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Abstract. A cryptographic watermarking scheme embeds a message
into a program while preserving its functionality. Recently, a number of
watermarking schemes have been proposed, which are proven secure in
the sense that given one marked program, any attempt to remove the
embedded message will substantially change its functionality.

In this paper, we formally initiate the study of collusion attacks for wa-
termarking schemes, where the attacker’s goal is to remove the embedded
messages given multiple copies of the same program, each with a differ-
ent embedded message. This is motivated by practical scenarios, where
a program may be marked multiple times with different messages.

The results of this work are twofold. First, we examine existing cryp-
tographic watermarking schemes and observe that all of them are vul-
nerable to collusion attacks. Second, we construct collusion resistant wa-
termarking schemes for various cryptographic functionalities (e.g., pseu-
dorandom function evaluation, decryption, etc.). To achieve our second
result, we present a new primitive called puncturable functional encryp-
tion scheme, which may be of independent interest.
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? Corresponding author.



1 Introduction

A watermarking scheme allows one to embed some information into a program1

without significantly changing its functionality. It has many natural applications,
including ownership protection, information leaker tracing, etc.

The formal definition of watermarking schemes for programs is first presented
by Barak et al. in [BGI+01]. Subsequently, new properties of watermarking
schemes are presented in [HMW07, NW15, CHV15]. They are briefly summa-
rized below.

• Unremovability: This is the essential security property for watermarking
schemes, which requires that it should be hard to remove or modify the
embedded information in a marked program without destroying it.
• Public Extraction: Anyone should be able to extract the embedded in-

formation in a marked program. In other words, the extraction key will be
made public.

• Public Marking: Anyone should be able to embed information into a pro-
gram. In other words, the marking key will be made public.

• Unforgeability: Only the authorized entity who holds the marking key
should be able to embed information into a program. Obviously, it requires
keeping the marking key secret and is not compatible with the “public mark-
ing” property.

• Message-Embedding: This property allows one to embed a given string
(instead of merely a mark symbol) into the watermarked program.

Despite being a natural concept and perceived to have a wide range of appli-
cations, watermarking schemes provably secure against arbitrary removal strate-
gies were not presented until 2015. In [CHN+16] (which is a merged version of
[NW15] and [CHV15]), Cohen et al. construct a publicly extractable watermark-
ing scheme for the evaluation algorithm of pseudorandom functions (PRFs) from
indistinguishability obfuscators. Based on the watermarkable PRF families, they
also construct watermarkable public key encryption (PKE) schemes and water-
markable signature schemes. However, Cohen et al.’s schemes do not achieve
standard unforgeability. Subsequently, Yang et al. [YAL+18] improve the water-
markable PRF in [CHN+16] to achieve both standard unforgeability and public
extraction simultaneously.

In another line of research, initiated by Boneh et al. in [BLW17], water-
markable PRFs are constructed from variants of constraint-hiding constrained
PRFs (e.g., privately programmable PRF and translucent puncturable PRF).
Boneh et al.’s scheme is constructed from privately programmable PRF, which
is instantiated from indistinguishability obfuscator in [BLW17]. Subsequently,
based on a translucent puncturable PRF, Kim and Wu [KW17] present the first
construction of watermarkable PRF from standard lattice assumptions. Then,

1 In this paper, we focus on watermarking schemes for programs and only consider
those with provable security against arbitrary removal strategies. We refer readers
to Sec. 1.2 for an extended introduction to the area.
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Peikert and Shiehian [PS18] construct privately programmable PRF from LWE,
which provides another way to instantiate watermarkable PRF from standard
assumptions. Recently, in [QWZ18] and [KW19], watermarkable PRFs with pub-
lic marking are constructed from constraint-hiding constrained PRF and punc-
turable extractable PRF respectively, both of which can be instantiated from
standard lattice assumptions.

Besides, a very simple yet elegant construction of watermarking scheme for
any PKE scheme is presented by Baldimtsi et al. [BKS17]. However, their scheme
does not support multi-message-embedding inherently. That is, each program
can only be marked with at most one message during the life-time of the scheme.

Collusion Resistance of Watermarking schemes. In practical applications, it is
usually required that unremovability of watermarking schemes should hold under
“collusion attacks”, where the attacker can access several copies of the same pro-
gram embedded with different information. As a concrete example, consider the
following scenario. A software development company developed a program and
would like to outsource its testing to several organizations. To prevent these or-
ganizations from leaking the program, the company will employ a watermarking
scheme to embed the name of the target organization into the copy being sent.
Here, the watermarking scheme should enable the company to trace program
leakers even when a few target organizations collude.

However, for all previous watermarking schemes [CHN+16, BLW17, KW17,
BKS17,PS18,YAL+18,QWZ18,KW19], the unremovability is only proved against
an adversary who attempts to remove or modify the embedded message given
a single marked program2, and it is unknown whether they are secure against
collusion attacks. Thus, the following question arises naturally:

Can we build collusion resistant watermarking scheme?

1.1 Our Results

In this paper, we explore the existence of watermarking schemes secure against
collusion attacks. First, we observe that unfortunately, all existing watermarking
schemes are vulnerable to collusion attacks (we elaborate this in Sec. 2). Then, we
consider how to develop watermarkable cryptographic primitives secure against
the collusion attacks. Specifically, our contributions are as follows.

• We present the notion of collusion resistant watermarking scheme to capture
collusion attacks. It requires a stronger unremovability (namely, collusion
resistant unremovability) that allows the adversary to obtain watermarked
circuits embedded with different messages for the same functionality.

2 In a concurrent work [GKM+19], collusion resistant watermarking schemes for
public-key cryptographic primitives are presented. However, their constructions are
under a relaxed notion of functionality-preserving. In this work, we achieve col-
lusion resistance while preserving the original “statistical functionality-preserving”
proposed in [CHN+16].
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• We give a construction of collusion resistant watermarkable PRF, which is
the first watermarkable cryptographic primitive provably secure against the
collusion attacks. To achieve this, we introduce a new message-embedding
technique in the watermarking setting and propose a new primitive, namely,
puncturable functional encryption scheme, which we believe will find addi-
tional applications in constructing advanced cryptographic primitives.

• Based on our construction of collusion resistant watermarkable PRF, we
also construct watermarkable PKE schemes and watermarkable signature
schemes, both of which have collusion resistant unremovability.

We compare the main features achieved by current watermarking schemes
and our watermarking schemes in Table 1. We remark that in addition to col-
lusion resistance, our schemes can achieve many desirable features, including
public extraction, unforgeability, and message-embedding.

Table 1: The Comparison.

Unforgeability Public Public Message Collusion

Extraction Marking Embedding Resistance

[CHN+16]

PRF 7 3 7 3 7

PKE 7 3 7 3 7

Signature 7 3 7 3 7

[YAL+18] PRF 3 3 7 3 7

[BLW17] PRF 3 7 7 3 7

[KW17] PRF 3 7 7 3 7

[QWZ18] PRF 7 7 3 3 7

[KW19]
PRF 3 7 7 3 7

PRF 3† 7 3 3 7

[BKS17]
PKE 3 7 7 7 -

PKE 3 3 7 7 -

This work

PRF 3 3 7 3 3

PKE 3 3 7 3 3

Signature 3 3 7 3 3

†: Weaker versions of unforgeability are achieved for this scheme.

The presented collusion resistant watermarking schemes are built on several
cryptographic primitives, which can be constructed from indistinguishability ob-
fuscator and standard lattice assumptions.
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Theorem 1.1 (Informal). Assuming the worst-case hardness of appropri-
ately parameterized GapSVP and SIVP problems and the existence of in-
distinguishability obfuscator, there exist collusion resistant watermarkable
PRF/PKE/signature schemes.

Remark 1.1. It is worth noting that our constructions of collusion resistant wa-
termarking schemes rely on the existence of indistinguishability obfuscator. How-
ever, this seems essential, at least for collusion resistant watermarkable PRF. To
see this, recall that as proved in [BGI+01], watermarking scheme perfectly pre-
serving the functionality of the watermarked program does not exist. Thus, a
marked key of PRF must evaluate differently with the original key on some in-
puts, i.e., the marked key can be viewed as a constrained key of the original
key. Besides, the marked key should hide its constrained inputs, since otherwise,
the attacker is likely to remove the embedded messages via resetting outputs on
constrained inputs. Therefore, we can approximately view a collusion resistant
watermarkable PRF as a collusion resistant constraint-hiding constrained PRF,
which, as shown in [CC17], can imply indistinguishability obfuscator. Nonethe-
less, we are not able to formalize this intuition. It is an interesting open problem
to give a formal construction of indistinguishability obfuscator from collusion
resistant watermarkable PRF.

1.2 Related Works

Additional Related Works on Watermarking Schemes. In this paper, we
concentrate on watermarking schemes provably secure against arbitrary removal
strategies. There are also numerous works (see [CMB+07] and references therein)
attempting to use ad hoc techniques to watermark a wide class of digital objects,
such as images, audios, videos, etc. However, these constructions lack rigorous
security analysis and are (potentially) vulnerable to some attacks.

In another line of research [NSS99, YF11, Nis13], watermarking schemes for
cryptographic objects (e.g., the key, the signature, etc.) are constructed and
rigorously analyzed. However, their security definition considers a restricted ad-
versary that will not change the format of the watermarked objects.

Puncturable Symmetric Key Functional Encryption. One byproduct of
this work is a new primitive called puncturable functional encryption. A simi-
lar primitive, which is called puncturable symmetric key functional encryption,
is also studied in previous works [BV15, KNT18]. In particular, it is used to
construct the indistinguishability obfuscator in these works.

We stress that these two types of primitives are incomparable. First, while
succinctness is the key property for a puncturable symmetric key functional
encryption scheme, it is not required in our puncturable functional encryption
scheme. Thus, our scheme cannot be used in constructions of indistinguishability
obfuscators. On the other hand, our puncturable functional encryption scheme
will puncture a secret key on a ciphertext, but in a puncturable symmetric key
functional encryption scheme, secret keys are punctured on a message or on a
tag. Thus, their schemes are also inapplicable to our setting.
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Traitor Tracing Scheme. The notion of collusion resistant watermarking
scheme is somewhat similar to the notion of traitor tracing scheme, which aims
at tracing secret key leakers among a set of users holding functionally equivalent
secret keys in a broadcast encryption setting. Since first presented in [CFN94],
traitor tracing has been formally studied for a long time (see e.g., [BSW06,
BN08,BZ14,NWZ16,GKW18,CVW+18] and references therein for an overview
of previous works).

Generally, in a traitor tracing scheme, there is a common public key pk and
each user holds a different secret key. Data encrypted under the common public
key can be decrypted by all users in the system. Moreover, there exists a tracing
algorithm, which outputs a set of users on input a “pirate decoder” that can
decrypt ciphertexts under pk. It is guaranteed that the tracing algorithm can
identify at least one of the users in the coalition that produces the pirate decoder.

Comparing watermarking and traitor tracing. Both (collusion resistant) water-
marking and traitor tracing will issue copies of a program (or a key), which are
embedded with some information, to users and aim at recovering the embedded
information from a functionally-similar program/key generated by them. How-
ever, solutions to the traitor tracing problem do not yield watermarking schemes
directly, since these two notions also have several inherent differences.

First, in a traitor tracing scheme, secret keys of users are issued by a center,
while in a watermarking scheme, user can choose their watermarked programs
themselves. Another difference is that in a traitor tracing scheme, secret keys of
all users are functionally equivalent, while in a watermarking scheme, programs
with different functionalities can be watermarked in the same watermarking
scheme. Besides, traitor tracing schemes focus on tracing secret key leakers in an
encryption scheme, while watermarking schemes aim at marking general purpose
programs (although we only know how to watermark some specific cryptographic
functionalities currently).

A closer look at how to construct traitor tracing schemes. In [BSW06], Boneh
et al. present a classic paradigm to construct traitor tracing schemes, which
is also used or adapted in many subsequent works [BZ14,NWZ16,GKW18]. The
construction proceeds in two steps.

