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Abstract

We review the problem of finding the optimal information ratios of graph ac-
cess structures on six participants. Study of such access structures were initiated
by van Dijk [Des. Codes Cryptogr. 15 (1998), 301-321]. Through a sequence of
follow up works, exact values of optimal information ratios of nine access struc-
tures, out of 18 initially unsolved non-isomorphic ones, were determined. Very
recently [O. Farras et al. Cryptology ePrint Archive: Report 2017/919], for each
of the remained such cases, the known lower bound on the optimal information
ratio of linear secret sharing schemes was improved, establishing the optimal in-
formation ratio of linear secret sharing schemes for two of them. Here, for each of
the other seven cases, we provide a new upper bound on the optimal information
ratio of linear secret sharing schemes; our improved upper bounds match the cor-
responding recently presented lower bounds. Improved upper bounds are achieved
using decomposition techniques. As an additional contribution, we present a new
decomposition technique, called (λ, ω)-weighted decomposition, which is a gen-
eralization of all known decomposition techniques.

1 Introduction
A secret sharing scheme is a method of sharing a secret among a set of participants
by distributing shares to them, in such a way that only certain subsets of participants,
qualified subsets, can reconstruct the secret from their shares. The collection of quali-
fied subsets is called an access structure, which is supposed to be monotone, i.e., any
superset of a qualified subset must be qualified. The basis of an access structure is the
collection of all minimal qualified subsets of participant. The notion of access struc-
tures was proposed by Ito et al. [16] as an extension of threshold secret sharing, which
had been independently introduced by Shamir [24] and Blakley [2] in 1979.

The information ratio of a secret sharing scheme is the ratio between the maximum
size of the shares and the size of the secret. The (optimal) information ratio of an access
structure Γ, denoted by σ(Γ), is defined as the infimum of the information ratios of all
secret sharing schemes that realize it. Determining the exact values of this parameter
for a given access structure is one of the main problems in secret sharing area, which
has been considered in several papers including [28, 18, 22, 13, 9]).

A secret sharing scheme is said to be linear if the secret value and the shares of each
participant are vectors over a finite field F, and each share is obtained from a linear
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map of the secret and randomly chosen values from F. The infimum of the information
ratios of all linear secret sharing schemes for an access structure Γ is denoted by λ(Γ).

The access structures with basis composed of minimal qualified subsets of size
two is called graph access structure. The optimal information ratios of such access
structures have been considered in several cases, for example see, the ones in [5, 28,
10, 11, 9]. The optimal information ratios of the 112 non-isomorphic graph access
structures on six participants were studied by van Dijk [28]. In 94 such cases, the exact
values of σ(Γ) were determined, and for the other ones, upper and lower bounds were
provided. A series of works [27, 30, 23, 14, 15] then resulted in determining the exact
values of σ(Γ) for nine cases out of 18 unsolved ones. Very recently, Farrás et al. [12]
have derived a new lower bound on λ(Γ) for each of the nine remaining cases. In two
cases, improved lower bounds match the corresponding known upper bounds on λ(Γ)
[29, 20].

In this paper, we consider the remaining seven cases, providing new upper bounds
on λ(Γ) for each of them. All cases, except one, can be improved by applying (λ, ω)-
decomposition [29] and λ-weighted decomposition [27] techniques, which are the only
known extensions of Stinson’s λ-decomposition technique [26]. Our hard attempt to
tackle the remaining case by resorting to the known decomposition techniques failed.
Consequently, we devised a new decomposition technique to handle the excepted case.
The new decomposition technique, which is a generalization of each of the aforemen-
tioned techniques, is referred to as (λ, ω)-weighted decomposition. For each case,
our improved upper bound on λ(Γ) matches the corresponding presented lower bound
in [12]. Therefore, our results put an end to the seek for optimal linear secret sharing
schemes for these seven cases.

2 Secret sharing schemes
In this section, we present some standard definitions related to secret sharing. We refer
the reader to [1] for a two-decade survey on the topic and the references there-in,
including [25, 19, 7, 8, 4], for historical development of the field.

