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Abstract.
In this work, we introduce a generalized concept for low-latency masking that is
applicable to any implementation and protection order, and (in its most extreme
form) does not require on-the-fly randomness. The main idea of our approach is to
avoid collisions of shared variables in nonlinear circuit parts and to skip the share
compression. We show the feasibility of our approach on a full implementation of a
one-round unrolled Ascon variant and on an AES S-box case study. Additionally, we
discuss possible trade-offs to make our approach interesting for practical implementa-
tions. As a result, we obtain a first-order masked AES S-box that is calculated in a
single clock cycle with rather high implementation costs (60.7 kGE), and a two-cycle
variant with much less implementation costs (6.7 kGE). The side-channel resistance of
our Ascon S-box designs up to order three are then verified using the formal analysis
tool of [BGI+18]. Furthermore, we introduce a taint checking based verification
approach that works specifically for our low-latency approach and allows us to verify
large circuits like our low-latency AES S-box design in reasonable time.
Keywords: masking · low latency · AES · hardware security · threshold imple-
mentations · domain-oriented masking

1 Introduction
Boolean masking is one of the most popular and well-studied countermeasures against
side-channel analysis attacks, like differential power analysis [KJJ99] or electromagnetic
emanation analysis [QS01]. The protection against these kinds of attacks, however, does
not come for free. Masking hardware implementations requires additional circuitry which is
partially spent on masking the actual implementation, but also on producing randomness
to perform resharing and secure compression in nonlinear parts of the circuit. A lot of
research over the last years has thus focused on reducing the hardware overhead either
by making the masking itself more area efficient or by reducing the amount of required
online randomness [BDN+14, BGN+14, BGN+15, GM17, GMK17, RBN+15]. Reducing
the amount of randomness seems to go hand in hand with the need for a better control over
the glitching behavior of circuits [BDF+17, GM17, GM18] which requires more registers
and thus naturally introduces more latency.

In practice there exist many applications in which a short response time of the system
as well as protection against side-channel analysis is indispensable. The research in the
area of masking over the last years, however, has only marginally addressed low latency as
a design goal. Most recently, Arribas et al. [ABP+17] introduced a first-order protected
and two-round unrolled threshold implementation of Keccak, and Ghoshal et al. [GC17]
introduced different variants of a first-order protected Boyar-Peralta AES S-box. The
masked AES S-box requires between 3 and 4 cycles per S-box calculation making it the
construction with the lowest cycle count in the literature. Other existing works either
require more cycles or have higher randomness requirements [GM17, GMK17, CRB+16].

mailto:hannes.gross@iaik.tugraz.at


2

To the best of our knowledge, there exists no masked implementation of the AES S-box
that requires less than three cycles up to now, and no generic scheme that covers protection
for low-latency applications.

Our contribution. In this paper, we give answers to the intriguing question how random-
ness usage and chip area can be traded for less latency in hardware. For this purpose, we
first introduce a generalized concept for low-latency masking that builds on the domain-
oriented masking scheme [GMK17]. The approach is applicable to all security-sensitive
circuits and is generic in terms of protection order. We then show the feasibility of our
idea by applying the concept to a one-round unrolled masked implementation of the au-
thenticated encryption scheme Ascon, and analyze the overhead over existing generically
protected designs in terms of latency, chip area, and randomness consumption. Since
Ascon was especially designed for efficient protection against side-channel attacks, we
then target the AES S-box which has a higher algebraic degree and has proven to be a
meaningful benchmark for the efficiency of masking algorithms.

We show three different designs of a masked AES S-box. The first S-box is purely
combinatorial and thus cannot only be evaluated in one clock cycle, but even additional
linear operations at the outputs are possible within the same clock cycle. The first-
order masked S-box variant requires around 17.8 kGE and requires no additional online
randomness (even for higher orders). The output shares, however, are increased from
d + 1 shares (for the S-box inputs) to 2(d + 1)7. The second variant performs a share
compression at the output which reduces the 2(d+ 1)7 output shares back to d+ 1 shares
for the cost of 60.7 kGE and 2 kbits of fresh randomness. The third design again keeps
the number of shares at d + 1 by performing a share compression in the middle of the
S-box and at the outputs. This variant has lower chip area (6.7 kGE) requirements but
requires 416 bits of randomness per S-box calculation to keep d+ 1 shares. All designs can
be generically scaled to the desired protection order. Finally, the security of our approach
is first discussed and then analyzed using the formal analysis tool of [BGI+18] and a taint
checking approach specifically designed for our low-latency approach.

In Section 2, we first give an introduction to Boolean masking and the domain-oriented
masking scheme which we use as a basis for our approach. Our low-latency approach is then
presented in Section 3 in which we show that masking not necessarily introduces latency
or requires online randomness. In Section 4, we apply this approach to the Ascon S-box
and discuss some potential pitfalls. We use this S-box construction to implement a round
unrolled implementation of Ascon with generic protection and compare it to existing
implementations. A single-cycle AES S-box is then introduced in Section 6 and trade-offs
are discussed which lead to a two-cycle AES S-box with fewer hardware requirements. The
analysis of the side-channel resistance of our implementations is performed in Section 8
before we draw conclusions and discuss future work in Section 9.

2 Introduction to Masking and Methodology
In general, masking works by disguising side-channel information of sensitive variables and
intermediates by randomizing their representation. By randomizing the representation of
variables, the side-channel information produced during the computation on these variables
is made independent from the underlying data up to a certain degree. In the following,
we use a sharing-based masking notation in which the information is assumed to be split
into h number of randomly created and uniformly distributed shares representing e.g. the
underlying variable x.

For a Boolean masking with d + 1 fresh random shares, where d is the so-called
protection order, we can represent a masked variable x as the sum over its shares xi so
that at all times x =

∑d
i=0 xi is fulfilled. The sharing is performed in such a way that
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only the combined information on all shares leak any information on x. All operations are
then performed on the shares xi in such a way that at no time any intermediate result is
statistically dependent on more than one share of x to guarantee security in the so-called
probing model of Ishai et al. [ISW03].

Probing model. The probing model introduced by Ishai, Sahai and Wagner is the de
facto standard model in which the side-channel resistance of a Boolean masked circuit
is analyzed. Informally speaking, a circuit is said to be dth-order secure in the probing
model, if an attacker with the ability to place up to d probing needles on to any wire or
gate of a circuit (to continuously record the signal transitions over time) is not able to
combine the recorded information to reveal any (unshared) critical information.

