
Integer Reconstruction Public-Key Encryption

Houda Ferradi2 and David Naccache1

1 Département d’informatique de l’ENS, ENS, CNRS, PSL University, Paris, France
45 rue d’Ulm, 75230, Paris cedex 05, France

david.naccache@ens.fr
2 NTT Secure Platform Laboratories

3–9–11 Midori-cho, Musashino-shi, Tokyo 180–8585, Japan
houda.ferradi@ens.fr

Abstract In [AJPS18], Aggarwal, Joux, Prakash & Santha described
an elegant public-key encryption (AJPS-1) mimicking NTRU over the
integers. This algorithm relies on the properties of Mersenne primes
instead of polynomial rings.
A later ePrint [BCGN17] by Beunardeau et al. revised AJPS-1’s initial
security estimates. While lower than initially thought, the best known
attack on AJPS-1 still seems to leave the defender with an exponential
advantage over the attacker [dBDJdW17]. However, this lower exponential
advantage implies enlarging AJPS-1’s parameters. This, plus the fact that
AJPS-1 encodes only a single plaintext bit per ciphertext, made AJPS-1
impractical. In a recent update, Aggarwal et al. overcame this limitation
by extending AJPS-1’s bandwidth. This variant (AJPS-ECC) modifies the
definition of the public-key and relies on error-correcting codes.
This paper presents a different high-bandwidth construction. By opposi-
tion to AJPS-ECC, we do not modify the public-key, avoid using error-
correcting codes and use backtracking to decrypt. The new algorithm
is orthogonal to AJPS-ECC as both mechanisms may be concurrently
used in the same ciphertext and cumulate their bandwidth improvement
effects. Alternatively, we can increase AJPS-ECC’s information rate by a
factor of 26 for the parameters recommended in [AJPS18].
The obtained bandwidth improvement and the fact that encryption and
decryption are reasonably efficient, make our scheme an interesting post-
quantum candidate.

Keywords: KEM, Efficiency improvement, MERS assumption, implementation

1 Introduction

The public-key encryption schemes that are mostly used today are RSA [RSA78]
and ElGamal [ElG85]. Their security are based on the problems of factoring large
composite integers or computing discrete logarithms.

However, in [Sho97], Shor published an algorithm that quantum computers
can use to solve both discrete logarithms and factoring in polynomial time.

david.naccache@ens.fr
houda.ferradi@ens.fr

Therefore, it is important to construct new encryption schemes which are to
remain secure even after the advent of quantum computers.

For this purpose, in 2016 the National Institute of Standards and Techno-
logy (NIST) has initiated a competition to select post-quantum cryptographic
algorithms that are supposed to resist future quantum computers [NIS17].

One promising candidate selected for such quantum-resistant encryption
scheme is the AJPS cryptosystem [AJPS17a,AJPS18,AJPS17b], introduced by
Aggarwal, Joux, Prakash, and Santha, which is an interesting alternative to the
well-established NTRU cryptosystem. The security of AJPS encryption relies
on the hardness of Mersenne Low Hamming Combination (MERS) problem
[AJPS17a,AJPS18]: Given a Mersenne prime p = 2n − 1 (where n is prime),
samples of theMERSh,n distribution are constructed as (a, b = as+e), where a ∈R
Zp, the secret s and the error e are chosen uniformly at random from the elements
in Zp of Hamming weight h. The decisional version of the MERS assumption
states that no efficient adversary can distinguish the MERSh,n distribution from
a uniform distribution over Z2

p.
Despite the efficiency benefit of its reliance on Mersenne primes. The cryptosys-

tem introduced in [AJPS18], however, remains inefficient because of the constraint
that n = Θ(h2).

In this paper, we present new KEM schemes for enhancing the information rate
of [AJPS18] by a factor of 26, this O(1) improvement is nonetheless significant
in practice.

1.1 Related Works

Lattice-based cryptography is the most popular candidate for post-quantum
security. Its security relies on the hardness of basis reduction and other related
problems in random lattices, like Learning with Errors (LWE) based cryptosys-
tems [Reg06], Ring-LWE based cryptosystems [LPR10] and NTRU [HPS98].

Concurrently to the above, AJPS’s Mersenne post-quantum cryptosystems
[AJPS18] belong to the NTRU family.

1.2 Organization of the Paper

Section 2, overviews basic notions and notations, key-encapsulation mechanisms
and backtracking. Section 3 recalls the MERS problem and its hardness. Section
4 reviews the original AJPS scheme and its variants. In Section 5 we propose our
KEM schemes, which are the Bivariate KEM and Trivariate KEM and prove their
security. Section 7, provideq an instantiation for the backtracking used in our
KEMs. Finally, we conclude the paper in Section 9.

2

2 Preliminaries

2.1 Notation

We denote by ‖x‖ the Hamming weight of an n-bit string x, which is the total
number of 1’s in x. Let Hn,h be the set of all n-bit strings of Hamming weight h
and {0, 1}n the set of all n-bit strings.

Let Zp be the integer ring modulo p, where p = 2n − 1 is a Mersenne prime.
We have the following property:

Lemma 1. Let x, y ∈ Zp, then the following properties hold:

Property 1: ‖x+ y (mod p)‖ ≤ ‖x‖+ ‖y‖

Property 2: ‖x · y (mod p)‖ ≤ ‖x‖ · ‖y‖

Property 3: x 6= 0n ⇒ ‖− x (mod p)‖ = n− ‖x‖

The proof can be found in [AJPS18].

