
A New Index Calculus Algorithm for the
Elliptic Curve Discrete Logarithm Problem
and Summation Polynomial Evaluation

Gary McGuire∗ Daniela Mueller†

School of Mathematics and Statistics
University College Dublin

Ireland

Abstract

The introduction of summation polynomials for elliptic curves by
Semaev has opened up new avenues of investigation in index calcu-
lus type algorithms for the elliptic curve discrete logarithm problem,
and several recent papers have explored their use. We propose an in-
dex calculus algorithm to solve the Elliptic Curve Discrete Logarithm
Problem that makes use of a technique for fast evaluation of the sum-
mation polynomials, and unlike all other algorithms using summation
polynomials, does not involve a Gröbner basis computation. We fur-
ther propose another algorithm that does not involve Gröbner basis
computations or summation polynomials. We give a complexity esti-
mate of our algorithms and provide extensive computational data.

Keywords

elliptic curves, ECDLP, index calculus, summation polynomials.

∗Research supported by Science Foundation Ireland Grant 13/IA/1914.
†Research supported by a Postgraduate Government of Ireland Scholarship from the

Irish Research Council.

1

1 Introduction

Let E be an elliptic curve over a finite field Fq, where q is a prime power.
In practice, q is often a prime number or a large power of 2. Let P and Q
be points on E. The Elliptic Curve Discrete Logarithm Problem (ECDLP)
is finding an integer l (if it exists) such that Q = lP . The integer l is called
the discrete logarithm of Q to base P .

The ECDLP is a hard problem that underlies many cryptographic schemes
and is thus an area of active research. The introduction of summation poly-
nomials by [Sem04] has led to algorithms that resemble the index calculus
algorithm of the DLP over finite fields. We outline how the algorithm works
in general first.

Let G be a cyclic group with given generator g. We wish to find the discrete
logarithm of a target element h to the base g. A sketch of the index calculus
algorithm for G is the following.

1. Factor Base step. Define a subset F ⊆ G, called the factor base.

2. Relation step. Collect linear relations involving factor base elements.

3. Linear Algebra step. Combine and solve relations using linear alge-
bra.

4. Solving step. Use the results to find the discrete logarithm of the
target element h.

When the group G is the multiplicative group of a finite field, typically the
first three steps do not depend on the target element. Steps 1-3 will result
in the logs of the factor base elements, and only in the final step will the
target element be used, when its log will be calculated. This is different from
typical index calculus algorithms for the ECDLP, where the relations in Step
2 depend on the target element, although the choice of factor base in Step 1
does not (see section 2.2). In the algorithms under discussion in this paper,
the choice of factor base in Step 1 does depend on the target element.

It is a priori not clear how to choose the factor base, and a feature of all the
algorithms under discussion in this paper is that the factor base is chosen
randomly. One advantage of this is that the size of the factor base is very
easy to change.

2

It is also not a priori clear how to find relations in Step 2. Summation
polynomials enable a decomposition over the factor base in certain cases for
elliptic curves, and we give their definition in section 2.1. Section 2.2 shows
how this decomposition can be achieved for certain choices of factor base.

Most papers have focused on elliptic curves over an extension field Fqn , and
use subfields in the algorithm, see for example [Gau09], [FHJ+14], [JV13].
The case of elliptic curves over prime order fields seems to be much harder to
tackle. Our algorithms in this paper are aimed at prime order fields, although
they are valid for any finite field. In section 2.3, we give a brief overview of the
different approaches to the prime field case using summation polynomials. A
recent paper by Amadori-Pintore-Sala [APS18] published in Finite Fields and
their Applications has shown how to simplify these algorithms to avoid the
linear algebra step and reduce the number of Gröbner basis computations.
We summarize their algorithm (as Algorithm 2.5) in section 2.3.

In section 3 we develop the algorithm in [APS18] to a new algorithm (Algo-
rithm 3.1) which, unlike all other algorithms using summation polynomials,
does not involve a Gröbner basis computation. This leads to a significant
speedup over the other prime field algorithms.

In section 4 we then further develop our Algorithm 3.1 to Algorithm 4.1 which
does not use summation polynomials at all, as well as not using Gröbner bases
and not using a linear algebra step. This algorithm is fastest among all the
algorithms discussed here, both in practice and in complexity.

In Section 5 we develop a method for fast evaluation of the summation poly-
nomials. This improves the algorithms and allows us to evaluate summation
polynomials S9 and S10 even though we cannot calculate the polynomials.

Section 6 contains an estimate of the complexity of the algorithm in [APS18],
as well as a complexity estimate of our two algorithms presented here. Note
that [APS18] did not contain an estimate of the complexity, indeed the au-
thors state that they are “unable to estimate the complexity of solving our
polynomial equation systems.” We will see that Algorithm 4.1 is best, fol-
lowed by Algorithm 3.1 and last comes Algorithm 2.5. The algorithms have
exponential complexity, which one would expect with a randomly chosen fac-
tor base. Our analysis shows that all these algorithms are worse than the
well known square-root algorithms such as Pollard-Rho. Nevertheless, we
claim that Algorithm 4.1 is the best index calculus algorithm for prime order
fields at the present time.

Finally we present computational results for small primes in section 7, which
happily agree with the complexity estimates.

