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Abstract

Scalar multiplication on Legendre form elliptic curves can be speeded up in two ways. One can perform
the bulk of the computation either on the associated Kummer line or on an appropriate twisted Edwards form
elliptic curve. This paper provides details of moving to and from between Legendre form elliptic curves and
associated Kummer line and moving to and from between Legendre form elliptic curves and related twisted
Edwards form elliptic curves. Further, concrete twisted Edwards form elliptic curves are identified which
correspond to known Kummer lines at the 128-bit security level which provide very fast scalar multiplication
on modern architectures supporting SIMD operations.
Keywords: Elliptic curve, Legendre form, Edwards form, Kummer line

1 Introduction

Scalar multiplication over an elliptic curve is a basic operation for implementation of basic public key function-
alities including Diffie-Hellman key exchange and digital signature schemes. Consequently, secure and efficient
algorithms for scalar multiplication are of paramount importance in practical deployment of such schemes. De-
pending on the target functionality, it is required to consider various cases of scalar multiplication, namely fixed
base scalar multiplication, variable base scalar multiplication and multi-scalar multiplication. Diffie-Hellman key
exchange has two phases, the first phase consists of computation of the public key and requires a fixed base
scalar multiplication whereas the second phase consists of shared secret computation and requires a variable base
scalar multiplication. On the other hand, signature generation requires a fixed base scalar multiplication while
signature verification requires multi-scalar multiplication.

Our Contributions:

Gaudry and Lubicz [12] had proposed the use of Kummer line for scalar multiplication. This idea has been
developed in [15] where all the relevant details were worked out. The work [15] also proposed several concrete
Kummer lines targeted at the 128-bit security level and provided implementations of these on modern Intel
platforms supporting single instruction multiple data (SIMD) operations. For such platforms, the obtained timing
results indicate that for genus one curve over large characteristic fields, Kummer lines provide the fastest scalar
multiplication algorithm. In particular, the obtained timings are better than the best known implementation of
the widely deployed Curve25519. This result is relevant mainly for variable base scalar multiplication. For fixed
base scalar multiplication, it is possible to improve the timings by working over suitable twisted Edwards curves.
The present work makes the following contributions.
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Connecting Legendre to Kummer: A Kummer line is not a group. In fact, a Kummer line is associated
with a Legendre form elliptic curve. A scalar multiplication on the Kummer line does not require the y-coordinate
of the Legendre curve point. For shared secret computation in Diffie-Hellman computation, it is sufficient to
consider only variable base scalar multiplication on the Kummer line. More generally, one may be interested in
performing a full scalar multiplication on the Legendre form curve. This requires a method for recovering the
y-coordinate of the result from the Kummer line computation. The first contribution of the present paper is to
provide a detailed explicit formula for doing this. The earlier work [15] had briefly sketched the method, but,
the details provided in the present work were not given in [15].

Connecting Legendre to Edwards: As mentioned above, fixed base scalar multiplication can benefit from
the use of suitable twisted Edwards form curve. The fastest known scalar multiplication formula is for special
types of twisted Edwards form curves [13]. Our second and main contribution is to provide three conversion
methods from Legendre form curves to appropriate twisted Edwards form curves. Two of the conversion methods
are birational equivalences while the third one is a 2-isogeny. Each method is built by composing several individual
mappings. All of the individual mappings have appeared earlier in the literature. Our contribution is to put
together these mappings in an appropriate manner and to supply details which have not been provided in earlier
works. We go beyond the task of just providing the mappings and propose concrete twisted Edwards form curves
corresponding to the concrete Kummer lines introduced in [15].

The net effect of the present work is to obtain a set of concrete Legendre form curves and associated Kummer
lines and twisted Edwards form curves. Scalar multiplication on the Legendre form curves can be done by moving
to either the associated Kummer line or to the associated twisted Edwards form curve. The complete details
for moving to and from between the Legendre form curves and the associated Kummer lines and for moving to
and from between the Legendre form curves and the corresponding twisted Edwards form curves are provided.
Depending on the requirement, one may choose to perform scalar multiplication on the Legendre form curve via
the Kummer line or via the twisted Edwards form curve. For certain applications, it may also be sufficient to
work only on the Kummer line or only on the twisted Edwards form curve.

Previous and Related Works:

Elliptic curve cryptography (ECC) was introduced independently by Koblitz [16] and Miller [17]. Over the
years, ECC has become the method of choice for compact and efficient implementation of various public key
operations. Montgomery [18] introduced the so-called Montgomery form of elliptic curves which provided a
method for very fast x-coordinate only scalar multiplication. The famous Curve25519 proposed by Bernstein [2]
is based on the Montgomery form elliptic curve. Bernstein and Lange [4] proposed the use of Edwards form
curve [9] to cryptography. A later work [5] introduced the twisted Edwards form curve. The fastest known
scalar multiplication algorithm for certain types of twisted Edwards form curves was proposed by Hisil et al [13].
Gaudry [11] proposed the use of Kummer surfaces for speeding up scalar multiplication and a later work by
Gaudry and Lubicz [12] suggested the use of Kummer lines. As mentioned earlier, this idea was fully developed
in [15] where concrete Kummer lines were suggested and implementation and timing results were reported.

2 Kummer Line and Elliptic Curves

A brief background on Kummer lines and the relevant forms of elliptic curves are provided in this section.

2.1 Kummer Line

Let C be the field of complex numbers. Kummer lines are defined using theta functions over C. On the other
hand, for cryptographic purposes, we will work over a prime field of large characteristic. The derivations that
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are used have a good reduction [12] which makes it possible to use the Lefschetz principle [1, 10] to carry over
the identities which hold over the complex to those over a large characteristic field.

Let ϑ1, ϑ2,Θ1 and Θ2 be functions from C to C satisfying the following identities.

2Θ1(w1 + w2)Θ1(w1 − w2) = ϑ1(w1)ϑ1(w2) + ϑ2(w1)ϑ2(w2);
2Θ2(w1 + w2)Θ2(w1 − w2) = ϑ1(w1)ϑ1(w2)− ϑ2(w1)ϑ2(w2);

(1)

ϑ1(w1 + w2)ϑ1(w1 − w2) = Θ1(2w1)Θ1(2w2) + Θ2(2w1)Θ2(2w2);
ϑ2(w1 + w2)ϑ2(w1 − w2) = Θ1(2w1)Θ1(2w2)−Θ2(2w1)Θ2(2w2).

(2)

For the concrete definition of the theta functions in genus one and the proofs of the above identities, we refer
to [15]. For the general theory covering higher genus we refer to [19, 14] and to [11, 12] for proposing cryptographic
applications of theta functions.

Putting w1 = w2 = w in (1) and (2), we obtain

2Θ1(2w)Θ1(0) = ϑ1(w)2 + ϑ2(w)2;
2Θ2(2w)Θ2(0) = ϑ1(w)2 − ϑ2(w)2;

(3)

ϑ1(2w)ϑ1(0) = Θ1(2w)2 + Θ2(2w)2;
ϑ2(2w)ϑ2(0) = Θ1(2w)2 −Θ2(2w)2.

(4)

Putting w = 0 in (3), we obtain

2Θ1(0)2 = ϑ1(0)2 + ϑ2(0)2;
2Θ2(0)2 = ϑ1(0)2 − ϑ2(0)2.

(5)

Denote by P1(C) the projective line over C. Given a2 = ϑ1(0)2 and b2 = ϑ2(0)2, the Kummer line Ka2,b2 is
the image of the map ϕ from C to P1(C) defined by

ϕ : w 7−→ [ϑ1(w) : ϑ2(w)]. (6)

Let A and B be such that A2 = a2 + b2 and B2 = a2 − b2.
Suppose that P = [x21 : z21] is known where x1 = ϑ1(w), z1 = ϑ2(w) and ϕ(w) = [ϑ1(w) : ϑ2(w)] for some

w ∈ C. Using (3) and (4) it is possible to compute 2P = [x23 : z23] where x3 = ϑ1(2w) and z3 = ϑ2(2w) without
knowing the value of w. This procedure is called doubling and Algorithm dbl in Table 1 shows how to obtain x23
and z23 from x21 and z21.

Suppose that P1 = [x21 : z21], P2 = [x22 : z22] and P1 − P2 = [x2 : z2] are known, where xi = ϑ1(wi), zi = ϑ2(wi),
i = 1, 2; x = ϑ1(w1 − w2) and z = ϑ2(w1 − w2). Using (1) and (2) it is possible to compute P1 + P2 = [x23 : z23]
where x3 = ϑ1(w1 + w2) and z3 = ϑ2(w1 + w2). This procedure is called differential (or pseudo) addition and
Algorithm diffAdd in Table 1 shows how to obtain x23 and z23 from x21, z

2
1, x

2
2, z

2
2, x

2 and z2.
With respect to the above defined doubling and differential addition, the point [a2 : b2] acts as the identity

element while the point [b2 : a2] has order two. Given P = [x21 : z21] on Ka2,b2 and a positive integer n, Algorithm
scalarMult in Table 2 returns (R,S), where R = nP = [x2n : z2n] and S = (n+ 1)P = [x2n+1 : z2n+1].

Since both doubling and differential addition work with only squared quantities, this is referred to as the
square only setting.