2.2 Key-Encapsulation Mechanism Syntax

A key-encapsulation mechanism (KEM) consists in four algorithms: Π = (Setup,
KeyGen, Encap, Decap).

– Setup: The set up algorithm takes as input a security parameter λ and outputs
a public parameter pp.

– KeyGen: The key generation algorithm takes as input a public parameter pp
and outputs a public-key pk and a secret key sk.

– Encap: The encapsulation algorithm takes as input a public key pk and
outputs a ciphertext C and key K.

– Decap: The decapsulation algorithm takes as input a ciphertext C and sk and
outputs ⊥ or a key K.

Definition 1. We say that Π = (Setup, KeyGen, Encap, Decap) has (1-λ)-
correctness if for any (pk, sk) generated by KeyGen, we have that:

Pr
[
Decap(sk,C) = K : (C,K)← Encap(pk)

]
≥ 1− λ

.

2.3 Backtracking Techniques

For solving constraint satisfaction problems, there are basically three main
approaches: backtracking, local search, and dynamic programming. In this work,
we consider backtracking (also known as depth-first search), which consists of
searching every possible combination in order to solve an optimization problem.
To that end, backtracking proceeds in three steps: it picks a solution as a sequence
of choices to the first sub-problem, then recursively attempts to resolve other
sub-problems based on the solution of the first sequence of choices, then it returns
the best solution found. We refer the reader to [Knu] for further introductory
background.

3

3 The MERS Assumption: Notation and Definitions

Aggarwal et al. introduced a new assumption [AJPS18] mimicking NTRU over
integers, this assumption relies on the properties of Mersenne primes in the ring
Zp instead of polynomial rings Zq[x]/(xn − 1). Their conjecture is based on the
observation that given any number a ∈ Zp we obtain this property: if we multiply
a by any number b = 2x where x ∈ [0, n− 1], then the result c = a · b is just a
cyclic shift.

The security of our scheme is based on the following assumptions:

3.1 MERS Assumption

For two integers 4h2 < n and for n-bit Mersenne prime p = 2n − 1, and for
integer s ∈ Zp, we define a distribution MERSs,n,h as follows: choose r ← {0, 1}n
and b← Hn,h, return (r, r · s+ b mod p). We also define a uniform distribution
U as follows: choose r ← {0, 1}n and b← {0, 1}n, return (r, b mod p).

Definition 2 ((Decisional) Mersenne Low Hamming Combination As-
sumption (MERS Assumption) [AJPS18]). For two positive integers 4h2 < n
and for an adversary A, we introduce the MERSn,h advantage as the quantity:

AdvMERSh,n(A) =
∣∣∣Pr[AMERSs,n,h() ⇒ True]− Pr[AU() ⇒ True]

∣∣∣ ,
where s $←− Hn,h. We say that the MERSn,h problem is (t, q, ε)-hard if for all attack-
ers A with time complexity t, making at most q queries, we have AdvMERS(A) ≤ ε.

3.2 RMERS Assumption

Definition 3 (Mersenne Low Hamming Ratio Search Assumption (RMERS)
[AJPS18]). Given an n-bit Mersenne prime p = 2n− 1, 4h2 < n and an integer
H ∈ Zp, find F,G ∈ Hn,h such that:

H =
F

G
mod p

3.3 Hardness of the MERS Problem

Meet-in-the-Middle attack. de Boer et al. [dBDJdW17] presented a meet-
in-the-middle attack for solving the MERS problem. Their classical and quantum
attacks run in respective times:

Õ

(√(
n− 1

h− 1

))
and Õ

(
3

√(
n− 1

h− 1

))
LLL-attack. [BCGN17,dBDJdW17] present an LLL-based algorithms [LLL82]
for solving the RMERS, whose Turing and quantum running times are respectively

4

O(22h) and O(2h). To date, this is the most efficient known approach for solving
RMERS. Assuming a quantum computer using Grover’s algorithm, one obtains a
quadratic speedup over [dBDJdW17] (i.e. O(2h)). Therefore, as per [AJPS18],
our scheme is secure when h = λ = 256.

Primality of n. [AJPS17a,AJPS18] recommend p = 2n− 1 and n to be primes
to avoid an attack on composite n.

4 The Original AJPS Cryptosystem

4.1 The AJPS-1 Encryption Scheme

The original AJPS-1 encryption scheme based on MERS assumption [AJPS17a],
is defined by the following sub-algorithms:

– Setup(1λ)→ pp. Chooses the public parameters pp = {n, h} so that p = 2n−1
is an n-bit Mersenne prime achieving some λ-bit security level.

– KeyGen(pp)→ {sk, pk}. Picks {F,G} ∈R H2
n,h and returns:{

sk ← G

pk ← H = F/G mod p

– Enc(pp, pk,m ∈ {0, 1})→ C. Picks {A,B} ∈R H2
n,h, and computes:

C ← (−1)m(AH +B) mod p

– Dec(pp, sk, C)→ {⊥, 0, 1}, computes d = ‖GC mod p‖ and returns:
0 if d ≤ 2h2,

1 if d ≥ n− 2h2,

⊥ otherwise

The intuition behind the decryption formula is the observation that when
m = 0 we get:

W = GC = G(AH +B) = FA+GB ⇒W is of low Hamming weight

The security of this cryptosystem is based on the (decisional) MERS problem
introduced before.

To increase bandwidth, Aggarwal et al. introduced the AJPS-ECC variant
described hereafter.