For example, the sharing of the variable x on its own, which consists of d+ 1 shares, is
by definition dth-order secure in the probing model because it would require more than d
needles to collect all d+ 1 shares. The inherent goal of a masked circuit is to keep this
independence throughout the entire circuit. While keeping this independence is trivial for
linear operations, for which operations can be performed on all shares separately, nonlinear
operations usually require more attention. To manage the rather complicated handling of
nonlinear operations, different masking schemes have been introduced over the years that
help in designing secure circuits. For the rest of the paper we consider and extend the
ideas behind the so-called domain-oriented masking (DOM) scheme [GMK17].

Domain-Oriented Masking. The basic idea of domain-oriented masking is based on
the assumption that any circuit which can be separated (shared) into d+ 1 completely
independent circuits is trivially secure in the probing model if each of these circuits uses
at most one share per security-critical variable. To achieve this separation, each circuit is
therefore associated with a certain share index which is called the domain. We use the
term domain and the associated subcircuit interchangeably. For example, the first domain
is associated with the share index 0 and it uses only shares of security-critical variables
with this index (e.g. x0, y0).

While this domain separation approach works for linear operations in a straightforward
manner, nonlinear operations require communication across domain borders. For example,
the nonlinear calculation of the finite field multiplication x · y in shared form (assuming
d + 1 shares per variable), requires to calculate

∑d
i=0
∑d

j=0 xi · yj with respect to the
probing model. In DOM, this is solved by using a DOM multiplier that follows the domain
separation. A first-order variant (d = 1) is shown in Figure 1.
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Figure 1: First-order DOM multiplier for independently shared inputs
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According to the DOM scheme the circuit is split (vertically) into domain 0 and domain
1 which are colored black and blue, respectively. Horizontally, the circuit is split into
three steps called calculation, resharing, and compression. During the calculation step, the
so-called inner-domain multiplication terms, which use only shares with the same share
index (x0 · y0 and x1 · y1), do not violate the domain separation and can thus securely be
used in their respective domains. The red parts represent the so-called cross-domain terms
(x0 · y1 and x1 · y0). These terms mix different domains and are potentially insecure due to
what we refer to as variable collisions and look at more deeply in Section 3. The potential
flaw can be easily observed if we assume the calculation of x · x with the same DOM
multiplier circuit and the same sharings for both operands. We denote that the nonlinear
combination of the same variable (a variable collision) is not necessarily intended by the
designer of the circuit and can happen due to temporary logic states of gates, so-called
glitches.

Both cross-domain terms of the DOM multiplier would then calculate x0 · x1 which
violates the probing model by combining all shares of x. If the dependency is only
temporary, a register can be used in front of the multiplier to hinder the propagation of the
glitches. Otherwise, if the dependency is permanent, a resharing step needs to be performed.
For the remainder of this section, we assume that we have an independent sharing for the
inputs of the multiplier. The resulting cross-domain terms are thus inherently secure in
the probing model.

Due to efficiency reasons (to save registers and logic gates), a compression of the
multiplication terms is usually performed also in other existing masked multiplication
algorithms that operate on d+ 1 input shares. This compression step is also performed
in the depicted DOM multiplier by summing up the multiplication terms on the output.
The result q is then again shared with only d+ 1 shares. To allow the secure summing
of the multiplication terms, a resharing step is performed by adding fresh randomness
r to the two cross-domain terms. The subsequent use of a register ensures that the
resharing is active before the terms are compressed on the output of the multiplier and
suppresses the propagation of glitches. This resharing process allows to securely integrate
the cross-domain terms without violating the domain separation requirement of DOM.

The introduced multiplier as well as the domain separation can be generically extended
to any desired protection order. Independent from the protection order, the resharing step
for the DOM multiplier always introduces one cycle of latency. For more details we refer the
interested reader to [GMK17]. There also exist more randomness-efficient variants of the
DOM multiplier that require up to five cycles for the secure compression [GM17, GM18].
In the next section, we extend the idea of domain separation and leverage it to reduce the
latency in masked circuits.

3 Our Low-Latency Approach
As denoted in Section 2, the causes which hinder the calculation of a DOM masked circuit
in fewer clock cycles are: 1) the compression to d + 1 shares after nonlinear operations
(like the DOM multiplier in Figure 1), which require registers for the resharing of the
cross-domain terms, and 2) the temporary or permanent dependencies (variable collisions)
at the inputs of a nonlinear circuit parts. Our low-latency approach thus works by skipping
share compression and avoiding variable collisions at the input of nonlinear functions.

Compression skipping. Our main observation is that the resharing and compression to
d + 1 shares (and thus also the randomness and additional circuitry) is not a necessity
induced by the probing model itself. It is solely performed for practical reasons and to some
extent to make the result independent of the shared operands without having an explicit
mask refreshing. We adapt the domain separation requirement of the DOM approach
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insofar as we still constrain each domain to use at most one share per variable but with
the addition to allow domains with mixed share indices.

For example, the shared multiplication q = x · y in Figure 1 without a subsequent
resharing and compression step thus results in four share domains for the result variable
q (Figure 2). Each domain contains only one multiplication term from the calculation
step. Any subsequent linear operations on the shares of q that only involve shares that are
already used in the respective domain can be performed while maintaining security in the
probing model. If q is multiplied by another variable, e.g. z with d+ 1 shares, the number
of shares and domains grows to (d + 1)3 and so on. To keep this exponential blowup
of shares and domains within reasonable bounds, the number of consecutive nonlinear
operations needs to be minimized, or otherwise a secure share compression needs to be
performed at some point, if the blowup becomes unacceptable.
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Figure 2: First-order low-latency multiplication with compression skipping, resulting in
four domains

The security in the probing model for the compression skipping approach is given
because any masked circuit that can be divided into at least d+ 1 independent subcircuits
(without any wires to the other subcircuits), where each subcircuit uses at most one of the
d+ 1 input shares from each variable, requires at least d+ 1 probes to combine all shares
of one variable.

Avoiding variable collisions. The up to now tacit assumption that allows for the nonlinear
combination of shares without compression and mask refreshing is that all operands have
independent sharings. For example, it is relatively straightforward to apply this approach
to a masked circuit that calculates x · y · z if all involved shares are produced using
independent and fresh randomness. The calculation of (x · y) · x, on the other hand,
requires more attention (see Figure 3, left). One of the resulting multiplication terms
would be x0 · y0 · x1 (q0,0,1) which brings two shares of x together and thus violates the
domain separation requirement. This circumstance is indicated in Figure 3 by the different
coloring of the shares for x which when combined result in an insecure sharing (colored
red). One approach to circumvent the violation of the probing model that is used by the
threshold implementations scheme, for instance, is to use more than d+ 1 shares and to
ensure that in the worst case the probing attacker gets access to at most d shares when
using up to d probing needles. Efficient sharings that fulfill the properties required by
the TI [NRR06] scheme (correctness, independence, and uniformity) at the same time are,
however, not trivial to find.

