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Abstract. Very recently, a key exchange scheme called HK17 was sub-
mitted to NIST as a candidate of the standard of post-quantum cryptog-
raphy. The HK17 scheme employs some hypercomplex numbers as the
basic objects, such as quaternions and octonions. In this paper, we show
that HK17 is insecure since a passive adversary can recover the shared
key in polynomial time.

1 Introduction

In December of 2017, NIST published the Round 1 submissions for the Post-
Quantum Cryptography. Among all the candidate schemes, a key exchange
called HK17 was proposed by Hecht and Kamlofsky [1]. Different from most
of the popular schemes, the HK17 scheme uses hypercomplex numbers, such as
quanternions and octonions.

Some strong points of HK17 were also pointed out in [1], such as: using
ordinary modular arithmetic but without big number libraries, relatively fast
operation, non-associativity of products and powers, parametric security levels,
no classical nor quantum attack at sight, possible resistance to side-channel
attacks, easy firmware migration and conjectured semantical security IND-CCA2
compliance.

However, in this paper, we will show that the HK17 scheme is not secure.
More precisely, any passive adversary can recover the shared key very efficiently.

2 Preliminaries

2.1 Quaternions and Octonions

In mathematics, Quaternions and Octonions are generalization of the complex
numbers. Quaternions are the noncommutative generalization of the complex
numbers. In general, a quaternion can be represented in the following form:

a+ bi + cj + dk
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where a, b, c, d are all real numbers and i, j,k are the fundamental quaternion
units. Furthermore, the units i, j,k satisfy the following identities:

i2 = j2 = k2 = ijk = −1.

The octonions are nonassociative generalization of quaternions. Generally
speaking, an octonions o can be represented as a real linear combination of the
unit octonions:

o = a0e0 + a1e1 + · · ·+ a7e7

where e0 is the real number 1. Furthermore, the product of each pair of terms
can be given by multiplication of the coefficients and a multiplication table of
the unit octonions, like the following:

eiej =


ei i = 0

ej j = 0

− δije0 + εijkek otherwise

where δij is the Kronecker delta and εijk = 1 when ijk = 123, 145, 176, 246,
257, 357, 347, 365.

2.2 HK17

The HK17 Key Exchange scheme uses some hypercomplex numbers such as
quaternions and octonions. We take the octonions version as an example to
describe this scheme.

* Initialization:
1) Alice choose two non-zero octonions oA, oB with each coordinate uniformly

in Zp with some prime p;
2) Alice choose two integers m, n and a non-zero polynomial f(x) ∈ Zp[x]

with degree d such that f(oA) 6= 0, and (f,m, n) is Alice’s private key;
3) Alice send oA and oB to Bob;
4) Bob choose two integers r, s and a non-zero polynomial h(x) ∈ Zp[x] with

degree d such that h(oA) 6= 0, and (h, r, s) is Alice’s private key.
* Computing the tokens:

1) Alice compute the value rA = f(oA)moBf(oA)n and send it to Bob;
2) Bob compute the value rB = h(oA)roBh(oA)s and send it to Alice.

* Computing Session Keys:
1) Alice compute her key: KA = f(oA)mrBf(oA)n;
2) Bob compute his key: KB = h(oA)rrAh(oA)s.

It can be verified that

KA = f(oA)mrBf(oA)n

= f(oA)mh(oA)roBh(oA)sf(oA)n

= h(oA)rf(oA)moBf(oA)nh(oA)s

= h(oA)rrAh(oA)s

= KB

Finally, Alice and Bob share the common key KA = KB .
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3 Our Attack against the Octonions Version of HK17

3.1 The key observation

We have the following key observations.

Lemma 1. For any octonion o, we can find α, β in polynomial time such that

o2 + αo + β = 0.

Furthermore, when all the coordinates of o are in Zp, for any polynomial g(x) ∈
Zp[x], there exist a, b ∈ Zp, such that

g(o) = ao + b.