5

4.2 The AJPS-ECC Encryption Scheme

In the second variant AJPS-ECC [AJPS18,AJPS17b] aims to extend AJPS-1’s
bandwidth, while requiring an ancillary error correction scheme {D, E}.

AJPS-ECC is formally defined by the following sub-algorithms:

– Setup(1λ)→ pp. As in Section 4.1.

– KeyGen(pp)→ {sk, pk}. Picks {F,G} ∈R H2
n,h, R ∈R {0, 1}n and returns:{

sk ← F

pk ← {R, T} = {R,F ×R+G mod p}

– Enc(pp, pk,m ∈ {0, 1}λ)→ C. Picks {A,B1, B2} ∈R H3
n,h and computes the

ciphertext:

C =

{
C1 ← (A×R+B1 mod p

C2 ← (A× T +B2 mod p)⊕ E(m)

– Dec(pp, sk, C)→ {⊥,m} returns:

D((F × C1 mod p)⊕ C2).

For the sake of clarity, we keep the definition of C1 unchanged but slightly
depart from [AJPS17a]’s original formulae by modifying the definitions of T and
C2 as follows:

T ← (F ×R−G mod p

C2 ← (A× T −B2 mod p)⊕ E(m)

To understand the intuition behind Dec consider the quantity W = FC1−C2

corresponding to the particular case E(m) = 0:

W = FAR+FB1−AT+B2 = FAR+FB1−A(FR−G)+B2 = FB1+GA+B2

As before, we see that d = ‖W‖ is low. This means that the noise attached
to E(m) after the clean-off operation (F × C1 mod p) ⊕ C2 is low and thus
surmountable by the error-correcting code {E ,D}.

The security of this cryptosystem is based on the (decisional) MERS problem.
We refer the reader, again, to [AJPS18] for further details about this cryptosystem
and the parameter choices allowing successful decryption and sufficient security.
Sticking only to the core idea, we purposely omit the hashing and re-encryption
tests performed during the key de-encapsulation process.

6

5 Proposed Schemes

5.1 Overview of Our Approach

In this section we will describe two AJPS-ECC variants based on the new idea of
Randomness Reconstruction.

Our idea departs from AJPS-1 in a direction orthogonal to the above.
We set by design m = 0 in AJPS-1 or E(m) = 0 in AJPS-ECC and attempt

to recover the randomness3 into which information (encapsulated keys and/or
plaintext information) will be embedded.

The intuition is that the receiver might be able to recover the randomness if
parameters are properly chosen using his extra knowledge of G,F and knowing
that, in addition, the unknown randomness has a low Hamming weight.

We hence focus the rest of this paper on methods for solving equations of the
following forms:

W = Fx+Gy or W = Fx+Gy + z mod p

Where all parameters4 and unknowns are randomly chosen in Hn,h and where
a solution {x, y} or {x, y, z} is known to exist.

We do not introduce any modifications in Setup and KeyGen, nor do we
modify pp or sp5. We thus focus on the encapsulation (encryption) and on the
de-encapsulation (decryption) processes only, in KEM and PKE respectively.

In a non-KEM version, a plaintext m encoded in the unknowns (x, y or
x, y, z) can be directly recovered upon decryption. Such an encryption mode must
however be protected against active attacks using padding and randomization
that we do not address here.

Remark 1. It is tempting but inadvisable to create dependencies between the
variables F,G and/or the unknowns x, y, z. Consider an AJPS-ECC where m ∈R
{0, 1}λ and {A,B2} ∈R H2

n,h but where B1 ← H(m) is obtained by hashing m
into Hn,h. Given m, anybody can re-compute B1 and algebraically infer A,B2.
We hence see in this example that A,B2 do not add extra entropy as security
solely rests upon m.

We carefully distinguish between security bandwidth and information rate. An
idea, unexplored in AJPS-ECC, may exploit remark 1 to transport more plaintext
information in {C1, C2} without adding extra security. To encrypt a τ -bit message
µ, pick a key m ∈R {0, 1}λ and encrypt c ← Fm(µ) using a block cipher F .
Set B1 ← H(m). LetM be any invertible public mappingM : {0, 1}τ → H2

n,h.
Encode: {A,B2} ← M(c) and form {C1, C2} using AJPS-ECC. To decrypt,
recover m using error-correction, recompute B1, algebraically recover {A,B2}
and retrieve the plaintext µ by:
3 A,B or A,B1, B2
4 Except W
5 Note that in AJPS-1/ECC given G one can compute F and vice versa.

7

µ← F−1m (M−1(A,B2))

= F−1m
(
M−1(C1 −B1

R
mod p, C2 −

(C1 −B1)T

R
mod p)

)
= F−1m

(
M−1(C1 −H(m)

R
mod p, C2 −

(C1 −H(m))T

R
mod p)

)
Because in AJPS-ECC{n, h} = {756839, 256} the potential encoding capacity

ofM can be relatively high:

2 log2

(
756839

256

)
= 6631 bits

This increases AJPS-ECC’s information rate by a factor of 26. Again, proper
message padding may be necessary to resist active attacks. We stress, again, that
this does not increase security bandwidth but information rate only. An attacker
guessing m will determine µ.

5.2 The Bivariate KEM

Our Bivariate Cryptosystem Π1 = (Setup,KeyGen,Encap,Decap) is defined as
follows:

– Setup(1λ)→ pp: As in Section 4.1.
– KeyGen(pp)→ {sk, pk} are identical to AJPS-1.