Instead of increasing the share count per variable, we propose the duplication of
colliding variables (and gates) by using multiple shared instances of the same variable with
independent sharings. Instead of calculating (x · y) · x, we thus calculate the equivalent
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Figure 3: Example for an insecure first-order masked circuit, calculating (x · y) · x (left),
and a secure circuit (x · y) · x′ (right). The shares of x are colored green (x0) and blue (x1)
for the sake of clarity.

(x·y)·x′ where x =
∑d

i=0 xi =
∑d

i=0 x
′
i, and all involved shares are picked independently and

uniformly at random. As Figure 3 (right) shows, mixing of the shares of x is circumvented
this way. While at first sight this may seem as if we are using a sledgehammer to crack a
nut, it has the same randomness costs for sharing a variable than e.g. a first-order (d = 1)
TI with three shares and does not require additional (online) randomness. We would thus
share x into x0 = x⊕ r0 and x1 = r0, and x′ into x′

0 = x⊕ r1 and x′
1 = r1. The probing

security for this simple example can be easily observed by writing down all resulting shares
qi,j,k = xi · yj · x′

k. Since none of the shares of q contain two shares of the same variable,
the sharing is secure.

More generally, the probing security of any circuit with d+1 input shares and protection
order d is given, if at no point in the circuit there exists a path from one share of a variable
to another share of the same variable (assuming that all variables are independently shared).
We will also use this condition for the taint checking based verification in Section 8 which
allows us to perform a fast verification of the probing security of a circuit.

Resolving collisions caused by gates. When looking at complex circuits, the collisions
can no longer entirely be resolved by duplication of the input variables. For the purpose of
illustration, we consider a purely combinatorial unmasked circuit (Figure 4).
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Figure 4: Example for collisions directly caused by inputs (1) and collisions caused by
gates (2), collisions (left) and resolved collisions (right).

We note that collisions that would be caused when a circuit is masked using the DOM
scheme are already evident in the unshared circuit. The first collision in this circuit (1) is
caused because there exists a path (over other gates) from one input of the circuit to both
inputs of a nonlinear gate. Since this collision is directly caused by the circuit input i3,
we could simply duplicate the input that causes the collision as before and connect the
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copy (i′3) accordingly (Figure 4, right). The second collision is caused by a gate (2) that
has a path to both inputs of a nonlinear gate. In this case, simply duplicating the inputs
would not be enough to avoid this collision. Instead, the gate causing the collision needs
to be duplicated including its entire fan-in circuitry and its inputs. The output of the
duplicated circuit then needs to be used in one path instead of the output wire of the gate
that caused the collision.

In the next sections, we demonstrate the feasibility of our low-latency masking approach
on practical examples and discuss trade-offs and possible pitfalls.

4 A Low-Latency Ascon S-box
As a first proof of concept, we introduce a masked Ascon S-box that can be evaluated in a
single clock cycle while existing d+ 1 share implementations [GM17] require at least three
clock cycles and up to seven cycles, respectively. The S-box is equivalent to the Keccak
S-box except for an affine transformation on the input that produces temporary variable
collisions making it a viable first practical example for our approach. We first transform
the unshared S-box circuit to free the circuit from variable collisions, and then share the
S-box according to our low-latency approach.

Collision-free S-box. The structure of the S-box is depicted in Figure 4, which corresponds
to Equation 1.

a′′ = (a⊕ e)⊕ (¬b (b⊕ c))⊕ (d⊕ e)⊕ (¬ (a⊕ e) b)
b′′ = b⊕ (¬ (b⊕ c) d)⊕ (a⊕ e)⊕ (¬b (b⊕ c))

c′′ = ¬
(

(b⊕ c)⊕ (¬d (d⊕ e))
)

d′′ = d⊕ (¬ (d⊕ e) (a⊕ e))⊕ (b⊕ c)⊕ (¬d (d⊕ e))
e′′ = (d⊕ e)⊕ (¬ (a⊕ e) b)

(1)

By looking at the equations one can observe that there is a variable collision in the
AND gates in five cases (underlined parts in Equation 1). These are the nonlinear gates
that would produce a violation in the probing model due to glitches in case we shared the
S-box (see Section 3). For example, (¬b (b⊕ c)) in a′′ combines the variable b with itself
in an AND gate which would combine shares with different share index (e.g. b0 and b1)
when the S-box is shared and thus create a violation.

To avoid collisions in the AND gates, we duplicate the signals b, d, and e (b′, d′, and
e′) and replace one of the operands of the AND gates accordingly as shown in Equation 2.
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a′′ = (a⊕ e)⊕ (¬b′ (b⊕ c))⊕ (d⊕ e)⊕ (¬ (a⊕ e) b)
b′′ = b⊕ (¬ (b⊕ c) d)⊕ (a⊕ e)⊕ (¬b′ (b⊕ c))
c′′ = ¬ ((b⊕ c)⊕ (¬d′ (d⊕ e)))
d′′ = d⊕ (¬ (d⊕ e) (a⊕ e′))⊕ (b⊕ c)⊕ (¬d′ (d⊕ e))
e′′ = (d⊕ e)⊕ (¬ (a⊕ e) b)

(2)

Sharing of the S-box. Since the S-box description is now free from any variable collisions,
the S-box can safely be shared following our low-latency approach. We assume that each
of the five inputs and the two duplicated inputs are shared using d+ 1 shares. As there is
a single layer of AND gates, the shares and thus the domains for each of the outputs grow
from d+ 1 to (d+ 1)2, and we use two indices (i and j) to denote the according output
share.

a′′
i,j =

{
(ai ⊕ ei)⊕

(
¬ib′

i (bi ⊕ ci)
)
⊕ (di ⊕ ei)⊕

(
¬i (ai ⊕ ei) bi

)
, if i = j.(

¬ib′
i (bj ⊕ cj)

)
⊕
(
¬i (ai ⊕ ei) bj

)
, otherwise.