3

2 Background

2.1 Summation Polynomials

Definition 2.1: [Sem04] Let E be an elliptic curve over a field K. For
n ≥ 2, we define the summation polynomial Sn = Sn(X1, X2, . . . , Xn) of E
by the following property. Let x1, x2, . . . , xn ∈ K, then Sn(x1, x2, . . . , xn) = 0
if and only if there exist y1, y2, . . . , yn ∈ K such that (xi, yi) ∈ E(K) and
(x1, y1) + (x2, y2) + . . .+ (xn, yn) = O, where O is the identity element of E.

Semaev showed in [Sem04] how to compute the summation polynomials for
elliptic curves in Weierstrass form:

Theorem 2.2: Let E be an elliptic curve given by Y 2 = X3 +AX +B over
a field K with characteristic 6= 2, 3. Then the summation polynomials are
given by
S2(X1, X2) = X1 −X2,
S3(X1, X2, X3) = (X1−X2)

2X2
3−2((X1+X2)(X1X2+A)+2B)X3+((X1X2−

A)2 − 4B(X1 +X2)),
Sn(X1, . . . , Xn) = ResX(Sn−k(X1 . . . , Xn−k−1, X), Sk+2(Xn−k . . . , Xn, X)) for
n ≥ 4 and any 1 ≤ k ≤ n− 3.
Furthermore, the polynomials Sn, n ≥ 3, are symmetric, of degree 2n−2 in
each variable, of total degree (n− 1)2n−2, and absolutely irreducible.

For more detail and for other characteristics, see [Sem04].

2.2 Point Decomposition with Summation Polynomi-
als

The following is a more detailed version of the index calculus algorithm as
normally used for elliptic curves, see [Gau09] for example. We include it for
comparison with our algorithms developed in this paper.

Definition 2.3: (Index Calculus) Let G be a cyclic group of points on an
elliptic curve defined over Fq (here we use additive notation), let P be a
generator of G, and Q another element in G whose discrete logarithm we
wish to compute. The index calculus algorithm for G is the following.

4

1. Factor Base step. Define a subset F ⊆ G, called the factor base.

2. Relation step. Collect relations that decompose over the factor base:
Let R = aP + bQ (a, b random integers), and try to write R as a sum
of factor base elements, R = P1 + ... + Pm, with P1, ..., Pm ∈ F . Store
the relations in matrix and vector format.

3. Linear Algebra step. Perform linear algebra on the matrix-vector
equation to get an equation of the form αP + βQ = 0.

4. Solving step. If β is invertible modulo the group order r, then the
discrete logarithm of Q is −α/β mod r.

Let F = {P1, P2, . . . , Ps} be the factor base of points on E, where s = |F|
is the size of the factor base. Let r1, r2 be random integers and let R =
r1P+r2Q. In order to write R = P1+...+Pm, with P1, ..., Pm ∈ F , we use the
(m+1)th summation polynomial: writing R = (xR, yR), we try to find a solu-
tion (x1, . . . , xm) of Sm+1(X1, . . . , Xm, xR) = 0 such that ∃ yi with (xi, yi) ∈
F , 1 ≤ i ≤ m. Then ∃ εi = ±1 such that ε1(x1, y1)+. . .+εm(xm, ym)±R = O.

Once we have found at least s+ 1 independent relations of this form, we can
find logP (Q) by solving the matrix equation

ε1,1 . . . ε1,s
ε2,1 . . . ε2,s

. . .
εs+1,1 . . . εs+1,s




logP (P1)
logP (P2)
. . .

logP (Ps)

 =


r1,1
r2,1
. . .
rs+1,1

+


r1,2
r2,2
. . .
rs+1,2

 logP (Q)

where εi,j ∈ {0, 1,−1}, 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s.

Gaudry suggests in [Gau09] a way to solve Sn+1(X1, . . . , Xn, xR) = 0, if
E is defined over Fqn = Fq[t]/f(t), q a prime power, f irreducible of de-
gree n. He defines the factor base to be all points with x-coordinate in Fq,
F = {(x, y) ∈ E(Fqn) : x ∈ Fq}. Note that we only need to include one of
{(x, y), (x,−y)} in the factor base if we allow coefficients ±1 in the decom-
position of R. Now writing Sn+1(X1, . . . , Xn, xR) =

∑n−1
i=0 ϕi(X1, . . . , Xn)ti,

we instead solve ϕi(X1, . . . , Xn) = 0 over Fq, 0 ≤ i ≤ n − 1, obtaining a
polynomial system of n equations in n unknowns (Weil descent). We then
solve this system with Gröbner basis techniques.

5

2.3 Factor base over prime fields

If the elliptic curve is defined over a prime field (Fp for p a prime number)
Semaev suggests in [Sem04] to define the factor base to be all points with
”small” x-coordinate (taking the finite field elements to lie in the interval
[0, ..., p−1] and treating them as integers in order to bound them). However,
nobody knows how to find these small points efficiently.

Petit et al. showed in [PKM16] how to define the factor base as points on the
curve with x-coordinate a solution of the composition of some small-degree
rational maps. The decompositions are then found by solving the polyno-
mial system obtained from these rational maps and summation polynomials.
Their approach seems to be the first working case for curves defined over
prime fields, but it is only feasible for small parameters. (The largest field
in their experiments is F4206593 and one Gröbner basis computation takes
4975.07 sec. Compare this with our results in section 7: the largest field
in our experiments is F30951732491 and the total time to solve the ECDLP is
6850.10 sec.)