– Encap(pp, pk)→ C. Picks {A,B} ∈R H2
n,h and computes:

C ← AH +B mod p

– Decap(pp, sk, C)→ {⊥, {A,B}} returns:

{A,B} ← Solvex,y[GC = Fx+Gy mod p]

If {A,B} 6= ⊥ use {A,B} as KEM entropy for further encryption.

Example: Let µ be a plaintext and R a redundancy function. Compute
m← R(µ, ρ) where ρ is random. A typical KEM6 is shown here:

RNG H(α,m) H′(A,B) Fk(α,m)

HA+B

α

A,B

k

mm

C ′

C

H

6 Where H,H′s are hash functions and F is a block-cipher.

8

Solvex,y H′(A,B) F−1k (C ′)

m valid if (A,B) = H(α,m)

A,B k α,m

C ′

F,G,C

Retrieve m from µ← R−1(m).

5.3 The Trivariate KEM

Our Trivariate Cryptosystem Π2 = (Setup,KeyGen,Encap,Decap) is defined as
follows:

– Setup(1λ)→ pp: As in Section 4.1
– KeyGen(pp) → {sk, pk} are identical to AJPS-ECC but with the modified

formula T ← F ×R−G mod p.

– Encap(pp, pk)→ C. Picks {A,B1, B2} ∈R H3
n,h and computes the ciphertext:

C =

{
C1 ← A×R+B1 mod p

C2 ← A× T −B2 mod p

– Decap(pp, sk,C)→ {⊥, {A,B1, B2}} returns:

{A,B1, B2} ← Solvex,y,z[FC1 − C2 = Fy +Gx+ z mod p]

If {A,B1, B2} 6= ⊥ use {A,B1, B2} as KEM entropy for further encryption.
As noted before, the trivariate version may accommodate in the encryption

formula an independent E(m) and thus cumulate the bandwidth improvements
due to both mechanisms. This requires that the {n, h} values of both schemes
coincide and the enforcement of the condition n ≤ 16h2, not addressed here. We
conjecture that such a meeting point exists.

6 Security Proof

Just as RSA, our encryption process is deterministic (i.e., requires no nonce) if the
message is encoded in A,B. As such, unless we use a proper padding before encryp-
tion, the encryption function itself cannot provide "native" indistinguishability
against chosen plaintext attacks.

We nonetheless provide a proof that breaking our KEM is equivalent to the
solving the (search) RMERS Problem, defined in Section 3.2.

9

Theorem 1. Inverting the KEM described in section 5.2 with parameter h is as
hard as solving RMERS Problem for parameter h/2.

Proof. We will show that any attack algorithm A(C,H, h, p) = {A,B} extracting
the exchanged key {A,B} without resorting to the secret key can be used to
solve the RMERS for parameters h/2, p. There is hence a loss in the reduction of
a factor of 2 in the security parameter h.

Assume that A(C,H, h, p) exists.
We note that A resolves the equation C = AH +B mod p without resorting

to the secret elements F,G.

What happens if we invoke A(0,−H mod p, h, p)?

In such a case A will return A,B such that:

0 = −AH +B mod p that is: H =
B

A
=
F

G
mod p

A has thus solved the RMERS for parameters h, p.

This is, however, insufficient as A may refuse to solve the equation C =
AH +B mod p when C = 0. We will hence mask the input C so that A could
not refuse to process it.

To do so, we sacrifice reduction tightness to force A to solve arbitrary target
instances Ht of the RMERS for parameters h/2, p.

– Generate two random numbers rA, rB ∈R H2
n,h/2.

– Form the quantity:
C = Ht × rA − rB mod p

– Invoke A(C,−Ht mod p, h, p)

A will return an A,B such that:

C = −A×Ht +B = Ht × rA − rB mod p

In other words:

Ht =
B + rB
A+ rA

=
F

G
mod p

A was hence instrumented to solve a RMERS instance of parameter h/2, as
required.

�
The proof extends, mutatis mutandis, to the trivariate KEM of section 5.3.

10

Ht
RMERS

solver for h
2

Attacker
A for h

F,G

A,B
H = −Ht mod p
C = Ht × rA − rB

Figure 1: Security reduction: Turning an attacker into an RMERS solver.

7 Instantiating Solvex,y Using Backtracking

This section explains how to instantiate Solvex,y. The routine Solvex,y,z is
obtained mutatis mutandis.

The intuition behind Solvex,y is the following: assume that we are given the
quantity W = GC = AF +BG mod p where ‖W‖ ∼= 2h2. Because multiplication
modulo p is (somewhat) weight-preserving, we can test the hypothesis that the
i-th bit of A is equal to one by looking at the quantity ∆:

∆ = ‖W‖ − ‖W − 2iF mod p‖

Intuitively, a good guess should result in a weight decrease of ' h whereas a
wrong guess should re-blurW by triggering random carry propagations. Evidently,
because there may be false positives during this process, we must be able to
backtrack. To reduce the false positive error probability, n must be large enough
with respect to h. The exact same idea applies to Solvex,y,z.

7.1 Prerequisites & Subroutines

We start by introducing three necessary prerequisites.