b′′
i,j =

{
bi ⊕

(
¬i (bi ⊕ ci) di

)
⊕ (ai ⊕ ei)⊕

(
¬ib′

i (bi ⊕ ci)
)
, if i = j.(

¬i (bi ⊕ ci) dj

)
⊕
(
¬jb′

j (bi ⊕ ci)
)
, otherwise.

c′′
i,j =

{
¬i
(
(bi ⊕ ci)⊕

(
¬id′

i (di ⊕ ei)
))
, if i = j.(

¬id′
i (dj ⊕ ej)

)
, otherwise.

d′′
i,j =

{
di ⊕

(
¬i (di ⊕ ei) (ai ⊕ e′

i)
)
⊕ (bi ⊕ ci)⊕

(
¬id′

i (di ⊕ ei)
)
, if i = j.(

¬i (di ⊕ ei)
(
aj ⊕ e′

j

))
⊕
(
¬jd′

j (di ⊕ ei)
)
, otherwise.

e′′
i,j =

{
(di ⊕ ei)⊕

(
¬i (ai ⊕ ei) bi

)
, if i = j.(

¬i (ai ⊕ ei) bj

)
, otherwise.

(3)

For each output variable we consider two cases:
1) The case i = j covers the inner-domain terms where only variables with the same

share index appear. To ensure correctness of the sharing, the negation e.g. ¬i is only
effective if the corresponding variable in the superscript equals zero, so that only the first
share of a variable is inverted.

2) For the remaining output shares, we need to be more careful to fulfill the domain
separation requirement. By the duplication of the according inputs we ensured that there
are no two paths for any of the input variables that are combined in a nonlinear AND
gate, which would result in a flaw that could not be avoided in this case. However, for
linear gates we still need to ensure that we do not combine shares with different share
indices from the same variable in the same domain (domain separation requirement). For
example, (b′

i (bj ⊕ cj))⊕ ((ai ⊕ ei) bj) in a′′ would produce a flaw in case we switched the
share index variable of one of the b variables (i to j) in this equation so that we have
(. . . (bi . . . )) ⊕ ((. . . bj). For this reason, we also need to set the indices in b′′ and d′′ for
the last AND gate terms accordingly.

The correctness of the sharing is given by the fact that the sums over i and j over each
output variable result in Equation 1 when b′ is set to b, d′ is set to d, and e′ is set to e.
The security is given by the fact that we do not have any domain crossings (as verified in
Section 8).
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Figure 7: Column-wise application of Ascon’s S-box to the state (left) and row-wise for
the linear layer (right), duplicated state rows are omitted

5 A Low-Latency Variant of Ascon
In this section, we integrate the low-latency S-box design into a round-unrolled variant of
Ascon-128. The sponge mode for the data encryption and authentication is depicted in
Figure 6, in which the round transformation p is performed iteratively either twelve (p12)
or six (p6) times on the state in each round. One round transformation consists of three
parts p = pL ◦ pS ◦ pC . The linear round constant addition pC followed by the S-box layer
pS (Figure 7, left) and the linear transformation layer pL (Figure 7, right). Since the S-box
layer in Ascon is only preceded by the linear addition of key or data, and only followed by
the linear transformation layer (which both can be securely realized by only operating on
each share separately), the shared S-box description from the last section can now be used
to implement a full round transformation of Ascon without any registers in between.

For the sake of completeness, we remark that the combination of the shares created by
the shared S-box in Equation 3, e.g. of a′′ and b′′, would not be secure because different
share indices are used for some variables (the term bj⊕cj in a′′ collides with the term bi⊕ci

in b′′). However, this is not an issue for the one-round unrolled Ascon variant because
the S-box is calculated column-wise over the state (as shown in Figure 7, left) and is only
followed by a linear transformation that operates inside one state row (right). Independence
of the cipher rounds is ensured by a resharing steps after each round transformation. The
resharing step also includes the creation of the duplicated state rows for the next round
by applying the compression two times in parallel for these variables with fresh and
independent randomness from the random number generator (RNG).

Design description. Figure 8 depicts our top module of the Ascon core. The structure
is based on the one used by Gross et al. [GM17] for which the sources are available
online [Gro18]. The majority of changes are done in the state module (right). The round
transformation is no longer distributed over (at least) three clock cycles but is performed in
a single step. Due to the S-box layer, the amount of shares increases from d+ 1 to (d+ 1)2

for the linear layer which is followed by a remasking step according to the CMS scheme of
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Figure 8: Hardware design overview of Ascon

Reparaz et al. [RBN+15]. The CMS remasking requires one fresh random bit per share
which amounts to 8 · 64 · (d + 1)2 bits in total for our design. Before the compression
to d + 1 terms can be performed, the (d + 1)2 refreshed shares are stored in the state
registers which include duplicated state rows needed for the S-box layer in the next round
transformation. The number of state registers is therefore increased from 5 · 64 · (d+ 1) to
8 · 64 · (d+ 1)2 compared to [GM17] which is partially compensated by the registers which
are not required for the S-box layer.

Another change affects the key storage which now needs to supply an additional copy
of the key since the key is combined with the state during the initialization and the
finalization (see Figure 6) and is used in parts of the state that need to be copied for the
secure S-box transformation.

Results and comparison. The post-synthesis results for a 90 nm Low-K UMC process
with 1V supply and a 20MHz clock synthesized with the Cadence Encounter RTL compiler
v14.20 of the low-latency designs are given in Table 1. The design is generic in terms
of protection order (d), but since the number of registers grows quadratically with the
protection order, we only considered results up to order five. For all protection orders,
only six cycles per encryption or decryption are required which is three to seven times
fewer than for the DOM and UMA designs (with 64 parallel S-boxes) in [GM17]. We
note that the reason why the DOM and UMA designs require more clock cycles for the
calculation of one round is not due to an optional design decision, e.g. to shorten the
longest combinatorial path, but is first of all a security necessity of the used masked AND
gates. The linear input transformation at the beginning of the S-box creates multiple
variable collisions that would lead to a flaw in the probing model due to glitches in case no
register was used after the input transformation (see Figure 4). This results from the fact
that the used masked AND gates are only secure if both input operands are independently
shared which is not the case due to these (temporary) variable collisions. We note the
existence of DOM-dep. masked AND gates (see [GMK17]) which are resilient to variable
collisions for the price of more randomness and chip area. These could be used to avoid
this register stage thus reducing the cycle count by one. However, in either case the DOM
masked AND gates require at least one register stage for the resharing step, and the
UMA masked AND gate requires one to five register stages. Linear transformations within
the resharing stage other than the actual resharing with a fresh random mask are not
considered neither in the original DOM scheme nor in UMA.