Amadori-Pintore-Sala [APS18] showed a different way of defining the factor
base that enabled them to significantly reduce the number of polynomial sys-
tems that need to be solved, and also avoid the linear algebra step, leading
to an improvement in the running time. We will explain their approach now
and give a complexity estimate in section 6.

Step 1. Let s be the desired size of the factor base (we will show later how to
select s). Compute random integers a1, ..., as, b1, ..., bs. Then the factor base
F is all points {a1P + b1Q, ..., asP + bsQ}.
Step 2. Find a relation of the form P1 + . . .+ Pm = O with Pi ∈ F .
Step 3. Substitute each Pi with the corresponding aiP + biQ and get the
relation

m∑
i=1

aiP +
m∑
i=1

biQ = O. (1)

Then Q = −
∑m

i=1(ai/bi)P provided
∑m

i=1 bi is invertible modulo the order
of E (if

∑m
i=1 bi is not invertible, start again). We have thus solved for the

discrete logarithm of Q without doing a linear algebra step.

6

Remark 2.4: Note that the factor base is chosen randomly, as opposed to
the methods mentioned in the first two paragraphs of this section. The al-
gorithm may fail, and if so then it is run again and the re-run will involve a
different choice of random factor base. This is in contrast to the other meth-
ods, where the factor base is clearly defined, and re-running the algorithm
does not result in a different factor base.

In step 2, Amadori et al. propose the following system of polynomial equa-
tions to find relations. Let V be the set of x-coordinates of all the points in
the factor base, i.e. V = {x|(x, y) ∈ F}. Let f(x) =

∏
v∈V (x − v). Then

they solve (via Gröbner basis algorithms) the system

Sm(X1, . . . , Xm) = 0

f(X1) = 0 (2)

. . .

f(Xm) = 0.

Hence, they only consider solutions to Sm(X1, . . . , Xm) = 0 of the form
(x1, ..., xm) ∈ V m, i.e. corresponding to points in the factor base.

Since f has degree s, which is the size of the factor base and could be quite
large, the resolution of the system could be slow. So they propose instead
using m different polynomials, by partitioning the factor base into m different
factor bases Fi of more or less equal size s

m
. V is partitioned into m sets Vi

accordingly, giving m polynomials fi(x) =
∏

v∈Vi
(x − v). They then solve

the system

Sm(X1, . . . , Xm) = 0

f1(X1) = 0 (3)

. . .

fm(Xm) = 0.

Now each of the fi only has degree s
m

approximately, and therefore the
Gröbner basis computation is less expensive. However, this also reduces
the probability of finding a solution in the factor base. We shall give more
details about this in section 6 on complexity estimates.

7

For completeness, we give the full algorithm from [APS18] with this approach:

Algorithm 2.5: [APS18]

Input: elliptic curve E over Fp, points P and Q on E, integers m, s, summa-
tion polynomial Sm

Output: logP (Q)

1. Let s be the size of the factor base. Compute random integers a1, ..., as,
b1, ..., bs. The factor base F is all points {a1P + b1Q, ..., asP + bsQ}.
The corresponding set containing only the x-coordinates of the factor
base points is V = {x|(x, y) ∈ F}. Partition this set into m sets Vi of
approximately equal size. Let fi(x) =

∏
v∈Vi

(x− v), i = 1, . . . ,m.

2. Using a Gröbner basis algorithm, solve system (3). If there is no solu-
tion, go back to step 1.

3. If {x1, . . . , xm} is a solution to the above system, then each xi ∈ Vi and
there exist yi such that (x1, y1)+. . .+(xm, ym) = O where either (xi, yi)
or−(xi, yi) are in F . Substituting each±(xi, yi) with the corresponding
±(aiP+biQ), we get a relation of the form

∑m
i=1±aiP+

∑m
i=1±biQ = O

and can solve for the discrete logarithm of Q, provided
∑m

i=1±bi is
invertible modulo the order of E.

3 Avoiding Gröbner basis computations and

Linear Algebra step

While systems (2) and (3) are a way of algebraically describing that the so-
lutions to Sm lie in the factor base, it seems to us that there should be a
better way to solve this problem than feeding the polynomial system into a
Gröbner basis algorithm. This approach essentially treats the polynomials fi
(or f) as input polynomials to find their common roots with Sm even though
we already know their complete factorisation.

We therefore propose the following alternative to Algorithm 2.5, which does
not use a Gröbner basis algorithm.

8

Algorithm 3.1:

Input: elliptic curve E over Fp, points P and Q on E, integers m, s, summa-
tion polynomial Sm

Output: logP (Q)

1. Let s be the size of the factor base. Compute random integers a1, ..., as,
b1, ..., bs. The factor base F consists of all points {a1P + b1Q, ..., asP +
bsQ}. The corresponding set containing only the x-coordinates of the
factor base points is denoted V = {x|(x, y) ∈ F}.

