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Abstract. Masking is a common technique to protect software imple-
mentations of symmetric cryptographic algorithms against Differential
Power Analysis (DPA) attacks. The development of a properly masked
version of a block cipher is an incremental and time-consuming process
since each iteration of the development cycle involves a costly leakage
assessment. To achieve a high level of DPA resistance, the architecture-
specific leakage properties of the target processor need to be taken into
account. However, for most embedded processors, a detailed description
of these leakage properties is lacking and often not even the HDL model
of the micro-architecture is openly available. Recent research has shown
that power simulators for leakage assessment can significantly speed up
the development process. Unfortunately, few such simulators exist and
even fewer take target-specific leakages into account. To fill this gap, we
present MAPS, a micro-architectural power simulator for the M3 series
of ARM Cortex processors, one of today’s most widely-used embedded
platforms. MAPS is fast, easy to use, and able to model the Cortex-M3
pipeline leakages, in particular the leakage introduced by the pipeline
registers. The M3 leakage properties are inferred from its HDL source
code, and therefore MAPS does not need a complicated and expensive
profiling phase. Taking first-order masked Assembler implementations
of the lightweight cipher Simon as example, we study how the pipeline
leakages manifest and discuss some guidelines on how to avoid them.

Keywords: Leakage assessment, architecture-specific leakage, pipeline
leakage, power simulator, Cortex-M3

1 Introduction

Side-channel attacks [14] pose a serious threat to the security of cryptographic
primitives, in particular when they are executed on mobile or embedded devices
that are physically accessible to an attacker. A typical example of such devices
are wireless sensor nodes, which are often deployed in unattended areas and do
not come with any measures or techniques to minimize the leakage of sensitive
information through power or electromagnetic (EM) side channels. One of the
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most sophisticated forms of side-channel attack is Differential Power Analysis
(DPA), first described in the open cryptographic literature almost 20 years ago
by Kocher et al. [13]. A standard DPA attack involves two steps, namely (i) an
acquisition step, in which the attacker measures the power consumption of the
target device while it executes a cryptographic algorithm, and (ii) an analysis
step, in which she uses advanced statistical techniques to recover the sensitive
(i.e. key-dependent) data processed during the execution of the algorithm from
the acquired power consumption traces. There exists a large body of literature
demonstrating successful DPA attacks against (unprotected) implementations
of both secret-key and public-key cryptographic primitives, see e.g. [15] and the
references therein. In the case of block ciphers, it was shown that a few dozens
of power traces can be sufficient to reveal the full secret key [7].

Due to the efficacy of DPA attacks, it is necessary to protect an implemen-
tation of a block cipher through the integration of countermeasures. One of the
most well-known and widely used DPA countermeasures is masking, which can
be realized in both hardware and software [8,11,22]. Masking aims to conceal
every key-dependent variable with a random value, called mask, to de-correlate
the sensitive data of the algorithm from the data that is actually processed on
the device. The basic principle is related to the idea of secret sharing because
every sensitive variable is split up into n ≥ 2 “shares” so that any combination
of up to d = n− 1 shares is statistically independent of any secret value. These
n shares have to be processed separately during the execution of the algorithm
(to ensure their leakages are independent of each other) and then recombined in
the end to yield the correct result. What makes masking attractive is that its
security can be proven in the framework of Isai, Sahai, and Wagner [12]. How-
ever, despite the theoretical security guarantees, it turned out that masking is
challenging to implement in practice without introducing unintended (and often
unobvious) leakage. For example, it was shown in [16] that a masked hardware
implementation of the AES can be broken by exploiting glitches at the outputs
of logic gates. On the other hand, software implementations of masked ciphers
can also be vulnerable to DPA attacks because of unintended violations of the
independent leakage requirement mentioned above, typically caused by certain
micro-architectural effects and features [4,18,21]. Therefore, it is important to
check whether a masked implementation meets its theoretical security promises
also in practice (i.e. does not show any DPA-exploitable leakage), which can be
done by performing a leakage assessment test [6] or a full DPA attack.