Unrolling an entire round of course produces much more combinatorial delay which
results in a lowered maximum clock frequency. The maximum clock frequency for our
first-order implementation, for example, is only about 260 MHz while the DOM and
UMA variants achieve a clock frequency of more than 630 MHz. When considering the
latency as the time from one plain text block being fed into the Ascon-128 core until
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the cipher text is available on the output (see Table 1), it shows that our approach saves
with 23.1 ns latency for one encryption almost 20% over the first-order DOM and UMA
implementations with 28.44 ns at maximum clock speed. For the fifth protection order,
the differences grow to about 38% and 72%, respectively. Also the maximum throughput
is in all cases increased over related work. While again for first-order the throughput is
only slightly increased, the difference becomes much more significant for order five for
which the throughput is almost doubled over the DOM design and 3.5 times higher than
for the UMA design. The price for the reduced latency is an increased chip area (about 15
kGE overhead for the first-order variant, and double the amount of area over DOM for
order five), and an increased randomness consumption which is between 5.2 (UMA, order
five) and 6.4 (DOM/UMA, first order) higher.

Table 1: Results for Ascon-128 with one cycle per round (64 S-boxes)

Design Size Cycles Max. Throughput Randomness Latency
[kGE] /Round [Gb/s] [bits/cycle] [ns]

Unprotected 8.35 1 5.84 - 10.96
1st-order 42.75 1 2.77 2,048 23.10
2nd-order 90.94 1 3.35 4,608 19.10
3rd-order 153.91 1 3.34 8,192 19.16
4th-order 238.30 1 2.59 12,800 24.71
5th-order 339.82 1 2.99 18,432 21.40

Related work [GM17]
1st-order UMA 27.18 3 2.25 320 28.44
1st-order DOM 28.89 3 2.25 320 28.44
5th-order DOM 161.87 3 1.86 4,800 34.14
5th-order UMA 220.01 7 0.85 3,520 75.29

Discussion. We admit that the randomness requirements for the higher-order variants
become very high but we denote two things:

1) Our low-latency approach offers a new design choice that a designer of a masked
circuit can use to trade off area and randomness against less latency. We used one corner
case to demonstrate the feasibility of the approach by targeting one cycle per round
transformation. A designer, of course, could also target a two-cycle variant by using the
resharing e.g. after the S-box or by inserting registers after the affine transformation in
the S-box to save randomness and area. We discuss trade-offs in more detail for the AES
S-box in the next section.

2) The CMS resharing function is probably not an ideal choice. A DOM-like resharing,
for example, could possibly reduce the randomness amount, e.g. for first order by a factor
of 4 which would reduce the randomness to 512 bits per cycle. On the other hand, using
the DOM resharing would require a deeper analysis of the design over at least two rounds,
while the CMS resharing separates the rounds by resharing all bits of the state before
the next round starts. Therefore, we made the choice to use the CMS resharing at this
point and denote the use of a more efficient resharing function as one interesting practical
extension of our work.

6 A Low-Latency Masked AES S-box
The efficient (masked) implementation of the AES S-box has proven to be a difficult
practical problem and a huge variety of papers have been published on S-box constructions.
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Figure 9: Mui S-box design (black and red parts are from the original design), gray dotted
paths and elements replace the red paths to which they are connected in the collision-free
design

Most of the recent work on masked AES implementations takes the S-box design of
Canright [Can05] as a basis. The original design goal of Canright’s S-box design is low chip
area for an unmasked implementation which does not automatically result in the lowest
area costs for a side-channel protected implementation. For our low-latency approach,
the maximum logic depth and in particular the nonlinear gate depth (number of AND
gates or GF multipliers in the logic path) seems to be the natural major design criterion
because at each nonlinear gate the number of shares is increased. The S-box design of
Boyar and Peralta [BP12] addresses low logic depth which results in a total logic depth
of 16 and a nonlinear gate depth of 4. This design was most recently used in another
work on low-latency masking by Ghoshal et al. [GC17] and has a latency of three to four
cycles. Canright’s S-box on the other hand has a logic depth of 25 to 27, and a nonlinear
gate depth of 4 (in the variant as it is used by most masked implementations). Another
important aspect that needs to be taken into account for our approach is the number of
bit collisions because it determines the number of input duplicates we need to provide in
order to guarantee collision freeness.

Choosing the most promising S-box design. As analyzing a circuit with respect to its
collision behavior is rather time-consuming, we developed a tool that simply traces all
inputs and gate outputs through a given circuit and checks for conflicts. We analyzed the
Canright S-box (original design), the Boyar-Peralta S-box and the design of Edwin NC
Mui [MCE07]. As it turns out, even despite the fact that the Boyar-Peralta S-box was
designed for low circuit depth, it involves lots of gate dependencies which require quite a
number of sub-circuit copies and input copies. Furthermore, the Canright and the Mui
S-box designs do not break down the complete design of the AES S-box into single gates
but rather consist of larger self-contained structures like Galois field multipliers which can
be shared more efficiently than by sharing each AND gate separately. The circuit that
showed the fewest dependencies is the design presented by Mui which we then chose to
take as a basis for our masked design. However, we note that we do not claim this choice
of the S-box or our low-latency implementations of it to be optimal.

6.1 “Zero Latency” AES S-box
Mui’s design is depicted in Figure 9. The black and red (security-critical) paths correspond
to the original design by Edwin NC Mui. The gray dotted circuit elements are used for the
collision-free S-box design and replace the red paths. For the design of the S-box without
collisions, we took an iterative approach for which we implemented the circuit from the
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inputs onwards to the next nonlinear part of the circuit and checked for collisions. We
thus also split the explanation accordingly.

S-box inputs to inverter. After the input transformation that maps the S-box input
x, which is interpreted as a polynomial in GF (256), to two elements in GF (16) the
transformed input is split into two halves. The two halves are nonlinearly combined in the
GF (16) multiplier. Since the linear input mapping and the XOR in front of the first GF
multiplier mix many of the input bits (cf. [MCE07] for details), it requires to duplicate all
bits of x (x′) except for the fifth bit and the circuitry that causes the flaw (the gray and
dotted input mapping). Otherwise, an input collision would be caused in the multiplier as
indicated by the red wire. For the shared S-box variant, the number of shares is increased
from d+ 1 to (d+ 1)2 after the multiplier and the linearly transformed parts (x2 and xλ)
are added with respect to their share domain.