First, a private linear broadcast encryption (PLBE) scheme is constructed.
Recall that a PLBE scheme has a sequence (sk1, . . . , skN ) of N secret keys for
a public key and each ciphertext is labeled with an integer in [0, N ]. A secret
key ski is only able to decrypt a ciphertext with label j when j < i. Thus, a
ciphertext with label 0 can be decrypted by all secret keys, while a ciphertext
with label N can not be decrypted by any secret key. Also, it is required that
it is computationally infeasible to distinguish a ciphertext with label j and that
with label j − 1 if skj is not given.

A PLBE scheme implies a traitor tracing scheme [BSW06, GKW18]. More
concretely, the traitor tracing scheme supports a user set of size N and the ith
user in that set is given secret key ski. Broadcast messages will be encrypted
with label 0. When tracing colluders from a pirate decoder, the tracing algo-
rithm feeds the decoder with ciphertexts labeled with 0 to N sequentially and
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outputs i if there exists a “large gap” in decryption success probability between
ciphertexts labeled with i−1 and those labeled with i. Note that the decoder can
decrypt with a high success probability on ciphertext labeled with 0 (due to the
usefulness of the decoder) and can decrypt with a negligible success probability
on ciphertext labeled with N (due to the security of PLBE), thus, there must
exists a large gap in decryption success probability between i− 1 and i for some
i ∈ [N ]. Also, as no one could distinguish ciphertexts labeled with i−1 and that
labeled with i without ski, the large gap must occur between i − 1 and i such
that the colluders possess ski. Therefore, the tracing algorithm can recover at
least one of the colluders.

1.3 Roadmap

The rest of the paper is organized as follows. We give an overview of our con-
struction in Sec. 2. Then in Sec. 3, we review notations used in this work. We
present the formal definition of collusion resistant watermarkable PRF in Sec.
4. Then in Sec. 5, we define and construct puncturable functional encryption,
which is employed to construct collusion resistant watermarkable PRF. We show
our main construction of collusion resistant watermarkable PRF in Sec. 6 and
present constructions of collusion resistant watermarking schemes for public key
primitives in Sec. 7. Finally, in Sec. 8, we conclude our work with a few possible
future works.

2 Technical Overview

In this section, we provide an overview of our construction of collusion resis-
tant watermarkable PRF. Our starting point is the watermarking scheme WM0

presented in [CHN+16] (or more accurately, its variant in [YAL+18]). We first
explain why WM0 (and all previous watermarking schemes) are not collusion re-
sistant and describe the main challenges in achieving collusion resistance. Then
we give a high-level idea on how to address these challenges.

A brief overview of WM0. Roughly speaking, WM0 works as follows. The
extraction key/marking key pair of WM0 is a public key/secret key pair (pk, sk)
of a PKE scheme. To embed a message msg into a PRF key k, the marking
algorithm outputs an obfuscation of the following circuit, which evaluates the
function PRF(k, ·) correctly at all points, except for some “punctured points”.

C(x) =

{
f(µ)⊕msg if µ = Dec(sk, x) ∈ V
PRF(k, x) otherwise.

Here, Dec is the decryption algorithm of the underlying PKE scheme, V is a set
defined by the PRF key k and f is a suitable function.

When extracting the embedded message from a watermarked circuit, the
extraction algorithm first samples a string µ ∈ V and encrypts it with the public
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key pk. Next, it evaluates the circuit on the ciphertext and obtains an output
z. Finally, it computes msg = z ⊕ f(µ). The above extraction procedure will be
repeated multiple times and the extraction algorithm will output the majority
result or an “UNMARKED” symbol if no majority is found.

Security of the scheme relies on the fact that punctured points (i.e. those
decrypted to a string in V) are hidden3. As a result, the adversary, who is only
allowed to alter the marked circuit slightly, is not able to change the output
values on a large enough fraction of punctured points, and thus the extraction
algorithm can still extract the correct message.

Why WM0 is not collusion resistant? However, if watermarked circuits
embedded with different messages for the same PRF key k are given, one can
easily locate all punctured points via comparing the outputs of the circuits. In
addition, it is easy to modify or remove the embedded messages via resetting
outputs on all punctured points.

In more detail, given two circuits C1 and C2 that are generated by embedding
different messages, say msg1 and msg2, into the same PRF key k, an attacker
can output a circuit C∗ embedded with a new message msg∗ as follow:

C∗(x) =

{
C1(x)⊕msg1 ⊕msg∗ if C1(x) 6= C2(x).

C1(x) otherwise.

It is not hard to see that C∗ will compute the PRF with key k correctly on almost
all inputs except that it will output f(µ)⊕msg∗ on an input whose decryption
µ is in V. Therefore, the attacker can compromise the unremovability of WM0

via a collusion attack4.
Since nearly all5 previous watermarking schemes are constructed following

the blueprint proposed in [CHN+16], we can use a similar strategy to show that
they are not collusion resistant. We stress that all collusion attacks are based on
the fragility of the way messages are embedded and do not take advantage of
the concrete instantiations of the schemes.

The challenge in achieving collusion resistance. To better explain why
WM0 is not able to achieve collusion resistance, we describe WM0 in a modular
manner.

In a high level, on input a PRF key k and a message msg, the marking
algorithm of WM0 works as follows:

3 One could find some punctured points via generating them from public information,
but cannot distinguish a random punctured point from a random point in the input
space.

4 We remark that this will not affect the claimed security of WM0. The attacks only
show that WM0 is not applicable in scenarios where collusion attacks are a legit
threat.

5 The watermarking scheme proposed in [BKS17] is constructed in a different ap-
proach, however, it cannot embed different messages into the same program.
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1. Generates two sequences X = (x1, . . . , xl) and Y = (y1, . . . , yl), where xi
and yi are in the input space and the output space of the watermarked PRF
respectively. More concretely, in WM0, for each pair (xi, yi), xi = Enc(pk, µ)
and yi = f(µ) for some µ ∈ V.

2. Encodes the message msg into a sequence Z = (z1, . . . , zl) = encode(X ,Y,
msg), where zi is also in the output space of the watermarked PRF. In more
detail, messages are encoded into Z via a simple “exclusive or” operation in
WM0, i.e., zi = yi ⊕msg for i ∈ [1, l].

3. Outputs a circuit that computes the PRF with k correctly on inputs outside
X and outputs zi on input xi (here, xi is called a punctured point).

Correspondingly, we can abstract the extraction algorithm of WM0, which
takes as input a watermarked circuit C, as follows:

1. Samples a set of pairs {xi, yi} in X × Y.
2. Evaluates zi = C(xi) for each xi.
3. Recovers the message msg = decode({xi, yi, zi}). Here, the decoding algo-

rithm outputs the majority of yi ⊕ zi.

The key observation underlying our collusion attack is that the simple “xor”
encoding scheme is fragile in the collusion setting. First, for two different mes-
sages msg and msg′, let (z1, . . . , zl) = encode(X ,Y,msg) and (z′1, . . . , z

′
l) =

encode(X ,Y,msg′), then we have zi 6= z′i for i ∈ [1, l]. This makes it easy to lo-
cate all punctured points in X by comparing outputs of circuits embedded with
different messages. In addition, it is easy to overwrite the encoded message in a
codeword Z = (z1, . . . , zl). For example, one can reset zi = zi ⊕∆ for i ∈ [1, l]
to xor the encoded message with ∆.

In [KW17,QWZ18,KW19], different message encoding schemes are applied.
However, all of them inherit the aforementioned weakness to some extent, and
thus are not robust against collusion attacks.

To solve this problem, we need to develop a robust message encoding scheme,
where decode can recover the original embedded messages even if a collusion
attacker can locate some punctured points6 and will reset outputs on its located
punctured points. Next, we explore how to develop a robust message encoding
scheme and integrate it with the other part of WM0.

Addressing the challenge: a robust message encoding scheme. We de-
sign our encoding scheme via using ideas from the realm of traitor tracing. In
particular, our scheme is inspired by the well-known framework presented in
[BSW06] (we recall this framework in Sec. 1.2).

The message space of our encoding scheme is [1, N ]7. The input of the encod-
ing algorithm is two sequences X = (x1, . . . , xl),Y = (y1, . . . , yl) and a message

6 This seems unavoidable since circuits embedded with different messages should be
run differently on some points to enable message extraction.

7 Here, we assume that N is polynomial in the security parameter and will show how
to remove this restriction later.
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msg ∈ [1, N ]. Here, we divide the whole sequence X into N parts, namely, X1,
. . . ,XN , each of which is labeled with an index in [1, N ] (we elaborate how to
define Xi later). To encode a message msg, the encoding algorithm sets zi = yi
if xi ∈ X1 ∪ X2 ∪ . . .Xmsg and sets zi to be the correct PRF output otherwise.
The output of the encoding algorithm is the sequence (z1, . . . , zl).

We also modify the decoding algorithm. It takes as input a set of tuples (xi,
yi, zi), where (xi, yi) is sampled from X × Y and zi is the output of the tested
circuit on input xi, and works as follows:

1. Set p0 = 1 and pN+1 = 0.
2. For ind ∈ [1, N ], estimate the fraction pind of “correctly reprogrammed”

points in set Xind, where a point xi is “correctly reprogrammed” if yi = zi.
This can be accomplished via testing polynomially-many points in Xind.

3. If there exists ind ∈ [0, N ] such that |pind − pind+1| is noticeable (i.e., a
“large gap” at ind is found), output the message msg = ind. Here, msg = 0
denotes the code is not decodable (i.e., the circuit is unmarked).

Next, we argue why our new message encoding scheme is robust under collu-
sion attacks. Observe that, given a few (say 2) circuits C1 and C2 embedded with
messages msg1 and msg2 respectively (w.l.o.g. assuming msg1 < msg2), the at-
tacker can locate punctured points in Xind for ind ∈ (msg1,msg2] by comparing
outputs of C1 and C2. However, we note that

• If the attacker cannot distinguish punctured points in Xind1 and Xind2 for
ind1, ind2 ∈ (msg1,msg2], it cannot make |pind1 − pind2 | noticeable via re-
setting outputs on located punctured points.

• If the attacker cannot distinguish a punctured point xi ∈ Xind from a random
point for ind 6∈ (msg1,msg2], it will not be able to reset the output on such
xi. Thus, we have pind = 1 for ind ∈ [1,msg1] and pind = 0 for ind ∈ (msg2,
N ].

Consequently, if the aforementioned indistinguishability properties are guaran-
teed, the large gap(s) must occur at either msg1 or msg2 (or at both points),
i.e., the decoding algorithm could output the embedded message(s).

One problem of the above solution is that the message space is restricted
to be a polynomial-size set. This is because the decoding algorithm needs to
scan all indices linearly to find a large gap. Addressing this problem, we employ
the refined binary search presented in [BCP14, NWZ16] to search the “large
gap”. The search algorithm can find all (polynomially-many) large gap points
from an exponentially large interval in a pre-defined polynomial time, as long as
|pind1 − pind2 | is negligible for all (adaptively chosen) interval [ind1, ind2) ⊆ [0,
N + 1] not containing a large gap point. In this way, we can set the message
space to be [1, N ] for an exponentially large N .

Towards integrating our new encoding scheme with WM0. Next, we
integrate our encoding scheme with the remaining part of WM0. First, we will
specify how to label punctured points with indices. Then, we will show how to
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achieve indistinguishability properties required by our robust message encoding
scheme. More precisely, we will argue that for a collusion attacker, who can
locate some punctured points via comparing outputs of watermarked circuits
embedded with different messages, both the unlocated punctured points and
labels of the located punctured points are hidden.

Labeling punctured points with indices. Recall that in WM0, the domain of the
PRF is the ciphertext space of a PKE scheme and punctured points are en-
cryptions of plaintexts in a set V. To label a punctured point with an index
ind, we append ind to the underlying plaintext, i.e., we define Xind = {Enc(pk,
µ‖ind)}µ∈V , where pk is the public key of the underlying PKE scheme and serves
as WM0’s extraction key.