Let p be a prime not equal to 2 and Fp be the finite field of q elements. As mentioned earlier, using the
Lefschetz principle, we consider Kummer lines over Fp. Also, Fp will be the underlying field for all the elliptic
curves defined in the rest of the work.
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dbl(x2, z2)
s0 = B2(x2 + z2)2;
t0 = A2(x2 − z2)2;
x23 = b2(s0 + t0)

2;
z23 = a2(s0 − t0)

2;
return (x23, z

2
3).

diffAdd(x21, z
2
1, x

2
2, z

2
2, x

2, z2)
s0 = B2(x21 + z21)(x22 + z22);
t0 = A2(x21 − z21)(x22 − z22);
x23 = z2(s0 + t0)

2;
z23 = x2(s0 − t0)

2;
return (x23, z

2
3).

Table 1: Double and differential addition in the square-only setting.

scalarMult(P, n)
input: P ∈ Ka2,b2 ;

`-bit scalar n = (1, n`−2, . . . , n0);
output: nP;

set R = P and S = dbl(P);
for i = `− 2, `− 3, . . . , 0 do

(R, S) = ladder(R,S, ni);
return (R,S).

ladder(R,S, b)
if (b = 0)

S = diffAdd(R,S,P);
R = dbl(R);

else
R = diffAdd(R, S,P);
S = dbl(S);

return (R, S).

Table 2: Scalar multiplication on Kummer line using a ladder.

2.2 Legendre Form Elliptic Curve

The Legendre form elliptic curve EL,µ in affine coordinates (x, y) is given by an equation

EL,µ : y2 = x(x− 1)(x− µ) (7)

with µ ∈ Fp\{0}. The projective coordinates (X : Y : Z) correspond to the affine point (X/Z, Y/Z). In projective
coordinates, the curve has the form EL,µ : Y 2Z = X(X−Z)(X−µZ). To avoid introducing additional notation,
we will use EL,µ to denote both the affine and the projective forms of the curve. The intended form will be clear
from the context. The curve EL,µ has three points of order two, namely, (0 : 0 : 1), (1 : 0 : 1) and (µ : 0 : 1). Let
T = (µ : 0 : 1).

Let Ka2,b2 be a Kummer line such that

µ =
a4

a4 − b4
. (8)

Let σ : EL,µ → EL,µ be the automorphism which maps a point of EL,µ to its inverse, i.e., for (X : Y : Z) ∈
EL,µ, σ(X : Y : Z) = (X : −Y : Z). An explicit map ψ : Ka2,b2 \ {[b2 : a2]} → EL,µ/σ has been given in [12].

ψ([x2 : z2]) =

{
(1 : 0 : 0) if [x2 : z2] = [a2 : b2];
(a2x2 : · : a2x2 − b2z2) otherwise;

(9)

ψ−1((X : · : Z)) =

{
[a2 : b2] if (X : · : Z) = (1 : · : 0);
[b2X : a2(X − Z)] otherwise.

(10)

The map ψ by itself does not preserve the consistency of doubling and differential addition between EL,µ and

Ka2,b2 . Instead, the map ψ needs to be extended to obtain a map ψ̂ : Ka2,b2 \ {[b2 : a2]} → EL,µ/σ where

ψ̂(P) = ψ(P) + T, (11)

ψ̂−1(P) = ψ−1(P + T). (12)
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The map ψ̂ preserves the consistency of doubling and addition between EL,µ and Ka2,b2 . We refer to [15] for
details. Further, it can be argued [12, 15] that the discrete logarithm problem in EL,µ and Ka2,b2 are equally
hard.

2.3 Concrete Choices of Kummer Lines

For cryptographic purposes, we work over a large characteristic field. As mentioned earlier, since all the identities
have good reductions, using the Lefschetz principle, the identities also hold over such finite fields. Further, since
the characteristic p of the field will be large and we will choose small values of a2 and b2, a4− b4 will not be zero
modulo p so that µ is also defined over Fp.

We consider the following concrete Kummer lines.

KL1a := KL2519(81, 20) : The Kummer line K81,20 over the field F2251−9.
KL1b := KL2519(186, 175) : The Kummer line K186,175 over the field F2251−9.
KL2 := KL25519(82, 77) : The Kummer line K82,77 over the field F2255−19.
KL3 := KL2663(260, 139) : The Kummer line K260,139 over the field F2266−3.

The work [15] proposed KL1a, KL2 and KL3. We additionally consider KL1b. The efficiency of scalar multiplication
on KL1b is the same as that of KL1a. On the other hand, for conversion to twisted Edwards form, KL1b provides
a few more options which are not obtained from either KL1a, KL2 or KL3.

By E1a, E1b, E2 and E3 we will denote the group of Fp-rational points of the Legendre form elliptic curves
corresponding to KL1a, KL1b, KL2 and KL3 respectively.

All of the proposals provide security at about the 128-bit level. The relevant properties of these proposals
are shown in Table 3. Comparison to other well known proposals are given in [15]. In Table 3, ` and `T are the
orders of the largest prime subgroups of the curves and their quadratic twists; h and ht are the co-factors of the
curves and their quadratic twists; and D is the complex multiplication field discriminant [3].

Table 3: Some properties of the group of Fp-rational points of the Legendre form elliptic curves E1a, E1b, E2 and
E3.

E1a E1b E2 E3

p 2251 − 9 2251 − 9 2255 − 19 2266 − 3

(lg `, lg `T ) (248, 248) (248, 248) (251.4, 252) (262.4, 263)

(h, hT ) (8, 8) (8, 8) (12, 8) (12, 8)

(k, kT )
(
`− 1, `T−1

7

)
(`− 1, `T − 1) (`− 1, `T − 1)

(
`−1
2 , `T − 1

)
lg(−D) 246.3 249.8 255 266

KL base pt [64 : 1] [19 : 1] [31 : 1] [2 : 1]

2.4 Twisted Edwards Form Elliptic Curve

The twisted Edwards form elliptic curve EE,a,d in affine coordinates (u, v) is given by the equation

EE,a,d : au2 + v2 = 1 + du2v2 (13)

with a, d ∈ Fp \ {0} and a 6= d.
The extended affine coordinates [13] (u, v, t) is obtained by introducing an auxilliary coordinate t = uv. The

extended twisted Edwards coordinates [13] is a projective coordinate system (U : V : T : W ) with W 6= 0,
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which corresponds to the extended affine coordinates (U/W, V/W, T/W ). The identity element is represented as
(0 : 1 : 0 : 1) and the inverse of (U, V, T,W ) is (−U : V : −T : W ).

If a = −1, i.e., the curve EE,−1,d has the currently fastest addition algorithm in the extented twisted Edwards
coordinates. So, it is of interest to be able to move from EE,a,d to EE,−1,d′ . Based on the discussion in Section 2
of [5], we have the following two options.

Suppose the Legendre symbols
(
a
p

)
and

(
−1
p

)
are equal. Then a can be written as a = −b2 for some b ∈ Fp.

The map

(u, v) 7→ (u, v) = (bu, v) (14)

is an isomorphism over Fp from EE,a,d : au2 + v2 = 1 + du2v2 to EE,−1,−d/a : −u2 + v2 = 1 + (−d/a)u2v2.

Suppose
(
a
p

)
6=
(
−1
p

)
but,

(
d
p

)
=
(
−1
p

)
. The map

(û, v̂) 7→ (u, v) = (û, 1/v̂) (15)

is a birational equivalence over Fp from EE,a,d : aû2 + v̂2 = 1 + dû2v̂2 to EE,d,a : du2 + v2 = 1 + au2v2 having the
exceptional point v̂ = 0. One can then apply the map in (14) to EE,d,a to move to EE,−1,−a/d.
Remark: The equation −u2 + v2 = 1 + du2v2 can be rewritten as u2(1 + dv2) = v2 − 1. If 1 + dv2 = 0, then
v2 = 1 and then d = −1. So, if d 6= −1, then 1 + dv2 6= 0 and u = ±

√
(v2 − 1)/(1 + dv2). On the other

hand, if d = −1, then v2 = 1 corresponds to the two points (0, 1) (the identity) and (0,−1) (having order 2).
In our applications, d 6= −1. So, given the value of v and the sign of u, it is possible to uniquely determine u.
Following [6], this allows compressing the point (u, v) to (sgn(u), v) which is useful for applications to Edwards
curve based signature verification.

2.5 Montgomery form Elliptic Curve

The Montgomery form elliptic curve EM,A,B in affine coordinates (r, s) is given by an equation

EM,A,B : Bs2 = r3 +Ar2 + r (16)

with A ∈ Fp \ {−2, 2} and B ∈ Fp \ {0}. We will encounter Montgomery form elliptic curves while transiting
from Legendre form curves to Edwards form curves. There will be no occasion to use projective coordinates of
the Montgomery form and hence we do not introduce it here.

The connection between Montgomery and twisted Edwards form that we will use is given by Theorem 3.2
of [5]. The Montgomery curve EM,A,B : Bs2 = r3 + Ar2 + r is birationally equivalent to the twisted Edwards
curve EE,a,d : au2 + v2 = 1 + du2v2 with a = (A+ 2)/B and d = (A− 2)/B and is given by the map

(r, s) 7→ (u, v) = (r/s, (r − 1)/(r + 1)). (17)

The exceptional points are given by s = 0 and r = −1.

2.6 Weierstrass form Elliptic Curve

The Weierstrass form elliptic curve EW,a,b in affine coordinates (x, y) is given by an equation

EW,a,b : y2 = x3 + ax + b (18)

where 4a3 + 272 6= 0.
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Proposition 1 in [20] shows that EW,a,b can be converted into a Montgomery form if and only if the following
two conditions hold.