Developing a masked software implementation of a block cipher is a tedious
and highly iterative endeavor. The developer tries to eliminate existing leakage
and then performs a leakage assessment, and thereafter the same cycle starts
again until no leakage can be detected anymore [4,7]. In order to decrease the
development time, a power simulator like ELMO [17] can be used to generate
the power traces. However, to get realistic traces, the simulator should be able
to take certain micro-architectural effects into account, in particular the inter-
instruction dependencies in the power consumption (and, hence, leakage) of the
target processor. For example, due to pipelining effects, the power consumption
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caused by the execution of a certain instruction does not solely depend on the
operands/results and from/to which register(s) they are read/written, but also
on preceding and succeeding instructions that are in the pipeline at the same
time. ELMO takes these effects into account by using measured power charac-
teristics and by grouping instructions together. In the case of ARM Cortex M0
and M4 microcontrollers, which are currently supported by ELMO, up to three
instructions need to be considered since the pipeline has three stages.

Even though ELMO is a undoubtedly a useful tool, it suffers from a couple
of shortcomings. In particular, getting realistic instruction-level power models is
a non-trivial task and requires a lot of measurements. Furthermore, in order to
model differential data-dependent effects of “neighboring” instructions, ELMO
uses power models for groups of instructions, whereby the size of the groups is
determined by the number of instructions that can be in the processor pipeline
at the same time (i.e. the number of pipeline stages). This approach achieves
promising results, as demonstrated through several experiments by the authors
of [17], but seems only viable for processors with few (e.g. up to three) pipeline
stages. However, there exists a large number of embedded processors with five
(e.g. ARM9), eight (e.g. ARM11), or even eleven (e.g. Cortex-R7/R8) pipeline
stages, which makes it very costly to develop accurate power models for groups
of instructions. Our simulator MAPS (Micro-Architectural Power Simulator) is
based on a different approach and takes the inter-instruction dependency of the
power consumption into account by utilizing a more refined micro-architectural
model of the target processor. Specifically, MAPS models all pipeline registers
and validates these models through simulations with an HDL description of the
target micro-architecture. Thus, MAPS has two advantages over ELMO: (i) the
power model does not require any measurements, especially no measurements
of inter-instruction dependencies, and (ii) MAPS is also suitable for processors
with deep(er) pipelines consisting of more than three stages.

Our Contributions. We present the basic concepts of MAPS, which is to the
best of our knowledge the first open-source power simulator for leakage assess-
ment targeting the Cortex-M3 architecture, one of the most popular platforms
in the embedded domain. Besides being fast and easy to use, MAPS is capable
to model (certain) architecture-specific leakages based on a structural analysis
of an HDL description of the Cortex-M3 pipeline. As a second contribution, we
analyze the impact of pipeline registers on the leakage of masked ciphers.

2 State of the Art

Over the years, numerous power simulators have been developed; the interested
reader can find a survey in [24, Sect. 5.3]. We focus here on recent simulators
that perform high-level simulations rather than analog or transistor/gate-level
simulations. While low-level simulators are, in general, more accurate, they are
relatively slow and rely on VLSI-technology-specific data (e.g. netlists, parasitic
components, back-annotated delays), which is usually not publicly available.
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Gagnerot introduced in his thesis [10] a power simulator that was developed
for leakage assessment of cryptographic implementations. It is able to generate
power traces by monitoring all read/write operations on the registers and buses
of a complete system (e.g. a smart card). No concrete details of the system are
described because the power simulator was developed in collaboration with an
industry partner. However, what was stated is that it contained a 16-bit RISC
processor, UART interfaces, as well as two coprocessors. The simulator accepts
a compiled binary object file as input. Neither the simulator nor its source code
are publicly available; hence, it is not known how detailed the modeling of the
processor is, e.g. whether it includes the pipeline registers or not.

SILK stands for “Simple Leakage Simulator” and was presented by Veshchi-
kov in 2014 [23]. It is not tied to a specific processor architecture but generates
power traces using a high level of abstraction. The power model is very flexible
and can be easily adapted to support different leakage scenarios. SILK accepts
a C file as input. The source code is publicly available on Github1.

Also Reparaz described in [19] a simulator capable to generate power traces
from a high-level C description of a cryptographic algorithm. The values of the
intermediate variables are traced after the implementation has been compiled
with a modified version of the LLVM compiler. Thus, the simulator is not tied
to a specific architecture. Yet, it is fast and also provides debugging capabilities
that help a developer to pinpoint the sources of leakage.