Let P = { p1, . . . , pn} be a set of participants. The collection Γ of sets in 2P is
called an access structure on P if Γ is monotone increasing, i.e., for every A ∈ Γ and
A ⊆ B it holds that B ∈ Γ. The sets in Γ and Γc are called qualified sets and forbidden
sets of the access structure, respectively. A qualified set A ∈ Γ is called minimal if any
proper subset of A is a forbidden set, and a forbidden set B ∈ Γc is called maximal if
{p} ∪ B ∈ Γ for all p ∈ P . The collection of all minimal qualified subsets and that of
all maximal forbidden sets are denoted by Γ− and Γ+, respectively.

Let X be a random variable with support X = {x1, . . . , xm} (i.e., the set of values
that it accepts with positive probability) and let pi = Pr[X = xi]. The Shannon
entropy of X is defined as H(X) = −

∑m
i=1 pi log2 pi. The entropy of X conditioned

on Y is defined as H(X|Y) =
∑

y∈Y Pr[Y = y]H(X|Y = y), where Y is the
support of Y and H(X|Y = y) =

∑m
i=1 Pr[X = xi|Y = y] log2 Pr[X = xi|Y = y].

Conventionally, 0 log2 0 is considered to be 0.

Definition 2.1 (secret sharing scheme). A secret sharing scheme on P is a triple Σ =
(S,R,Π), where S and R are independent random variables with supports S and R,
respectively, satisfying H(S) > 0, and Π : S ×R → S1 × . . .×Sn is a map, in which
Si is the support of random variable Si induced by Π(S,R) = (S1, . . . ,Sn). We refer
to Π, S and R as the sharing map, secret space and randomness space.
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To share a secret s ∈ S , presumably sampled from S, a randomness r is sampled
from R and the vector of shares Π(s, r) = (s1, . . . , sn) is computed. Then, each share
sj is privately transmitted to the participant pj . For a set A ⊆ P , we denote the random
variable SA as the restriction of Π(S,R) to the entries that correspond to the members
of A.

A secret sharing scheme is said to be linear if the sets S,R,S1, . . . ,Sn are all
vector spaces of finite dimension over a finite field F and Π is a linear map on F.

Definition 2.2 (realization of an access structure). Let Σ be a secret sharing scheme
and let Γ be an access structure both defined on P . We say that Σ is a secret sharing
scheme for Γ, or Σ realizes Γ, if the following two hold:

(1) The secret can be reconstructed by qualified sets; that is, for all A ∈ Γ, it holds
that H(S|SA) = 0.

(2) The secret is remained perfectly hidden from the forbidden sets; that is, for all
B /∈ Γ, it holds that H(S|SB) = H(S).

Let Σ be a secret sharing scheme on P . The information ratio of a participant pi ∈
P in Σ, denoted by σpi(Σ), is defined by σpi(Σ) = H(Si)/H(S) and the information
ratio of Σ is defined by σ(Σ) = maxp∈P σp(Σ).

The (optimal) information ratio of an access structure Γ on P is defined by σ(Γ) =
inf σ(Σ), where the infimum is taken over all secret sharing schemes Σ realizing Γ.
When the infimum is only taken over all linear secret sharing schemes for Γ, it is
denoted by λ(Γ). A secret sharing scheme Σ with σ(Σ) = 1 is called ideal. An access
structure Γ is called ideal if it can be realized by an ideal scheme. The dual of an
access structure Γ on P , denoted by Γ∗, is defined by Γ∗ = {A ⊆ P : P \ A /∈ Γ}.
It is known [17] that if Σ is a linear secret sharing scheme for Γ, then there exists
a linear secret sharing scheme Σ∗ for Γ∗ such that σ(Σ∗) = σ(Σ). Consequently
λ(Γ∗) = λ(Γ).

The access structure Γ on P is said to be based on a graph G if the participants
are as vertices of G and the minimal qualified subsets are corresponding to the edges.
Such access structures are called graph access structures. It is known [6] that an ac-
cess structure Γ based on a connected graph G is ideal if and only if G is a complete
multipartite graph.

3 Decomposition constructions
Decomposition is a technique for constructing a new secret sharing scheme from a
collection of secret sharing schemes. The idea was first proposed by Stinson [26]
under the name of λ-decomposition. Below, we first review two known extensions of
λ-decomposition. Then, we present a new decomposition technique, as a generalization
of each of the mentioned extensions.

3.1 (λ, ω)-decomposition
In this subsection, we review the (λ, ω)-decomposition technique from [29].