1. There is an α ∈ Fp such that α3 + aα+ b = 0.
2. For this α, there is a c ∈ Fp such that c2 = (3α2 + a)−1.

}
(19)

Suppose that (19) holds. Then the map

(x, y) 7→ (r, s) = (c(x− α), cy) (20)

is an isomorphism from EW,a,b : y2 = x3 + ax + b to EM,A,B : Bs2 = r3 +Ar2 + r where A = 3αc and B = c.

2.7 Notation

1. Upper-case bold face letters P,Q,R and S denote points of elliptic curves and upper case letters P,Q,R
and S in sans serif font denote points of Kummer lines.

2. [x2 : z2] denote points on the Kummer line.

3. (x, y) denotes affine Legendre coordinates; (X,Y, Z) denotes projective Legendre coordinates.

4. (u, v, t) denotes extended affine Edwards coordinates; (U, V, T,W ) denotes extended twisted Edwards co-
ordinates.

5. (r, s) denotes affine Montgomery coordinates.

6. (x, y) denotes affine Weierstrass coordinates.

M, S, A denote multiplication, squaring and addition respectively over Fp; C denotes multiplication by a small
constant over Fp.

3 Moving Between Eµ and Ka2,b2

Suppose P = [x2 : z2] is a point of Ka2,b2 which is not of order two and let ψ̂(P) = P = (X : · : Z) be the
corresponding point of EL,µ. We wish to obtain formulas for X and Z in terms of x2 and z2. Note that the
y-coordinate of P is not uniquely obtained from P. Conversely, suppose we are given P = (X : · : Z) ∈ EL,µ(Fp)
which is not of order two and we wish to obtain the coordinates x2 and z2 of the corresponding point ψ̂−1(P) =
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Table 4: Conversions from Kummer line to Legendre form elliptic curves and vice versa. Here α0 = a4b2 and
α1 = a2b4 are precomputed quantities.

KL to Legendre Legendre to KL

ψ̂([x2 : z2])
X = α0z2;
t1 = α1x2;
t2 = α0z2;
Z = t2 − t1;

return (X : · : Z).

ψ̂−1(X : · : Z)
x2 = α0(X − Z);
z2 = α1X;

return [x2 : z2].

P = [x2 : z2]. These tasks are done as follows.

ψ̂(P) = ψ̂([x2 : z2])

= ψ([x2 : z2]) + T

=
(
a2x2 : · : a2x2 − b2z2

)
+ (µ : 0 : 1)

=
(
µb2z2 : · : (1− µ)a2x2 + µb2z2

)
=

(
a4b2z2 : · : −a2b4x2 + a4b2z2

)
= (X : · : Z). (21)

ψ̂−1(P) = ψ̂−1(X : · : Z)

= ψ−1((X : · : Z) + T)

= ψ−1((X : · : Z) + (µ : 0 : 1))

= ψ−1(µ(X − 1) : 0 : X − µ)

= [b2µ(X − Z) : a2X(µ− 1))

= [b2a4(X − Z) : a2b4X]

= [x2 : z2]. (22)

Explicit formulas to compute the expressions given by (21) and (22) are shown in Table 4. We note that the
expressions given by (21) and (22) and the formulas appearing in Table 4 do not appear in [15]. Since a2 and b2

are small constants, the pre-computed constants α0 and α1 are also not too large. The conversion from Kummer
line to Legendre form elliptic curve requires three multiplications by small constants while the conversion from
Legendre form elliptic curve to Kummer line requires two such multiplications.

Using Ψ̂, it is possible to map the KL base points provided in Table 3 to base points on the corresponding
Legendre form curves. These are shown in affine coordinates in Table 5. For the Legendre form curves, the
y-coordinate is the positive square root of x(x − 1)(x − µ) where x = a4b2z2/(−a2b4x2 + a4b2z2) for the values
of a2, b2, x2 and z2 shown in Table 5. These values are as follows.

y1 = 660779751606431880601449706469571005138317100501546769210310679914171628271,

y2 = 1013622307264833457094516843375813280991440301524377584697694137170779641791,

y3 = 42555777381561203390446781614530346580731893768994719503541652642429650485645,

y4 = 81343424418884075934201899308230206952701238978079990535648171572250228737010512.
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Table 5: Base points for E1a, E1b, E2 and E3 corresponding to KL1a, KL1b, KL2 and KL3.
p a2 b2 [x2 : z2] (x, y)

2251 − 9 81 20 [64 : 1] (−131220/1942380, y1)

2251 − 9 186 175 [19 : 1] (−6054300/102174450, y2)

2255 − 19 82 77 [31 : 1] (−504300/13794450, y3)

2266 − 3 260 139 [2 : 1] (−9396400/650520, y4)

3.1 Scalar Multiplication on Eµ via Ka2,b2

The main purpose of using Kummer lines is to be able to perform fast scalar multiplication. Suppose P = (XP :
YP : ZP ) is a point on EL,µ and n is a positive integer. The requirement is to obtain Q = nP. Using the
associated Kummer line Ka2,b2 , this is achieved in the following manner.

Set P = ψ̂−1(P) and compute (Q,R) = scalarMult(P, n). Then Q = nP and R = (n + 1)P. Set Q = ψ̂(Q)
and R = ψ̂(R). By the consistency of scalar multiplication between Ka2,b2 and EL,µ, it follows that Q = nP and
R = (n+ 1)P. Let Q = (XQ : YQ : ZQ) and R = (XR : YR : ZR).

The problem with the above approach is that Q = ψ̂(Q) does not recover YQ. On the other hand, since
Q−R = −P, the value of YQ can be recovered from XP ,YP , ZP , XQ, ZQ, XR and ZR. The method for doing
this has been mentioned in [15] in the context of affine coordinates. Here we solve a more general problem in
projective coordinates.

Given Q = (x2Q : z2Q), R = (x2R : z2R) and P = (XP : YP : ZP ), we provide formulas for determining XQ, YQ
and ZQ. We assume that P is not the identity nor a point of order two, so that ZP 6= 0 and YP 6= 0. Let

γQ = µb2z2Q, δQ = (1− µ)a2x2Q + µb2z2Q;

γR = µb2z2R, δR = (1− µ)a2x2R + µb2z2R.

Then

ψ̂(Q) = ψ̂([x2Q : z2Q]) = (γQ : · : δQ) = Q and ψ̂(R) = ψ̂([x2R : z2R]) = (γR : · : δR) = R.

For simplicity of the ensuing calculation, we shift to affine coordinates. P in affine coordinates is (xP , yP ) where
xP = XP /ZP and yP = YP /ZP . Let xQ = γQ/δQ and xR = γR/δR and so Q and R in affine coordinates are
(xQ, yQ) (with yQ unknown) and (xR, ·) respectively.

Since Q = nP and R = (n + 1)P, Q 6= R and so Q 6= R implying that xQ 6= xR. Further, Q = nP and
R = (n + 1)P and so Q − R = −P. Let y = mx + c be the line passing through Q and −R. This line also
passes through P and so we have m = (yQ − yP )/(xQ − xP ). Plugging the equation y = mx + c into the affine
form of the curve y2 = x3 − (µ+ 1)x2 + µx and simplifying we have x3 − (µ+ 1 +m2)x2 + (µ− 2mc)x− c2 = 0.
Since xP , xQ and xR are the three roots of this equation, we have xP + xQ + xR = µ+ 1 +m2. Substituting the
expression for m and using y2Q = xQ(xQ − 1)(xQ − µ) we obtain

yQ = − 1

2yP

(
(xQ − xP )2 (xP + xQ + xR − µ− 1)− xQ(xQ − 1)(xQ − µ)− y2P

)
.

9



Substituting xQ = γQ/δQ, xR = γR/δR, xP = XP /ZP and yP = YP /ZP , yields

yQ

= − ZP

2YP

((
γQ
δQ
− XP

ZP

)2(
XP

ZP
+
γQ
δQ

+
γR
δR
− µ− 1

)
− γQ
δQ

(
γQ
δQ
− 1

)(
γQ
δQ
− µ

)
− Y 2

P

Z2
P

)
= · · ·

=
−1

2YP δ3QδRZ
2
P

(
(ZP γQ −XP δQ)2(XP δQδR + ZP γQδR + ZP δQγR − (µ+ 1)ZP δQδR)

−Z3
P δRγQ(γQ − δQ)(γQ − µδQ)− Y 2

P δ
3
QδRZP

)
.

Converting back to projective coordinates, using µ = a4/(a4 − b4) and defining pre-computed constants β0 =
2a4 − b4 and β1 = a4 − b4 we have

Q = [xQ : yQ : 1] = (XQ : YQ : ZQ)

where

XQ = 2γQYP δ
2
QδRZ

2
Pβ1,

YQ = −
(
(ZPγQ −XP δQ)2(β1(XP δQδR + ZPγQδR + ZP δQγR)− β0ZP δQδR)

−Z3
P δRγQ(γQ − δQ)(β1γQ − a4δQ)− Y 2

P δ
3
QδRZPβ1

)
,

ZQ = 2YP δ
3
QδRZ

2
Pβ1.

 (23)

The computations of XQ, YQ and ZQ are shown in Algorithm 1. The total cost is 4C + 26M+ 4S + 10A.