2. Choose {x1, . . . , xm} a multiset of size m with each xi ∈ V and check
if Sm(x1, . . . , xm) = 0. If not, repeat with another multiset.
If Sm is non-zero for all multisets of size m, go back to step 1.

3. If Sm(x1, . . . , xm) = 0 for some {x1, . . . , xm}, then there exist yi such
that (x1, y1) + . . . + (xm, ym) = O where either (xi, yi) or −(xi, yi) are
in F . Substituting each ±(xi, yi) with the corresponding ±(aiP +biQ),
we get (as in (1)) a relation of the form

∑m
i=1±aiP +

∑m
i=1±biQ = O

and can solve for the discrete logarithm of Q, provided
∑m

i=1±bi is
invertible modulo the order of E.

We will show later in Lemma 5.1 how to efficiently evaluate the summation
polynomials Sm in step 2.

Remark 3.2: In step 2, we can alternatively choose a multiset of m points
{P1, . . . , Pm} from the factor base, and sum those points to see if they give
the point at infinity. This avoids using summation polynomials, and is in
fact faster in theory and in practice (see section 6 and section 7). We omit
the details for this algorithm. We refine this idea in the next section, and
obtain an even faster algorithm.

4 Avoiding Summation Polynomials and

Gröbner bases and Linear Algebra step

The following algorithm is a variation of our Algorithm 3.1. Here, we choose
a multiset of m−1 points from the factor base, and check if the sum of those
points lies in the factor base:

9

Algorithm 4.1:

Input: elliptic curve E over Fp, points P and Q on E, integers m, s

Output: logP (Q)

1. Let s be the size of the factor base. Compute random integers a1, ..., as,
b1, ..., bs. The factor base F is {a1P + b1Q, ..., asP + bsQ}.

2. Choose {P1, . . . , Pm−1} a multiset of size m − 1 with each Pi ∈ F .
Choose v ∈ Fm−1

2 , and let Pv = (−1)v1P1 + . . .+ (−1)vm−1Pm−1. Check
if Pv ∈ F .
If Pv /∈ F for all v ∈ Fm−1

2 , repeat with another multiset.
If there is no solution for all multisets of size m− 1, go back to step 1.

3. If Pv ∈ F for some v then let Pm = −Pv and we get the relation
(−1)v1P1 + . . .+ (−1)vm−1Pm−1 +Pm = O. Substituting each ±Pi with
the corresponding ±(aiP+biQ), we get (as in (1)) a relation of the form∑m

i=1±aiP +
∑m

i=1±biQ = O and can solve for the discrete logarithm
of Q, provided

∑m
i=1±bi is invertible modulo the order of E.

We will provide a complexity estimate of all algorithms in section 6.

Remark 4.2: The motivation for the three given algorithms was the ECDLP
over prime fields. However, none of the algorithms require the field to be of
prime order. They all work for any finite field.

Remark 4.3: Algorithm 2.5 and Algorithm 3.1 use summation polynomi-
als, and therefore the input value of m must be ≤ 8 because the largest
summation polynomial that has been computed so far is S8 as far as we are
aware (see [FHJ+14]). Algorithm 4.1 does not suffer from this problem, and
larger values of m can readily be used.

5 Summation Polynomial Evaluation

Next we will discuss a method for evaluating a summation polynomial Sm

which is faster than a straightforward brute force evaluation. For m = 3
there is no difference, so in our experiments with S3 we did not need to
implement this method. For experiments with m ≥ 4 this method provides
a speed-up.

10

The notation m� s in this paper means that m is constant and small, and
s is arbitrarily large. In practice m is at most 10. We have in mind that
s = p1/m, as used in previous papers.

Lemma 5.1: Evaluating Sm at a point (x1, . . . , xm) can be done in O(log2 p)
steps for m� p.

Proof: It follows from the statement of Theorem 2.2 that S3 can be evaluated
using at most 8 multiplications and 11 additions, and thus has complexity
8O(log2 p) + 11O(log p).

For larger m, we make heavy use of the fact that

Res(f(a,X), g(a,X)) = ResX(f, g)(a)

for polynomials f(x, y), g(x, y) whenever the leading coefficients are non-zero.
Write S3(x1, x2, X) = a2X

2 + a1X + a0 and S3(x3, x4, X) = b2X
2 + b1X + b0.

By Theorem 2.2,

S4(x1, x2, x3, x4) = ResX(S3(x1, x2, X), S3(x3, x4, X))

= det


a2 a1 a0 0
0 a2 a1 a0
b2 b1 b0 0
0 b2 b1 b0


= a2(b0(a2b0 − 2a0b2 − a1b1) + a0b

2
1)

+ b2(a1(a1b0 − a0b1) + a20b2).

Using our optimisation for S3 to evaluate the ai and bi, we can evaluate S4

with at most 21 multiplications and 24 additions, and thus with complexity
21O(log2 p) + 24O(log p).

For m ≥ 5, again by Theorem 2.2,

Sm(x1, . . . , xm) = ResX(S3(x1, x2, X), Sm−1(x3, . . . , xm, X))

= det


a2 a1 a0 0 0 . . . 0
0 a2 a1 a0 0 . . . 0
. . .
b2m−3 b2m−3−1 . . . b0 0

0 b2m−3 . . . b1 b0


= a2(a2C12 − a1C13 + a0(C14 − C23))

+ a1(a1C23 − a0C24) + a20C34

where Sm−1(x3, . . . , xm, X) = b2m−3X2m−3
+ b2m−3−1X

2m−3−1 + · · · + b0 and
S3(x1, x2, X) = a2X

2 + a1X + a0 and Cij is the determinant of the above

11

matrix (Sylvester matrix of S3 and Sm−1) with the ith and jth column removed
and the first and second row removed.

