration forwards a certificate. Within ∆ time, all other
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honest replicas will receive the certificate and enter the new iteration. The certificate effectively serves as a
synchronization message for all replicas to transition (roughly) together. Thus, if the leader is honest, the 2∆
time wait suffices for every replica to receive the leader’s proposed block. Then, each of the f + 1 honest
replicas will vote for only the leader’s block.

Invariant II. We have already discussed that, if the leader is honest, its block will get certified. If the leader
is Byzantine, however, it may send its block to some but not all replicas, or send multiple equivocating blocks
to different replicas. But no matter what it does, at least one block will be certified. To see this, observe that
the best ranked block known to any honest replica will soon be received by all other honest replicas. This
block will get certified unless some Byzantine replica presents an even better ranked block. Since there are
only f Byzantine ranks, they can delay the formation of a certificate by f∆ time at most.

Committing a block. Although an honest leader’s block will be uniquely certified, it is non-trivial for
other honest replicas to find this out. Observe that a certificate requires only one honest signature (f + 1
signatures in total). If a Byzantine replica proposes and votes for a worse-ranked block, honest replicas must
account for the possibility that this vote comes from an honest replica, in which case, a conflicting certificate
may have formed and been kept secret by Byzantine replicas. Therefore, Dfnty uses a weaker condition called
unique-extensibility to commit blocks.

Invariant III. Invariant III is Dfnty’s commit rule and key to safety. A replica p deems an iteration-(k − 2)
block Bk−2 as uniquely-extendable, and hence commits it, if at the end of iteration k, no iteration-(k − 1)
block seen by p extends a different iteration-(k − 2) block (Step 4). Why does this condition suffice to
commit? Observe that a certificate requires at least one honest vote, and that an honest replica votes for an
iteration-(k−1) block only in iteration (k−1). Thus, if some honest replica votes for an iteration-(k−1) block
B′k−1 extending B′k−2 6= Bk−2, then by the synchrony assumption, all replicas would have received B′k−1
at the end of iteration k (every iteration lasts at least 2∆) and would not have deemed Bk−2 as uniquely
extendable. We formalize this argument in the proof of Lemma 1.

If the leader of an iteration is Byzantine, multiple blocks may get certified in its iteration. In this case,
Dfnty follows the natural solution of postponing the commit decision to future iterations. As mentioned earlier,
blocks are chained across iterations, i.e., an iteration-(k + 1) block includes a certificate for an iteration-k
block. Eventually, a future iteration that has a uniquely certified/extendable block will commit that block
and all its ancestors (including some block from iteration k).

3.1 Safety and Liveness

Lemma 1 (Unique-extensibility). At the end of iteration k, if all iteration-(k− 1) blocks extend the same
Bk−2, then Bk−2 is uniquely extendable.

Proof. Suppose Bk−2 is not uniquely extendable. Then, at some point, another block B′k−2 is extended by
some block B′k−1, and at some later point, B′k−1 gets extended (certified). At least one honest replica h votes
for B′k−1 in iteration k − 1. When h votes (in iteration k − 1), h forwards B′k−1 to all replicas, so all honest
replicas receive B′k−1 at the end of iteration k. Thus, to every honest replica, not all blocks in iteration-(k− 1)
extend Bk, a contradiction.

Theorem 1 (Safety). Honest replicas always commit the same block Bk for each iteration k.

Proof. Suppose an honest replica h commits Bk in iteration j ≥ k+ 2 by committing block Bj−2 and another
honest replica h′ commits B′k in iteration j′ ≥ k + 2 by committing Bj′−2. Due to the commit rule, Bj−2
and Bj′−2 are both uniquely extendable (Lemma 1). If j = j′, Bj−2 and Bj′−2 must be the same block (and
extend the same Bk) in order for both to be uniquely extendable. Else, without loss of generality, assume
j′ > j. Since Bj−2 is uniquely extendable, Bj′−2 extends Bj−2, and the two blocks extend the same Bk.

Theorem 2 (Liveness). If the leader of iteration k is honest, its iteration-k block Bk is committed at the
end of iteration (k + 2).
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Proof. The proof is straightforward from Invariant I. If the leader of iteration k is honest, its block Bk is
uniquely certified and will thus be committed at the end of iteration (k + 2).

3.2 Efficiency Analysis

Adversarial model. We consider three adversarial models: static, adaptive and mildly adaptive. A static
adversary needs to decide which replicas to corrupt before the protocol starts. An adaptive adversary can
decide which replicas to corrupt any time during the protocol execution. A mildly adaptive adversary, defined
in [12], can decide which replicas to corrupt during protocol execution, but needs Θ(∆) time to take control
of a replica once it decides to corrupt that replica.

Latency. An adaptive adversary may choose to corrupt an honest leader immediately after it is elected and
emits an equivocating message, causing a succession of O(f) bad iterations to happen. Thus, the expected
latency against an adaptive adversary is O(f ×∆). We note that this attack can happen at most once, though
for a large n, such a delay can be quite prohibitive.

Once an adversary has corrupted f replicas, or if the adversary is static or mildly adaptive, then in
expectation, an honest leader is selected every two iterations. If a leader of iteration k is honest, the block it
proposes is committed 2∆ time after the start of iteration k+ 2 (observe that Step 4 can be executed anytime
after Step 1). Thus, in all these non-adaptive settings, the expected latency is three iterations plus 2∆.