4 Moving From Legendre to Twisted Edwards Form Elliptic Curves

The general idea is to move from the Legendre form to the Montgomery form and then use (17) to move to the
twisted Edwards form. Further, we wish to move to EE,−1,d for some d. For this, we use either (14) directly or (15)
followed by (14) whenever these are feasible to be applied. For moving from the Legendre to the Montgomery
form we identify three approaches.

1. If the curve has a point of order 4, then the method given in [4] can be simplified to move from the Legendre
form to the Montgomery form. This provides a birational equivalence between the two forms.

2. It is possible to move from the Legendre form to the Weierstrass form. Then using (20) it is possible to
move to the Montgomery form, if feasible. This also provides a birational equivalence between the two
forms.

3. Based on the method provided in [5], it is possible to obtain a 2-isogeny for moving from the Legendre
form to the Montgomery form.

For the first two methods, a birational equivalence is obtained between the Legendre form curve and the twisted
Edwards curve. Since birational equivalence preserves the difficulty of discrete log computation, one can simply
work over the obtained twisted Edwards curve without referring to the Legendre curve in the background. On
the other hand, in the case of the third method, an isogeny is obtained. In this case, it is required to start
from the Legendre form curve, move to the twisted Edwards form curve using the isogeny, perform the scalar
multiplication and then move back to the Legendre form curve using the dual isogeny. This idea was introduced
in [7] and we provide more details later.
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Algorithm 1 Compute Q = (XQ : YQ : ZQ) from P = (XP , YP , ZP ), Q = [x2Q : z2Q] and R = [x2R : z2R] where

Q = nP, Q = nP, R = (n+ 1)P and P = ψ̂−1(P). Here β0 = 2a4−b4, β1 = a4−b4, β2 = µb2 and β3 = (1−µ)a2.
A multiplication by µ is counted as a general multiplication over Fp.
1: Input: P = (XP : YP : ZP ),Q = [x2Q : z2Q],R = [x2R : z2R].
2: Output: Q = (XQ : YQ : ZQ).
3: γQ = β2z2Q; δQ = γQ + β3x2Q; / ∗ 2M+ 1A ∗ /
4: γR = β2z2R; δR = γR + β3x2R; / ∗ 2M+ 1A ∗ /
5: t1 ← γQ · ZP ; t2 ← XP · δQ; / ∗ 2M∗ /
6: t3 ← t1 − t2; t3 ← t23; / ∗ 1A+ 1S ∗ /
7: t4 ← t1 + t2; t4 ← t4 · δR; / ∗ 1A+ 1M∗ /
8: t5 ← ZP · δQ; t6 ← t5 · γR; / ∗ 2M∗ /
9: t6 ← t4 + t6; t7 ← t5 · δR; / ∗ 1A+ 1M∗ /

10: t8 ← β0 · t7; t6 ← β1 · t6; / ∗ 2C ∗ /
11: t6 ← t6 − t8; t3 ← t3 · t6; / ∗ 1A+ 1M∗ /
12: t9 ← Z2

P ; t10 ← ZP · δR; / ∗ 1S + 1M∗ /
13: t11 ← t9 · t10; t12 ← t11 · γQ; / ∗ 2M∗ /
14: t13 ← γQ − δQ; t14 ← δQ · a4; / ∗ 1A+ 1C ∗ /
15: t6 ← β1 · γQ; t14 ← t6 − t14; / ∗ 1A+ 1M∗ /
16: t12 ← t12 · t13; t12 ← t12 · t14; / ∗ 2M∗ /
17: t3 ← t3 − t12; t15 ← Y 2

P ; / ∗ 1A+ 1S ∗ /
18: t16 ← t15 · δ2Q; t17 ← t16 · δQ; / ∗ 2M+ 1S ∗ /
19: t18 ← t10 · t17; t18 ← t18 · β1; / ∗ 2M∗ /
20: t3 ← t18 − t3; t19 ← t10 · t16; / ∗ 1A+ 1M∗ /
21: t19 ← t19 · YP ; t19 ← 2β1 · t19; / ∗ 1M+ 1C ∗ /
22: t20 ← t1 · t19; t5 ← t5 · t19; / ∗ 2M∗ /
23: t5 ← t5 · ZP ; / ∗ 1M∗ /
24: XQ ← t20; YQ ← t3; ZQ ← t5;
25: return (XQ : YQ : ZQ).
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4.1 Method 1: via a Point of Order 4

Proposition 1. Let G be a finite cyclic group of order 2iq with q odd and having three points of order two. Then
G has a point of order four if and only if i > 2.

Proof. If i = 0 or 1, then clearly G cannot have any point of order 4 as that would violate Lagrange’s theorem.
So, suppose i ≥ 2. If i = 2, then by Sylow’s theorem G has a unique subgroup of order 4. This subgroup consists
of the three points of order 2 along with the identity. So, G does not have any point of order 4. If i > 2, then by
Sylow’s theorem consider the (unique) subgroup H of G of order 2i. The order of any element of H is a power
of 2. Since G has three elements of order 2 and the order of H is at least 8, H must have an element h whose
order is 2j for j ≥ 2. The element h2

j−2
is an element of order 4.

From Table 3, the co-factors of E1a, E1b, E2 and E3 are 8, 8, 12 and 12 respectively. Using Proposition 1,
E1a and E1b have points of order 4 while E2 and E3 do not. The next proposition shows how to find a point of
order 4 in E1a or E1b.

Proposition 2. Consider EL,µ : y2 = x(x− 1)(x− µ). The point (x1, y1) is of order 4 if and only if x1 and y1
are solutions of the equations

x31 − 3x2x
2
1 + (2(µ+ 1)x2 − µ)x1 − µx2 = 0

2y21 − (3x21 − 2(µ+ 1)x1 + µ)(x1 − x2) = 0

}
(24)

for some x2 ∈ {0, 1, µ} and x1 6= x2.

Proof. The three points of order 2 on EL,µ are (0, 0), (1, 0) and (µ, 0). Since (x1, y1) is a point of order 4, 2(x1, y1)
is a point of order 2 and so is equal to (x2, 0) for some x2 ∈ {0, 1, µ}.

Let m be the slope of the tangent to the curve passing through the point (x1, y1). This tangent also passes
through the point (x2, 0). This gives two ways of obtaining m.

m =
3x21 − 2(µ+ 1)x1 + µ

2y1
=

y1 − 0

x1 − x2
.

This shows

2y21 = (x1 − x2)(3x21 − 2(µ+ 1)x1 + µ) (25)

= 3x31 − 2(µ+ 1)x21 + µx1 − x2(3x21 − 2(µ+ 1)x1 + µ). (26)

Since (x1, y1) is also on the curve, y21 = x31 − (µ+ 1)x21 + µx1. Substituting in (26) and simplifying we obtain

x31 − 3x2x
2
1 + (2(µ+ 1)x2 − µ)x1 − µx2 = 0. (27)

Equations (25) and (27) show the desired result.
Conversely, suppose (24) holds and suppose that 2(x1, y1) = (x2, y2). We need to argue that y2 = 0 which

would imply that (x2, y2) is a point of order 2 and so (x1, y1) is a point of order 4. The slope of the tangent to the
curve at the point (x1, y1) is (3x21− 2(µ+ 1)x1 +µ)/(2y1) and this tangent also passes through the point (x2, y2).
The line passing through (x1, y1) and (x2, y2) has slope (y1 − y2)/(x1 − x2). So, (3x21 − 2(µ+ 1)x1 + µ)/(2y1) =
(y1 − y2)/(x1 − x2). On the other hand, the second equation of (24) shows that (3x21 − 2(µ+ 1)x1 + µ)/(2y1) =
y1/(x1 − x2). Comparing the two expressions, we obtain y2 = 0 as required.

Proposition 2 shows a method to find a point of order 4 over Fp. For each value of x2 = 0, 1, µ try to
solve (24) for x1 and y1 over Fp. If a solution is found, then we have an Fp rational point of order 4 and if no
solution is found, then there is no Fp rational point of order 4. Note that for Legendre form curves, this provides
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Table 6: Values of x1, y1 and x2 which are solutions to (24).

x2 = 0
x1 =

√
µ y1 = ±

√
−µ2 + 2µ3/2 − µ

x1 = −√µ y1 = ±
√
−µ2 − 2µ3/2 − µ

x2 = 1
x1 = 1 +

√
1− µ y1 = ±(−1 + µ−

√
1− µ)

x1 = 1−
√

1− µ y1 = ±(−1 + µ+
√

1− µ)

x2 = µ
x1 = µ+

√
µ2 − µ y1 = ±

(
2µ3 + 2µ2

√
µ2 − µ− 3µ2 − 2µ

√
µ2 − µ+ µ

)1/2
x1 = µ−

√
µ2 − µ y1 = ±

(
2µ3 − 2µ2

√
µ2 − µ− 3µ2 + 2µ

√
µ2 − µ+ µ

)1/2

a method different from Proposition 1 of determining whether there is an Fp rational point of order 4. The
possible solutions for (x1, y1) arising from solving (24) are given in Table 6. These 12 solutions along with the
3 points of order 2 and the identity provide the 16 elements of the 4-torsion subgroup of EL,µ in the algebraic
closure of Fp. Not all of the solutions in Table 6 are in Fp.