The ancillary function Confirm: Our algorithms require an ancillary function
Confirm-ing a candidate solution {x, y}. e.g. given a candidate x, Confirm(x)
may solve GC = Fx + Gy mod p for y and return {y,True} if ‖x‖ = ‖y‖ = h.
Because in some cases several solutions may exist, a simpler implementation may
just compare H(x, y) to a confirmation digest τ provided with the ciphertext
and return {y,True} if the purported solution hashes into τ . If H(x, y) 6= τ then
Confirm(x) returns {⊥,False}. Note that using a confirmation digest would not
satisfy the standard indistinguishability security requirement for KEMs.

11

Γ 50 51 52 53 54 55 56 57 58 59 60
Probability 24% 20% 26% 30% 32% 20% 22% 18% 14% 9% 4%

Table 1: Backtracking success chances for {t, h, n} = {1, 72, 19937}. 50 decryption
simulations per entry.

10 20 30 40 50 60 70

G

20

40

60

80

% of success

Figure 2: Backtracking success chances for {t, h, n} = {1, 65, 19937}. 200 decryp-
tion simulations per entry. Fitted with 82.922 exp(−(Γ − 45.7122)2/34.6815)

Determining the backtracking aperture Γ : Backtracking is parametrized
by a constant Γ controlling the aperture of the exhausting process (i.e. the
marginal tolerance allowing to exclude a search path from further investigation).
Simulations indicate that for any given {n, h} there is a Γoptimal value minimizing
the failure probability. We did not attempt a formal analysis of the dependency
between {n, h} and Γoptimal but estimated Γoptimal for various {n, h} pairs using
simulations as shown in Table 1 and Figure 2.

7.2 The Backtracking Algorithms

The deterministic backtracking algorithm B1 subtracts left-shifted F s from W to
obtain candidate ws having smaller and smaller weights. B1 maintains a set of
integers R containing the bit positions of x discovered so far. The deterministic
algorithm is called by {A,B} ← B1(W, ∅, 0) and the randomized version is called
by B2(W, ∅, 0, φj) where φjs are random permutations of Zk. Code is available
from the authors upon request.

12

Algorithm 1
Backtracking B1(w,R, e)
Input: w,R, e. The values G,F, h, n, p = 2n − 1, C are global and invariant.
Output: {x, y} = {A,B} such that W = CG = Fx+Gy mod p or Failure.

if e = n then return Failure
else

if #R = h then
x←

∑
i∈R 2i

{s, y} ← Confirm(x)
if s then return {x, y}

w ← w − 2e × F mod p
if |‖w‖ − ‖w‖+ h| ≤ Γ then
B1(w,R ∪ {e}, e+ 1)

else
B1(w,R, e+ 1)

Algorithm 2
Backtracking B2(w,R, e, φ)
Input: w,R, e, φ. The values G,F, h, n, p = 2n − 1, C are global and invariant.
Output: {x, y} = {A,B} such that W = CG = Fx+Gy mod p or Failure.

if e = n then return Failure
else

if #R = h then
x←

∑
i∈R 2φ(i)

{s, y} ← Confirm(x)
if s then return {x, y}

w ← w − 2φ(e) × F mod p
if |‖w‖ − ‖w‖+ h| ≤ Γ then
B2(w,R ∪ {e}, e+ 1, φ)

else
B2(w,R, e+ 1, φ)

We conjecture that working with a fixed Γ during the entire backtracking
process handicaps the algorithm. When the process starts the weight of W is
high, hence the probability to strike-out h bits by subtraction is high. However as
subtractions make w sparser aperture should intuitively decrease. It may hence
make sense to explore algorithms in which the constant Γoptimal is replaced by a
function Γ (‖w‖, ‖w‖, n, h).

Best candidate search: B1 and B2 explore all the paths starting by an a priori
promising ∆. However, B1 and B2 do not explore the most promising paths
first. A more complex backtracking strategy (B3) trying with priority the paths

13

starting by a ∆ as close as possible to h was developed as well (information
available from the authors upon request). We do not include this algorithm here
for the sake of concision.

Dealing with decoding failures: Because we may discard seemingly unin-
teresting (but actually promising) exploration paths, backtracking may fail to
decode W . As it seems complex to formally compute the algorithm’s success
probability, we estimated it by simulation. To deal with decryption failures we
re-attempt backtracking after index randomization i.e. pick t random permuta-
tions {φ0, . . . , φt−1} of Zk and re-run B2(W, ∅, 0, φj) t times hoping that at least
one of the t runs will succeed7. A more brutal approach consists in sending t
encapsulated keys to increase the probability exponentially. This (conjectured)
exponential probability gain only handicaps the information rate by a constant
factor8. A simple idea for (conjectured) squaring the failure probability consists in
trying to backtrack on A and, upon failure, re-launch the algorithm to backtrack
on B.

Information leakage from decryption failures: Because decryption may fail,
a possible cryptanalysis (that we did not investigate) might be to analyze, possibly
adaptively, the ciphertexts causing failures and thereby extract information on
{F,G}. We do not regard this as a major problem for the following reasons:

– Failure is highly dependent on the backtracking algorithm chosen by the
receiver. The backtracking procedures that we give here are one possibility
amongst many.

– An empirical protection consists in randomizing the backtracking process,
e.g., assume all the φi to be randomly drawn per decryption and secret.

– Another protection is to purposely fail decryption with some probability ε to
prevent the cryptanalyst from identifying true failures. Note that the random
tape used to simulate false failures must be derived from a fixed secret and
the ciphertext itself to avoid replays and majority votes.

Protection against side-channel attacks: It is reasonable to assume that, like
most encryption schemes, the algorithms described in this paper are vulnerable
to timing and side-channel attacks, an aspect that we did not investigate here.