ELMO (“Emulator for Power Leakage for Cortex M0”) was introduced in
2016 by McCann et al. [17]. It is dedicated to the Cortex-M0 and M4 families
of processors and takes a compiled binary object file as input. ELMO is based
on an existing ARM v6-M emulator, which was “back-annotated” with leakage
information. This leakage information was extracted using elaborate statistical
processing that was applied to power measurements performed on a hardware
setup. Therefore, ELMO belongs to the category of profiled simulators. Due to
limitations of the underlying emulator, it supports only the Thumb instruction
set but not Thumb-2. The reported leakages are potentially very accurate since
the hardware measurements include various leakage effects such as glitches and
coupling. However, adding a new target to ELMO is very challenging because
it requires an elaborate measurement setup and the statistical processing has to
be done again since it depends on the characteristics of the target instruction
set and micro-architecture, e.g. pipeline depth. ELMO is publicly available2.

3 Cortex-M3 Architecture-Specific Leakages

3.1 Cortex-M3 Overview

The Cortex-M3 is a 32-bit RISC processor developed by ARM that implements
version v7-M [1] of the ARM instruction set. It is one of the most widely-used
embedded platforms because it combines an efficient and compact instruction
1 https://github.com/nikita-veshchikov/silk
2 https://github.com/bristol-sca/ELMO

https://github.com/nikita-veshchikov/silk
https://github.com/bristol-sca/ELMO
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set with a high-quality tool chain. The Cortex-M3 has a Harvard architecture
with both 16-bit and 32-bit instructions as well as a 32-bit data path. It does
not include a data cache and comes with a pre-fetch buffer instead of a more
complex instruction cache. Like other 32-bit ARM processors, the Cortex-M3 is
equipped with 16 registers; besides 13 general-purpose registers (r0-r12) there is
a stack pointer (r13), a link register (r14), and a program counter (r15).

The arithmetic and logical instructions operate solely on registers. A barrel
shifter located between the register file and the Arithmetic-Logic Unit (ALU)
allows one to combine an ALU operation with a shift or rotation of the second
operand. Most ALU instructions execute in one cycle; the only exceptions are
mul (multiply), div (divide), and operations targeting the program counter.

The pipeline is made of three stages. In the first stage, the instruction gets
fetched from instruction memory. Thereafter, the instruction is decoded in the
second stage, and finally executed in the third stage. Conditional branches are
speculated (i.e. one of the alternative instructions is speculatively executed and
eventually discarded if it turns out that the speculation was wrong). Store to
memory instructions (e.g. str) are buffered and executed in one cycle, whereas
load from memory instructions (e.g. ldr) introduce a wait-state. The typical
Clock-Per-Instruction (CPI) figure for embedded software is close to 1.

3.2 Cortex-M3 HDL Analysis

ARM makes the entire HDL source code of the Cortex-M3 processor available
to universities via the DesignStart Pro Academic program. The source package
contains the M3 core, which is described in a set of Verilog files, and a minimal
system that connects the core with the memories through AMBA (“Advanced
Microcontroller Bus Architecture”) buses. The system also includes peripherals
like communication and debugging interfaces to enable developers to trace the
execution of a program. By default, the Verilog simulation of the system loads
and executes a C program cross-compiled for the ARM v7-M architecture.

Since we have access to the HDL source code, all registers related with the
data path can be isolated and then traced. At the logic level, any information
leakage could be related to the values held by the registers. The dependencies
between the succeeding instructions and the sensitive data will be captured too
since these registers also define the pipeline stages. All registers in the core can
be easily found by looking for signals defined with the Verilog keyword reg and
assigned in an “always @(posedge <clock>)” block. Of these registers, only the
ones involved in the manipulation of data are relevant from a leakage-detection
point of view. We can further discriminate by selecting the registers that have
a width of 32 bits. In addition, since the ALU operates exclusively on operands
read from registers, only the 32-bit registers connected to the two output ports
of the register file have to be analyzed. Based on these criteria, the 16 registers
of the register file (i.e. r0 to r15), along with two registers ra and rb located
between the register file and the ALU and three registers inside the ALU, are
retained. However, the latter three registers are solely used during multi-cycle
ALU instructions like umull, umlal, or udiv. Since such instructions are quite
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Fig. 1. Simplified structure of the Cortex-M3 pipeline

uncommon in the context of symmetric cryptosystems, we decided to not trace
these three registers. The program counter r15 is also not traced by default in
order to limit the length of the power traces. A major requirement for secure
cryptographic software is that the control flow is independent of any sensitive
data; if this is the case then the program counter can not leak anyway.