For E1a, there are no Fp rational points of order 4 corresponding to x2 = 0 and x2 = 1. For x2 = µ, the point

(µ−
√
µ2 − µ,

(
2µ3 − 2µ2

√
µ2 − µ− 3µ2 + 2µ

√
µ2 − µ+ µ

)1/2
)

is an Fp rational point of order 4 such that 2(x1, y1) = (µ, 0). The actual values of x1 and y1 are as follows.

x1 = 3224408425544077224047459359771631097399226058139743429316578762596590862491;

y1 = 3138699230617545368821670928998916873427882467813600463343503331843351071540.

For E1b, there are no Fp rational points of order 4 corresponding to x2 = 0. For x2 = 1, the point

(1 +
√

1− µ,−1 + µ−
√

1− µ)

is an Fp rational point of order 4 such that 2(x1, y1) = (1, 0). The actual values of x1 and y1 are as follows.

x1 = 2927148786553203617551507184089760902982149768188685673243033378309061916173;

y1 = 1490504580219247555118098514428551370946433127012660449138690111290242828335.

The work [4] proposed the use of Edwards form elliptic curve in cryptography. This work showed birational
equivalence between (long) Weierstrass form curves satisfying certain properties and Edwards form curves. From
the proof it is possible to pick out a birational equivalence between curves of the form y2 = x3 + a2x

2 + a4x
(satisfying certain properties) and Montgomery form curves. Since Legendre form curves can be written in this
form, this should directly provide a birational equivalence between Legendre form curves and Montgomery form
curves. However, the result as stated in [4] does not permit obtaining such a birational equivalence. This is
because the result and the proof in [4] requires that there should be an element of order 4 and a unique element
of order 2 for the birational equivalence to be possible. Since Legendre form curves have 3 elements of order 2,
the result does not directly apply to Legendre form curves. A closer examination of the proof, on the other hand,
reveals that the condition of having a unique element of order 2 is not really required; the condition of having
an element of order 4 is sufficient. This was already observed in [8], but, the details of the resulting proof were
not provided. Below we provide these details as well as certain details which were skipped in the proof provided
in [4].
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Lemma 1. [4] Suppose the curve given by E : y2 = x3 + a2x
2 + a4x has a point (x1, y1) of order 4 and let

2(x1, y1) = (x2, 0). Let E : y2 = x3 +A2x
2 +A4x where A2 = a2 + 3x2 and A4 = a4 + 3x22 + 2a2x2. The map

(x, y) 7→ (x, y) = (x− x2, y) (28)

from E to E is an isomorphism. Further, the point (x1, y1) = (x1−x2, y1) has order 4 in E and 2(x1, y1) = (0, 0).

Proof.

y2 = y2 = x3 + a2x
2 + a4x.

= (x+ x2)
3 + a2(x+ x2)

2 + a4(x+ x2)

= x3 + (a2 + 3x2)x
2 + (a4 + 3x22 + 2a2x2)x+ x32 + a2x

2
2 + a2r2

= x3 +A2x
2 +A4x.

The last equation follows from the definition of A2 and A4 and from the fact that (x2, 0) is on E. Using [21]
we have that the map given by (28) is an isomorphism. So, it preserves the orders of points. Since (x1, y1) is
mapped to (x1 − x2, y1) and (x2, 0) is mapped to (0, 0), it follows that on E, (x1 − x2, y1) is a point of order 4
and 2(x1 − x2, y1) = (0, 0).

Lemma 2. Suppose the curve given by E : y2 = x3 +A2x
2 +A4x has a point (x1, y1) of order 4 and 2(x1, y1) =

(0, 0). Then A4 = x21 and A2 = y21/x
2
1 − 2x1. Further, the map

(x, y) 7→ (r, s) = (x/x1, 2y/y1) (29)

is a birational equivalence from E to Bs2 = r3 + Ar2 + r where B = 1/(1 − θ) and A = 2(1 + θ)/(1 − θ) with
θ = 1− 4x1

3/y21.

Proof. The proof is essentially similar to the proof of Theorem 2.1 of [4] with a small difference which we point
out later. Since (x1, y1) has order 4, y1 6= 0 and so x1 6= 0. The point (x1, y1) is on E and so

y2 = x3 +A2x
2 +A4x. (30)

Since 2(x1, y1) = (0, 0), the tangent to E at the point (x1, y1) passes through the point (0, 0). Following the
proof of Proposition 2, the slope of the tangent can be expressed in two different ways. This yields

y1 − 0

x1 − 0
=

3x21 + 2A2x1 +A4

2y1
⇒ 2y21 = 3x31 + 2A2x

2
1 +A4x1

⇒ 2(x31 +A2x
2
1 +A4x1) = 3x31 + 2A2x

2
1 +A4x1 using (30)

⇒ A4 = x21 since x1 6= 0

⇒ A2 =
y21
x21
− 2x1 from (30).

From (29), x = rx1 and y = sy1/2. Using y2 = x3 + A2x
2 + A4x; the expressions for A2, A4 and θ; and

y21 = 4x31/(1− d) we compute as follows.

s2y21
4

= y2 = x3 +A2x
2 +A4x = r3x31 +A2r

2x21 +A4rx1

s2x31
1− θ

= r3x31 +

(
4

1− θ
− 2

)
x31r

2 + x31r

Bs2 = r3 +Ar2 + r.

This shows the result.
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Remarks:

1. Note that x1/(1− θ) = y21/(4x
2
1) which is a square. This was overlooked in the proof of Theorem 2.1 in [4]

leading to some unnecessary complications.

2. We note that Theorem 3.3 of [5] shows that every elliptic curve having a point of order 4 is birationally
equivalent to an Edwards curve and Theorem 3.4 of [5] shows that if p ≡ 3 mod 4, then every Montgomery
curve is birationally equivalent to an Edwards curve. These results are not directly useful for us since we
wish to move to a twisted Edwards curve of the form EE,−1,d while these result show how to move to an
Edwards curve of the form EE,1,d.

By putting together the different maps, we obtain the following result.

Theorem 3. Let EL,µ : y2 = x(x − 1)(x − µ) have a point (x1, y1) of order 4 with 2(x1, y1) = (x2, 0). Let
θ = 1 − 4(x1 − x2)3/y21 and suppose that both −1 and θ are non-squares in Fp. Let 4θ = −b2 for some b ∈ Fp.
Then EL,µ is birationally equivalent to EE,−1,d : −u2 + v2 = 1 + du2v2 where d = −1/θ and the birational
equivalence is given by

(x, y) 7→ (u, v) =

(
b(x− x2)y1
(x1 − x2)y

,
x+ x1 − 2x2

x− x1

)
(31)

with exceptional points given by y(x − x1) = 0, corresponding to points of order 2 (for y = 0) or to a point of
order 4 (for x = x1). Further, the birational equivalence from EE,−1,d : −u2 + v2 = 1 + du2v2 to EL,µ is given by

(u, v) 7→ (x, y) =

(
x2 + (x1 − x2)

v + 1

v − 1
,
by1(v + 1)

2u(v − 1)

)
(32)

with exceptional points given by u(v − 1) = 0, corresponding to the identity (0, 1) or to the point of order 2
(0,−1).

Proof. EL,µ can be written as y2 = x3 + a2x
2 + a4x where a2 = −(µ+ 1) and a4 = µ. The composition of (28)

and (29) gives the map

(x, y) 7→ (r, s) =

(
x− x2
x1 − x2

,
y

y1

)
(33)

which is a birational equivalence from EL,µ to EM,A,B : Bs2 = r3 + Ar2 + r where B = 1/(1 − θ) and A =
2(1 + θ)/(1− θ). Composing (33) with (17) and (15) gives the map

(x, y) 7→ (u, v) =

(
(x− x2)y1
(x1 − x2)y

,
x+ x1 − 2x2

x− x1

)
(34)

which is a birational equivalence from EL,µ to EE,a,4 : au2 + v2 = 1 + 4u2v2 where a = 4θ. Since both θ and −1
are non-squares in Fp, −a is a square and we can write a = 4θ = −b2 for some b ∈ Fp. Composing (34) with (14)
we obtain the map given by (31) which is a birational equivalence from EL,µ to EE,−1,d : −u2 + v2 = 1 + du2v2

where d = −1/θ.
The converse birational equivalence is similarly obtained.

4.2 Method 2: via short Weierstrass

This method moves from the Legendre form to the short Weierstrass form and then to the Montgomery form.
The first step of the reduction is given by the following result.
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Proposition 3. Let µ ∈ Fp \ {0} and EL,µ : y2 = x(x− 1)(x− µ) be in the Legendre form. Let ω = (µ+ 1)/3.
Then the map

(x, y) 7→ (x, y) = (x− ω, y) (35)

is a birational equivalence from EL,µ to EW,a,b : y2 = x3 + ax + b where a = µ− 3ω2 and b = ω3 + ω(µ− 2ω2).

Proof. The following computation shows the result.

y2 = y2 = x3 − (µ+ 1)x2 + µx

= (x + ω)3 − 3ω(x + ω)2 + µ(x + ω)

= x3 + 3x2ω + 3xω2 + ω3 − 3ωx2 − 6xω2 − 3ω3 + µx + µω

= x3 + ω3 + (µ− 3ω2)x + ω(µ− 2ω2)

= x3 + ax + b.

Theorem 4. Let µ ∈ Fp \ {0}, ω = (µ + 1)/3, a = µ − 3ω2 and b = ω3 + ω(µ − 2ω2). Suppose that α ∈
{−ω, 1− ω, µ− ω} is such that c2 = (3α2 + a)−1 for some c ∈ Fp. Let a = (3αc + 2)/c and d = (3αc− 2)/c.