Proof. Given an octonion o = a0e0 + a1e1 + · · ·+ a7e7, we have

(a0e0 + a1e1 + · · ·+ a7e7)2

=(a20 − a21 − · · · − a27)e0 + 2a0a1e1 + · · ·+ 2a0a7e7

=2a0(a0e0 + · · ·+ a7e7)− (a20 + · · ·+ a27)e0

Let
α = −2a0, β = a20 + · · ·+ a27.

Then o = a0e0 + a1e1 + · · ·+ a7e7 is a solution of

x2 + αx+ β = 0.

Then for any polynomial g(x) ∈ Zp[x], we can write

g(x) = (x2 + αx+ β)q(x) + (ax+ b),

which implies immediately that

g(o) = ao + b.

Lemma 2. For HK17, given oA, oB, rA, there exists a polynomial time (in
log p) algorithm to find a, b, c, d ∈ Zp such that

rA = (aoA + b)oB(coA + d).

Proof. By Lemma 1, we know that there exist a, b, c, d ∈ Zp, such that

f(oA)m = aoA + b, and f(oA)n = coA + d.

Therefore, we can write

rA = f(oA)moBf(oA)n

= (aoA + b)oB(coA + d)

= acoAoBoA + adoAoB + bcoBoA + bdoB
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By comparing every corresponding coordinate of rA and acoAoBoA+adoAoB +
bcoBoA + bdoB , we will have eight linear equations with four unknowns ac, ad,
bc, bd. By the existence of a, b c, d, we can always solve the system of the eight
linear equations to get a solution (s1, s2, s3, s4) for (ac, ad, bc, bd).

Note that since a, b can not be zero at the same time if rA 6= 0, so we can
tell from which is nonzero. For example if s1 = 0 and s2 = 0, then b must not
be zero. Similarly, we can also know that if c or d is zero or not. Without loss of
generality, assume a 6= 0, c 6= 0, then we can set a = 1, and

(1, s−1
1 s3, s1, s2)

must be a solution, since

rA = (aoA + b)oB(coA + d)

= a(oA + a−1b)oB(coA + d)

= (oA + a−1b)oB(acoA + ad).

Note that we can also set a to be any nonzero element in Zp and solve the
other corresponding b, c, d.

Lemma 3. For HK17 key exchange scheme, if we can find any two polynomial
g1(x), g2(x) ∈ Zp[x], such that

rA = g1(oA)oBg2(oA),

then the shared key
K = g1(oA)rBg2(oA).

Proof. Note that

KB = h(oA)rrAh(oA)s

= h(oA)rg1(oA)rBg2(oA)h(oA)s

= g1(oA)h(oA)rrBh(oA)sg2(oA)

= g1(oA)rBg2(oA)

= K.

The lemma follows.

3.2 Our Attack

Based on the lemmas above, we present our attack.

Step 1 When the adversary gets oA, oB , rA by eavesdropping, he can compute
a, b, c, d ∈ Zp such that

rA = (aoA + b)oB(coA + d),

by Lemma 2.
Step 2 Compute

K = (aoA + b)rB(coA + d).

By Lemma 3, we know K is exactly the shared key established by Alice and
Bob.
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3.3 Experimental Result

We take the example on Page 11 in [1] to verify our attack. In the example, we
have

– p = 251;
– oA = (157, 188, 177, 188, 203, 149, 217, 148);
– oB = (40, 207, 6, 33, 75, 79, 98, 54);
– rA = (121, 3, 110, 243, 184, 230, 202, 171);
– rB = (90, 42, 17, 119, 150, 23, 110, 182).

After Step 1 in our attack, we find the solution (1, 142, 75, 187) such that

rA = (oA + 142)oB(75oA + 187).

After Step 2, we recover the shared key

K = (oA + 142)rB(75oA + 187) = (84, 242, 130, 31, 84, 244, 45, 20),

which is exactly the shared key established in [1].

4 Our Attack against the Quaternions Version of HK17

In [1], a quaternions version was also proposed, which has the same framework
to the octonions version, but with an additional normalization. It can be easily
concluded that our attack can be extended to the quaternions version of HK17,
since for any quaternions q = a + bi + cj + dk, it also satisfied a quadratic
equation

x2 − 2ax+ (a2 + b2 + c2 + d2) = 0.
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