We can evaluate this expression with at most nine multiplications, six ad-
ditions, and six determinant computations of 2m−3 by 2m−3 matrices. Also,
we can evaluate the bi by m − 4 recursive calls to this algorithm (m − 4
calls because once we reach S4, we can evaluate it directly using the ex-
pression earlier in the proof). Thus, we can evaluate Sm using a total of
8(m−4)+21+9(m−4) multiplications, 11(m−4)+24+6(m−4) additions,
and six determinant computations of matrices of size 2m−3 by 2m−3, six of
size 2m−4 by 2m−4, . . . , and six of size 22 by 22.

We assume that the complexity of computing the determinant of an n by
n matrix is O(n3) (see [vzGG13], although this can be improved, see e.g.
[KV05]). This gives a total complexity of (17m − 47)O(log2 p) + (17m −
44)O(log p) + 6(O(23(m−3)) +O(23(m−4)) + . . .+O(23·2)).

So far, the proof holds for any m. Finally, we assume m � p and we get a
complexity of O(log2 p) for evaluating Sm. �

Remark 5.2: See math.ie/ecdlp/ecdlp.html for a Magma implementa-
tion of the method described in this proof. In particular for m ≥ 4 it
is significantly faster than first computing Sm and then evaluating it with
Magma’s in built evaluation function. This method even allows us to evalu-
ate S9 and S10, although nobody has actually computed them yet as far as
we know.

6 Complexity Estimates

Table 1 summarises the complexity of operations in Fp obtained from [MvOV96]
and of operations on an elliptic curve over Fp from [Sil09]. Please note that
there may be faster algorithms for these operations that lead to better com-
plexities, but these improvements will only affect the log factors of our al-
gorithm complexities and will not provide a significant improvement to the
overall complexity here.

12

math.ie/ecdlp/ecdlp.html

Operation Bit complexity
Addition O(log p)

Multiplication O(log2 p)
Inversion O(log2 p)

Point addition O(log2 p)
Point multiplication O(log3 p)

Searching a sequence of length s O(s)

Table 1: Bit complexity of basic operations in Fp and on an elliptic curve
over Fp (not best possible).

Remark 6.1: The number of ways of choosing m elements from a set of
size s, allowing repetitions, is

(
s+m−1

m

)
which is approximately sm

m!
for m� s.

Relations can be of the form P1 ± . . . ± Pm = O with Pi ∈ F , so we get
approximately 2m−1sm

m!
possibilities. The number of points on the curve is

approximately p. Therefore, the probability of obtaining a relation of length
m in F is approximately 2m−1sm

p·m!
, where s = |F| and m� s.

Remark 6.2: There are s
m

ways of choosing each point in the relation giving
2m−1(s

m
)m possibilities for relations of the form P1±. . .±Pm = O with each Pi

coming from the factor base partition Fi of size s
m

. Therefore, the probability
of obtaining a relation of length m with each point coming from a different
partition of the factor base of size s

m
is 2m−1sm

p·mm .

Remark 6.3: The complexity of computing a factor base of size s is bounded
by O(s log3 p), as can be seen from Table 1. (We have to do 2s point multi-
plications of O(log3 p) and s point additions of O(log2 p).)

Remark 6.4: We would like the probability of finding a relation in the fac-
tor base to be close to 1, i.e. in the case of Remark 6.2, we want 2m−1sm

mm ≈ p,
so we should choose the factor base size s accordingly. However, the authors
of [APS18] propose s = p1/m as was chosen in other papers, e.g. [Gau09].
With this choice we will have to run (steps 1 and 2 of) Algorithm 2.5 an
expected number of mm

2m−1 times. Therefore, even though we only require the
computation of one Gröbner basis each time we choose a factor base, we will
in general have computed several factor bases before finding a relation, and
thus we require several Gröbner basis computations in the overall discrete
logarithm algorithm (Algorithm 2.5). If one were to increase s in order to re-
duce the number of Gröbner basis computations needed, then the polynomial
degrees are increasing accordingly, making each Gröbner basis computation
slower. It may therefore be better to keep s = p1/m, but it should be noted
that this choice requires several Gröbner basis computations and not only

13

one as is claimed in [APS18].

The following result estimates the complexity of one Gröbner basis computa-
tion. Let ω ≤ 3 be the linear algebra constant (the constant in the exponent
of the complexity of multiplying matrices, see Chapter 12 of [vzGG13]). The
notation m � s in this paper means that m is constant and small, and s is
arbitrarily large.

Heuristic Result 6.5: The complexity of computing a Gröbner basis of
system (3) in graded reverse lexicographical order is bounded by O(pω−ω/m)
for s = p1/m and m� s.