1. Suppose that
(
a
p

)
=
(
−1
p

)
. Then the map

(x, y) 7→ (u, v) =

(
b(x− ω − α)

y
,
c(x− ω − α)− 1

c(x− ω − α) + 1

)
(36)

is a birational equivalence from EL,µ : y2 = x(x−1)(x−µ) to EE,−1,d : −u2+v2 = 1+du2v2 where b is such
that a = −b2 and d = (2−3αc)/(2+3αc). The exceptional points of (36) are given by y(c(x−ω−α)+1) = 0.
The converse birational equivalence from EE,−1,d : −u2 + v2 = 1 + du2v2 to EL,µ : y2 = x(x− 1)(x− µ) is
given by

(u, v) 7→ (x, y) =

(
α+ ω +

1 + v

c(1− v)
,
b

cu

1 + v

1− v

)
(37)

with the exceptional points given by u(v − 1) = 0.

2. Suppose that
(
a
p

)
6=
(
−1
p

)
and

(
d
p

)
=
(
−1
p

)
. Then the map

(x, y) 7→ (u, v) =

(
b(x− ω − α)

y
,
c(x− ω − α) + 1

c(x− ω − α)− 1

)
(38)

is a birational equivalence from EL,µ : y2 = x(x−1)(x−µ) to EE,−1,d : −u2+v2 = 1+du2v2 where b is such
that d = −b2 and d = (2+3αc)/(2−3αc). The exceptional points of (38) are given by y(c(x−ω−α)+1) = 0.
The converse birational equivalence from EE,−1,d : −u2 + v2 = 1 + du2v2 to EL,µ : y2 = x(x− 1)(x− µ) is
given by

(u, v) 7→ (x, y) =

(
α+ ω +

v + 1

c(v − 1)
,
b

cu

v + 1

v − 1

)
(39)

with the exceptional points given by u(v − 1) = 0.
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Proof. From Proposition 3, the map (x, y) 7→ (x, y) = (x − ω, y) moves from EL,µ : y2 = x(x − 1)(x − µ) to
EW,a,b : y2 = x3+ax+b. The conditions on α and c satisfy (19) for a = µ−3ω2 and b = ω(µ−2ω2). So, from (20)
the map (x, y) = (r, s) = (c(x − α), cy) is a birational equivalence from EW,a,b to EM,A,B : Bs2 = r3 + Ar2 + r
where A = 3αc and B = c.

Suppose that
(
a
p

)
=
(
−1
p

)
. The map (17) given by (r, s) 7→ (u, v) = (r/s, (r − 1)/(r + 1)) is a birational

equivalence from EM,A,B to EE,a,d : a u2 + v2 = 1 + du2v2 where a = (A + 2)/B = a and d = (A − 2)/B = d.

Using (14), the map (u, v) 7→ (u, v) = (bu, v) is a birational equivalence from EE,a,d : a u2 + v2 = 1 + du2v2 to
EE,−1,d. Composing all the above maps gives the map defined in the first point of the theorem statement.

Suppose that
(
a
p

)
6=
(
−1
p

)
and

(
d
p

)
=
(
−1
p

)
. As above, The map (17) given by (r, s) 7→ (û, v̂) = (r/s, (r −

1)/(r + 1)) is a birational equivalence from EM,A,B to EE,â,d̂ : âû2 + v̂2 = 1 + d̂û2v̂2 where â = (A + 2)/B = a

and d̂ = (A − 2)/B = d. Using (15), the map (û, v̂) 7→ (u, v) = (û, 1/v̂) is a birational equivalence from
EE,â,d̂ : âû2 + v̂2 = 1 + d̂û2v̂2 to EE,a,d : a u2 + v2 = 1 + du2v2, where a = d̂ = d and d = â = a. Using (14),

the map (u, v) 7→ (u, v) = (bu, v) is a birational equivalence from EE,a,d : a u2 + v2 = 1 + du2v2 to EE,−1,d.
Composing all the maps gives the map defined in the second point of the theorem statement.

4.3 Method 3: via a 2-Isogeny

The statement and proof of the following result is similar to Theorem 5.1 of [5]. We provide more details and
more importantly, the final form of the twisted Edwards curve is also different.

Theorem 5. Let µ ∈ Fp \ {0} and EL,µ : y2 = x(x− 1)(x− µ) be a Legendre form curve.

1. If p ≡ 3 mod 4 and µ is a non-square in Fp, then the map

(x, y) 7→ (u, v) =

(
by

µ− x2
,
y2 + x2(1− µ)

y2 − x2(1− µ)

)
(40)

is a 2-isogeny from EL,µ to EE,−1,d : −u2 + v2 = 1 + du2v2, where b is such that b2 = −4µ and d = −1/µ.
The dual 2-isogeny is given by the map

(u, v) 7→ (x, y) =

(
−µ
u2

,
b(1− µ)v

2u(1− v2)

)
. (41)

2. If p ≡ 1 mod 4 then the map

(x, y) 7→ (u, v) =

(
by

µ− x2
,
y2 − (1− µ)x2

y2 + (1− µ)x2

)
(42)

is a 2-isogeny from EL,µ to EE,−1,d : −u2 + v2 = 1 + du2v2, where b is such that b2 = −4 and d = −µ.
The dual 2-isogeny is given by the map

(u, v) 7→ (x, y) =

(
−1

u2
,

(1− µ)bv

2u(v2 − 1)

)
. (43)

Proof. Since EL,µ : y2 = x3 − (µ + 1)x2 + µx, by Example 4.5 in Chapter III of [21], EL,µ is 2-isogenous to the
curve E : y2 = x3 + 2(µ+ 1)x2 + (µ− 1)2x where the 2-isogeny is given by

(x, y) 7→ (x, y) =

(
y2

x2
,
y(µ− x2)

x2

)
(44)
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and the dual 2-isogeny from E to EL,µ is given by

(x, y) 7→ (x, y) =

(
y2

4x2
,
y((µ− 1)2 − x2)

8x2

)
. (45)

The map

(x, y) 7→ (r, s) = (x/(1− µ), y/(1− µ)) (46)

is an isomorphism from E to EM,A,B : Bs2 = r3 +Ar2 + r, where B = 1/(1− µ) and A = 2(1 + µ)/(1− µ).
Suppose p ≡ 3 mod 4 and µ is a non-square in Fp. In this case, −1 is a non-square in Fp. Using (17), we

obtain a birational equivalence from EM,A,B to EE,4,4µ : 4û2 + v̂2 = 1 + 4µû2v̂2. Using (15), there is a birational
equivalence from EE,4,4µ to EE,4µ,4 : 4µu2 + v2 = 1 + 4u2v2. Since both −1 and µ are non-squares, using (14),
there is a birational equivalence from EE,4µ,4 to EE,−1,d : −u2+v2 = 1+du2v2 where d = −1/µ. The intermediate
maps for moving from EL,µ to E−1,d are as follows:

(x, y) 7→ (x, y) =

(
y2

x2
,
y(µ− x2)

x2

)
(x, y) 7→ (r, s) =

(
x

1− µ
,

y

1− µ

)
(r, s) 7→ (û, v̂) =

(
r

s
,
r − 1

r + 1

)
(û, v̂) 7→ (u, v) =

(
û,

1

v̂

)
(u, v) 7→ (u, v) = (bu, v).

Composing these intermediate maps shows that the 2-isogeny from EL,µ to E,−1,d is given by (40) and composing
the maps in the opposite directions shows that the dual 2-isogeny is given by (41).

Suppose p ≡ 1 mod 4. In this case, −1 is a square in Fp. Using (17), we obtain a birational equivalence from
EM,A,B to EE,4,4µ : 4u2 + v2 = 1 + 4µu2v2. Since 4 and −1 are both square, using (14), there is a birational
equivalence from EE,4,4µ to EE,−1,d : −u2 + v2 = 1 + du2v2 where d = −µ. The intermediate maps for moving
from EL,µ to E−1,d are as follows:

(x, y) 7→ (x, y) =

(
y2

x2
,
y(µ− x2)

x2

)
(x, y) 7→ (r, s) =

(
x

1− µ
,

y

1− µ

)
(r, s) 7→ (u, v) =

(
r

s
,
r − 1

r + 1

)
(u, v) 7→ (u, v) = (bu, v).

Composing these intermediate maps shows that the 2-isogeny from EL,µ to E,−1,d is given by (42) and composing
the maps in the opposite directions shows that the dual 2-isogeny is given by (43).