Hiding punctured points and labels. Next, we explore how to hide unlocated
punctured points and labels of located punctured points. For simplicity, we con-
sider an adversary who gets two watermarked circuits C1 and C2 for the same
PRF key k, which are embedded with messages msg1 and msg2 respectively,
where msg1 < msg2. Recall that our message encoding scheme is able to recover
the embedded messages if the following two properties are guaranteed:

• Pseudorandomness of punctured points in Xind for an adaptively chosen
ind 6∈ (msg1,msg2].
• Indistinguishability between punctured points in Xind1 and Xind2 for adap-

tively chosen ind1, ind2 ∈ (msg1,msg2].

Unfortunately, the PKE scheme employed in WM0, which is a puncturable
encryption scheme, does not provide the desired properties. To see this, consider
an input x from Xind, where ind ∈ (msg1,msg2]. Since C1(x) 6= C2(x), a secret
key that can decrypt x must be included in both C1 and C2 (otherwise, the
circuit cannot recognize it and deal with it properly). However, the puncturable
encryption scheme cannot guarantee indistinguishability on ciphertexts that are
decryptable.

To bridge the gap, we present a new cryptographic primitive that we call
puncturable functional encryption and replace puncturable encryption used in
WM0 with it. Roughly speaking, a puncturable functional encryption scheme
enhances a functional encryption scheme with the puncturing capability and
enjoys both security of functional encryption schemes and that of puncturable
encryption schemes. Especially, similar to a functional encryption, it has the
“adaptive indistinguishability” property, which could ensure indistinguishability
of ciphertexts as long as no secret key distinguishing them is provided. Also,
similar to a puncturable encryption, it has the “ciphertext pseudorandomness”
property, which could ensure pseudorandomness of a ciphertext given a secret
key punctured on it.

Now, for two punctured points x1 and x2 in Xind1 and Xind2 respectively,
where ind1, ind2 ∈ (msg1,msg2], since none of them will be reprogrammed in
C1 while both of them will be reprogrammed in C2, secret keys hardwired in C1
and C2 do not need to distinguish them. Thus, their indistinguishability comes
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from the adaptive indistinguishability of the puncturable functional encryption
scheme directly. Meanwhile, for a punctured points x in Xind for ind 6∈ (msg1,
msg2], since C1(x) = C2(x), we can regard C1 and C2 as the same circuit when
considering pseudorandomness of x. Thus, the pseudorandomness of x can be
reduced to the ciphertext pseudorandomness of the puncturable functional en-
cryption scheme, just as what has been argued in the original security proof (in
the non-collusion setting) for WM0.

Constructing puncturable functional encryption. To construct a punc-
turable functional encryption scheme, we employ a functional encryption scheme,
a puncturable encryption scheme, and a statistical sound non-interactive zero-
knowledge (NIZK) proof. We integrate them via a “two-layer encryption” ap-
proach.

More precisely, a plaintext is first encrypted into an inner ciphertext using the
functional encryption scheme. Then the NIZK proof is employed to prove that
the inner ciphertext is properly encrypted. Finally, both the inner ciphertext and
the proof is encrypted into an outer ciphertext under the puncturable encryption
scheme. When decrypting a ciphertext, the decryption algorithm first decrypts
the outer ciphertext. It aborts if the proof is invalid and outputs the decryption
of the inner ciphertext otherwise. Main security properties of the constructed
puncturable functional encryption (namely, adaptively indistinguishability and
ciphertext pseudorandomness) reduce to corresponding security properties of
underlying functional encryption and puncturable encryption respectively.

3 Notations

Let a be a string, we use ‖a‖ to denote the length of a. Let S be a finite set, we

use ‖S‖ to denote the size of S, and use s
$← S to denote sampling an element s

uniformly from set S. For a string a and a set S of strings, we use a‖S to denote
the set {x : ∃s ∈ S, x = a‖s}. For n elements e1, . . . , en, we use {e1, . . . , en} to
denote a set containing these elements and use (e1, . . . , en) to denote an ordered
list of these elements. We write negl(·) to denote a negligible function, and write
poly(·) to denote a polynomial. For integers a ≤ b, we write [a, b] to denote all
integers from a to b. For two circuits C1 and C2, we write C1 ≡ C2 to denote that
for any input x, C1(x) = C2(x). Following the syntax in [BLW17], for a circuit
family C indexed by a few, say m, constants, we write C[c1, . . . , cm] to denote a
circuit with constants c1, . . . , cm.

Chernoff Bound. We make use of the Chernoff bound in our security proof.
There are various forms of the Chernoff bound, here we use the one from [Goe15].

Lemma 3.1 (Chernoff Bounds). Let X =
∑n
i=1Xi, where Xi = 1 with prob-

ability pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let
µ = E(X) =

∑n
i=1 pi. Then

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ for all δ > 0;
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Pr[X ≤ (1− δ)µ] ≤ e− δ
2

2 µ for all 0 < δ < 1.

Besides, we also employ some cryptographic primitives and their definitions
are recalled in Appendix A.

4 Definition of Collusion Resistant Watermarkable PRF

In this section, we give the formal definition of the collusion resistant watermark-
able PRF, which is adapted from definitions of watermarkable PRF in previous
works [CHN+16,BLW17,KW17]. The main difference between our definition and
previous ones is that the unremovability holds against an adversary that can ob-
tain polynomially-many (instead of one) watermarked circuits for the same PRF
key from the challenge oracle. Besides, the extraction algorithm takes an addi-
tional parameter q, which can be roughly viewed as the number of colluders, as
input. The correctness and the unforgeability hold for arbitrary positive integer
q; for the unremovability, a large enough q is needed. In particular, if q is larger
than the number of colluders, the extraction algorithm can extract a non-empty
subset of the coalition, while using a smaller q may lead to an error symbol.

Remark 4.1. Our definition of collusion resistant unremovability implicitly re-
quires that the adversary is only allowed to obtain a bounded number (i.e., q) of
watermarked circuits from the challenge oracle. Thus, it falls into the category of
“bounded collusion resistance”. Nonetheless, in our definition, the bound q does
not need to be fixed in the setup phase and may be varied in different extraction
procedures. In fact, if the extractor has a way to know the number of colluders
in advance, the scheme remains secure against an arbitrary number of colluders.
Besides, since the extraction algorithm is able to detect if a smaller q is used, in
practice, the extractor can re-execute the extraction algorithm with a larger q
after receiving an error message from the extraction algorithm.

Definition 4.1 (Watermarkable PRFs [CHN+16, BLW17, KW17,
adapted]). Let PRF = (PRF . KeyGen,PRF . Eval) be a PRF family with key
space K, input space {0, 1}n and output space {0, 1}m. The watermarking
scheme with message space M for PRF (more accurately, the evaluation
algorithm of PRF) consists of three algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the
mark key MK and the extraction key EK.
• Mark. On input the mark key MK, a secret key k ∈ K of PRF, and a

message msg ∈M, the marking algorithm outputs a marked circuit C.
• Extract. On input the extraction key EK, a circuit C, and a parameter q, the

extraction algorithm outputs either a set L ⊆ M or a symbol UNMARKED
or an error symbol ⊥.

Definition 4.2 (Watermarking Correctness). Correctness of the watermark-
ing scheme requires that for any k ∈ K, msg ∈ M, and any polynomial q ≥ 1,
let (MK,EK)← Setup(1λ), C← Mark(MK,k,msg), we have:

13



• Functionality Preserving. C(·) and PRF . Eval(k, ·) compute identically
on all but a negligible fraction of inputs.

• Extraction Correctness. Pr[Extract(EK, C, q) 6= {msg}] ≤ negl(λ).

Before presenting the security definition of collusion resistant watermarkable
PRF, we first introduce oracles the adversaries can query during the security
experiments. Here, the marking oracle is identical to the one defined in previous
works, while we redefine the challenge oracle to capture the scenario that the
adversary can obtain multiple circuits embedded with different messages for the
same secret key.

• Marking Oracle OMMK(·, ·). On input a message msg ∈M and a PRF key
k ∈ K, the oracle returns a circuit C← Mark(MK,k,msg).

• Challenge Oracle OCMK(·). On input a polynomial-size set M of messages
from M, the oracle first samples a key k∗ ← PRF . KeyGen(1λ). Then, for
each msg∗i ∈ M, it computes C∗i ← Mark(MK,k∗,msg∗i ). Finally, it returns
the set {C∗1, . . . , C∗Q}, where Q = ‖M‖.

Definition 4.3 (Collusion Resistant Unremovability). The watermarking
scheme for a PRF is collusion resistant unremovable if for any polynomial q, for
all polynomial-time (PPT) and unremoving-admissible adversaries A, we have
Pr[ExptURA,q(λ) = 1] ≤ negl(λ), where we define the experiment ExptUR and
unremoving-admissibility as follows:

1. The challenger samples (MK,EK)← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Next, A submits a set M∗ of Q messages in M to the challenge oracle and

gets a set C∗ of circuits back.
4. Then, A is further allowed to make multiple queries to the marking oracle.
5. Finally A submits a circuit C̃. The experiment outputs 0 if

(a) q < Q and either Extract(EK, C̃, q) is a non-empty subset of M∗ or it
equals to the error symbol ⊥.

(b) q ≥ Q and Extract(EK, C̃, q) is a non-empty subset of M∗.
Otherwise, the experiment outputs 1.

Here, an adversary A is unremoving-admissible if there exists circuit C∗i ∈ C∗

that C∗i and C̃ compute identically on all but a negligible fraction of inputs.

Definition 4.4 (δ-Unforgeability). The watermarking scheme for a PRF is
δ-unforgeable if for any polynomial q ≥ 1 and for all PPT and δ-unforging-
admissible adversaries A, we have Pr[ExptUFA,q(λ) = 1] ≤ negl(λ), where we
define the experiment ExptUF and unforging-admissiability as follows:

1. The challenger samples (MK,EK)← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Finally, A submits a circuit C̃. The experiment outputs 0 if Extract(EK, C̃,

q) = UNMARKED; otherwise, the experiment output 1.

Here, let Q′ be the number of queries A made to the marking oracle, then an
adversary A is δ-unforging-admissible if for all i ∈ [1, Q′], its submitted circuit
C̃ and the circuit Ci compute differently on at least a δ fraction of inputs, where
Ci is the output of the marking oracle on the ith query.
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5 Puncturable Functional Encryption

In this section, we define puncturable functional encryption and give a concrete
construction. A puncturable functional encryption scheme can achieve function-
alities and security of both puncturable encryption schemes and functional en-
cryption schemes. Besides, as we will use the puncturable functional encryption
scheme together with an indistinguishability obfuscator, we also require it to
have an “iO-compatible correctness”, which demands a decryption consistency
for different secret keys. More precisely, when using two secret keys sk1, sk2 for
functions f1, f2 respectively, for any string ct in the ciphertext space, either both
secret keys will fail in decrypting it or there exists a plaintext µ in the plain-
text space that decrypting ct under sk1 and sk2 will lead to f1(µ) and f2(µ)
respectively.

5.1 Definition of Puncturable Functional Encryption

Definition 5.1 (Puncturable Functional Encryption). A puncturable func-
tional encryption scheme for a family of function F8 with plaintext space {0, 1}m
and ciphertext space {0, 1}n consists of five algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the
master public key/master secret key pair (mpk,msk).
• KeyGen. On input the master secret key msk and a function f ∈ F , the

key generation algorithm outputs a secret key sk for f .
• Enc. On input the master public key mpk and a message msg ∈ {0, 1}m,

the encryption algorithm outputs the ciphertext ct.
• Dec. On input a secret key sk and a ciphertext ct ∈ {0, 1}n, the decryption

algorithm outputs a string msg or a decryption failure symbol ⊥.
• Puncture. On input a secret key sk and two ciphertexts ct1, ct2, the punc-

ture algorithm outputs a punctured secret key sk′.