7.3 Eccentric Reconstruction Strategies

Backtracking might be improved in a variety of ways. As examples, we are
introducing in this section a few research ideas that we did not explore in detail.
7 Note that B1(W, ∅, 0) = B2(W, ∅, 0, ID).
8 Link B0, . . . , Bt−1 in a way allowing the recovery of all the Bi if one of them is known
(e.g. define Bi = Fi(seed) where Fk(m) is a block-cipher encrypting into Hn,h). Use
the Ai to transport entropy or information. One successful decryption reveals the
seed ⇒ open all the Bis ⇒ all the t information containers Ai.

14

Idea 7.3.1: Brittle encryption formulae. We may modify the bivariate
encryption formula to C ← HA+ 3B and enforce by design that H,A,B do not
contain the binary sequence 11. This means that the bit positions representing
3B will be “colored” by a pattern 11 making their isolation and identification
easier. If n� h we may even attempt to brutally reset all the isolated ones in
W and divide the result by 3G to directly obtain B. For the trivariate version
one may use:

C =

{
C1 ← AR+B1 mod p

C2 ← AT − 3B2 mod p

resulting in the decryption formula W = FC1−C2 = FB1 +GA+3B2. Here
as well, we banish the pattern 11 from G,F,A,B1, B2. We may thus attempt to
identify in W the binary patterns 11, hinting the probable presence of B2 to ease
decoding. Note that the pattern 11 may result naturally from the multiplication,
the addition or the reduction and hence mislead the decoder (backtrack). Similarly,
an 11 due to 3B2 may disappear due to addition (backtrack). Note that marking
B with 11s makes backtracking more efficient as this increases the SNR. e.g. if
we replace each 1 in B by a 1111 we increase overall weight of W to 5h2 but a
correct guess will cause a weight decrease of ' 4h instead of h. In other words,
while requiring a larger n, this improves the SNR:

from SNR =
h

2h2
=

1

2h
to SNR =

4h

5h2
=

4

5h

Idea 7.3.2: Dye tracing. In hydrogeology, dye tracing is a technique for
tracking various flows using dye added to the water source. In other words, dye
tracing uses dye as a flow tracer. It is an evolution of the ages-known float tracing
method, which consists of throwing a buoyant object into a waterflow to see
where it emerges. To simulate the effect of dye tracing, we inject into F ’s digits
a few low-weight binary patterns and track their appearance in W . For instance
(toy example), generate an F of weight h − 10 not containing any of the ten
sequences `i:

11 101 111 1001 1011 1101 10001 11001 10101 10011

randomly insert those ten `is into F ’s blank spaces (insert each `i once, this
will increase the weight of F to h− 10 +

∑
‖`i‖ = h− 10 + 26 = h+ 16 and the

weight of W to ' 2h2 +16h). To retrieve A, isolate the 10 dyes tracers in W and
use majority voting on bit offsets to infer the probable positions of A’s bits.

Idea 7.3.3: Demodulation. We can attempt to “travel back in time” and infer
ω = FA+GB ∈ Z from W , or at least estimate the probability that a candidate
bit in W originates from the number’s pre-reduced upper half. Given ω ∈ Z
decryption9 is immediate because:
9 Take F,G coprime in Setup.

15

A = ωF−1 mod G = (W demodp)× F−1 mod G

To demodulate W we work modulo p = 2n − 3 that “colors” the folded MSBs
by turning them into LSB 11s. The process is error-prone10 but actually works
for parameters that are large enough. We implemented the idea very brutally,
by simply translating each 11 in W into a 1 in the MSB of ω without taking
any further precautions. 100 demodulation attempts for {n = 6× 107, h = 55}
resulted in 29 successes. Although n is huge, the resulting information rate is not
“that” catastrophic as we can pack:

2 log2

(
6× 107

55

)
= 2356 plaintext bits into the ciphertext.

In other words, each plaintext bit claims 25461 ciphertext bits and is success-
fully transmitted with probability 29%.

While h = 55 is not very large and n = 6 × 107 is extremely large, our
simulation shows that it is definitely possible to make ingredients meet at workable
parameter combinations. We conjecture that with proper analysis and refined
demodulation strategies k might be reduced by at least two orders of magnitude.
It may also be possible to work modulo 2n − π with a more distinguishable color
π 6= 3 despite an extra weight due to a more complex π. π = −1 is interesting as
well as −1 turns folded bits into long chains of 1s.

Note 1. (important) One of the features preventing lattice-based attacks in AJPS-
1/ECC is the emergence of parasitic short vectors due to working modulo 2n − 1
(section 5.1.[AJPS17a] 11). We did not evaluate the impact of π 6= 1 on the
number and the norm of parasitic short vectors and hence on security.

Idea 7.3.4: Pattern identification. Another idea consists in exploiting the
fact that W = AF + BG mod p will naturally contain binary sequences of the
form:

v` = 0, . . . , 0︸ ︷︷ ︸
` zeros

|1| 0, . . . , 0︸ ︷︷ ︸
`+ 1 zeros

Let m be an `-bit encapsulated key12 and define C = m(AH +B) mod p we
get:

CG = m(AF +GB) = mW = m× (w′|v`|w) = u′|m|u mod p

m can thus be read13 on CG mod p. It remains to identify m. To do so, we
can generate {A,B} ← H(m) and hence confirm proper decryption using n

10 Again, “natural” 11s may be already present in the LSBs of ω, 11+ 01 may destroy
an 11, 10+ 01 may create fake 11s etc.