Corollary 1. Suppose EL,µ is given by projective coordinates (X : Y : Z) and EE,−1,d is given by extended
twisted Edwards coordinates (U : V : T : W ).
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1. If p ≡ 3 mod 4 and µ is a non-square in Fp, then the maps (40) and (41) are respectively

(X : Y : Z) 7→ (U : V : T : W )

=
(
bY Z(Y 2 −X2(1− µ)) : (µZ2 −X2)(Y 2 +X2(1− µ))

: UV : (µZ2 −X2)(Y 2 −X2(1− µ))
)

(47)

(U : V : T : W ) 7→ (X : Y : Z)

=
(
−2µW 2(W 2 − V 2) : b(1− µ)UVW 2

: 2U2(W 2 − V 2)
)
. (48)

2. If p ≡ 1 mod 4, then the maps (42) and (43) are respectively

(X : Y : Z) 7→ (U : V : T : W )

=
(
bY Z(Y 2 +X2(1− µ)) : (µZ2 −X2)(Y 2 −X2(1− µ))

: UV : (µZ2 −X2)(Y 2 +X2(1− µ))
)

(49)

(U : V : T : W ) 7→ (X : Y : Z)

=
(
−2W 2(V 2 −W 2) : b(1− µ)UVW 2

: 2U2(V 2 −W 2)
)
. (50)

Remarks: In the extended twisted Edwards coordinates, the point (0 : 1 : 0 : 1) is the identity and (0 : −1 : 0 : 1)
is a point of order 2. In the projective coordinates for Legendre form, the identity is given by (X : Y : 0). The
kernels of the isogenies given by (47), (48), (49) and (48) are as follows.

1. For the map (47), the kernel is obtained by setting the right hand side to (0 : 1 : 0 : 1). This leads to the
equations Y Z(Y 2−X2(1−µ)) = 0, (µZ2−X2)(Y 2 +X2(1−µ)) = 1 and (µZ2−X2)(Y 2−X2(1−µ)) = 1.
From the first equation we have either Z = 0 or Y = 0 or Y 2−X2(1−µ) = 0. The last condition contradicts
the third equation. So, we have either Z = 0 or Y = 0. The point corresponding to Z = 0 is the identity
of the Legendre form curve. If Z 6= 0, then Y = 0 which corresponds to a point of order 2. The points of
order 2 are (0 : 0 : 1), (1 : 0 : 1) and (µ : 0 : 1) and so µZ2 −X2 6= 0. So, the last two equations lead to
Y 2 +X2(1− µ) = Y 2 −X2(1− µ) which combined with Y = 0 leads to X = 0. So, the two points in the
kernel of (47) are the identity and the point (0 : 0 : 1) of order 2.

2. For the map (41), the kernel is obtained by setting the last component of the right hand side to 0, i.e.,
U2(W 2 − V 2) = 0. Suppose U = 0, then from the projective form of the twisted Edwards curve, we
have W 2(V 2 −W 2) = 0 which using W 6= 0 leads to V = ±W . On the other hand, if W 2 − V 2 = 0,
then from the projective form of the twisted Edwards curve, we have (1 + d)U2 = 0 (using W 6= 0) and
so U = 0. So, the points in the kernel are given by U = 0 and V = ±W , i.e., the kernel consists of
{(0 : 1 : 0 : 1), (0 : −1 : 0 : 1)}. The first point is the identity of the twisted Edwards curve while the second
point has order two.

3. A reasoning similar to the above shows that the kernel of (49) is the same as the kernel of (47) and the
kernel of (50) is the same as the kernel of (48).

5 Concrete Twisted Edwards Curves

Theorems 3, 4 and 5 provide three ways of obtaining twisted Edwards curves from Legendre curves. In this
section, we apply these methods to the Legendre curves arising from the Kummer lines mentioned in Section 2.3.
In each case, the Edwards curve is of the form

EE,−1,d : −u2 + v2 = 1 + du2v2. (51)
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So, only the parameter d needs to be determined.
Case 1a: EE,−1,d arising from E1a = EL,µ arising from KL2519(81, 20). In this case p = 2251 − 9 and −1 is
a non-square modulo p.

1. Consider the applicability of Theorem 3. This requires a point (x1, y1) of order 4 such that 2(x1, y1) =
(x2, y2) where the possible values of x1, y1 and x2 are given in Table 6. For the solutions of x1, y1 and x2,
it is required to determine whether the θ defined in Theorem 3 is a non-square. It turns out that for E1a

none of the solutions for x1, y1 and x2 lead to a non-square θ. So, Theorem 3 does not lead to a desired
twisted Edwards curve corresponding to E1a.

2. Consider the applicability of Theorem 4. Recall that ω = (µ+ 1)/3, a = µ− 3ω2. The choices of α = 1−ω
and α = µ−ω do not lead to any solution. For α = −ω, 3α2+a is a square; for both values of c = ±

√
3α2 + a

the corresponding values of a are non-squares. So, the first point of Theorem 4 applies giving the value of
d to be (2− 3αc)/(2 + 3αc). This leads to two curves

Ed1a,1 = EE,−1,d1 and Ed1a,2 = EE,−1,d2 (52)

where

d1 = 3004883614027606552641601849381600400091177755395884111215835704890098740623,

d2 = 2798833008714001129854195114850728831341938757267269034499352388556522149990.

In the case of both Ed1a,1 and Ed1a,2, the exceptional points of (36) are given by y = 0 (corresponding to
points of order two) and x = ω+α− 1/c. For Ed1a,1, the value of ω+α− 1/c turns out to be −√µ, while
for Ed1a,2 the value of ω + α− 1/c turns out to be

√
µ. From Table 6, these correspond to points of order

4. Further, the value of y corresponding to x = ±√µ is not in Fp. So, these order 4 points are not Fp
rational.

The base point on Ed1a,1 corresponding to the point (x, y) on E1a given in Table 5 is obtained by applying
the map in (36) to (x, y). Denoting this point by (u1a,1, v1a,1), we have

u1a,1 = 1026186610340456335262042546425133890128511340615658182636627624447632685128,
v1a,1 = 257388220155464799245020182342799698381604972017781374612759162292737044734.

(53)

The base point on Ed1a,2 corresponding to the point (x, y) on E1a given in Table 5 is obtained by applying
the map in (36) to (x, y). Denoting this point by (u1a,2, v1a,2), we have

u1a,2 = 3125143484386555645888388262718991870990762888878900211242226932085406844324,
v1a,2 = 3574659419552526316819005233288272389020277530794054549274165519298432508101.

(54)

3. In this case, p ≡ 3 mod 4 and µ is a square. So, Theorem 5 does not apply.

Case 1b: EE,−1,d arising from E1b = EL,µ arising from KL2519(186, 175). In this case p = 2251 − 9 and −1
is a non-square modulo p.

1. Consider the applicability of Theorem 3. This requires a point (x1, y1) of order 4 such that 2(x1, y1) =
(x2, y2) where the possible values of x1, y1 and x2 are given in Table 6. For the solutions of x1, y1 and x2,
it is required to determine whether the θ defined in Theorem 3 is a non-square. It turns out that for E1a

none of the solutions for x1, y1 and x2 lead to a non-square θ. So, Theorem 3 does not lead to a desired
twisted Edwards curve corresponding to E1b.

20



2. Consider the applicability of Theorem 4. Recall that ω = (µ+ 1)/3, a = µ− 3ω2.
The choices α = −ω and α = 1−ω do not lead to any solution. For α = µ−ω, 3α2 +a is a square; for both
values of c = ±

√
3α2 + a the corresponding values of a are non-squares. So, the first point of Theorem 4

applies giving the value of d to be (2− 3αc)/(2 + 3αc). This leads to two curves

Ed1b,1 = EE,−1,d1 and Ed1b,2 = EE,−1,d2 (55)

where

d1 = 2007542825992269943426958567234500079037320930456129494954013128865487694617,

d2 = 358859780694161762676356358497999714421291274790208359626418132255929119707.

In the case of both Ed1b,1 and Ed1b,2, the exceptional points of (36) are given by y = 0 (corresponding to

points of order two) and x = ω+α−1/c. For Ed1b,1, the value of ω+α−1/c turns out to be µ−
√
µ2 − µ,

while for Ed1b,2 the value of ω + α− 1/c turns out to be µ+
√
µ2 − µ. From Table 6, these correspond to

points of order 4. Further, the value of y corresponding to x = µ±
√
µ2 − µ is not in Fp. So, these order

4 points are not Fp rational.

The base point on Ed1b,1 corresponding to the point (x, y) on E1b given in Table 5 is obtained by applying
the map in (36) to (x, y). Denoting this point by (u1b,1, v1a,1), we have

u1b,1 = 3595176233734327424943449864073963557025138375877735863436915430750138327631,
v1b,1 = 3585607308769166278741260615325847146592735320612165193267294504790491798530.

(56)

The base point on Ed1b,2 corresponding to the point (x, y) on E1b given in Table 5 is obtained by applying
the map in (36) to (x, y). Denoting this point by (u1b,2, v1b,2), we have

u1b,2 = 3478883822081433059908095419057845900224879311114123866187328674100489241661,
v1b,2 = 1358748354008211742235655218053624649709423873615742229610440255556075120810.

(57)

3. Consider the applicability of Theorem 5. In this case, p ≡ 3 mod 4, but, µ is a non-square in Fp. So, the
first point of Theorem 5 applies. This leads to the curve

Ed1b,3 = EE,−1,d (58)

where d = −1/µ = (b4 − a4)/a4 = −3971/34596.

The base point on Ed1b,3 corresponding to the point (x, y) on E1b given in Table 5 is obtained by applying
the map in (40) to (x, y). Denoting this point by (u1b,3, v1b,3), we have

u1b,3 = 2793844278630667561712969277564197306945109221712154014142835740391185764299,
v1b,3 = 1607878929395760837955019630911071625108955222782462349193301913659203731958.

(59)

Case 2: EE,−1,d arising from E2 = EL,µ arising from KL25519(82, 77).