The registers ra and rb are pipeline registers isolating the decode from the
execute stage. Their existence and location could have also been inferred from
the fact that an ALU instruction can be executed while the succeeding instruc-
tion can access the registers. However, our analysis of the HDL code confirmed
their exact location and allowed us to find out what values are written to them
in each instruction. A simplified version of the pipeline is shown in Fig. 1.

3.3 Cortex-M3 Pipeline Leakages

The registers ra and rb are specific to the pipeline architecture of the M3 pro-
cessor. They are a possible source of leakage since they combine operand values
of consecutive instructions. Indeed, the power consumption associated with the
writing to these registers is directly related to the Hamming distance between
the current operand value and the previous one. Both the first and the second
operand of ALU instructions can be affected. Since the register ra connects the
the register file with the barrel shifter, even an ALU instruction with a shifted
or rotated second operand may leak through this register.
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Listing 1. Code fragment with second-operand leakage

; r2 and r3 conta in the two shares
; r4 and r5 conta in random and unre l a t ed va l u e s
; r6 and r7 are i n i t i a l i z e d to 0
and r 6 , r 4 , r 2 , l s l 4
orr r 7 , r 5 , r 3 , ro r 5
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Fig. 2. T-test confirming second-operand leakage (hardware measurements)

Register Transfer Notation 1. Equivalent to Listing 1
1: rb← r4
2: ra← r2
3: r6← rb ∧ (ra� 4)
4: rb← r5
5: ra← r3 . Power(ra) = HW (r2⊕ r3)
6: r7← rb ∨ (ra ≫ 5)

Listing 1 illustrates such a leakage. In this code fragment, the two registers
r2 and r3 hold the shares of a secret value, which is (r2⊕ r3). Register r4 and
r5 contain arbitrary values unrelated with the content of other registers. From
an architectural view, there should be no leakage. However, our measurements
on an actual Cortex-M3 processor show that there is a leakage, as illustrated in
Fig. 2. The measurements were taken on an Atmel Cortex-M3 SAM3X8E chip
using a Langer EM probe connected to a LeCroy WR 8254M oscilloscope sam-
pling at 500 MSamples/s. This leakage is not difficult to explain when we take
all register transfers involving ra and rb into account. Listing 1 is equivalent to
the Register Transfer Notation 1. As expected, (r2⊕ r3) leaks through ra.



8 Y. Le Corre et al.

Listing 2. Code fragment with str instruction leakage

; r2 and r3 conta in the two shares
str r 2 , [ r 0 , 0 ]
str r 3 , [ r 0 , 4 ]

Register Transfer Notation 2. Equivalent to Listing 2
1: rb← r0
2: ra← r2
3: rb← r0
4: ra← r3 . Power(ra) = HW (r2⊕ r3)

In general, every instruction using a value read from a general-purpose reg-
ister is affected, not only the ALU instructions. For example, all memory store
instructions will leak when executed one right after another, as in Listing 2 and
its equivalent Register Transfer Notation 2. The leakage of the str instructions
extends further to the push and the store-multiple (stm) instructions since the
latter are actually a shorthand for a sequence of str instructions.

3.4 Guidelines to Reduce Cortex-M3 Pipeline Leakage

The Cortex-M3 pipeline leakages can be reduced or even entirely circumvented
in a few different ways, listed below in ascending order of their implementation
cost in terms of execution time and code size.

1. Simply swap the operands of commutative instructions.
2. Schedule instructions so that the two shares are not processed by successive

instructions. This may be difficult to achieve because of the relatively small
number of general-purpose registers.

3. Overwrite the pipeline registers with unrelated values, which can sometimes
be done by just using more complex instructions for certain operations. To
give a concrete example, the statement “mov r0, 0” to clear register r0 can
be replaced by “eor r0, rx, rx” where rx is an arbitrary register. In the
former version using mov, the registers ra and rb are not written since the
immediate value 0 gets directly transferred from the instruction decoder to
the register r0. In the second version, ra and rb are written with the value
of rx before r0 is cleared. This version can, depending on which register is
actually used as rx, increase code size by two bytes at most.