To calculate the expected latency per iteration, we consider two scenarios: (1) Optimistic case: when the
actual communication delay is small compared to ∆, (2) Pessimistic case: when the actual communication
delay is ∆. In the optimistic case, in each iteration, only Step 1 incurs a wait of 2∆. All other steps execute
at the actual network speed. Thus, the expected latency to commit is 2∆× 3 + 2∆ = 8∆. In the pessimistic
case, Step 1 incurs 2∆. In Step 2, if the best t ranks belong to Byzantine replicas, which happens with 2t+1

probability, a certificate will be formed in (t+ 1)∆ time. In expectation, this step takes 2∆ time. Thus, the
expected latency to commit is 4∆× 3 + 2∆ = 14∆.

Communication complexity. We measure communication complexity by the number of signed messages
sent by honest replicas for committing a block. The communication complexity in bits can be easily obtained
by multiplying the length of a signature (in bits). If the leader of an iteration is honest, each honest replica
proposes its own block (Step 1) and votes for exactly one block (Step 2). With the use of aggregate signatures,
a certificate is a single signature. Thus, the communication complexity in an honest leader’s iteration is
O(n2). When the leader is Byzantine, unfortunately, Dfnty’s communication complexity is unbounded. The
Byzantine leader can propose an arbitrary number of equivocating blocks, all with the same rank. Every
honest replica has to vote for all of these blocks, resulting in unbounded communication.

4 Improving the Communication Complexity

In this section, we describe a simple modification of Dfnty that achieves expected O(n2) communication
complexity per iteration. Plugging this into the efficiency calculation in the previous section, this brings the
expected communication complexities to O(n3) against an adaptive adversary, and O(n2) against a static or
mildly adaptive adversary.

We noted earlier that in Dfnty, if a Byzantine leader proposes many blocks with the same (best) rank,
every honest replica is required to vote for all of these blocks. To see why this is required, consider the näıve
alternative where each honest replica votes for one block per proposer. Now, if a Byzantine leader proposes
different equivocating blocks to different replicas in Step 1, none of them will get a certificate (since each gets
one vote). Meanwhile, other proposers’ blocks have inferior ranks, so they will not get any vote.

In other words, the unbounded communication is a result of two design decisions: (1) replicas do not vote
for blocks with inferior ranks (to ensure Invariant I), and (2) Dfnty requires at least one certificate to form in
each iteration (i.e., Invariant II). We observe that if either constraint is removed, we can reduce each iteration’s
communication complexity to O(n2). A protocol without the second invariant exists in the literature [1,2].
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The protocol achieves consensus in expected O(1) rounds with an expected O(n2) communication complexity
with optimal resilience against a strongly rushing adaptive adversary. We refer readers to [1,2] for the details
of this protocol.

In the following modification, we remove the first constraint. The key idea is the following: If an honest
replica h receives two or more blocks from the same proposer p, it has detected p as Byzantine. If this
happens, the replica forwards two of these blocks to all other replicas as an accusation of misbehavior against
p. Whenever such an equivocation is observed, the effective rank of the replica is lower than the ranks of all
replicas who did not equivocate. Thus, the effective rank can be computed as a pair (equivocatep(k), rp(k))
where equivocatep(k) = 1 if replica p has equivocated in iteration k. With the modified rank, every replica
still votes for the best-ranked proposer at every point in time (recall that lower ranks are better ranks).

Safety, liveness, and Invariant II. The proof of liveness (Invariant I) remains unchanged because an
honest leader who does not equivocate is unaffected. The proof of safety (Invariant III) also remains unchanged
because it only relies on (1) the fact that honest replicas vote for iteration-k blocks in iteration k, and (2)
synchrony. Specifically, it does not rely on how blocks are ranked. For Invariant II, observe that if a leader
is Byzantine, either its block will receive a certificate, or within 2∆ time honest replicas will learn of an
equivocation and start voting for the next best-ranked proposer. Eventually, some block will get certified.

Efficiency analysis. For communication complexity, if the t best ranked proposers are Byzantine, which
happens with 2−(t+1) probability, then communication in this iteration is bounded by (2t + 1)n2. Thus,

the expected communication complexity per iteration is
∑f

0
(2t+1)n2

2t+1 < n2
∑∞

0
2t+1
2t+1 = O(n2). Against an

adaptive adversary, the expected number of iterations is O(f), hence the expected communication complexity
is O(n3). Against a static or mildly adaptive adversary, we require in expectation three iterations +2∆ time
to commit; thus the expected communication is O(n2).

For latency, in the optimistic case, each iteration still requires 2∆ time, resulting in an expect 8∆ time
to commit. In the pessimistic case, if t best ranked proposers are Byzantine, a certificate will be formed in
(2t+ 1)∆ time. To see why, observe that a ∆ time is required to form a certificate even in the absence of an
adversary. Moreover, every Byzantine replica with a rank higher than honest replicas can delay a certificate
formation by 2∆ time – one by not sending its block B to some honest replica h, and one by sending h an
equivocating block B′ when h is about to know B from other honest replicas. Thus, the expected latency of

this step is
∑f

0
(2t+1)∆

2t+1 <
∑∞

0
(2t+1)∆

2t+1 = 3∆. Step 1 still requires 2∆, so each iteration requires expected
5∆ time. Against an adaptive adversary, this incurs O(f ×∆) latency to commit in expectation. Against a
mildly adaptive or static adversary, this results in an expected latency of 17∆ to commit.

Update from DFINITY. In private communication, the authors of DFINITY Technology Overview
Series [9] responded to an earlier draft of this paper and mentioned that the DFINITY code uses this modified
version of the protocol.
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