1. The co-factor of E2(Fp) is 12 and so by Proposition 1, there is no point of order 4. So, Theorem 3 does
not apply.

2. Consider the applicability of Theorem 4. None of the choices of α ∈ {−ω, 1−ω, µ−ω} lead to any solution.
So, Theorem 4 does not apply.
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Table 7: Summary of the different twisted Edwards form curve. Here b.r. denotes birational equivalence and
2-iso denotes 2-isogeny.

Kummer Legendre twisted Legendre to
Edwards twisted Edwards

KL2519(81, 20) E1a
Ed1a,1 b.r. (Thm 4)
Ed1a,2 b.r. (Thm 4)

KL2519(186, 175) E1b

Ed1b,1 b.r. (Thm 4)
Ed1b,2 b.r. (Thm 4)
Ed1b,3 2-iso (Thm 5)

KL25519(82, 77) E2 Ed2 2-iso (Thm 5)

KL2663(260, 139) E3 Ed3 2-iso (Thm 5)

3. Consider the applicability of Theorem 5. In this case, p ≡ 1 mod 4. So, the second case of Theorem 5
applies. This leads to the curve

Ed2 = EE,−1,d (60)

where d = −µ = a4/(b4 − a4) = −6724/795.

The base point on Ed2 corresponding to the point (x, y) on E2 given in Table 5 is obtained by applying the
map in (40) to (x, y). Denoting this point by (u2, v2), we have

u2 = 36371294725875594464038427339112611977790947606630656895088786307685446351235,
v2 = 5420399502534428101319348066018990605174033199858809431979181873337905014267.

(61)

Case 3: EE,−1,d arising from E3 = EL,µ arising from KL2663(260, 139).

1. The co-factor of E2(Fp) is 12 and so by Proposition 1, there is no point of order 4. So, Theorem 3 does
not apply.

2. Consider the applicability of Theorem 4. None of the choices of α ∈ {−ω, 1−ω, µ−ω} lead to any solution.
So, Theorem 4 does not apply.

3. Consider the applicability of Theorem 5. In this case, p ≡ 1 mod 4. So, the second case of Theorem 5
applies. This leads to the curve

Ed3 = EE,−1,d (62)

where d = −µ = a4/(b4 − a4) = −67600/48279.

The base point on Ed3 corresponding to the point (x, y) on E3 given in Table 5 is obtained by applying the
map in (40) to (x, y). Denoting this point by (u3, v3), we have

u3 = 89190048062212416001842209083228187904290557078088114148577357395664093858562357,
v3 = 5472512279031313112941693322256757737311467582966889426603287662650909757752053.

(63)

A summary of the twisted Edwards form curve that are obtained from the Legendre form curves is provided
in Table 7.
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6 Scalar Multiplication on Legendre/twisted Edwards Form Curves

For the twisted Edwards curves which are obtained from Legendre curves using a birational equivalence, the
hardness of the discrete logarithm problem is preserved. For these twisted Edwards curves, it is sufficient to
work only on these curves without reference to the underlying Legendre curves. So, the scalar multiplication
algorithms for twisted Edwards curve using extended twisted Edwards coordinates can be applied. From Table 7,
the relevant curves are Ed1a,1, Ed1b,1, Ed1b,2, Ed1b,3, Ed2,1, Ed3,1. For the twisted Edwards curves which are
obtained from Legendre curves using a 2-isogeny, it is required to work over the Legendre curves.

Following [7] scalar multiplication on the corresponding Legendre curves can be performed in the following
manner. Let Φ (resp. Φ̂) be the 2-isogeny (resp. the dual 2-isogeny) from the Legendre form curve to the twisted
Edwards form curve (resp. from the twisted Edwards form curve to the Legendre form curve). Let q be the
largest prime dividing the order of the group of Fp rational points of the Legendre form curve. Let P be a point
on the Legendre form curve of order q and n be a scalar. Since q is a prime, 2 has a multiplicative inverse modulo
q. Following [7], the scalar multiplication nP can be done in the following manner: P = Φ(P); n = n/2 mod q;
Q = nP; Q = Φ̂(Q); return Q.

The above requires an application of Φ and Φ̂ each and a scalar multiplication in the twisted Edwards form
curve. The times required for computing Φ and Φ̂ are negligible in comparison to the scalar multiplication.
Instead of directly computing the scalar multiplication on the Legendre form curve, this procedure benefits from
the fast scalar multiplication possible on the twisted Edwards form curve.

A unified addition algorithm using extended twisted Edwards coordinates for twisted Edwards curves of
the form −u2 + v2 = 1 + du2v2 has been given in [13]. Suppose, it is required to add (U1 : V1 : T1 : W1),
(U2 : V2 : T2 : W2) and the result is (U3 : V3 : T3 : W3). The algorithm for performing this operation is shown in
Table 8. This requires a total of 8M+ 1C + 8A where the C is the multiplication by 2d. For the cases, where d
is a general element of Fp, essentially 9M + 8A is required. On the other hand, suppose that d = d1/d2 where
d1 and d2 are small integers. The values of d arising in the cases of Ed1b,4, Ed2,2 and Ed3,2 can be written in this
form. In this case, the above computation for obtaining (U3 : V3 : T3 : W3) can be rewritten as shown in Table 9.
This requires 8M+ 4C + 8A. In this case, the multiplications counted by C are indeed multiplications by small
constants. In other words, instead of 9M+ 8A, the cost becomes 8M+ 4C + 8A. This is advantageous only if
the time required for four multiplications by small constants is lesser than a general field multiplication.

For fixed base scalar multiplication, the efficiency can be further improved as suggested in [6]. Suppose
(U1 : V1 : T1 : W1) is the fixed base where W1 = 1 and T1 = U1V1. If the fixed base point is represented as
(U1 − V1, U1 + V1, 2dT1) then in the computation in Figure 8, the following simplifications become possible. The
multiplication (2d)T1 · T2 becomes (2dT1) · T2; the multiplication 2W1 ·W2 becomes 2W2; and the computations
U1 − V1 and U1 + V1 are not required. So, the overall cost becomes 7M+ 6A. It had already been pointed out
in [13] that using W1 = 1 leads to a cost of 7M+ 1C + 8A. Using W1 = 1 in conjunction with the idea in [6] of
using (U1 − V1, U1 + V1, 2dT1) representation of the fixed base point leads to the cost of 7M+ 6A.

7 Conclusion

This work considered methods to move between Legendre form elliptic curves and associated Kummer lines as
well as methods to move between Legendre form elliptic curves and corresponding twisted Edwards form elliptic
curves. Complete details of the methods are presented. Further, new concrete twisted Edwards form elliptic
curves are proposed. These correspond to previously proposed concrete Kummer lines at the 128-bit security
level which admit very fast scalar multiplication on modern architectures supporting SIMD operations.
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Table 8: General d.

A← (V1 − U1) · (V2 − U2),
B ← (V1 + U1) · (V2 + U2),
C ← (2d)T1 · T2,
D ← 2W1 ·W2,
E ← B −A,
F ← D − C,
G← D + C,
H ← B +A,
U3 ← E · F ,
V3 ← G ·H,
T3 ← E ·H,
W3 ← F ·G.

Table 9: d = d1/d2 with d1, d2 small.

A← (V1 − U1) · (V2 − U2),
B ← (V1 + U1) · (V2 + U2),
C ← (2d1)T1 · T2,
D ← (2d2)W1 ·W2,
E ← d2(B −A),
F ← D − C,
G← D + C,
H ← d2(B +A),
U3 ← E · F ,
V3 ← G ·H,
T3 ← E ·H,
W3 ← F ·G.

References

[1] J. Barwise and P. Eklof. Lefschetz’s principle. Journal of Algebra, 13(4):554–570, 1969.

[2] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key Cryptography - PKC, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

[3] D. J. Bernstein and T. Lange. Explicit-formulas database. http://www.hyperelliptic.org/EFD/index.

html, 2007.

[4] D. J. Bernstein and Lange T. Faster addition and doubling on elliptic curves. In Advances in Cryptology -
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

[5] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted edwards curves.
In Serge Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008, First International Conference
on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. Proceedings, volume 5023 of Lecture Notes
in Computer Science, pages 389–405. Springer, 2008.

[6] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. J. Cryptographic Engineering, 2(2):77–89, 2012.

[7] Eric Brier and Marc Joye. Fast point multiplication on elliptic curves through isogenies. In Marc P. C.
Fossorier, Tom Høholdt, and Alain Poli, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, 15th International Symposium, AAECC-15, Toulouse, France, May 12-16, 2003, Proceedings, volume
2643 of Lecture Notes in Computer Science, pages 43–50. Springer, 2003.

[8] M. Prem Laxman Das and Palash Sarkar. Pairing computation on twisted edwards form elliptic curves. In
Steven D. Galbraith and Kenneth G. Paterson, editors, Pairing-Based Cryptography - Pairing 2008, Second
International Conference, Egham, UK, September 1-3, 2008. Proceedings, volume 5209 of Lecture Notes in
Computer Science, pages 192–210. Springer, 2008.

[9] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society,
44:393–422, 2007.

24



[10] G. Frey and H.-G. Rück. The strong lefschetz principle in algebraic geometry. Manuscripta Mathematica,
55(3):385–401, 1986.

[11] P. Gaudry. Fast genus 2 arithmetic based on theta functions. J. Mathematical Cryptology, 1(3):243–265,
2007.

[12] P. Gaudry and D. Lubicz. The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines.
Finite Fields and Their Applications, 15(2):246–260, 2009.
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