Definition 3.1 ((λ, ω)-decomposition). Let Γ be an access structure on P , and let
λ, ω be positive integers such that λ > ω. A (λ, ω)-decomposition of Γ consists of a
collection {Γ1, . . . ,Γh} of access structures on P such that the following requirements
are satisfied:
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(1) If A ∈ Γ−, then it holds that A ∈ Γj for at least λ distinct values of j ∈ [h].

(2) If A ∈ Γ+, then it holds that A ∈ Γj for at most ω distinct values of j ∈ [h].

Theorem 3.1. Let Γ be an access structure on P and {Γ1, . . . ,Γh} be a (λ, ω)-
decomposition of Γ. Moreover, suppose that there exists a finite field F such that for
every Γj , j ∈ [h], there exist a secret sharing scheme with secret space F and infor-
mation ratio σp,j for p ∈ P . Then, there exists a secret sharing scheme Σ for Γ with
information ratio

σ(Σ) = max
p∈P

{∑h
j=1 σp,j

λ− ω

}
.

3.2 λ-weighted decomposition
In this subsection, we review the λ-weighted-decomposition technique from [27].

Definition 3.2 (weighted access structure). A weighted access structure on P is a set
Γw = {(A,w) |A ∈ 2P , w ∈ Z≥0} such that for every (A,wA), (B,wB) ∈ Γw, if
A ⊆ B, then it holds that wA ≤ wB . For every (A,w) ∈ Γw, w is called the weight of
A in Γw and denoted by wt(A; Γw), or wA when there is no confusion. The weight of
Γw is defined by wt(Γw) = max{wA : for all A ∈ 2P}.

Definition 3.3 (realization of a weighted access structure). Let Σ be a secret sharing
scheme and let Γw be a weighted access structure both defined on P . We say that Σ
is a secret sharing scheme for Γw, or Σ realizes Γw, if for all A ∈ 2P it holds that
H(S|SA) =

(
1− wA/wt(Γ

w)
)
H(S).

Definition 3.4 (λ-weighted-decomposition). Let Γ be an access structure on P and
let λ be a positive integer. A λ-weighted-decomposition of Γ consists of a collection
{Γw

1 , . . . ,Γ
w
h} of weighted access structures on P if the following hold:

(1) If A ∈ Γ−, then there exists a subset of indexes I ⊆ [h], such that we have∑
j∈I wt(A; Γw

j ) ≥ λ.

(2) If A ∈ Γ+, then it holds that wt(A; Γw
j ) = 0, for each j ∈ [h].

Theorem 3.2. Let Γ be an access structure on P and {Γw
1 , . . . ,Γ

w
h} be a λ-weighted-

decomposition of Γ. Suppose that there exists a finite field F such that each weighted
access structure Γw

j with weight wj = wt(Γw
j ), j ∈ [h], is realized by a secret sharing

scheme with information ratio σp,j for p ∈ P over secret space Fwj . Moreover, assume
that any subset A ⊂ P can obtain wt(A; Γw

j ) out of the wj secrets. Then, there exists
a secret sharing scheme Σ for Γ with information ratio

σ(Σ) = max
p∈P

{∑h
j=1 wj σp,j

λ

}
.

3.3 (λ, ω)-weighted decomposition
In this subsection, we introduce the (λ, ω)-weighted decomposition, which captures
the previous two decompositions as its special cases.
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Definition 3.5 ((λ, ω)-weighted-decomposition). Let Γ be an access structure on P ,
and let λ, ω be positive integers such that λ > ω. A (λ, ω)-weighted-decomposition of
Γ consists of a collection {Γw

1 , . . . ,Γ
w
h} of weighted access structures on P such that

the following properties are satisfied:

(1) If A ∈ Γ−, then there exists a subset of indexes I ⊆ [h], such that we have∑
j∈I wt(A; Γw

j ) ≥ λ.

(2) If A ∈ Γ+, then
∑h

j=1 wt(A; Γw
j ) ≤ ω.