Next, we describe properties of puncturable functional encryption schemes.

Definition 5.2 (Properties of Puncturable Functional Encryption).
A puncturable functional encryption scheme PFE = (Setup, KeyGen, Enc, Dec,
Puncture) with plaintext space {0, 1}m, ciphertext space {0, 1}n and supported
function family F is required to have the following properties.

• Correctness. For any message msg ∈ {0, 1}m and any f ∈ F , let (mpk,
msk) ← Setup(1λ), sk ← KeyGen(msk, f), and ct ← Enc(mpk,msg), then
we have Pr[Dec(sk, ct) = f(msg)] = 1.
• Sparseness. For any f ∈ F , let (mpk,msk) ← Setup(1λ), sk ←
KeyGen(msk, f), and ct

$← {0, 1}n, then we have Pr[Dec(sk, ct) 6=⊥] ≤
negl(λ).

8 In this work, we concentrate on schemes supporting function family F of polynomial-
size circuit with output space {0, 1}m.
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• Punctured Correctness. For any f ∈ F , any strings ct0, ct1 ∈ {0, 1}n and
any unbounded adversary A, we have

Pr


(mpk,msk)← Setup(1λ);

sk ← KeyGen(msk, f);

sk′ ← Puncture(sk, {ct0, ct1});
ct← A(mpk,msk, sk, sk′);

:
ct 6∈ {ct0, ct1}∧

Dec(sk, ct) 6= Dec(sk′, ct)

 ≤ negl(λ)

• iO-Compatible Correctness. For each master public key/master secret
key pair (mpk,msk), the ciphertext space can be divided into two disjoint
parts, namely, the valid ciphertext set V(mpk,msk) and the invalid cipher-
text set I(mpk,msk), which satisfy V(mpk,msk) ∪ I(mpk,msk) = {0, 1}n and
V(mpk,msk) ∩ I(mpk,msk) = ∅. The iO-compatible correctness requires that:

1. For any f ∈ F and any unbounded adversary A, we have:

Pr

(mpk,msk)← Setup(1λ);

sk ← KeyGen(msk, f);

ct← A(mpk,msk, sk);

:
ct ∈ I(mpk,msk)∧
Dec(sk, ct) 6=⊥

 ≤ negl(λ)

2. For any f1, f2 ∈ F and any unbounded adversary A, we have:

Pr


(mpk,msk)← Setup(1λ);

sk1 ← KeyGen(msk, f1);

sk2 ← KeyGen(msk, f2);

ct← A(mpk,msk, sk1, sk2);

:

ct ∈ V(mpk,msk)∧
(∀msg ∈ {0, 1}m,
Dec(sk1, ct) 6= f1(msg)∨
Dec(sk2, ct) 6= f2(msg))

 ≤ negl(λ)

• Adaptive Indistinguishability. For any PPT adversary A1, A2, we have:

Pr



(mpk,msk)← Setup(1λ);

(st,msg0,msg1)← AOmsk(·)1 (mpk);

b← {0, 1};
ct← Enc(mpk,msgb);

b′ ← A2(st, ct);

: b = b′

 ≤ 1/2 + negl(λ)

where Omsk takes as input a function f ∈ F and outputs a secret key sk ←
KeyGen(msk, f); for all f submitted to the oracle Omsk, f(msg0) = f(msg1);
and the Omsk can only be queried two times. Note that in our security proof
for collusion resistant watermarkable PRF, we only require a two-key secu-
rity, thus we just define this type of adaptive indistinguishability here.
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• Ciphertext Pseudorandomness. For any PPT adversary A1, A2, we
have:

Pr



(st,msg, f)← A1(1λ);

(mpk,msk)← Setup(1λ);

sk ← KeyGen(msk, f);

ct0 ← Enc(mpk,msg);

ct1
$← {0, 1}n;

sk′ ← Puncture(sk, {ct0, ct1});
b← {0, 1};
b′ ← A2(st,mpk, sk′, ctb, ct1−b);

: b = b′


≤ 1/2 + negl(λ)

5.2 Construction of Puncturable Functional Encryption

In this section, we present our construction of puncturable functional encryption.
Let λ be the security parameter. Let n,m, l, n′ be positive integers that are

polynomial in λ. Our construction is based on the following three building blocks:

• A functional encryption scheme FE = (FE . Setup,FE . KeyGen,FE . Enc,
FE . Dec) with plaintext space {0, 1}m, ciphertext space {0, 1}n and encryp-
tion randomness space R. Also, we require that it supports a family F of
polynomial-size circuit with output space {0, 1}m.
• A statistically sound NIZK proof system NIZK = (NIZK . KeyGen,
NIZK . Prove,NIZK . Verify) for L, where

L = {(mpk, ct) : ∃(msg, r), ct = FE . Enc(mpk,msg; r)}.

and require that the proof size is n′ when proving a statement in L.
• A puncturable encryption scheme PE = (PE . KeyGen,PE . Puncture,
PE . Enc,PE . Dec) with plaintext space {0, 1}n+n′ and ciphertext space {0,
1}l.

We construct PFE = (PFE . Setup,PFE . KeyGen,PFE . Puncture,PFE . Enc,
PFE . Dec) for F , which has a plaintext space {0, 1}m and a ciphertext space
{0, 1}l, as follows:

• Setup. On input a security parameter λ, the setup algorithm generates
(mpk,msk) ← FE . Setup(1λ), crs ← NIZK . KeyGen(1λ), and (pk, sk) ←
PE . KeyGen(1λ). Then it outputs the master public key MPK = (mpk, crs,
pk) and the master secret key MSK = (msk, sk,mpk, crs) of PFE.
• KeyGen. On input a master secret key MSK = (msk, sk,mpk, crs) of
PFE and a function f ∈ F , the key generation algorithm generates fsk ←
FE . KeyGen(msk, f) and outputs a secret key SK = (fsk, sk,mpk, crs) of
PFE.
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• Enc. On input a master public key MPK = (mpk, crs, pk) of PFE and
a message msg ∈ {0, 1}m, the encryption algorithm first samples r ∈ R.
Then, it computes ct = FE . Enc(mpk,msg; r), and π ← NIZK . Prove(crs,
(mpk, ct), (msg, r)). Finally, it outputs CT ← PE . Enc(pk, ct‖π).

• Dec. On input a secret key SK = (fsk, sk,mpk, crs) of PFE and a ciphertext
CT ∈ {0, 1}l, the decryption algorithm first decrypts CT with the secret key
of PE and gets ct‖π ← PE . Dec(sk, CT ). It aborts and outputs ⊥ if ct‖π =⊥
or NIZK . Verify(crs, (mpk, ct), π) = 0. Otherwise, it outputs FE . Dec(fsk,
ct).

• Puncture. On input a secret key SK = (fsk, sk,mpk, crs) of PFE and
two ciphertexts CT1, CT2 ∈ {0, 1}l, the puncture algorithm generates sk′ ←
PE . Puncture(sk, {CT1, CT2}) and outputs SK ′ = (fsk, sk′,mpk, crs).

Theorem 5.1. If FE is a secure functional encryption for F with perfect cor-
rectness and (two-key) adaptive security, NIZK is a NIZK proof system with
adaptively statistical soundness and adaptive zero-knowledge for language L, and
PE is a secure puncturable encryption scheme, then PFE is a secure puncturable
functional encryption as defined in Sec. 5.1.

We give proof of Theorem 5.1 in Appendix B.

6 Construction of Collusion Resistant Watermarkable
PRF

In this section, we show how to obtain collusion resistant watermarkable PRF
families. In particular, we construct a collusion resistant watermarking scheme
for any puncturable PRF with weak key-injectivity and constrained one-wayness.

Let λ be the security parameter. Let δ be a positive real value and d =
λ/δ = poly(λ). Let n,m, l, κ be positive integers that are polynomial in λ and
n = l + poly(λ). Let

PRF = (PRF . KeyGen,PRF . Eval,PRF . Constrain,PRF . ConstrainEval)

be a family of puncturable PRF with key space K, input space {0, 1}n, and
output space {0, 1}m. Our watermarking scheme for PRF is built on the following
building blocks.

• A puncturable functional encryption scheme PFE = (PFE . Setup,
PFE . KeyGen,PFE . Puncture,PFE . Enc,PFE . Dec) with plaintext space {0,
1}(d+1)·l+κ, ciphertext space {0, 1}n and encryption randomness space R.
Also, we require that it supports a family F of polynomial-size circuits with
output space {0, 1}(d+1)·l+κ.
• A family of prefix puncturable PRF F = (F . KeyGen,F . Eval,F . Constrain,
F . ConstrainEval) with input space {0, 1}(d+1)·l and output space K.
• An indistinguishability obfuscator iO for all polynomial-size circuits.
• Two pseudorandom generators G : {0, 1}l → {0, 1}n and G′ : {0, 1} l2 → {0,

1}l.
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• A family of collision-resistant hash function H with input space {0, 1}d·m
and output space {0, 1}l.

We construct WM = (WM . Setup,WM . Mark,WM . Extract), which has a
message space {0, 1}κ\{0κ} = [1, 2κ − 1], as follows:

• Setup. On input a security parameter λ, the setup algorithm first sam-

ples H
$← H and generates K ← F . KeyGen(1λ). Then it generates (mpk,

msk) ← PFE . Setup(1λ) and sk ← PFE . KeyGen(msk, ID), where ID : {0,
1}(d+1)·l+κ → {0, 1}(d+1)·l+κ is the identity function, i.e., for any x ∈ {0,
1}(d+1)·l+κ, ID(x) = x. Next, it computes E← iO(Ext[mpk,K]), where Ext

is defined in Figure 19. Finally, the output of the setup algorithm is (MK,
EK) where MK = (sk,K,H) and EK = (H, E).
• Mark. On input a mark key MK = (sk,K,H), a secret key k ∈ K for PRF

and a message msg, the marking algorithm outputs a circuit C ← iO(M[sk,
K,H, k,msg]), where M is defined in Figure 110.
• Extract. On input an extraction key EK = (H, E), a circuit C, and a pa-

rameter q, the extraction algorithm first computes ε = 1/((κ + 1) · q + 1),
T = λ/ε2, and S = q · (κ+ 1) and sets a variable counter = 0. Then it com-
putes L = Trace(0, 2κ, 1, 0, ε, T, E, H, C), where Trace(·) is defined in Figure
1.
In this procedure, the algorithm also maintains the variable counter and
increase it by 1 each time the function Test(·) defined in Figure 1 is invoked.
The algorithm aborts and outputs ⊥ once counter > S. In case the algorithm
does not abort, it checks the set L returned by Trace. It outputs ⊥ if L = ∅
and outputs UNMARKED if L = {0}. Otherwise, it outputs L.

Theorem 6.1. If PRF is a secure puncturable PRF with weak key-injectivity
and constrained one-wayness, PFE is a secure puncturable functional encryption
scheme as defined in Sec. 5.1, F is a secure prefix puncturable PRF, G and G′ are
pseudorandom generators, H is a family of collision-resistant hash function, and
iO is a secure indistinguishability obfuscator, then WM is a secure watermarking
scheme with collusion resistant unremovability and δ-unforgeability, as defined
in Sec. 4, for PRF.

We present the proof of Theorem 6.1 in Appendix C.
Here, we provide a brief overview on how to prove the collusion resistant

unremovability of WM. For simplicity, we consider an adversary who only gets
two circuits C1 and C2 for the same secret key k embedded with messages msg1
and msg2 respectively, where msg1 < msg2, and omit its advantage in viewing
the public key and querying the marking oracle.

9 The circuit Ext, as well as all circuits Ext(·) appeared in the security proofs for WM
will be padded to the same size.

10 The circuit M, as well as all circuits M(·) appeared in the security proof for WM will
be padded to the same size.
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Ext

Constant: mpk,K
Input: a1, . . . , ad, b, ind, r

1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PFE . Enc(mpk, t1‖ . . . ‖td‖b‖ind; r).
3. k′ = F . Eval(K, t1‖ . . . ‖td‖b).
4. y = PRF . Eval(k′, x).
5. Output (x, y).