4. Explicitly set the registers ra and rb to a value unrelated to any sensitive
data. This can be done by a statement of the form “orr r0, r0, r0” where
r0 contains some random data; for example, r0 could be the address of an
input buffer. The cost is a clock cycle and two or four bytes of code size.

Note that inserting a nop instruction will not prevent the leakage since the
nop instruction does not pass the instruction decoder and, consequently, it can
not modify the two pipeline registers ra and rb.
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4 Our Simulator: MAPS

In this section, we provide an overview of the main properties (i.e. features and
limitations) of MAPS and briefly describe its operation.

4.1 Features

MAPS has been created to aid and simplify the development of masked imple-
mentations of cryptographic primitives. Its main features are as follows.

Easy to Use. The implementation and testing of a masked primitive requires
advanced skills in cryptographic engineering. In addition, it is a highly iterative
task that takes a lot of time, effort, and scrutiny. Our simulator is easy to use
(even for non-experts) and provides a convenient way to do automated leakage
assessment of cryptographic implementations. In this way, MAPS simplifies the
whole development and testing process.

Advanced Debug Support. In this paper, the word debug has actually two
meanings; the first relates to the debugging of the functionality of the primitive
to achieve (algorithmic) correctness. Our simulator is able to interact with the
GNU debugger GDB through a GDB server. The other meaning refers to iden-
tifying which instructions cause information leakage. MAPS generates an index
file linking the program counter and the power trace sample index, which allows
for easy identification of the instruction that leaks.

Fast(er) Development Cycles. Securely-masked versions of a cryptographic
algorithm are typically implemented in Assembly language to have full control
over the instructions that will be executed. The allocation of registers and the
selection of operands may require several tries, but long simulation times make
it costly to try various “what-if” scenarios. MAPS is very fast so that an entire
“compile-simulate-test” cycle can be completed in just a few minutes.

Only One Set of Source Files. In absence of a leakage simulator for Cortex-
M3, implementers commonly resort to emulated leakages, which, as mentioned
in Sect. 2, are typically generated using a high-level C implementation instead
of the Assembler implementation that will actually be deployed. Having to deal
with two separate code bases can easily lead to mistakes due to inconsistencies
and may require adaptations of one or both source codes. Using MAPS avoids
such problems since the leakage assessment can be carried out with exactly the
same implementation that will finally end up on the target device.

Target-Specific Leakages. Our simulator reports algorithmic leakages and as
many as possible target-specific leakages. The power waveforms are computed
from the trace of all registers related to the data being processed, including the
pipeline registers.
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Open-Source. MAPS is open-source software3 and may be used and modified
without restrictions. In addition, anyone can contribute to the further develop-
ment of MAPS by adding not-yet-supported instructions or new features.

4.2 Simulation Flow

A high-level view of the operation of MAPS is depicted in Fig. 3. At first, one
has to produce a simulator executable, which is labeled sim_masked_func.exe
in Fig. 3. The executable is tasked with loading and simulating the function to
be analyzed. It “glues” together the Cortex-M3 simulation engine, the interface
functions, and the test functions, all written in C++ 11.

The Cortex-M3 simulation engine is a C++ object with the usual methods
such as load(), step(), run(), and so on. It is also responsible for tracing the
register writes: each time a register is written, the Hamming distance between
the previous register value and the new value is added as a new sample to the
power trace. A power trace is a std::vector that can be manipulated after the
end of the simulation. The Cortex-M3 simulation engine as well as some useful
functions, such as a default main() function handling common command-line
options, are grouped together in a library named libsim.a.

The file masked_func_wrapper.cpp contains both the test functions and the
interface functions. The latter functions wrap the call to the simulator engine so
that the function to be analyzed regarding leakage appears like a host-domain
function. It “abstracts” the process of passing parameters from the host to the
3 The full source code of MAPS is available on Github under the GNU General Public
License version 3 (GPLv3): https://github.com/cryptolu/maps.

https://github.com/cryptolu/maps
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simulated function. All parameters are simply copied into the simulated target
memory as required by the ARM Application Binary Interface (ABI) [2].

The test functions implement a basic fixed-vs-random Welch’s t-test leak-
age assessment as described in detail in [6]. However, the assessment method is
independent of the simulation engine and can therefore be easily replaced. The
test functions and interface functions are not part of the library libsim.a since
different functions to be analyzed will have different interfaces.