Theorem 3.3. Let Γ be an access structure on P and {Γw
1 , . . . ,Γ

w
h} be a (λ, ω)-

weighted-decomposition of Γ. Suppose that there exists a finite field F such that each
weighted access structure Γw

j with weight wj = wt(Γw
j ), j ∈ [h], is realized by a secret

sharing scheme with information ratio σp,j for p ∈ P over secret space Fwj . More-
over, assume that any subset A ⊂ P can obtain wt(A; Γw

j ) out of the wj secrets. Then,
there exists a secret sharing scheme Σ for Γ with information ratio

σ(Σ) = max
p∈P

{∑h
j=1 wj σp,j

λ− ω

}
.

Proof. We construct a secret sharing scheme for Γ over secret space Fλ−ω . To share a
secret s = (s1, . . . sλ−ω) ∈ Fλ−ω , let

f(x) =

ω−1∑
t=0

atx
t +

λ−1∑
t=ω

st−ω+1x
t,

where a0, . . . , aω−1 are chosen randomly from F. Let N =
∑h

j=1 wj . For each
ℓ ∈ [N ], define kℓ = f(ℓ). Indeed, we have defined a (λ, ω,N) ramp secret sharing
scheme [3] this way. In such schemes, similar to threshold schemes, the secret s is
shared between N participant, by giving the share kℓ to the ℓth participant. The secret
s can then be reconstructed from any subset of size at least λ of shares, while no
information is leaked about s from any subset of size at most ω of such shares.

In our construction, we then view (k1, . . . , kN ) as a block-wise vector (K1, . . . ,Kh),
where Kj ∈ Fwj ; recall that N =

∑h
j=1 wj . More precisely, for each j ∈ [h] we

have Kj = (k∑j−1
t=1 wt+1, . . . , k

∑j−1
t=1 wt+wj

). Then, the secret Kj is shared among
the participants P using the secret sharing scheme for weighted access structure Γw

j .
The corresponding secret sharing scheme accepts secrets in Fwj and every participant
p ∈ P receives a share sp,j ∈ Fwjσp,j . The final share of participant p ∈ P in our
constructed scheme will be (sp,1, . . . , sp,h), i.e., an element of F

∑h
j=1 wjσp,j . Thus, as

claimed, the information ratio of the constructed secret sharing scheme is

σ(Σ) = max
p∈P

{∑h
j=1 wj σp,j

λ− ω

}
.

We continue to show that our scheme realizes Γ. Let A ∈ Γ− be a qualified set. By
assumption, A obtains wt(A; Γw

j ) elements of (k∑j−1
t=1 wt+1, . . . , k

∑j−1
t=1 wt+wj

). There-

fore, the qualified set A obtains a total of
∑h

j=1 wt(A; Γw
j ) elements of the vector

(k1, . . . , kN ). By definition of (λ, ω)-weighted decomposition,
∑h

j=1 wt(A; Γw
j ) ≥ λ.
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Therefore, a qualified set obtains at least λ elements of (k1, . . . , kN ). The ramp se-
cret sharing then guarantees that the initial secret s can be recovered by any qualified
set. Similarly, it can be shown that any unqualified set obtains at most ω elements of
(k1, . . . , kN ), and therefore, it gains no information about the shared secret.

4 Improved upper bounds
We consider seven graph access structures on six participants, for which determining
the exact values of information ratios remained unsolved in [28]. We improve known
upper bound for each of them by using decomposition techniques. Taking into account
the recently derived lower bounds on λ(Γ) in [12], we conclude that our decomposition
construction leads to an optimal linear secret sharing schemes for each of them, estab-
lishing the exact value of λ(Γ). A summary of our results can be found in Table 1. For
the sake of completeness, we have included the other two access structures which have
a similar situation. We point out that the graph access structures Γ75 and Γ84 are iso-
morphic with the dual of two access structures with four minimal qualified subsets on
six participants. Regarding the notations of [21], their corresponding underlying par-
ticipants sets are {3, 5, 7, A,D,E} and {3, 5, 7, B,D,E}, respectively, with reported
upper bounds 11/6 and 5/3 on λ(Γ) in [21]. Our observation shows that for both of
them indeed λ(Γ) = 8/5.