M

Constant: sk,K,H, k,msg
Input: x

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤

msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) y = PRF . Eval(k′, x).
(c) Output y.

3. Otherwise, output PRF . Eval(k, x).

Trace

Input: ind1, ind2, p1, p2, ε, T, E, H, C
1. ∆ = |p1 − p2|.
2. If ∆ ≤ ε: return ∅.
3. If ind2 − ind1 = 1: return {ind1}.
4. ind3 = b ind1+ind2

2
c.

5. p3 = Test(ind3, T, E, H, C).
6. Return Trace(ind1, ind3, p1, p3, ε, T,

E, H, C)∪Trace(ind3, ind2, p3, p2, ε, T,
E, H, C).

Test

Input: ind, T, E, H, C
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1}

l
2 and

r
$←R.

(b) t1 = G′(a1), . . . , td = G′(ad).
(c) b = H(C(G(t1)), . . . , C(G(td))).
(d) (x, y) = E(a1, . . . , ad, b, ind, r).
(e) If C(x) = y: Acc = Acc+ 1.

3. Return Acc
T

.

Fig. 1 The circuit Ext, the circuit M, the function Trace, and the function Test

Following the syntax used in Sec. 2, we denote an input encrypted from
t1‖ . . . ‖td‖b‖ind satisfying b = H(PRF . Eval(k,G(t1)), . . . ,PRF . Eval(k,G(td)))
as a punctured point labeled with an index ind. Also, we use Xind to denote the
set of all punctured points labeled with the index ind.

First, as shown in [BCP14, NWZ16], the Trace algorithm can output a non-
empty subset of {msg1,msg2} if the adversary cannot distinguish 1) two punc-
tured points labeled with different indices adaptively chosen from (msg1,msg2]
and 2) a punctured point labeled with an index adaptively chosen outside (msg1,
msg2] and a random point.

For two punctured points in Xind1 and Xind2 respectively, where ind1, ind2 ∈
(msg1,msg2], both of them are properly punctured and reprogrammed in C2
while none of them are punctured in C1, thus the decryption (in both C1 and C2)
do not need to distinguish them. So, their indistinguishability comes from the
adaptive indistinguishability of PFE.

The adaptive indistinguishability of PFE also implies indistinguishability of
two punctured points in Xind1 and Xind2 when both ind1 and ind2 are in [1,
msg1] or both of them are in (msg2, 2

κ − 1]. This could reduce the problem
of claiming the pseudorandomness of a punctured point labeled with an index
adaptively chosen from [1,msg1] (or (msg2, 2

κ − 1]) to the problem of claiming
the pseudorandomness of a punctured points from X1 (resp. X2κ−1), where the
latter claim can be implied by the ciphertext pseudorandomness of PFE. In this
way, pseudorandomness of punctured points in Xind for ind 6∈ (msg1,msg2] is
proved.
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It is worth noting that when arguing indistinguishability between a punctured
point from X1 and a random input, we also need to show that the marked cir-
cuits are able to hide punctured points that are punctured and identically repro-
grammed in all circuits. This indicates that our construction of watermarkable
PRF involves a collusion resistant constraint-hiding constrained PRF implicitly.

7 Collusion Resistant Watermarking Schemes for Other
Cryptographic Functionalities

In this section, we show how to construct watermarking schemes for advanced
cryptographic functionalities, including the decryption algorithm of a PKE
scheme and the signing algorithm of a signature scheme. The constructions are
based on the observation that the PKE scheme (and the signature scheme) con-
structed in [SW14] has a decryption algorithm (resp. signing algorithm) that is
nothing more than a puncturable PRF evaluation. The observation was initially
presented in [NW15, CHN+16] and was used to construct the watermarkable
PKE scheme and the watermarkable signature scheme therein.

Here, as an example, we give a detailed description for how to construct
collusion resistant watermarkable PKE schemes and omit the construction for
collusion resistant watermarkable signature schemes. We start by presenting the
formal definition of watermarkable PKE scheme. Then we give our construction
based on a puncturable PRF, an indistinguishability obfuscator, a puncturable
functional encryption scheme, and some standard cryptographic primitives.

7.1 The Definition

The collusion resistant watermarkable PKE scheme can be defined similarly as
collusion resistant watermarkable PRF, with the main difference being that in
the challenge oracle, the adversary is further given the public key corresponding
to the watermarked secret key.

Definition 7.1 (Watermarkable PKEs [CHN+16, adapted]). Let PKE =
(PKE . KeyGen,PKE . Enc,PKE . Dec) be a PKE scheme with secret key space SK.
The watermarking scheme with message space M for PKE (more accurately, the
decryption algorithm of PKE) consists of three algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the
mark key MK and the extraction key EK.
• Mark. On input the mark key MK, a secret key sk ∈ SK of PKE, and a

message msg ∈M, the marking algorithm outputs a marked circuit C.
• Extract. On input the extraction key EK, a circuit C, and a parameter q, the

extraction algorithm outputs either a set L ⊆ M or a symbol UNMARKED
or an error symbol ⊥.

Definition 7.2 (Watermarking Correctness). Correctness of the watermark-
ing scheme requires that for any sk ∈ SK, msg ∈M, and any polynomial q ≥ 1,
let (MK,EK)← Setup(1λ), C← Mark(MK, sk,msg), we have:
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• Functionality Preserving. C(·) and PKE . Dec(sk, ·) compute identically
on all but a negligible fraction of inputs.

• Extraction Correctness. Pr[Extract(EK, C, q) 6= {msg}] ≤ negl(λ).

Before presenting the security definition of the collusion resistant watermark-
able PKE, we first introduce oracles the adversaries can query during the security
experiments. Note that in the challenge oracle, the adversary is further given the
challenge public key.

• Marking Oracle OMMK(·, ·). On input a message msg ∈ M and a secret
key key sk ∈ SK, the oracle returns a circuit C← Mark(MK, sk,msg).
• Challenge Oracle OCMK(·). On input a polynomial-size set M of messages

fromM, the oracle first generates a key pair (sk∗, pk∗)← PKE . KeyGen(1λ).
Then, for each msg∗i ∈ M, it computes C∗i ← Mark(MK, sk∗,msg∗i ). Finally,
it returns the set {C∗1, . . . , C∗Q}, where Q = ‖M‖, and the public key pk∗.

Definition 7.3 (Collusion Resistant Unremovability). The watermarking
scheme for a PKE is collusion resistant unremovable if for any polynomial q, for
all PPT and unremoving-admissible adversaries A, we have Pr[ExptURA,q(λ) =
1] ≤ negl(λ), where we define the experiment ExptUR and unremoving-admissibility
as follows:

1. The challenger samples (MK,EK)← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Next, A submits a set M∗ of Q messages in M to the challenge oracle and

gets a set C∗ of circuits as well as a public key pk∗ back.
4. Then, A is further allowed to make multiple queries to the marking oracle.
5. Finally A submits a circuit C̃. The experiment outputs 0 if

(a) q < Q and either Extract(EK, C̃, q) is a non-empty subset of M∗ or it
equals to the error symbol ⊥.

(b) q ≥ Q and Extract(EK, C̃, q) is a non-empty subset of M∗.
Otherwise, the experiment outputs 1.

Here, an adversary A is unremoving-admissible if there exists circuit C∗i ∈ C∗

that C∗i and C̃ compute identically on all but a negligible fraction of inputs.

Definition 7.4 (δ-Unforgeability). The watermarking scheme for a PKE is
δ-unforgeable if for any polynomial q ≥ 1 and for all PPT and δ-unforging-
admissible adversaries A, we have Pr[ExptUFA,q(λ) = 1] ≤ negl(λ), where we
define the experiment ExptUF and unforging-admissiability as follows:

1. The challenger samples (MK,EK)← Setup(1λ) and returns EK to A.
2. Then, A is allowed to make multiple queries to the marking oracle.
3. Finally, A submits a circuit C̃. The experiment outputs 0 if Extract(EK, C̃,

q) = UNMARKED; otherwise, the experiment output 1.

Here, let Q′ be the number of queries A made to the marking oracle, then an
adversary A is δ-unforging-admissible if for all i ∈ [1, Q′], its submitted circuit
C̃ and the circuit Ci compute differently on at least a δ fraction of inputs, where
Ci is the output of the marking oracle on the ith query.
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7.2 The Construction

Let λ be the security parameter. Let δ be a positive real value and d = λ/δ =
poly(λ). Let n,m, l, κ be positive integers that are polynomial in λ and n =
l+poly(λ). Our watermarkable PKE scheme is built from the following building
blocks:

• A family of puncturable PRF PRF = (PRF . KeyGen,PRF . Eval,
PRF . Constrain,PRF . ConstrainEval) with key space K, input space {0,
1}n, and output space {0, 1}m.
• A puncturable functional encryption scheme PFE = (PFE . Setup,
PFE . KeyGen,PFE . Puncture,PFE . Enc,PFE . Dec) with plaintext space {0,
1}(d+1)·l+κ, ciphertext space {0, 1}n and encryption randomness space R.
Also, we require that it supports a family F of polynomial-size circuit with
output space {0, 1}(d+1)·l+κ.
• A family of prefix puncturable PRF F = (F . KeyGen,F . Eval,F . Constrain,
F . ConstrainEval) with input space {0, 1}(d+1)·l and output space K.
• An indistinguishability obfuscator iO for all polynomial-size circuits.
• Three pseudorandom generators G : {0, 1}l → {0, 1}n, G′ : {0, 1} l2 → {0, 1}l,

and G̃ : {0, 1}λ → {0, 1}n.
• A family of collision-resistant hash function H with input space {0, 1}d·m

and output space {0, 1}l.

For completeness, we first recall how PKE scheme PKE is constructed in
[SW14].

• KeyGen. On input a security parameter λ, the key generation algorithm

first samples k
$← K. Then, it computes P← iO(Encrypt[k]), where Encrypt

is defined in Figure 2 and is properly padded. Finally, the output of the key
generation algorithm is (pk, sk) where pk = P and sk = k.
• Enc. On input a public key pk = P and a message msg ∈ {0, 1}m, the

encryption algorithm samples r
$← {0, 1}λ and outputs P(msg, r).

• Dec. On input a secret key sk = k and a ciphertext ct = (x, z), the decryp-
tion algorithm outputs msg = PRF . Eval(k, x)⊕ z.

Encrypt

Constant: k
Input: msg, r

1. x = G̃(r).
2. z = PRF . Eval(k, x)⊕msg.
3. Output ct = (x, z).

Fig. 2 The circuit Encrypt.

Next, we construct the watermarking scheme WM = (WM . Setup,WM . Mark,
WM . Extract) for the above constructed PKE scheme, which has a message
space {0, 1}κ\{0κ} = [1, 2κ − 1], as follows:
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• Setup. On input a security parameter λ, the setup algorithm first sam-

ples H
$← H and generates K ← F . KeyGen(1λ). Then it generates (mpk,

msk) ← PFE . Setup(1λ) and sk ← PFE . KeyGen(msk, ID), where ID : {0,
1}(d+1)·l+κ → {0, 1}(d+1)·l+κ is the identity function, i.e., for any x ∈ {0,
1}(d+1)·l+κ, ID(x) = x. Next, it computes E← iO(Ext[mpk,K]), where Ext

is defined in Figure 3 and is properly padded. Finally, the output of the
setup algorithm is (MK,EK) where MK = (sk,K,H) and EK = (H, E).

• Mark. On input a mark key MK = (sk,K,H), a secret key k ∈ K for PKE
and a message msg, the marking algorithm outputs a circuit C ← iO(M[sk,
K,H, k,msg]), where M is defined in Figure 3 and is properly padded.