GF(16) inverter. In Mui’s S-box design, the GF (16) inverter is given as Boolean equation
instead of finite field arithmetic as e.g. in Canright’s S-box. The mathematical description
is stated in Equation 4. The inversion in GF (16) results in collisions for all S-box input
bits which requires to separate the calculation of all input bits of the inversion by copying
the fan-in circuit (dotted gray hexagon, “4 Copies”) four times including the changes as
described above. Up to this point, the S-box circuit requires in total four full copies of the
input x and four partial copies (x′, each bit except for the fifth bit) to avoid collisions.

a′ = a⊕ abc⊕ ad⊕ b
b′ = abc⊕ abd⊕ ad⊕ b⊕ bc
c′ = a⊕ abc⊕ acd⊕ b⊕ bd⊕ c
d′ = abc⊕ abd⊕ ac⊕ acd⊕ ad⊕ b⊕ bc⊕ bcd⊕ c⊕ d

(4)

In contrast to the Ascon S-box example, the equations for the inverter are free from
any internal collisions of the inverter inputs (there is no path from one input variable to
both inputs of an AND gate). In order to avoid the combination of two or more shares of
one input for the shared S-box representation, care needs to be taken also for the linear
gates. Again we avoid collisions in the linear parts by associating with each variable one
share index which we keep throughout the entire calculation. To keep the number of
output shares to a minimum, we try to use as few share indices as possible. However, as
can already be observed in the underlined parts of the unshared calculation of d′, using
only three indices is not always possible.

Reduced example for flawed indexing. To demonstrate the resulting problem for d′ in
the shared variant, we consider a reduced example that contains only the problematic
parts:

q = abc⊕ abd⊕ acd

If we want to calculate the shared representation of q, we need to combine all shares
(given by the indices i, j, and k) of the variables connected by an AND gate as given in
the following example. We assume, as for the inverter inputs, that the input share count
is already increased to (d+ 1)2.

q(i,j,k) = aibjck ⊕ aibjdk ⊕ aicjdk

The problem arises in the XOR gates because we combine shares from the same variable
c one time with the share index k and another time with index j which violates the mixed
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domains assumption. Since there is no way to overcome this issue by associating the share
indices differently, the calculation is split into two parts. Splitting up the calculation in
two parts as shown in Equation 5 increases the amount of shares from (d+ 1)2 to 2(d+ 1)6

(the curly braces indicate a concatenation of shares).

q(i,j,k) = {aibjck ⊕ aibjdk, aicjdk} (5)

By applying this solution to the equation of the inversion (Equation 4), we can denote
the sharing of the inverter as in Equation 6. The curly braces under the equations ensure
correctness of the sharing and denote that certain terms are only present in certain output
shares (when the stated constraint is fulfilled).

a′
(i,j,k) = a(i)︸︷︷︸

j=k=0

⊕ a(i)b(j)c(k) ⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

b′
(i,j,k) =a(i)b(j)c(k) ⊕ a(i)b(j)d(k) ⊕ a(i)d(k)︸ ︷︷ ︸

j=0

⊕ b(j)︸︷︷︸
i=k=0

⊕ b(j)c(k)︸ ︷︷ ︸
i=0

c′
(i,j,k) ={ a(i)︸︷︷︸

j=k=0

⊕a(i)b(j)c(k) ⊕ b(j)︸︷︷︸
i=k=0

⊕ c(k)︸︷︷︸
i=j=0

, a(i)c(j)d(k) ⊕ b(i)d(k)︸ ︷︷ ︸
j=0

}

d′
(i,j,k) ={a(i)b(j)c(k) ⊕ a(i)b(j)d(k) ⊕ a(i)c(k)︸ ︷︷ ︸

j=0

⊕ a(i)d(k)︸ ︷︷ ︸
j=0

⊕ b(j)︸︷︷︸
i=k=0

⊕ b(j)c(k)︸ ︷︷ ︸
i=0

⊕ c(k)︸︷︷︸
i=j=0

⊕ d(k)︸︷︷︸
i=j=0

, a(i)c(j)d(k) ⊕ b(i)c(j)d(k)}

(6)

Final multiplier stage to output transformation. For the final multiplier stage we avoid
collisions by using an additional set of freshly masked copies of the S-box inputs (x′′, with
d+ 1 shares). These copies are then combined with outputs of the GF (16) inverter in the
multipliers. As these multiplications happen in parallel and no nonlinear transformation fol-
lows in the S-box, only one additional copy of the inputs x′′ suffices for both multiplications.
The adjacent linear transformations are applied share-wise and with respect to the share
domains to avoid collisions at this stage. Up to this point, no additional online randomness
or registers are required. However, the number of shares is increased to 2(d+ 1)7 at this
point. We call this variant the “zero latency” variant which denotes that further linear
operations on the output shares (like ShiftRows, MixColumns, or AddRoundkey) are still
possible within the same cycle. A share compression is thus not taken into account for
this variant at this point. The first-order zero latency S-box requires 17.83 kGE of chip
area for a 90 nm UMC process with a maximum clock frequency of 228MHz.

6.2 Single-Cycle Variant

For the one cycle variant of the S-box we compress the shares at the output of the zero
latency S-box by using a CMS compression function after the output transformation. The
number of shares is thus reduced from 2(d+ 1)7 to d+ 1 again which requires 16(d+ 1)7

random bits and registers in total. This variant would help in a full implementation of the
AES to reduce the number of subsequent linear transformations and registers, for the cost
of the CMS resharing stage. The chip area requirements for the single-cycle masked S-box
variant with first-order protection are 61 kGE at a maximum clock frequency of 356MHz,
and it requires 2 kbits of fresh randomness.
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6.3 Two-cycle variant
The chip area costs for the single-cycle S-box variant are admittedly very high given the fact
that one round unrolled variant of AES-128 requires 16 of these S-boxes. The costs can be
reduced by performing an intermediate resharing and compression step after the inverter in
Figure 9. The number of shares is thus reduced from 2(d+ 1)6 to d+ 1 before the last two
multiplications are performed which saves many of the area-consuming GF (16) multipliers
and linear transformations at the output. The final compression requires 8(d+ 1)2 fresh
random bits. In total, this variant requires 6(d+ 1)6 + 8(d+ 1)2 random bits (416 bits
for first-order protection) and the chip area is reduced to 6.7 kGE. For second order, the
amount of required randomness is 4,446 bits and the chip area is 57 kGE.