Table 1: Updated results for the unsolved graph access structures on six participants

Access structure
σ(Γ)
[28, 20]

λ(Γ)
[28, 20, 12]

Current σ(Γ) Current λ(Γ)

Γ55,Γ59,Γ70,
Γ71,Γ75,Γ77,Γ84

[3/2, 5/3] [8/5, 5/3] [3/2, 8/5] 8/5

Γ91,Γ93 [3/2, 8/5] 8/5 – –

Throughout this paper a set A = {i1, . . . , it} is simply represented by i1 . . . it.
The vertices of each graph are labeled in clockwise direction by starting from 1 at the
leftmost vertex. The access structure numbers are similar to [28].

In all constructed schemes, the secret is s (or (s1, s2)) and the randomness is
(r1, . . . , r5) where s, s1, s2 and ri’s are all from GF (q) with q > 3. The share of
the participant p ∈ P is denoted by sp.

4.1 Upper bounds obtained by (λ, ω)-decomposition
We consider three graph access structures Γ59, Γ71 and Γ84, shown in Fig. 1. By using
(λ, ω)-decomposition technique, we improve known upper bounds on their optimal
information ratios.
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Fig. 1: Graph access structures Γ59, Γ71 and Γ84.

Similar to [30], we use a table for demonstrating the presented (λ, ω)-decomposition
for each of the aforementioned graph access structures.

Note 4.1 (Description of table entries). Consider an access structure Γ with Γ− =
{A1, . . . , Am} and Γ+ = {B1, . . . , BM}. The first two columns represent the discov-
ered (λ, ω)-decomposition. First column in table denotes the number of duplications of
sub-access structures Γj− in the decomposition which is given in the second column.
Some sub-access structures are graph access structures, which are represented by their
corresponding underlying graph, and others are composed of singleton sets, in which
case the minimal subsets are explicitly given. Each bit ai of binary string a1 . . . am in
third column indicates if Ai is a qualified subset of Γj; that is, ai = 1 iff Ai ∈ Γj−.
Each bit bi of binary string b1 . . . bM in fourth column indicates if Bi is a qualified
subset of Γj−; that is bi = 1 iff Bi ∈ Γj−. Fifth column shows the presented secret
sharing scheme Σj for Γj . If a sub-access structure is ideal, we ignore to provide
its corresponding sub-scheme. If all sub-access structures are ideal, the fifth column
will be removed. Finally, the last column represents the vector of information ratios of
participants in the sub-scheme, that is, (σ1,j , . . . , σ6,j).

Result 4.1 (Results for Γ59, Γ71 and Γ84 ). We provide new upper bound on the optimal
information ratio of each of the graph access structures Γ59, Γ71 and Γ84 by applying a
(6, 1)-decomposition. These decompositions are respectively represented in the Table
2, Table 3 and Table 4.

s1 = (r1 + s)
s2 = (r1)
s3 = (r1 − s, r2 + s)
s4 = (r2)
s5 = (r2 + s)
s6 = (r1, r2)

Fig. 2: Scheme Σ2 in Table 2.

s1 = (r1 + s, r2 + s)
s2 = (r1)
s3 = (r1 + s)
s4 = (r1, r2)
s5 = (r2 + s)
s6 = (r2)

Fig. 3: Scheme Σ4 in Table 3.
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Table 2: The (6, 1)-decomposition for Γ59.

# Γj− a1 . . . a8 b1 . . . b7 Σj (σ1,j , . . . , σ6,j)

1 {{1}, {4}} 11101110 1100001 ideal (1, 0, 0, 1, 0, 0)

1 11110111 0000010 Σ2 (1, 1, 2, 1, 1, 2)

1 10111111 0010000 Σ3 (1, 2, 1, 1, 2, 1)

1 11111011 0001000 Σ4 (1, 2, 1, 1, 1, 2)

1 01111111 0000100 Σ5 (1, 1, 2, 1, 2, 1)

2 11011100 0000000 ideal (1, 1, 1, 1, 0, 0)

1 00100001 0000000 ideal (1, 0, 0, 0, 1, 1)

1 00000011 0000000 ideal (0, 0, 0, 1, 1, 1)

Note. See Note 4.1 for description of table. Here, Γ−
59 = {12, 13, 16, 23, 24, 34, 45, 56} and

Γ+
59 = {14, 15, 25, 26, 35, 36, 46}. The scheme Σ2 is presented in Fig. 2. Since the access

structures Γ3,Γ4 and Γ5 are all isomorphic with Γ2, corresponding schemes can be easily
constructed from Γ2 in Fig. 2. From Theorem 3.1, this decomposition leads to a scheme Σ
with σ(Σ) = 8/5.
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Table 3: The (6, 1)-decomposition for Γ71.