Proof: Let D be the maximum degree reached during a Gröbner basis com-
putation. There are

(
N+D
N

)
monomials of degree at most D in N variables,

therefore the complexity of a Gröbner basis computation in graded reverse
lexicographical order can be bounded by

(
N+D
N

)ω
as the linear algebra is the

most costly part of the algorithms (see [MP15] and [JV11]).

The maximum degree D reached during a Gröbner basis computation can be
bounded by the Macaulay bound (see [Laz83]) D ≤

∑l
i=1(di − 1) + 1, where

l is the number of polynomials and di is the degree of the ith polynomial.
(Refer to [CG17] for a more detailed discussion.) As system (3) has m + 1
polynomials in m variables, D can be bounded by

∑m+1
i=1 (di − 1) + 1. Also,

Sm has total degree (m − 1) · 2m−2 (Theorem 2.2) and each fi has degree
about s

m
. So we get

D ≤ (m− 1) · 2m−2 − 1 +m(
s

m
− 1) + 1 = (m− 1) · 2m−2 + s−m.

Thus,(
N +D

N

)
≤
(
m+ (m− 1) · 2m−2 + s−m

m

)
=

(s+ (m− 1) · 2m−2)!

m!(s+ (m− 1) · 2m−2 −m)!

=
(s+ (m− 1) · 2m−2) . . . (s+ (m− 1) · 2m−2 −m+ 1)

m!
.

There are m − 1 factors in the numerator, each dominated by s. So we
approximate

(
N+D
N

)
by sm−1

m!
. Thus,(

N +D

N

)ω

≤ sω·m−ω

m!ω
=
pω−ω/m

m!ω
. �

14

Heuristic Result 6.6: The complexity of Algorithm 2.5 is bounded by

mm

2m−1 (O(p1/m log3 p) +O(pω−ω/m)) ≈ O(pω−ω/m)

for s = p1/m and m� s.

Proof: Steps 1 and 2 of Algorithm 2.5 may have to be computed mm

2m−1 times,
each time with complexity O(p1/m log3 p) + O(pω−ω/m) by Remark 6.3 and
Heuristic Result 6.5. Once we get a factor base that yields a solution, we
need to compute the solutions from the Gröbner basis in grevlex order. In
theory, one may have to do a change of ordering algorithm to get a Gröbner
basis in lexicographical ordering, from which we can compute the solutions.
However, the probability of getting more than one solution to system (3) is
negligible (by Remark 6.2, the probability of obtaining a relation of length
m is 2m−1

mm so the probability of obtaining two relations is the square of this).
When we only find one solution the Gröbner basis elements have the form
xi − a and therefore the change of ordering is trivial. �

Remark 6.7: Even if the algorithm does find a grevlex Gröbner basis with
two solutions, the basis elements will be quadratic or linear, and again this
is easy to solve and a change of ordering is not necessary.

Remark 6.8: It is reasonable to assume that m is small when using sum-
mation polynomials, since the largest summation polynomial that has been
computed so far is S8 (see [FHJ+14]).

Remark 6.9: With ω = 3 and m = 3 the complexity of Algorithm 2.5 is
O(p2). This roughly agrees with our experiments.

Heuristic Result 6.10: The complexity of Algorithm 3.1 is O(p log2 p) for
m� s and m� p and sm−1

m!
≥ log p.

Proof: As noted in Remark 6.1, there are sm

m!
ways of choosing m elements

from the set F of size s, allowing repetitions, for small m. By Lemma 5.1,
evaluating Sm is O(log2 p), giving a total of sm

m!
O(log2 p) in the worst case.

By Remark 6.1 we need an expected number of p·m!
2m−1sm

trials, giving

p ·m!

2m−1sm
(
sm

m!
O(log2 p) +O(s log3 p)) ≈ O(p log2 p)

when sm−1

m!
≥ log p. �

Remark 6.11: Replacing the evaluation of Sm by adding m points together
as in Remark 3.2, gives a complexity of (m− 1)O(p log2 p) ≈ O(p log2 p) for
small m.

15

Heuristic Result 6.12: The complexity of Algorithm 4.1 is O(p) form� s
and s ≥ (m− 2) log2 p.

Proof: There are 2m−1 sm−1

(m−1)! different ways of forming the sum ±P1 ± . . . ±
Pm−1, with Pi ∈ F , allowing repetitions, for small m and s = |F|. Let
Pm = ±P1 ± . . . ± Pm−1. The complexity of each sum is (m − 2)O(log2 p).
For each combination, we check if Pm is in F , which is O(s). If the sum is
in F , we get a relation of the form ±P1 ± . . .± Pm−1 − Pm = O. So we still
get a relation with probability as in Remark 6.1, so the complexity of this
algorithm is p·m!

2m−1sm
(2m−1 sm−1

(m−1)!((m − 2)O(log2 p) + O(s)) + O(s log3 p)). If

s ≥ (m− 2) log2 p then this is p·m
s
O(s) ≈ O(p) for small m. �

7 Experimental Results

We ran experiments in Magma V2.21-6 [BCP97] with m = 3 and m = 4 to
time

• the Algorithm 2.5 first given in [APS18] (called Type Gröbner),

• our Algorithm 3.1 (called Type Eval Sm),

• our Algorithm 3.1 using the evaluation for Sm described in Lemma 5.1
(called Type Eval Sm †),

• our Algorithm 4.1 (Type Sum in F),

all with the same parameters. See math.ie/ecdlp/ecdlp.html for a Magma
implementation of all three algorithms.