The function to be analyzed regarding leakage needs to be written in C and
can contain inlined Assembly code as well as macros. It must be stored in the
file masked_func.c, which is cross-compiled for ARM v7-M and converted into
binary format. When the simulator executable is run, it loads the result of the
cross-compilation and applies the fixed and random inputs as instructed by the
test functions. Welch’s t-test is computed over the collected power traces and
stored in a Numpy (.npy) file that can be conveniently visualized using Python
scripts. A so-called trace index file is also generated, mapping the t-test sample
index to the simulated program counter. Thanks to this file, the address of an
instruction causing leakage can be quickly spotted.

4.3 Validation

In order to ensure that the Cortex-M3 processor is correctly modeled, both its
functionality and leakage generation features were carefully tested in a specific
test environment. All supported instructions were collected in a C file that was
cross-compiled for the Cortex-M3. Then, they were simulated using MAPS as
well as ARM’s Verilog-based minimal system testbench. For each simulation, a
trace of the registers was created and the two traces were compared. The trace
generated by our simulator exactly matched the one produced by the system
testbench, which guarantees that MAPS behaves like the actual processor.

4.4 Limitations

The current version of MAPS has the following limitations:

– Only the Cortex-M3 target is supported.
– Not all instructions of the Cortex-M3 described in [1] are supported. The

currently-not supported instructions include conditional instructions, table
branch instructions, saturation instructions, multiply instructions, packing
instructions, as well as hint instructions. However, all these instructions are
unlikely to be found in an implementation of a symmetric primitive.

– The simulator traces only the registers. Glitches or the power consumption
of the ALU are not taken into account. For example, a “cmp r2, r3” leaks
(r2− r3) on the actual hardware, but does not leak on the simulator.

– No peripheral components or interfaces are modeled, and data can only be
transferred between host and targets using the ABI and target memory.

– The simulator traces only registers of the Cortex-M3 core. Other registers
located outside of the core, e.g. in a memory interface, are not considered.

– The simulator is not cycle-accurate.
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4.5 Performance

The simulation speed of MAPS is summarized in Table 1. All test cases corre-
spond to a fixed-vs-random Welch’s t-test as in [6] for a million measurements
(i.e. two million executions of the simulated function). The tests were executed
on an Intel i7-6700 processor running at 3.4 GHz. For comparison, it should be
noted that the acquisition speed of the setup employed by the organizers of the
DPA contest v4 to measure AES power traces was about 0.9 traces/s [24].

Table 1. MAPS simulation performance for three first-order masked block ciphers
(generation of one million traces)

Algorithm No. of instructions Simulation time [s] Traces/s

Simon-64/128 1194 113 17700
Rectangle-64/128 2279 220 9091
Speck-64/128 6055 488 4098

We used for our performance evaluation first-order masked implementations
of three well-known lightweight block ciphers, namely Simon and Speck [5], as
well as Rectangle [25]. Simon-64/128 is a hardware-oriented cipher with an
And-Rotation-Xor structure. The version we tested is a 2-share masked imple-
mentation protected with the Trichina AND gate [22]. Speck-64/128 is a more
software-optimized cipher based on an Addition-Rotation-Xor structure. The
tested implementation is protected by a 2-share Boolean masking, whereby the
modular addition is performed directly on the Boolean shares according to the
Kogge-Stone Adder (KSA) technique introduced in [9]. Rectangle-64/128 is
a bit-sliced lightweight cipher designed on basis of a substitution-permutation
network. The tested implementation is protected by a 2-share Boolean masking
using the Trichina AND gate [22] and the OR gate from Baek et al. [3] with an
additional random variable to mirror the AND gate.

5 Case Study

In this section, we show how MAPS can be used to implement a secure version
of Simon-64/128 on a Cortex-M3 processor. All results we will present in the
following are based on a leakage assessment using Welch’s t-test on power traces
generated by MAPS in a fixed-vs-random setting. For each experiment, 10,000
traces with fixed inputs and 10,000 traces with random inputs were collected.