# Γj− a1 . . . a9 b1 . . . b6 Σj (σ1,j , . . . , σ6,j)

1 {{3}} 001011100 100000 ideal (0, 0, 1, 0, 0, 0)

1 {{6}} 010100101 000001 ideal (0, 0, 0, 0, 0, 1)

1 {{2}, {5}} 101101011 001110 ideal (0, 1, 0, 0, 1, 0)

1 111010011 010000 Σ4 (2, 1, 1, 2, 1, 1)

2 111100100 000000 ideal (1, 1, 1, 0, 0, 1)

2 000011111 000000 ideal (0, 0, 1, 1, 1, 1)

1 110100000 000000 ideal (1, 1, 0, 0, 0, 1)

1 000011010 000000 ideal (0, 0, 1, 1, 1, 0)

1 010100001 000000 ideal (1, 1, 0, 0, 1, 1)

1 001011000 000000 ideal (0, 1, 1, 1, 1, 0)

1 100000000 000000 ideal (1, 1, 0, 0, 0, 0)

1 000000010 000000 ideal (0, 0, 0, 1, 1, 0)

Note. See Note 4.1 for description of table. Here, Γ−
71 = {12, 16, 23, 26, 34, 35, 36, 45, 56}

and Γ+
71 = {13, 14, 15, 24, 25, 46}. The scheme Σ4 is presented in Fig. 3. From Theorem 3.1,

this decomposition leads to a scheme Σ with σ(Σ) = 8/5.
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Table 4: The (6, 1)-decomposition for Γ84.

# Γj− a1 . . . a10 b1 . . . b4 (σ1,j , . . . , σ6,j)

1 {{1}} 1111000000 1000 (1, 0, 0, 0, 0, 0)

1 {{3}} 0100101100 0010 (0, 0, 1, 0, 0, 0)

1 {{5}} 0010010111 0001 (0, 0, 0, 0, 1, 0)

1 1111111111 0100 (1, 1, 1, 1, 1, 1)

1 1011010001 0000 (1, 1, 0, 0, 1, 1)

1 0000111110 0000 (0, 1, 1, 1, 1, 0)

1 1111010101 0000 (1, 1, 1, 0, 1, 1)

1 0110111110 0000 (1, 1, 1, 1, 1, 0)

1 1100100000 0000 (1, 1, 1, 0, 0, 0)

2 0000000011 0000 (0, 0, 0, 1, 1, 1)

1 1001000000 0000 (1, 1, 0, 0, 0, 1)

1 0000101000 0000 (0, 1, 1, 1, 0, 0)

1 0001000000 0000 (1, 0, 0, 0, 0, 1)

1 0000001000 0000 (0, 0, 1, 1, 0, 0)

Note. See Note 4.1 for description of table. Here, Γ−
84 = {12, 13, 15, 16, 23, 25, 34, 35, 45, 56}

and Γ+
84 = {14, 246, 36, 5}. All sub-access structures are ideal. From Theorem 3.1, this decom-

position leads to a scheme Σ with σ(Σ) = 8/5.
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4.2 Upper bounds obtained by λ-weighted decomposition
We improve the known upper bounds for each of the three graph access structures Γ55,
Γ70 and Γ75, represented in Fig. 4, by using λ-weighted decompositions.

Fig. 4: Graph access structures Γ55, Γ70 and Γ75.

Result 4.2 (Results for Γ55, Γ70 and Γ75). We apply the 5-weighted decomposition
construction for each of the graph access structures Γ55, Γ70 and Γ75, resulting in new
upper bound on the optimal information ratio for each of them. These decomposition
constructions are shown in Table 6.

Note 4.2. In Tables 5 and 6, a weighted graph indicates a weighted sub-access struc-
tures with following considerations: I) the weight of a singleton set is assumed to be
zero, II) the weight assigned to each edge indicates the weight of the corresponding
subset of size 2 and III) the weight of a larger set is considered to be at least the maxi-
mum weight of all its subsets of size 2 and at most the maximum of the weights assigned
to graph edges; the exact value is not important.