• Extract. On input an extraction key EK = (H, E), a circuit C, and a pa-
rameter q, the extraction algorithm first computes ε = 1/((κ + 1) · q + 1),
T = λ/ε2, and S = q · (κ+ 1) and sets a variable counter = 0. Then it com-
putes L = Trace(0, 2κ, 1, 0, ε, T, E, H, C), where Trace(·) is defined in Figure
3.
In this procedure, the algorithm also maintains the variable counter and
increase it by 1 each time the function Test(·) defined in Figure 3 is invoked.
The algorithm aborts and outputs ⊥ once counter exceeds S. In case the
algorithm does not abort, it checks the set L returned by Trace. It outputs
⊥ if L = ∅ and outputs UNMARKED if L = {0}. Otherwise, it outputs L.

Theorem 7.1. If PRF is a secure puncturable PRF with weak key-injectivity
and constrained one-wayness, PFE is a secure puncturable functional encryption
scheme as defined in Sec. 5.1, F is a secure prefix puncturable PRF, G, G′ and G̃
are pseudorandom generators, H is a family of collision-resistant hash function,
and iO is a secure indistinguishability obfuscator, then WM is a secure water-
marking scheme with collusion resistant unremovability and δ-unforgeability for
PKE.

Proof. Proof of Theorem 7.1 can be proceeded similiarly as the proof of Theorem
6.1, so we omit its details here.

One subtle issue in the proof is that the adversary can additionally obtain a
public key from the challenge oracle, which is an obfuscated circuit containing
the challenge key k∗. So, we need to further argue that the public key will
not leak additional information of k∗. Recall that through the whole security
proof, either k∗ or its equivalent version or its contrained version punctured
on a random point will appear in the view of the adversary. In the first case,
the public key will not provide additional information about k∗. In the second
case, k∗ can be replaced with its equivalent version in the public key and due
to the indistinguishability of iO, this cannot be detected by the adversary. In
the third case, k∗ can be replaced with its contrained version in the public
key. Since the probability that the random punctrued point falls in the range
of G̃ is negligible, by the indistinguishability of iO, this will also not affect the
adversary’s advantage.

Remark 7.1. We remark that the above strategy is not fully applicable in the
watermarkable signature setting. This is because in the verification key of the
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Ext

Constant: mpk,K
Input: a1, . . . , ad, b, ind, r

1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PFE . Enc(mpk, t1‖ . . . ‖td‖b‖ind; r).
3. k′ = F . Eval(K, t1‖ . . . ‖td‖b).
4. y = PRF . Eval(k′, x).
5. Output (x, y).

M

Constant: sk,K,H, k,msg
Input: ct = (x, z)

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤

msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) y = PRF . Eval(k′, x).
(c) Output y ⊕ z.

3. Otherwise, output PRF . Eval(k, x)⊕ z.

Trace

Input: ind1, ind2, p1, p2, ε, T, E, H, C
1. ∆ = |p1 − p2|.
2. If ∆ ≤ ε: return ∅.
3. If ind2 − ind1 = 1: return {ind1}.
4. ind3 = b ind1+ind2

2
c.

5. p3 = Test(ind3, T, E, H, C).
6. Return Trace(ind1, ind3, p1, p3, ε, T,

E, H, C)∪Trace(ind3, ind2, p3, p2, ε, T,
E, H, C).

Test

Input: ind, T, E, H, C
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1}

l
2 and

r
$←R.

(b) Sample z1, . . . , zd, z
∗ $← {0, 1}m.

(c) t1 = G′(a1), . . . , td = G′(ad).
(d) b = H(C(G(t1), z1) ⊕ z1, . . . ,

C(G(td), zd)⊕ zd).
(e) (x, y) = E(a1, . . . , ad, b, ind, r).
(f) If C(x, z∗)⊕z∗ = y: Acc = Acc+1.

3. Return Acc
T

.

Fig. 3 The circuit Ext, the circuit M, the function Trace, and the function Test for
the watermarkable PKE scheme.

signature scheme constructed in [SW14], the pseudorandom random function
will compute on all points in its domain (rather than points in the range of a
pseudorandom generator), thus, we cannot argue indistinguishability between a
verification key generated from a normal key and that generated from a con-
strained key. To circumvent this problem, we modify the construction of signa-
ture scheme slightly and use a watermarked PRF key in the obfuscated circuit
of the verification key. But this will lead to a weaker watermarkable signature
scheme, which needs the marking key of the watermarking scheme when gener-
ating a signing key/verification key pair of the signature scheme.

8 Conclusion and Future Works

In this work, we initiate the study of collusion resistant watermarking by defining
and constructing collusion resistant watermarking schemes for common crypto-
graphic functionalities, including PRF, PKE, and signature.

One may note that watermarking schemes constructed in this work only
achieve a negl(·)-unremovability, which guarantees that no attacker can remove
or modify the embedded message in a watermarked program via altering the pro-
gram on a negligible fraction of inputs. A stronger form of unremovability, which
is called ε-unremovability, considers attackers that can alter the watermarked
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program on a ε fraction of inputs for some non-negligible ε. In this setting,
since the attacker is able to reset the outputs on a non-negligible fraction of
inputs, internal variables generated during the extraction procedure may signif-
icantly depart from what is expected. In previous works with ε-unremovability
(e.g., [CHN+16, QWZ18, KW19]), this issue is tackled by repeating some sub-
procedure multiple times and deciding based on majority. Unfortunately, in our
construction, as the extraction algorithm needs to analyze the fraction of re-
programmed points in a set, it seems implausible to use the “repeating-and-
choosing-majority” trick. How to construct collusion resistant watermarking
schemes with ε-unremovability for non-negligible ε is an interesting open prob-
lem.

Another interesting direction is to explore the possibility of instantiating
a collusion resistant watermarkable PRF from standard assumptions. As dis-
cussed in Sec. 1.1, a collusion resistant watermarkable PRF can be approxi-
mately viewed as a collusion resistant constraint-hiding constrained PRF, which
can imply indistinguishability obfuscator. However, we have not provided a for-
mal reduction. It is interesting to formally construct an indistinguishability ob-
fuscator from a collusion resistant watermarkable PRF or construct a collusion
resistant watermarkable PRF from standard assumptions.

Besides, it is also interesting to construct collusion resistant watermarking
schemes with other desirable features, e.g., constructing collusion resistant wa-
termarking schemes with public marking.
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Pseudorandom Generators. Let λ be the security parameter, and l be a
polynomial in λ that is larger than λ. A pseudorandom generator G : {0, 1}λ →
{0, 1}l is a polynomial-time computable function that for all PPT adversary A,

| Pr[x
$← {0, 1}λ : A(G(x)) = 1]− Pr[y

$← {0, 1}l : A(y) = 1] |≤ negl(λ)

Collision Resistant Hash Families. Let λ be the security parameter, and
m,n be polynomials in λ that m > n. A collision resistant hash family H is a
family of polynomial-time computable function H : {0, 1}m → {0, 1}n that for
all PPT adversary A,

Pr[H
$← H,A(1λ, H) = (x0, x1) : x0 6= x1 ∧H(x0) = H(x1)] ≤ negl(λ)

Adaptively statistically sound NIZK Proofs. The notion of NIZK proof
was proposed by Blum et al. in [BFM88]. As shown in [FLS99, DSDCO+01,
Gro10], an adaptively statistically sound NIZK proof can be constructed from
(doubly-enhanced) trapdoor permutations, which can be instantiated from the
factoring assumption or from the indistinguishability obfuscator plus one-way
function [BPW16].

The NIZK proof for a language L consists of three PPT algorithms:

• KeyGen. On input the security parameter λ, the common reference string
generation algorithm outputs a common reference string crs.

• Prove. On input a common reference string crs, a statement x ∈ L and a
witness w for x, the proving algorithm outputs a proof π.

• Verify. On input a common reference string crs, a statement x and a proof
π, the verification algorithm outputs a bit indicating whether the proof is
valid.

Also, it satisfies the following conditions:

• Completeness. For any statement x ∈ L, and any valid witness w for x,
let crs ← KeyGen(1λ) and π ← Prove(crs, x, w), then we have Verify(crs,
x, π) = 1.

• Adaptively Statistical Soundness. For any unbounded adversary A, we
have

Pr[crs← KeyGen(1λ); (x, π)← A(crs) :

Verify(crs, x, π) = 1 ∧ x 6∈ L] ≤ negl(λ)
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• Adaptively Zero-Knowledge. There exists a PPT simulator (S1, S2) that
for any PPT adversary (A1,A2), we have:

Pr



b← {0, 1};
crs0 ← KeyGen(1λ);

(crs1, state)← S1(1λ);

(x,w, σ)← A1(crsb);

π0 ← Prove(crs0, x, w);

π1 ← S2(1λ, x, state);

b′ ← A2(σ, πb);

: b = b′


≤ 1/2 + negl(λ)

where σ is the state of A1 and A1 is required to output a valid state-
ment/witness pair.

Puncturable Pseudorandom Function with Constrained One-wayness
and Weak Key-Injectivity. The notion of puncturable pseudorandom func-
tion was first formalized by Sahai and Waters in [SW14]. They also show that a
PRF constructed via the GGM-framework [GGM84] is a puncturable PRF. In
this work, we will use a slightly stronger version of puncturable PRF, namely,
puncturable PRF with weak key-injectivity11 and constrained one-wayness, which
is defined in Definition A.1. In [CHN+16], a puncturable PRF with weak key-
injectivity is constructed from the LWE assumption under the GGM-framework.
Moreover, it can be easily verified that a PRF constructed under the GGM-
framework also has constrained one-wayness. So one can instantiate the punc-
turable PRF with weak key-injectivity and constrained one-wayness from the
LWE assumption.

Definition A.1. A puncturable PRF family with weak key-injectivity, constrained
one-wayness, key space K, input space {0, 1}n and output space {0, 1}m consists
of four algorithms:

• KeyGen. On input the security parameter λ, the key generation algorithm
outputs the secret key k ∈ K12.
• Eval. On input a secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation

algorithm outputs a string y ∈ {0, 1}m.
• Constrain. On input a secret keys k ∈ K and a polynomial-size set S ⊆ {0,

1}n, the constrain algorithm outputs a punctured key ck.
• ConstrainEval. On input a punctured key ck and an input x ∈ {0, 1}n, the

constrained evaluation algorithm outputs an string y ∈ {0, 1}m ∪ {⊥}.

Also, it satisfies the following conditions:

11 This is in fact the “key-injectivity” property defined in [CHN+16], here we call this
property weak key-injectivity to distinguish it from the “key-injectivity” property
defined in [KW17].

12 Here, we require that the key generation algorithm will output a uniform key in K.
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• Correctness. For any k ∈ K, any polynomial size set S ⊆ {0, 1}n, and any
x ∈ {0, 1}n\S, let ck ← Constrain(k,S), then we have ConstrainEval(ck,
x) = Eval(k, x).

• Weak Key-Injectivity. Let k1 ← KeyGen(1λ), then we have

Pr[∃k2 ∈ K, x ∈ {0, 1}n, s.t. k1 6= k2 ∧ Eval(k1, x) = Eval(k2, x)] ≤ negl(λ)

• Pseudorandomness. For all PPT adversary A,

| Pr[k ← KeyGen(1λ) : AO
PR
k (·)(1λ) = 1]−Pr[f

$← FUN n,m : AO
R
f (·)(1λ) = 1] |≤ negl(λ)

where FUN n,m denotes the set of all functions from {0, 1}n to {0, 1}m, the
oracle OPRk (·) takes as input a string x ∈ {0, 1}n and returns Eval(k, x),
and the oracle ORf (·) takes as input a string x ∈ {0, 1}n and returns f(x).

• Constrained One-wayness. For any PPT adversary (A1,A2), we have

Pr


(x, σ)← A1(1λ);

k ← KeyGen(1λ);

ck ← Constrain(k, {x});
y = Eval(k, x);

: A2(σ, ck, y) = k

 ≤ negl(λ)

where σ is the state of A1.
• Constrained Pseudorandomness. For any PPT adversary (A1,A2), we

have

Pr



(S, σ)← A1(1λ);

k ← KeyGen(1λ);

ck ← Constrain(k,S);

b
$← {0, 1};

Y0 = {Eval(k, x)}x∈S ;

Y1
$← ({0, 1}n)‖S‖;

: A2(σ, ck,Yb) = b


≤ 1/2 + negl(λ)

where S ⊆ {0, 1}n is a polynomial-size set, and σ is the state of A1.