First, Fig. 4(a) shows the result of a naive implementation of Simon-64/128
protected using Trichina AND gates. This naive implementation minimizes the
number of execution cycles and places intermediate results of the computation
in the next free register. Any Hamming distance effect due to the reuse of some
registers was not taken into account and MAPS was configured to not trace the
pipeline registers ra and rb. Unsurprisingly, this implementation leaks.
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Fig. 4. Leakage assessment of the naive implementation of Simon-64/128, simulated
(a) without and (b) with pipeline leakages

Figure 4(b) visualizes the result of the leakage assessment test for the same
naive implementation, but this time the tracing of the pipeline registers ra and
rb is enabled in the simulator. Many more leakage points can be observed.

Next, the naive implementation was improved by fixing the leakages due to
the reuse of registers. The obtained result of the leakage assessment is depicted
in Fig. 5(a), whereby the simulator was configured to not trace register ra and
rb. Now the leakages seem to be fixed. However, Fig. 5(b) illustrates that this
improved version still leaks through the pipeline registers when their tracing is
enabled. In fact, most of the leakage comes from the two pipeline registers.

Table 2. Comparison of three masked implementations of Simon-64/128

Version No. of instructions Penalty factor

(1) naive 1106 1.00
(2) fixed register-reuse leakages 1194 1.08
(3) fixed pipeline leakages 1285 1.16

Table 2 lists the number of instructions executed by the three Simon imple-
mentations. Version (1) is the naive implementation and version (2) the naive
implementation with fixed register-reuse leakage effects. Version (3) represents
an improvement of version (2) to fix all pipeline leakages using the techniques
given in Subsect. 3.4. It should be noted that the number of instructions differs
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Fig. 5. Leakage assessment of the improved implementation of Simon-64/128 (register-
reuse leakages corrected), simulated (a) without and (b) with pipeline leakages

from the number of clock cycles. For example, replacing one stm instruction by
several str instructions does not increase the number of cycles.

Figure 6 shows the result of the t-test for the further-improved implementa-
tion of Simon-64/128 where we tried to fix all pipeline leakages. The t-test was
performed using measured traces (acquired with the hardware setup that was
also used for the t-test shown in Fig. 2) in a fixed-vs-random setting. As can
be seen in Fig. 6, this implementation is still not entirely leakage-free, but the
t value exceeds the threshold of 4.5 only insignificantly compared to the naive
implementation in Fig. 4. Performing the t-test with this implementation on
simulated traces did not show any leakage anymore, i.e. the t value was always
well below the threshold of 4.5. Therefore, an implementer can conveniently use
MAPS in the early stages of the leakage elimination process until the t-test on
simulated traces is free of leakage. The final step is then the “fine-tuning” of the
implementation until the t-test on measured traces does not show any leakage
anymore. However, thanks to MAPS, an implementer needs to measure traces
only at the very end of the implementation process, but not in the early stages
of the implementation, which significantly reduces the development time.

With our setup, the measurement of power traces took roughly eight hours
for 8,000 encryptions with a fixed input and 8,000 encryptions with a random
input. Each encryption was repeated eight times and then averaged to reduce
the noise. On the other hand, obtaining simulated traces with MAPS for 8,000
fixed-input/random-input encryptions took just 1.2 seconds altogether, which is
24,000 times faster than the eight hours we needed to measure the traces.
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Fig. 6. Leakage assessment of the further-improved implementation of Simon-64/128
(all pipeline leakages corrected) based on measured power traces

6 Conclusions and Future Work

In this paper, we presented the design of MAPS, a simulator for fast leakage
assessment of cryptographic software on ARM Cortex-M3 processors, which are
widely used in the embedded domain. We demonstrated that our simulator can
greatly speed up the implementation of masked block ciphers by identifying the
architecture-specific leakages early in the development phase. Furthermore, we
analyzed Cortex-M3-specific leakages introduced by the pipeline registers and
showed that they are significant. In this way, we contribute to a better under-
standing of which micro-architectural properties and features of a Cortex-M3
processor actually cause the leakage that can be exploited in a DPA attack. We
also provided a number of guidelines on how to take the pipeline leakages into
consideration when developing a masked implementation of a cipher.

Our approach to analyze architecture-specific leakages can be easily applied
to other targets without the need of complex profiling procedures, provided the
HDL code of the processor is available. A possible candidate is Cortex-M0 since
it is also part of the DesignStart Pro Academic program. The simulation speed
may be further improved by optimizing the t-test implementation following the
recent proposal of Reparaz et al. [20].
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