Table 5: Schemes for non-ideal sub-access structures in Table 6

Weighted access structure Secret sharing scheme Note

2

2

2

1

2

1

1

2

s1 = (r1 + 2s1 + s2, r2 − r3, r4)
s2 = (r1, r3 + s1, r2 + r4 − s1)
s3 = (r3, r1 + r2 + r4 + 2s1 + s2)
s4 = (r2 + s1, r3 + s1)
s5 = (r2, r4)
s6 = (r1 + s1, r2 + s1, r4 + s2)

In Part I of Table 6

2

2

2

2

1
2

1

1

2

s1 = (r1 + 2s1 + s2, r2 − r3, r4)
s2 = (r2 − s1, r3 − s2, r4 + s2)
s3 = (r2, r4)
s4 = (r2 + s1, r3 + s1)
s5 = (r3, r1 + r2 + r4 + 2s1 + s2)
s6 = (r1, r3 + s1, r2 + r4)

In Part II of Table 6

2

2

2

2

1

2

1

1

2

s1 = (r1 + 2s1 + s2, r2 − r3, r4)
s2 = (r1, r3 + s1, r2 + r4)
s3 = (r3, r1 + r2 + r4 + 2s1 + s2)
s4 = (r2 − s1, r3 + s1)
s5 = (r2, r4)
s6 = (r2 + s1 + s2, r3, r4 + s2)

In Part III of Table 6
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Table 6: The 5-weighted decompositions for Γ55, Γ70 and Γ75.

I: Weighted decomposition for Γ55 II: Weighted decomposition for Γ70 III: Weighted decomposition for Γ75

# Γw
j

Σj

(σ1,j , . . . , σ6,j)
# Γw

j
Σj

(σ1,j , . . . , σ6,j)
# Γw

j
Σj

(σ1,j , . . . , σ6,j)

1

2

2

2

1

2

1

1

2

Σ1

(3, 3, 2, 2, 2, 3)/2
1

2

2

2

2

1
2

1

1

2

Σ1

(3, 3, 2, 2, 2, 3)/2
1

2

2

2

2

1

2

1

1

2

Σ1

(3, 3, 2, 2, 2, 3)/2

2
1

1

1

1

1

(1, 1, 0, 0, 1, 1) 2
1

1
1

1

1

(1, 1, 0, 0, 1, 1) 1
1

1

1

1
(1, 1, 1, 1, 0, 0)

2

1

1
1

1

(0, 1, 1, 1, 1, 0) 2

1

1

1 1

1

(0, 1, 1, 1, 1, 0) 2
1

1

1

1
1

(1, 0, 0, 1, 1, 1)

1
1

1

1 (1, 1, 1, 0, 0, 1) 1
1

1

1
1 (1, 1, 1, 1, 0, 1) 1

1

1

1

1 1

1

1 (1, 1, 1, 1, 0, 1)

1

1

1

(0, 0, 1, 1, 1, 0) 1

1

1

(0, 0, 1, 1, 1, 0) 2

1

1

(0, 0, 1, 1, 1, 0)

1
1

1

(0, 0, 0, 1, 1, 1) 1
1

1

(0, 0, 0, 1, 1, 1) 1 1

1

(0, 1, 0, 0, 1, 1)

1

1

(0, 0, 1, 1, 0, 0) 1

1

(0, 0, 1, 1, 0, 0) 1

1

1

1

(1, 1, 0, 0, 0, 1)

1

1

(1, 0, 0, 0, 0, 1) 1
1

(1, 0, 0, 0, 0, 1) 1

1

(0, 1, 1, 0, 0, 0)

Note. See Note 4.2 for description of the wighted sub-access structures. For each decompositions in the
table, the scheme Σ1 is presented in Table 5, and if a sub-access structure is ideal, we ignore to provide its
corresponding scheme. By Theorem 3.2, each of the 5-weighted decompositions leads to a scheme Σ with
σ(Σ) = 8/5.

4.3 An upper bound obtained by (λ, ω)-weighted decomposition
For the graph access structure Γ77, shown in Fig. 5, we drive a new upper bound on
the optimal information ratio by providing a (λ, ω)-weighted decomposition.