Prefix Puncturable Pseudorandom Function. The notion of prefix punc-
turable PRF was formally introduced in [NW15]. It was also shown that the
GGM-framework can lead to a prefix puncturable PRF. Now, we recall its defi-
nition.

Definition A.2. A prefix puncturable PRF family with key space K, input space
{0, 1}n and output space {0, 1}m consists of four algorithms:

• KeyGen. On input the security parameter λ, the key generation algorithm
outputs the secret key k ∈ K.
• Eval. On input a secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation

algorithm outputs a string y ∈ {0, 1}m.
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• Constrain. On input a secret keys k ∈ K and a string t ∈ {0, 1}≤n, the
constrain algorithm outputs a constrained key ck.

• ConstrainEval. On input a constrained key ck and an input x ∈ {0, 1}n,
the constrained evaluation algorithm outputs a string y ∈ {0, 1}m ∪ {⊥}.

Also, it satisfies the following conditions:

• Correctness. For any k ∈ K, any t ∈ {0, 1}≤n, and any x ∈ {0, 1}n\t‖{0,
1}n−‖t‖, let ck ← Constrain(k, t), then we have ConstrainEval(ck, x) =
Eval(k, x).
• Constrained Pseudorandomness. For any PPT adversary (A1,A2), we

have

Pr



(t, σ)← A1(1λ);

k ← KeyGen(1λ);

ck ← Constrain(k, t);

b
$← {0, 1};

b′ ← AOk,b(·)2 (σ, ck);

: b′ = b


≤ 1/2 + negl(λ)

where σ is the state of A1. Here, the oracle Ok,0(·) takes as input a string
x ∈ {0, 1}n with prefix t and outputs Eval(k, x), and the oracle Ok,1(·) takes
as input a string x ∈ {0, 1}n with prefix t and outputs f(x), where f is a
truly random function and is computed via lazy sampling.

Functional Encryption. The notion of functional encryption is formally in-
troduced in [BSW11, O’N10]. In this work, we need a (two-key) adaptively
secure functional encryption scheme with perfect correctness for a family F
of polynomial-size circuit, which has been constructed in previous works, e.g.,
[GVW12]. Next, we recall the definition of functional encryption schemes.

Definition A.3. A functional encryption scheme for a function family F with
message space {0, 1}m and ciphertext space {0, 1}n consists of four algorithms:

• Setup. On input the security parameter λ, the setup algorithm outputs the
master public key/master secret key pair (mpk,msk).
• KeyGen. On input the master secret key msk and a function f ∈ F , the

key generation algorithm outputs a secret key sk for f .
• Enc. On input the master public key mpk and the message msg ∈ {0, 1}m,

the encryption algorithm outputs the ciphertext ct.
• Dec. On input a secret key sk and a ciphertext ct ∈ {0, 1}n, the decryption

algorithm outputs a string msg.

Also, it satisfies the following conditions:

• Perfect Correctness. For any message msg ∈ {0, 1}m and any f ∈ F , let
(mpk,msk)← Setup(1λ), sk ← KeyGen(msk, f), and ct← Enc(mpk,msg),
then we have Pr[Dec(sk, ct) = f(msg)] = 1.
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• Adaptive Indistinguishability. For any PPT adversary A1, A2, we have:

Pr



(mpk,msk)← Setup(1λ);

(σ,msg0,msg1)← AOmsk(·)1 (mpk);

b← {0, 1};
ct← Enc(mpk,msgb);

b′ ← A2(σ, ct);

: b = b′

 ≤ 1/2 + negl(λ)

where σ is the state of A1. Here, Omsk takes as input a function f ∈ F
and outputs a secret key sk ← KeyGen(msk, f). We require that for all f
submitted to the oracle Omsk, f(msg0) = f(msg1) and the oracle Omsk can
only be queried two times.

Puncturable Encryption. The puncturable encryption scheme was first pre-
sented and constructed in [CHV15, CHN+16], and we recall its definition here.

Definition A.4. A puncturable encryption scheme with message space {0, 1}l
and ciphertext space {0, 1}n consists of four algorithms:

• KeyGen. On input the security parameter λ, the key generation algorithm
outputs the public key/secret key (pk, sk).

• Puncture. On input a secret keys sk and two ciphertexts c0, c1 ∈ {0, 1}n,
the puncture algorithm outputs a punctured secret key sk′.

• Enc. On input a public key pk and a message m ∈ {0, 1}l, the encryption
algorithm outputs a ciphertext c.

• Dec. On input a secret key (or a punctured secret key) sk and a ciphertext
c ∈ {0, 1}n, the decryption algorithm outputs a valid message in {0, 1}l or a
symbol ⊥ indicating decryption failure.

Also, it satisfies the following conditions:

• Correctness. For any message m ∈ {0, 1}l, let (pk, sk)← KeyGen(1λ), and
c← Enc(pk,m), then we have Pr[Dec(sk, c) = m] = 1.

• Punctured Correctness. For any strings c0, c1, c
∗ ∈ {0, 1}n that c∗ 6∈ {c0,

c1}, let (pk, sk) ← KeyGen(1λ) and sk′ ← Puncture(sk, {c0, c1}), then we
have Pr[Dec(sk, c∗) = Dec(sk′, c∗)] = 1.

• Sparseness. Let (pk, sk)← KeyGen(1λ), and let c
$← {0, 1}n, then we have

Pr[Dec(sk, c) 6=⊥] ≤ negl(λ).
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• Ciphertext Pseudorandomness. For any PPT adversary (A1,A2), we
have

Pr



(m∗, σ)← A1(1λ);

(pk, sk)← KeyGen(1λ);

c∗ ← Enc(pk,m∗);

r∗
$← {0, 1}n;

sk′ ← Puncture(sk, {c∗, r∗});

b
$← {0, 1};

Y0 = (c∗, r∗);

Y1 = (r∗, c∗);

: A2(σ, pk, sk′, Yb) = b


≤ 1/2 + negl(λ)

where σ is the state of A1.

Indistinguishability Obfuscator. The notion of indistinguishability obfusca-
tor was first proposed by Barak et al. in [BGI+01], and the indistinguishability
obfuscator for all polynomial-size circuits was first instantiated by Garg et al. in
[GGH+13].

Definition A.5 ([BGI+01,GGH+13]). A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the fol-
lowing conditions:

• Correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, we
have

Pr[C′ ← iO(C) : C′ ≡ C] = 1

• Indistinguishability. For any PPT adversary A, for all security parame-
ters λ ∈ N, and all pairs of circuits C0, C1 ∈ Cλ that C0 ≡ C1, we have

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(λ)

B Proof of Theorem 5.1

In this section, we present the proof of Theorem 5.1.

Proof. Correctness of PFE comes from correctness of PE, completeness of NIZK
and correctness of FE directly. Sparseness of PFE comes from sparseness of PE
directly. Punctured correctness of PFE comes from punctured correctness of PE
directly. Ciphertext pseudorandomness of PFE comes from ciphertext pseudo-
randomness of PE by a direct reduction. It remains to show the iO-compatible
correctness and the adaptive indistinguishability of PFE.
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iO-Compatible Correctness. First, for any master public key/master secret
key pair (MPK,MSK) = ((mpk, crs, pk), (msk, sk,mpk, crs)), we define

V(MPK,MSK) = {CT ∈ {0, 1}l | ∃(ct, π) ∈ {0, 1}n+n
′
,

(ct, π) = PE . Dec(sk, CT ) ∧ NIZK . Verify(crs, (mpk, ct), π) = 1}

and
I(MPK,MSK) = {0, 1}l\V(MPK,MSK)

For any CT ∈ I(MPK,MSK), let ct‖π = PE . Dec(sk, CT ), then we have either
ct‖π =⊥ or NIZK . Verify(crs, (mpk, ct), π) = 0. In each case, the decryption
algorithm will output ⊥ on any secret key SK generated from MSK.

Next, we consider ciphertexts in V(MPK,MSK). First, by the adaptively statis-
tical soundness of NIZK, with all but negligible probability over the choice of crs,
for any CT ∈ V(MPK,MSK), let ct‖π = PE . Dec(sk, CT ), we have (mpk, ct) ∈ L,
i.e., there exists (msg, r) ∈ {0, 1}m × R that ct = FE . Enc(mpk,msg; r). Next,
by the perfect correctness of FE, for any f ∈ F , let sk ← FE . KeyGen(msk, f),
then we have FE . Dec(sk, ct) = f(msg). Thus, as long as a “good” common ref-
erence string is chosen, which occurs with all but negligible probability, even an
unbounded adversary cannot generate a ciphertext in V(MPK,MSK) that causes
a conflict when decrypting with different secret keys.

This completes the proof of iO-compatible correctness.

Adaptive Indistinguishability. To prove adaptive indistinguishability of PFE,
we define the following games between a challenger and a PPT adversary A:

• Game 0. This is the real experiment in the definition of adaptive indistin-
guishability. In more detail, the challenger proceeds as follows:
1. In the beginning, the challenger generates (mpk,msk)← FE . Setup(1λ),
crs ← NIZK . KeyGen(1λ), and (pk, sk) ← PE . KeyGen(1λ). Then it re-
turns the master public key MPK = (mpk, crs, pk) to A.

2. Next, the challenger answers oracle queries for A and on input a function
f ∈ F , it generates fsk ← FE . KeyGen(msk, f) and returns SK = (fsk,
sk,mpk, crs) to A.

3. Finally, on input two messages msg∗0 ,msg
∗
1 , the challenger first samples

b
$← {0, 1}. Then it samples r∗ ∈ R and computes ct∗ = FE . Enc(mpk,

msg∗b ; r∗) and π∗ ← NIZK . Prove(crs, (mpk, ct∗), (msg∗b , r
∗)). Finally, it

returns CT ∗ ← PE . Enc(pk, ct∗‖π∗) to A and outputs 1 if A succeeds in
guessing b.

• Game 1. This is identical to Game 0 except that the challenger uses the
simulator of NIZK to generate crs and π∗:

(crs, state)← NIZK . S1(1
λ)

π∗ ← NIZK . S2(1
λ, (mpk, ct∗), state)

Indistinguishability between Game 0 and Game 1 comes from adaptive zero-
knowledge of NIZK directly. Moreover, negligibility of A’s advantage in Game 1
comes from the adaptive indistinguishability of FE via a direct reduction.

This completes the proof of adaptive indistinguishability of PFE.

35



C Proof of Theorem 6.1

In this section, we present the proof of Theorem 6.1. Before starting the descrip-
tion of the proof, we first recall a few useful notions and facts about the trace
function defined in Figure 1. Note that those notions and facts are explained in
previous works [BCP14,NWZ16]. Here, we briefly review them for completeness.