11 ePrint version 20170530:072202.
12 We consider m to be beyond exhaustive search, typically 160 bits.
13 Note that reading is circular i.e. wrapping around CG mod p.

16

re-hashings and re-encryptions. This workload may be considerably reduced by
sacrificing a few bits of m, e.g. 16 bits, to display a specific pattern (e.g. 0xFFFF)
allowing a quick identification of m. This divides the number of hashings and re-
encryptions by 216. As a numerical example, {n, h} = {75×104, 100} corresponds
to an ` ' 200. If we sacrifice 20 bits devoting them to an identification pattern
we can hope to decapsulate a ' 160-bit key using one re-encryption only.

` has a low variance as it is essentially determined by a max-min over the
differences between the positions si of the bits equal to one in W :

` ∼= max
i

min(si − si−1, si+1 − si)

For a subtle technical reason ` is actually higher than this crude estimate. To
understand why we refer the reader to Figure 3 where we illustrate the expected
distribution of } = 2h2 bits amongst n potential positions. The least significant
1-bit • is expected to appear at γ where:

γ =
}

(n− 1)}

∫ n−1

0

x (n− 1− x)}−1 dx =
n− 1

}+ 1

Similarly, the most significant 1-bit position • is expected at ' }γ. The reason
why two other points are singled-out by • and • will be clarified later. Now,
because arithmetics modulo p wrap everything that overflows 2n on 20 the actual
gap between • and • is not γ but 2γ. This is illustrated in Figure 4. In other
words, the primary formula for ` should be corrected to:

` ∼= max
(
α, α,max

i
min(si − si−1, si+1 − si)

)
Where:

α = min([•, •], [•, •]) u
= [•, •] ' γ

and

α = min([•, •], [•, •]) u
= [•, •] ' γ

Where u
= denotes “usually (or frequently) equal to”. We therefore see that

wrapping due to modular arithmetic has an unexpected favorable effect on `.

n− 1 γ(}− 1)γ 3γ 2γ}γ 0

Figure 3: Dots show the expected positions of } bits picked randomly amongst n
positions. Here γ = n−1

}+1 .

Pattern identification is somewhat homomorphic but with a very fast increas-
ing noise: encode a zero as m = 01, a one as m = 11 and read the plaintext on
the most significant bit of that encoding.

17

0 ≡ n− 1
min = γ

2γ

3γ

.

(}− 2)γ

(}− 1)γ

max = }γ |

wrap mod 2n − 1

Figure 4: The interval [min,max] = [•, •] of size 2γ created by wrapping modp.

Idea 7.3.5: Prime embedding. A variant of the above, mostly of theoretical
interest, is the following: because there is a number of natural leading and tailing
zeros in η = AF + GB mod p we can encode C = m(AH + B) mod p, recover
m(AF +GB) mod p and, provided that m is short enough, hope that η is small
enough to get14 ω = mη ∈ Z. It remains to extract m from ω. To do so, pick m
as a product of, say 64-bit random primes. The receiver can pull-out those primes
from ω using ECM factorization15. When a candidate m was formed, confirm
it using hashing and re-encryption as before. {n, h} = {2.5× 106, 100} gives an
average expected margin of ' 240 bits for encoding m. The main problem with
this variant would be the high variance in the size of m embeddable into the
ciphertext which would make decryption uncertain.

Note 2. (research note) To the above we add two ideas that we conjecture to be
insecure (by opposition to the previous ideas that we do not conjecture to be
secure)

Variant 7.3.6. Correlated As: To ease backtracking we wish to give the
decoder several ∆s generated from the same B. Generate t independent keys
{Fi, Gi, Hi} (possibly modulo different pis). Pick t−1 public random permutations
φ1, . . . , φt−1 of Zn. Generate {B0, . . . , Bt−1, A0} ∈R Ht+1

n,h . Let

A0 =

n−1∑
i=0

2iai

and form t ciphertexts {C0, . . . , Ct−1}:

Cj = AjHj +Bj mod pj where Aj =

n−1∑
i=0

2φj(i)ai

Simultaneous backtracking on the Ajs will reveal more information per bit
guess to the decoder.
14 the possibly rotated
15 Accidental similar-size prime factors may come from AF +GB as well, but those are

few and hence easy to filter.

18

Variant 7.3.7. Correlated Hs: Set G and define Hi = Fi/G for i ≥ 1. We
illustrate the idea with two His. Encrypt C = A0H0 +A1H1 +B. We see that
W = GC = F0A0 + F1A1 +BG. Linking A0 and A1 as in note 9.1 we see that
the SNR16 in the case of a successful guess increases:

from SNR =
h

2h2
=

1

2h
to SNR =

2h

3h2
=

2

3h

This modifies the complexity assumption as well.

Note 3. (a broken variant) We close this paper by attracting the reader’s attention
to the broken variant given in the appendix, that we mention as a target for
fixing.

8 Security & Parameter Sizes

Brittle encryption, dye tracing, demodulation, pattern identification and prime
embedding are only illustrative research directions that we consider interesting
or curious but that we do not claim nor conjecture to be secure. This work
did not cover the security of the proposed constructions and focused on the
textbook modes in which data is encoded and decoded. Parameter sizes were not
recommended and numerical examples are given for illustrative purposes.