Result 4.3 (Result for Γ77). We provide a new upper bound on the optimal information
ratio of the graph access structure Γ77, by applying the (6, 1)-weighted decomposition
technique, shown in Table 7.
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Fig. 5: Graph access structure Γ77.

Table 7: The (6, 1)-weighted decomposition for Γ77.

# Γw
j a1 . . . a9 b1 . . . b6 Σj (σ1,j , . . . , σ6,j)

1 {{2}, {5}} 100110111 011100 ideal (0, 1, 0, 0, 1, 0)

1 {{3}} 010101100 000010 ideal (0, 0, 1, 0, 0, 0)

1
1

1

1 1

1

1

11

111101011 100000 Σ3 (2, 1, 1, 2, 1, 1)

1
2

2

2

1

2

2

2
2

2

222122222 000000 Σ4 (3, 3, 3, 3, 3, 3)/2

1
1

1

1 101010000 000000 ideal (1, 1, 0, 0, 0, 1)

1
1

1

1

1

1

1
1

1

011111101 000001 ideal (1, 1, 1, 1, 1, 1)

1
1

1

1

000001110 000000 ideal (0, 0, 1, 1, 1, 0)

1
1

1

1

1

1 111110000 000000 ideal (1, 1, 1, 0, 0, 1)

1
1

1

000000011 000000 ideal (0, 0, 0, 1, 1, 1)

Note. See Note 7 for descrition of the weighted sub-access structres. Each element ai of the string
in third column indicates the weight of Ai ∈ Γ− in Γw

j . Each element bi of the string in fourth
colum indicates the weight of Bi ∈ Γ+ in Γw

j . Here, Γ−
77 = {12, 13, 16, 23, 26, 34, 35, 45, 56}

and Γ+
77 = {14, 15, 24, 25, 36, 46}. The access structures Γw

3 is isomorphic with Γ2 in Table 2.
Therefore, Σ3 can be constructed from the presented scheme in Fig. 2. The scheme Σ4 is presented
in Fig. 6. From Theorem 3.3, this decomposition leads to a scheme Σ with σ(Σ) = 8/5.
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2
2

2

1

2

2

2
2

2

s1 = (r1 + s1, r2, r4)
s2 = (r1 + r3, r2 + r3 + s1, r4 + s2)
s3 = (r2 + s2, r1 + s2, r5)
s4 = (r1 + r2 + s1, r3, r5 + s2)
s5 = (r2, r3 + s1, r5 + s1)
s6 = (r2 + s2, r3, r4 + s1 + s2)

Fig. 6: Scheme Σ4 in Table 7

Note 4.3. For the (λ, ω)-weighted decomposition of Table 7, we have two types of
weighted sub-access structures. The weighted graphs indicate weighted sub-access
structures as explained in Note 4.2. Here, we also have two sub-access structures for
which the weights of all the indicated singleton sets are one but the weight of any other
subset is zero.

5 Conclusion
The problem of finding the exact value of the optimal information ratios of non-isomorphic
graph access structures on six participants has been studied in several papers [28, 27,
30, 23, 14, 15, 20, 12], but the problem has remained unsolved for nine cases. In this
paper, we have improved the known upper bounds on the optimal information ratios
for seven such access structures, by presenting a linear secret sharing scheme for each
of them. For all cases, our improved upper bound matches the recently published lower
bound in [12] on the optimal information ratio when the schemes are restricted to be
linear. Therefore, our results for these seven cases together with the obtained results
in [29, 20, 12] settles the problem of finding optimal linear secret sharing schemes for
all nine unsolved graph access structures on six participants. Despite all the research
performed to resolve this problem, the exact values of the optimal information ratios
for all nine open access structures remains unknown. Further research must be done in
order to distinguish between the following two possibilities for each access structure:
1) the optimal linear secret sharing scheme provides the optimal information ratio, in
which case the known lower bound needs to be improved or, 2) the optimal secret shar-
ing scheme is non-linear. A summary of our results can be found in Table 1, presented
in Section 4.

We point out that we have tried our best to obtain the optimal linear secret sharing
scheme using known decomposition techniques for each case. We were successful in
six cases but we failed for the last one, for which we had to devise a new decomposition
technique, referred to as (λ, ω)-weighted decomposition. Exploring the true potentials
of known techniques, including ours which can be considered as a generalization of all
known techniques, deserves further investigations.
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