We have used a factor base size of s = dp1/me in line with [APS18]. The
results are summarised in Tables 2 and 3, where

• TF(s) denotes the time in seconds it took to compute the factor bases
(step 1 of the algorithms),

• Tsolve(s) denotes the time in seconds it took to find a solution (step 2),

• we did not include the timings for step 3 as they are negligible,

• the column “trials” shows the number of times we had to compute a
factor base before finding a solution (i.e. how many times step 1 and 2
were done.)

16

math.ie/ecdlp/ecdlp.html

Remark 7.1: The experiments in Table 2 clearly show that for those field
sizes our Algorithm 4.1 is the fastest, which agrees with the complexity
analysis. Both our algorithms are much faster than Algorithm 2.5 given
in [APS18], and that paper shows that their algorithm is in turn faster than
the one in [PKM16].

Remark 7.2: As we remarked in section 6, the experiments also show that
we need to run several Gröbner basis computations in order to solve the
discrete logarithm problem using the approach reported in [APS18] (Algo-
rithm 2.5).

Remark 7.3: As expected by Remark 6.1 and Remark 6.2, when m = 4,
more trials are needed before a relation in the factor base is found, suggesting
that the size of the factor base is too small. In fact, the complexity of our
Algorithm 3.1 and Algorithm 4.1 grows with m so it may be an advantage
to keep to m = 3 and increase the size of the factor base.

Remark 7.4: Table 3 shows that using the evaluation function for Sm de-
scribed in Lemma 5.1 significantly speeds up Algorithm 3.1 for m = 4. It
even outperforms Algorithm 4.1 for small values of p.

Remark 7.5: Table 4 shows experimental results for s = (m! · p · 21−m)1/m

using our Algorithm 4.1, over prime fields of bigger size. (This choice of s
gives a probability of obtaining a relation in the factor base of approximately
1 according to Remark 6.1.) The other algorithms could not finish in reason-
able time with p this size. They again show that m = 3 is faster than m = 4.
For m = 2, step 2 of the algorithm (Tsolve(s)) is faster than for m = 3, but
building the factor base (TF(s)) takes more time, so overall m = 2 is slower
than m = 3. So it seems that for Algorithm 4.1, m = 3 is the best choice.

Remark 7.6: Both versions of our algorithm require much less memory than
the Gröbner basis approach.

It is also worth noting that our algorithms are embarrassingly parallel, while
using a Gröbner basis to solve system (3) is much harder to parallelize.

17

Type p m s trials TF(s) Tsolve(s) Mem(MB)
Gröbner 55673 3 39 5.00 6.80E-3 0.31 33.62
Eval Sm 55673 3 39 1.88 2.38E-3 0.06 33.62

Sum in F 55673 3 39 1.86 2.53E-3 0.05 33.62
Gröbner 719267 3 90 7.98 0.03 16.94 67.24
Eval Sm 719267 3 90 2.03 9.32E-3 0.86 33.56

Sum in F 719267 3 90 1.95 7.79E-3 0.34 33.62
Gröbner 6443737 3 187 6.57 0.07 290.50 917.50
Eval Sm 6443737 3 187 2.00 0.02 7.30 33.62

Sum in F 6443737 3 187 2.05 0.02 1.97 33.62
*Gröbner 30056657 3 311 7.88 0.14 96384.00 4555.01
Eval Sm 30056657 3 311 2.33 0.04 42.62 33.56

Sum in F 30056657 3 311 2.16 0.05 14.08 33.62

Table 2: Average values on 100 experiments for each p (the one marked with
* was only run 8 times). Type Gröbner denotes Algorithm 2.5, Eval Sm

denotes Algorithm 3.1, Sum in F denotes Algorithm 4.1

Type p m s trials TF(s) Tsolve(s) Mem(MB)
Gröbner 55673 4 16 33.89 0.02 0.50 33.62
Eval Sm 55673 4 16 3.35 2.84E-3 0.79 33.62

Eval Sm † 55673 4 16 3.14 2.02E-3 0.18 33.62
Sum in F 55673 4 16 2.76 1.93E-3 0.20 33.62
Gröbner 719267 4 30 35.47 0.06 19.19 33.62
Eval Sm 719267 4 30 3.42 4.86E-3 9.50 33.62

Eval Sm † 719267 4 30 2.89 3.72E-3 1.22 33.62
Sum in F 719267 4 30 3.23 3.67E-3 1.54 33.56
Gröbner 6443737 4 51 32.92 0.09 412.00 169.34
Eval Sm 6443737 4 51 3.17 8.19E-3 66.25 33.62

Eval Sm † 6443737 4 51 3.72 8.70E-3 11.08 33.62
Sum in F 6443737 4 51 3.69 9.00E-3 9.03 33.62
Eval Sm 30056657 4 75 3.06 0.01 288.50 33.56

Eval Sm † 30056657 4 75 3.08 0.01 38.75 33.62
Sum in F 30056657 4 75 3.42 0.02 37.00 33.62

Table 3: Average values on 100 experiments for each p. Type Gröbner de-
notes Algorithm 2.5, Eval Sm denotes Algorithm 3.1, Eval Sm † denotes
Algorithm 3.1 with Lemma 5.10, Sum in F denotes Algorithm 4.1