7 Summary of the AES S-box Results and Comparison
A summary of the results for our low-latency AES S-box variants and related work is given
in Table 2. All of our stated results are post-synthesis results for a 90 nm Low-K UMC
process with 1V supply and a 20MHz clock, synthesized with the Cadence Encounter
RTL compiler v14.20. The used cell library and tool chain vary among the stated related
work and the numbers should not be compared directly.

As the comparison shows, our low-latency AES S-box variants are the first published
constructions that reduce the latency below three cycles per S-box calculation. The price
is a significant increase of both chip area and randomness requirements, especially for
the single-cycle S-box variant with 60.73 kGE and 2 kbit of randomness. The zero latency
variant requires with 17.8 kGE almost nine times more area than the smallest design. The
chip area overhead for the first-order AES S-box with two cycles is relatively moderate
with about a factor of three times the area of the smallest known S-box construction.
Furthermore, our designs are generic like the DOM [GMK17] AES variant.

Comparing the randomness requirements is difficult since most of the stated work uses
a different amount of input shares which is usually not considered to be part of the required
(online) randomness. In this context, our zero latency variant requires no additional
online randomness but it requires of course additional randomness for the sharing and the
duplication of the input variables. In case of our two-cycle variant, the online randomness
costs for calculating one S-box are with 416 (and 4,446 bits, respectively) significantly
increased over the state of the art.

However, we note that our primary goal was to demonstrate that for generic higher-
order protection a reduction of the latency is indeed possible even in complex designs like
the AES S-box. The most efficient desigissuen choices and the best point at which the
shares can be again compressed remains to be an open problem.

Discussion on the impact on full AES implementations. In the following, we want to
briefly discuss the expected impact on the latency and throughput of a full AES-128
implementation on the basis of our S-box implementation results. We denote that we
are fully aware of the fact that the provisioning of such high amounts of randomness, as
required for multiple instances of our S-box implementations in parallel, as well as the
required chip area and power consumption would exceed the capabilities of most practical
applications. This comparison should merely serve as a basis for future comparisons and
to demonstrate that a cycle count reduction not automatically leads to a reduction of the
overall latency.

The impact on the throughput as well as on the latency highly depends on the concrete
AES implementation whose assumptions can highly vary. For this reason, we make runtime
estimations for two different corner cases, namely best-case and worst-case cycle count
estimations. An AES-128 encryption consists of a pre-round (which only performs the
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Table 2: Results and comparison of masked AES S-box implementations

Design Order Size Cycles Max. Clock Randomness
[d] [kGE] /S-box [MHz] [bits] (online)

Zero Latency first 17.83 0 228 0
Zero Latency d 0 0
Single Cycle first 60.73 1 356 2,048
Single Cycle d 1 16(d+ 1)7

Two Cycle first 6.74 2 584 416
Two Cycle second 57.11 2 517 4,446
Two Cycle d 2 6(d+ 1)6 + 8(d+ 1)2

Related work
[BGN+14] first 3.71 3 44
[BGN+15] first 2.84 3 32
[CBR+15] second 7.9 - 11.2 6 126
[CRB+16] first 1.98 6 54
[GC17] first 4.61 4 0
[GC17] first 3.63 - 3.80 4 34 - 68
[GC17] first 2.91 - 3.34 3 20-24
[GMK17] first 2.2 8 18
[GMK17] second 4.5 8 54
[GMK17] d 8 9d(d+1)
[MPL+11] first 4.24 4 48

AddRoundKey transformation) followed by nine full rounds, and the final round (which
omits MixColumns). A full round consists of SubBytes (the S-box layer) followed by
ShiftRows, MixColumns and AddRoundKey.

An overview on our cycle count estimation is given in Table 3. For the best-case
runtime estimation, we assume that only the S-box layer introduces delay cycles due
to non-linear calculations and that a full SubBytes transformation with 16 S-boxes in
parallel is implemented. All other transformations are assumed to be performed implicitly
and the round keys are already precomputed. For the best case, we thus estimate a
runtime that is ten times (number of full rounds plus the final round) the delay of the
used S-box transformation (10lsbox). This cycle count corresponds, for example, to Intel’s
AES instructions [Gue09].

Table 3: Cycle count estimation for full AES-128 hardware implementations with a variable
numbers of cycles for the S-box (lsbox)

Round SubBytes ShiftRows MixColumns AddRoundKey Key Schedule
0 − − − 0 . . . 16 0 . . . 2 + 16lsbox

1 . . . 9 (1 . . . 16)lsbox 0 . . . 1 0 . . . 4 0 . . . 16 0 . . . 2 + 16lsbox

10 (1 . . . 16)lsbox 0 . . . 1 − 0 . . . 16 −
Overall 10lsbox . . . 224 + 320lsbox

For the worst-case cycle count estimation, we assume that only one S-box is implemented
in hardware, that the key schedule is performed on the fly, and that all other transformations
require one clock cycle. The key schedule is thus assumed to require at most two cycles
(for RotWord and Rcon) plus 16 times the number of the assumed S-box delay for
SubWord. Our worst-case estimation of 224 + 320lsbox approximately corresponds to
Feldhofer et al.’s [FWR05] low-power AES implementation which requires 1,032 cycles for
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a two-cycle S-box.
For our single-cycle S-box variant, we thus estimate the cycle count for a full AES-128

to be between 10 cycles and 544 cycles, and for the two-cycle S-box the estimations result
in 20 cycles and 864 cycles, respectively. Given the maximum clock frequencies in Table 2
(and neglecting additional combinatorial delay introduced by other components of the
AES), the estimated latency for the single-cycle S-box AES is between 1.53µs and 28.09 ns,
and for the two-cycle S-box AES variant between 1.48 µs and 34.25 ns. The reduction to
a single-cycle S-box could thus, in the best of cases save about 18% of latency while for
the worst case estimation the single-cycle S-box introduces an even 3.3% higher latency in
the full AES than the two cycle S-box. Similarly, the estimated throughput is between
83.76 Mbps and 4.56 Gbps for the single-cycle variant, and between 86.52 Mbps and
3.74 Gbps for the two-cycle S-box variant.

In summary, even when keeping practical limitations regarding randomness provisioning,
chip area, and power or energy consumption aside, it is not entirely clear whether or
not a reduction of the latency for the nonlinear parts of a cryptographic implementation
automatically leads to a reduction of the overall latency of the system. In practice, the
most valuable design choices therefore need careful evaluation of the overall constraints of
a system.