A careful trade-off must be established between 1 the security, 2 the back-
tracking failure probability and 3 the efficiency of the various Solve processes.
So far, simulations indicate that there seem to be ways to practically satisfy those
three constraints at once.

9 Concluding Remarks

In this paper, we have introduced a new KEM schemes improving the AJPS
cryptosystem and its variant. They are related to the hardness of MERS problem.
Since our constructions rely on newly introduced assumptions, further crypt-
analytic efforts are demanded in order to get more confidence about their exact
security.

10 Acknowledgments

The authors thank Waïss Azizian, Sarah Houdaigoui and Quốc Tún Lê for the
development and the simulation of different backtracking strategies.

16 Note that as backtracking proceeds the SNR improves. In this paper SNR stands for
the SNR at the beginning of the backtracking process.

19

References

AJPS17a. Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklós Sántha. A
New Public-Key Cryptosystem via Mersenne Numbers. Cryptology ePrint
Archive, Report 2017/481, 2017. http://eprint.iacr.org/2017/481.

AJPS17b. Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklós
Sántha. Mersenne-756839. Technical report, National Institute of
Standards and Technology, 2017. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.

AJPS18. Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklós Sántha. A
New Public-Key Cryptosystem via Mersenne Numbers. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO
2018, pages 459–482. Springer, 2018.

BCGN17. Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache.
On the Hardness of the Mersenne Low Hamming Ratio Assumption.
Cryptology ePrint Archive, Report 2017/522, 2017. http://eprint.iacr.
org/2017/522.

dBDJdW17. Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks
on the AJPS Mersenne-Based Cryptosystem. Cryptology ePrint Archive,
Report 2017/1171, 2017. https://eprint.iacr.org/2017/1171.

ElG85. Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In George Robert Blakley and David
Chaum, editors, Advances in Cryptology, pages 10–18, Berlin, Heidelberg,
1985. Springer.

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-
Based Public Key Cryptosystem. In Joe P. Buhler, editor, Algorithmic
Number Theory, pages 267–288. Springer, 1998.

Knu. Donald E. Knuth. The Art of Computer Programming. Addison-Wesley.
1968.

LLL82. Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring Poly-
nomials with Rational Coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices
and Learning with Errors Over Rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, pages 1–23. Springer, 2010.

NIS17. NIST. Post Quantum Crypto Project (2017). http://csrc.nist.gov/
groups/ST/post-quantum-crypto/, May 2017. Accessed 19 May 2017.

Reg06. Oded Regev. Lattice-Based Cryptography. In Cynthia Dwork, editor,
Advances in Cryptology - CRYPTO 2006, pages 131–141. Springer, 2006.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun.
ACM, 21(2):120–126, February 1978.

Sho97. Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM J. Comput.,
26(5):1484–1509, October 1997.

20

http://eprint.iacr.org/2017/481
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://eprint.iacr.org/2017/522
http://eprint.iacr.org/2017/522
https://eprint.iacr.org/2017/1171
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

A Appendix: A Broken Scheme Target for Repair

While designing the algorithms in this paper we broke the following variant that
we mention here as a fixing target. Let R be a secret n-bit number of the form:
R ← random|v`|random where v` is defined as in Pattern identification, and
define the auxiliary public-key L ← R/G mod p. Note that this modifies the
complexity assumption on which the scheme rests.

Encrypt by C ← AH + B + Lm mod p and decrypt by W ← GC = AF +
GB+Rm mod p. This offers a (noisy) visibility window on m allowing to extract
and error-correct m.

The problem here is the equation defining L from which G can be revealed
using LLL. It is unclear if this can be fixed using modifications in the encryption
process and/or in parameter sizes. It is also interesting to determine if secure
H-less variants17 can be designed.

Assuming that the above could be repaired, the following is for readers fond
of dangerous games.

A dangerous game, that we do not recommend, reduces noise in the visibility
window. If A,B,G, F are generated in a biased way by shifting more Hamming
weight into the MSBs and the LSBs as shown in Figure 5, then the result of the
multiplication modulo p of two such numbers results in a number of the form
shown in Figure 6. Those densities are illustrated in Figures 8 and 9. This reduces
the noise in the reading window and allows an easier recovery of m. It must be
stressed that this increases the vulnerability of the public-key to the partition
attacks of [BCGN17] as the attacker can better zoom on the information-rich
part of F and G. This might be compensated by a higher h. Note that weight
shifting does not necessarily need to be similar in all four variables A,B, F,G
and that several weight shifting schemes are circularly equivalent because of the
multiplication modulo p.

weight =
h/4 +∆

weight =
h/2− 2∆

weight =
h/4 +∆

Figure 5: Unbalanced weight of A,B, F,G before multiplication.

17 i.e. where the sender encrypts by C ← Lm+B mod p this is insecure) or a similar
trick.

21

weight ∼=
h2/4 + 2∆2

weight ∼=
h2/2− 4∆2

weight ∼=
h2/4 + 2∆2

Figure 6: Unbalanced weight of AF mod p and BG mod p after multiplication.

weight ∼=
h2/2 + 4∆2

weight ∼=
h2 − 8∆2

weight ∼=
h2/2 + 4∆2

Figure 7: Unbalanced weight of AF +BG mod p after addition.

Figure 8: Unbalanced A and F for {n, h,∆} = {214, 32, 6}.

Figure 9: Unbalanced AF mod p for {n, h,∆} = {214, 32, 6}. Note the relatively
lower dot density at the middle of the diagram.

22

	Integer Reconstruction Public-Key Encryption