18

Type p m s trials TF(s) Tsolve(s) Mem(MB)
Sum in F 55673 2 236 2.80 0.03 3.67E-3 33.56
Sum in F 55673 3 44 1.48 2.27E-3 0.04 33.62
Sum in F 55673 4 21 1.47 1.02E-3 0.17 33.62
Sum in F 719267 2 849 2.43 0.11 0.05 33.62
Sum in F 719267 3 103 1.62 6.34E-3 0.30 33.62
Sum in F 719267 4 39 1.52 2.76E-3 1.05 33.56
Sum in F 6443737 2 2539 2.45 0.62 0.51 33.62
Sum in F 6443737 3 214 1.56 0.02 1.68 33.62
Sum in F 6443737 4 67 1.65 3.93E-3 6.71 33.62
Sum in F 30056657 2 5483 2.59 5.73 7.40 33.56
Sum in F 30056657 3 356 1.54 0.04 11.58 33.62
Sum in F 30056657 4 98 1.39 7.87E-3 24.81 33.62
Sum in F 75426619 2 8685 2.77 14.94 20.72 33.56
Sum in F 75426619 3 484 1.46 0.05 25.59 33.56
Sum in F 75426619 4 123 1.84 0.01 90.12 33.56
Sum in F 161532773 3 624 1.73 0.09 66.25 33.62
Sum in F 4911016471 3 1946 1.69 0.91 1126.00 33.56
Sum in F 30951732491 3 3595 1.67 2.10 6848.00 33.62

Table 4: Average values on 100 experiments for each p using Algorithm 4.1

References

[APS18] Alessandro Amadori, Federico Pintore, and Massimiliano Sala.
On the discrete logarithm problem for prime-field elliptic curves.
Finite Fields and Their Applications, 51:168 – 182, 2018.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma
algebra system. I. The user language. J. Symbolic Comput., 24(3-
4):235–265, 1997. Computational algebra and number theory
(London, 1993).

[CG17] Alessio Caminata and Elisa Gorla. Solving multivariate poly-
nomial systems and an invariant from commutative algebra. 06
2017. https://eprint.iacr.org/2017/593.

[Duz] S. V. Duzhin. Lecture 10 the sylvester resultant. http://www.

pdmi.ras.ru/~lowdimma/topics_nth/Resultants.pdf.

19

https://eprint.iacr.org/2017/593
http://www.pdmi.ras.ru/~lowdimma/topics_nth/Resultants.pdf
http://www.pdmi.ras.ru/~lowdimma/topics_nth/Resultants.pdf

[FHJ+14] Jean-Charles Faugère, Louise Huot, Antoine Joux, Guénaël Re-
nault, and Vanessa Vitse. Symmetrized summation polynomials:
Using small order torsion points to speed up elliptic curve index
calculus. Advances in Cryptology – EUROCRYPT 2014 Lecture
Notes in Computer Science, 8441:40–57, 2014.

[Gau09] Pierrick Gaudry. Index calculus for abelian varieties of small di-
mension and the elliptic curve discrete logarithm problem. Jour-
nal of Symbolic Computation, 44(12):1690–1702, 2009.

[JV11] Antoine Joux and Vanessa Vitse. A variant of the f4 algorithm.
In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011,
pages 356–375, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

[JV13] Antoine Joux and Vanessa Vitse. Elliptic curve discrete logarithm
problem over small degree extension fields. J. Cryptol., 26(1):119–
143, 2013.

[KV05] Erich Kaltofen and Gilles Villard. On the complexity of comput-
ing determinants. Computational Complexity, 13(3-4):91–130, feb
2005.

[Laz83] D. Lazard. Gröbner bases, gaussian elimination and resolution of
systems of algebraic equations. In J. A. van Hulzen, editor, Com-
puter Algebra, pages 146–156, Berlin, Heidelberg, 1983. Springer
Berlin Heidelberg.

[MP15] Michael Monagan and Roman Pearce. A compact parallel imple-
mentation of f4. In Proceedings of the 2015 International Work-
shop on Parallel Symbolic Computation, PASCO ’15, pages 95–
100, New York, NY, USA, 2015. ACM.

[MvOV96] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[PKM16] Christophe Petit, Michiel Kosters, and Ange Messeng. Algebraic
approaches for the elliptic curve discrete logarithm problem over
prime fields. Public-Key Cryptography, 9615:3–18, 2016.

[Sem04] Igor Semaev. Summation polynomials and the discrete logarithm
problem on elliptic curves. Cryptology ePrint Archive, Report
2004/031, 2004. http://eprint.iacr.org/2004/031.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves, 2nd
Edition. Graduate Texts in Mathematics, Springer, 2009.

20

http://eprint.iacr.org/2004/031

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer
Algebra, Third Edition. Cambridge University Press, 2013.

21

	Introduction
	Background
	Summation Polynomials
	Point Decomposition with Summation Polynomials
	Factor base over prime fields

	Avoiding Gröbner basis computations and Linear Algebra step
	Avoiding Summation Polynomials and Gröbner bases and Linear Algebra step
	Summation Polynomial Evaluation
	Complexity Estimates
	Experimental Results