8 Analyzing the Side-Channel Resistance
For the analysis of the side-channel resistance of our Ascon S-box designs, we used the
formal verification approach by Bloem et al. [BGI+18]. The tool is publicly accessible
online [Ius18]. The basic idea of this tool is the calculation of the Fourier spectrum (or
Walsh transform) at all circuit positions and for all possible signal timings. This Fourier
spectrum allows to calculate for each wire which signals leak in the probing model at a
specific point in the circuit.

Since the calculation of the exact signal spectrum for all timings is a very complex task,
this tool uses a rule-based system to perform an approximation of the spectrum. More
specifically, it is approximated which Fourier coefficients are unequal to zero instead of the
calculation of concrete values for the coefficients. A nonzero coefficient in the spectrum
means that the signal leaks information for this component (a signal or combination of
signals). The rules guarantee that the real Fourier spectrum is part of the approximation
but does not guarantee to calculate just the nonzero coefficients. In other words, circuits
that are accepted by the tool are provably secure for the given input parameters which are
the circuit itself and a labeling for the input signals according to three categories (secrets,
masks, or public signals). For our side-channel experiments, we verified the low-latency
S-box designs of Ascon up to order three. The results are shown in Table 4 (column FV).

It shows that the first-order S-box design is verified in less than two seconds (parallel
verification of the five secrets) on our Intel Xeon E5-2699v4 CPU with a clock frequency
of 3.6 GHz and 512GB of RAM running in a 64-bit Debian 9 operating system. For order
two, the verification increases to about 18 seconds, and for order three the verification
takes about 21 minutes. All verification outcomes indicate securely masked circuits for the
given protection order.

For the verification of the AES S-box, on the other hand, the circuit size exceeds the
number of gates over the most complex circuit tested in the paper of Bloem et al. [BGI+18]
(a DOM-protected AES S-box verified in 5 to 10 hours) by almost a factor of ten. Therefore,
we could not finish the verification within one day and decided to use a verification approach
specifically designed for our approach which we refer to as taint checking in the following.

Taint checking of the AES S-box. The basic idea for the taint checking verification
approach follows from the design principle of our low-latency masking approach. As already
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stated in Section 3 in more detail, any d+1 masked circuit is trivially secure in the probing
model if for any gate or wire of the circuit there is no path that connects any two shares
of one variable. We could thus split the circuit into d + 1 distinct sub-circuits that are
never fed by two or more shares of one shared input variable. This approach of course only
works if we do not use a share compression like it is the case for the Ascon S-box design
and the zero latency AES S-box variant. Other variants of our designs that use the CMS
share compression cannot be verified using this approach because the compression clearly
creates paths that combine two or more shares (which are then of course first remasked to
ensure independence). However, our main goal is to show the security of our low-latency
masking approach and to demonstrate that even very complex designs like the AES S-box
can be securely implemented this way. The other variants of the AES S-box suggested in
Section 6 are introduced to analyze possible trade-offs and implementation costs of our
approach.

We instantiated the taint checking approach by using the tool of Bloem et al. [BGI+18]
as a basis. We label all shared circuit inputs accordingly to the sharing and then simply
propagate the input labels through the entire circuit so that every gate and wire that is
somehow connected with the input share is tainted by assigning the label of the connected
inputs. If at any point in the circuit, two shares from the same variable are part of the
labeling of one wire, our tool denotes a flaw and returns the causing gate and inputs. This
tool has proven to be extremely helpful also during the design of the AES and Ascon
circuits. Therefore (and to make our verification as transparent and accessible as possible),
we set up a virtual machine with our taint checking tool and some example circuits 1.

We also performed the taint checking verification approach for the Ascon circuits, for
which the verification now takes less than a second. Furthermore, we managed to check the
first-order zero latency AES S-box variant in a bit more than ten minutes. We, however,
note that this approach works only for this specific kind of low-latency circuits without
compression for which the security can be easily verified by ensuring a separation of shares
throughout the entire circuit.

Table 4: Side-channel resistance verification results for the low-latency Ascon and the
first-order zero latency AES S-box designs

S-box Design Gates Order FV Taint Checking
Lin Non-lin Time Result Time Result

1st-order Ascon 34 22 1 ≤ 2 s 3 ≤ 1 s 3

2nd-order Ascon 58 48 2 ≤ 18 s 3 ≤ 1 s 3

3rd-order Ascon 88 84 3 ≤ 21m 3 ≤ 1 s 3

Zero Latency AES 17,199 5,544 1 ≥ 1 day ? ≤ 11m 3

9 Conclusions
In this work, we introduced a generic concept to protect latency constraint applications
against side-channel analysis by means of Boolean masking. Our approach works by
duplication of the sharing of inputs and circuit parts which hinder an evaluation of the
masked circuit in fewer cycles. In addition, we do not perform a share compression step
after each nonlinear operation which avoids register stages for the price of an increased
share count. We used two case studies based on Ascon and the AES to demonstrate the
feasibility of our generic low-latency masking approach. We analyzed the hardware overhead

1https://goo.gl/Wph3Ek
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and possible trade-offs, and compared our designs to the state of the art. All our designs
reduce the amount of latency compared to the existing work. The reduction of latency
does not come for free and introduces a significant amount of additional circuitry. However,
we showed that even complex circuits like the masked AES S-box can be calculated in a
single clock cycle. Furthermore, we showed that the overhead can be traded off against
taking compromises in terms of latency. As another interesting aspect, we showed that
higher-order masking not necessarily requires online randomness as demonstrated in the
zero latency AES S-box.

Future work. Our work raised some interesting research questions towards more efficient
low-latency masking in the future. Some aspects were already touched in previous sections.
We summarize and extend these questions hereafter:

• Our low-latency approach introduces a significant amount of on-the-fly randomness
that is spent on share compression. A straightforward question is thus, how can
we leverage the extended domain separation principle to design a less randomness
demanding share compression algorithm?

• What are the best design choices like the most suitable AES S-box construction,
points in the circuit where to reshare and compress, et cetera, for a given latency
constraint?

• The AES S-box inputs which we duplicated to avoid collisions were found using a
step-by-step design approach and by concurrently checking and resolving collisions
found using our taint checking tool. The duplication, however, is not necessarily
optimal. Finding better sharings and proving its optimality remains an open question.

• Finding and resolving collisions in a complex circuit is a very time consuming and
cumbersome task. For example multiple collisions in a single gate allow for multiple
ways to resolve the collision. The impact of the chosen solution on the overall circuit
is not immediately foreseeable. Designing an algorithm that automatically transforms
a netlist into a collision-free circuit with the minimum amount of duplications would
thus be extremely helpful.
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