First, during each invocation of the extraction algorithm, the test algorithm
will be invoked at most once on each input ind, so we use pind to denote the
result of Test(ind,−,−,−,−)13 (we also set p0 = 1 and p2κ = 0). We use an
interval [ind1, ind2) to denote an invocation of the algorithm Trace(ind1, ind2,
−,−,−,−,−,−,−). The trace algorithm will be invoked recursively, and we can
use a binary tree to denote all potential calls of intervals. The root of the tree is
the interval [0, 2κ) and the leaf nodes are intervals [a, a+1) for a ∈ [0, 2κ−1]. For
each non-leaf node [ind1, ind2), it has two children, namely, [ind1, b ind1+ind22 c)
and [b ind1+ind22 c, ind2), each of which is half in size of its parent [ind1, ind2),
and both children will be called if and only if |pind1 −pind2 | is large enough. It is
easy to see that the tree is of height κ+ 1 and all intervals at the same level are
disjoint. Here, we use the notion “level” to denote the distance between a node
and the root node, i.e., the root node is at level 0 while the children of a level-i
node is at level i + 1. Now, we are ready to describe a useful lemma that will
be extensively used in proving the correctness and security of our watermarking
scheme:

Lemma C.1 ([BCP14, NWZ16]). Let C ⊆ [0, 2κ) be a set with polynomial
elements. Let q ≥ ‖C‖ be a polynomial. Consider an invocation of the algorithm
Trace(0, 2κ, 1, 0, ε,−,−,−,−) where ε = 1/((κ + 1) · q + 1), and let L be the
output. Now, if |pind1 − pind2 | ≤ ε for every interval [ind1, ind2) that is called
during this procedure and satisfies [ind1, ind2) ∩ C = ∅, then we have:

1. The Test algorithm will be invoked at most q · (κ+ 1) times.
2. L ⊆ C.
3. L 6= ∅.

Proof. First, the Test algorithm will be called in an interval [ind1, ind2) if and
only if |pind1 − pind2 | > ε, so only those intervals containing at least one element
in C will invoke the Test algorithm. Thus, at each level of the tree, there are at
most q intervals that are able to run the Test algorithm. Therefore, the Test

algorithm will be invoked at most q · (κ+ 1) times.
Then, note that the output of the Trace algorithm is in fact a set consisting

of all called leaf-nodes [ind, ind+1) satisfying |pind−pind+1| > ε. So no elements
outside C will be included in the output set.

Finally, to prove the third statement, we first prove the following claim:

Claim 1. Let [ind1, ind2) be a node at level h, if the Trace algorithm is invoked
at this interval, k > 0 and |pind1 − pind2 | > ε · (κ+ 1− h) · k, then the algorithm
will output a non-empty set, where k = [ind1, ind2) ∩ C.
13 For simplicity of notation, in this section, we use − to denote inputs that are not

needed to be specified, and its value is defined by the context.
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Proof. We prove Claim 1 recursively. First, in case h = κ, i.e., the interval [ind1,
ind2) is a leaf-node, the claim holds obviously.

Then assuming the claim holds for h ≥ l + 1, we prove that it holds for
h = l, where 0 ≤ l ≤ κ − 1. Let [ind1, ind2) be a called node at level l that
k = [ind1, ind2) ∩ C is positive and |pind1 − pind2 | > ε · (κ + 1 − l) · k. Then, it
will invoke its two children since |pind1 − pind2 | > ε · (κ+ 1− l) · k > ε. Also, let
ind3 = b ind1+ind22 c, kl = [ind1, ind3) ∩ C, and kr = [ind3, ind2) ∩ C. Obviously,
we have k = kl + kr.

Now, if both kl and kr are positive. Then we have either |pind1 − pind3 | >
ε · (κ+ 1− l) ·kl or |pind3 −pind2 | > ε · (κ+ 1− l) ·kr (Otherwise, |pind1 −pind2 | ≤
|pind1 − pind3 | + |pind3 − pind2 | ≤ ε · (κ + 1 − l) · (kl + kr) = ε · (κ + 1 − l) · k),
and w.l.o.g, we assume |pind1 − pind3 | > ε · (κ + 1 − l) · kl. Then, we have
|pind1−pind3 | > ε ·(κ+1−(l+1)) ·kl, and by assumption, the algorithm running
on [ind1, ind3) will output a non-empty set.

Otherwise, i.e., either kl or kr is 0, w.l.o.g, we assume kr = 0. Then we have
|pind3 − pind2 | ≤ ε, which implies that |pind1 − pind3 | > ε · (κ + 1 − l) · k − ε ≥
ε · (κ+1− (l+1)) ·k. Also, by assumption, the algorithm running on [ind1, ind3)
will output a non-empty set.

To summarize, in both cases, the algorithm will invoke its children and at
least one of them will output a non-empty set, thus, the algorithm on [ind1, ind2)
will also output a non-empty set.

Now, considering the case h = 0 for Claim 1, since 1 = ε · ((κ+ 1) · q + 1) >
ε · (κ+ 1) · ‖C‖, the output will be non-empty.

Note that the proof of the second statement in Lemma C.1, i.e., L ⊆ C, does
not rely on the condition that q ≥ ‖C‖. So we have:

Lemma C.2. Let C ⊆ [0, 2κ) be a set with polynomial elements. Let q < ‖C‖ be a
polynomial. Consider an invocation of the algorithm Trace(0, 2κ, 1, 0, ε,−,−,−,
−) where ε = 1/((κ+1)·q+1), and let L be the output. Now, if |pind1−pind2 | ≤ ε
for every interval [ind1, ind2) that is called during this procedure and satisfies
[ind1, ind2) ∩ C = ∅, then we have L ⊆ C.

Remark C.1. It is worth noting that the Test algorithm in the above two lemmas
can be replaced with any algorithm that outputs real values between [0,1], and
the lemmas still hold.

Now, we are ready to prove that WM is a secure watermarking scheme for
PRF. In particular, we need to argue its correctness (Appendix C.1), collusion
resistant unremovability (Appendix C.3), and δ-unforgeability (Appendix C.2).

C.1 Proof of Correctness

Functionality Preserving. Functionality preserving of WM comes from the
sparseness of PFE and the correctness of iO directly.
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Extraction Correctness. For any key k ∈ K, message msg ∈ [1, 2κ), and
polynomial q ≥ 1, let (MK,EK) ← WM . Setup(1λ) and C ← WM . Mark(MK,
k,msg).

We start the proof of extraction correctness by inspecting the output of
Test(ind,−,−,−, C) for ind ∈ [1, 2κ). In more detail, let ã1, . . . , ãd, r̃, t̃1, . . . , t̃d,
b̃, x̃, ỹ be internal variables used in one iteration of the for loop in the Test(ind,
−,−,−, C) algorithm, we first examine if C(x̃) = ỹ.

First, if ind > msg, by the correctness of PFE and iO, C(x̃) = PRF . Eval(k,
x̃). Also, by the pseudorandomness of F, the (pseudo)-random key k′ = F . Eval(K,
t̃1‖ . . . ‖t̃d‖b̃) equals to k with only a negligible probability. Then, by the weak
key-injectivity of PRF, the probability that PRF . Eval(k, x̃) = PRF . Eval(k′, x̃)
is negligible. Thus, the probability that C(x̃) equals to ỹ = PRF . Eval(k′, x̃) is
negligible.

Then, if ind ≤ msg, again, by the correctness of PFE and iO, C(x̃) = ỹ if

∀i ∈ [1, d], C(G(G′(ãi))) = PRF . Eval(k,G(G′(ãi))) (1)

By the pseudorandomness of G and G′, which implies the pseudorandomness of
G(G′(·)) and the sparseness of PFE, Equation (1) holds with all but negligible
probability.

Finally, by the union bound, with all but negligible probability, we have
Test(ind,−,−,−, C) = 0 if ind > msg and Test(ind,−,−,−, C) = 1 if ind ≤
msg.

Now, with all but negligible probability, for any called interval [ind1, ind2)
that does not contain msg, Test(ind1,−,−,−, C) = Test(ind2,−,−,−, C), thus,
by Lemma C.1, the extraction algorithm will return a non-empty subset of
{msg}, i.e., {msg}, with all but negligible probability. This completes the proof
of extraction correctness.

C.2 Proof of Unforgeability

In this section, we prove the δ-unforgeability of WM. We start with an auxil-
iary lemma, which indicates that for any PPT adversary, it cannot predict the
reprogrammed value on a random punctured point.

Lemma C.3. If PFE has sparseness and correctness, F is a secure prefix punc-
turable PRF, G and G′ are pseudorandom generators, H is a family of collision-
resistant hash function, and iO is a secure indistinguishability obfuscator, then
for any PPT unforging-admissible adversary A, the probability that AUFA(1λ) = 1
is negligible, where AUF is defined as follows:

1. In the beginning, the challenger first samples H
$← H and generates K ←

F . KeyGen(1λ). Then it generates (mpk,msk) ← PFE . Setup(1λ) and sk ←
PFE . KeyGen(msk, ID) for the identity function ID. Next, it computes E ←
iO(Ext[mpk,K]), and returns EK = (H, E) to A.
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2. Next, the challenger answers marking oracle queries from A and on receiving
a query (kι,msgι) (for the ιth marking oracle query), it returns Cι ← iO(M[sk,
K,H, kι,msgι]).

3. Finally, A will output a circuit C̃ together with an integer ind∗ ∈ [1, 2κ), and
then the challenger works as follows:

(a) Sample ã1, . . . , ãd
$← {0, 1} l2 and r

$← R.
(b) t̃1 = G′(ã1), . . . , t̃d = G′(ãd).
(c) b̃ = H(C̃(G(t̃1)), . . . , C̃(G(t̃d))).
(d) (x̃, ỹ) = E(ã1, . . . , ãd, b̃, ind

∗, r).
(e) If C̃(x̃) = ỹ, then outputs 1; otherwise, output 0.

We prove Lemma C.3 later in Appendix C.2.1. Next, we argue the δ-unforgeability
of WM based on Lemma C.3.

Let C̃ be the circuit returned in the δ-unforgeability experiment. Then by
Lemma C.3, for any ind ∈ [1, 2κ) that Test(ind,−,−,−, C̃) is invoked when
running the extraction algorithm on C̃, Test(ind,−,−,−, C̃) = 0 with all but
negligible probability. That is to say, with all but negligible probability, for
any invoked interval [ind1, ind2) that does not contain 0, Test(ind1,−,−,−,
C) = Test(ind2,−,−,−, C), thus, by Lemma C.1, with all but negligible prob-
ability, the trace algorithm will return {0} after invoking the Test algorithm
κ times, which implies that the extraction algorithm will output UNMARKED.
This completes the proof of δ-unforgeability.

C.2.1 Proof of Lemma C.3 In this section, we prove Lemma C.3. First, we
define the following games between a challenger and a PPT unforging-admissible
adversary A:

• Game 0. This is the real experiment AUF.
• Game 1. This is identical to Game 0 except that in step 3, after computing t̃1,
. . . , t̃d and b̃, the challenger further checks if t̃1, . . . , t̃d and b̃ define “marked
points” for circuits returned by the marking oracle. More precisely, assuming
A has made Q marking oracle queries, then for i ∈ [1, Q], the challenger
computes

bi = H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d)))

where ki is the secret key submitted in the ith marking oracle query. Next,
it aborts and outputs 2 if there exists i ∈ [1, Q] that bi = b̃; otherwise, it
proceeds identically as in Game 0.
• Game 2. This is identical to Game 1 except that the challenger computes x̃

and ỹ as follows:
1. x̃← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ind∗).
2. k̃′ = F . Eval(K, t̃1‖ . . . ‖t̃d‖b̃)
3. ỹ = PRF . Eval(k̃′, x̃).

• Game 3. This is identical to Game 2 except that the challenger modifies the

way to generate t̃1, . . . , t̃d. More precisely, it samples t̃1, . . . , t̃d
$← {0, 1}l in

the beginning of step 1 instead of computing them from ã1, . . . , ãd in step 3.
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• Game 4. This is identical to Game 3 except that the challenger uses a punc-
tured version of K instead of using K directly in obfuscated circuits. More
precisely, the challenger computes

CK ← F . Constrain(K, t̃1‖ . . . ‖t̃d)

after generating K (recall that this means CK cannot compute on inputs
with prefix t̃1‖ . . . ‖t̃d). Then it computes

E← iO(Ext1[mpk,CK])

where the circuit Ext1 is defined in Figure 4, and returns EK = (H, E) to
A. Besides, in step 2, on receiving a marking oracle query (kι,msgι), the
challenger first computes

bι = H(PRF . Eval(kι,G(t̃1)), . . . ,PRF . Eval(kι,G(t̃d)))

Then it sets αι = t̃1‖ . . . ‖t̃d‖bι and computes βι = F . Eval(K,αι). After
that, it returns

Cι ← iO(M1[sk, CK,H, kι,msgι, αι, βι])

to A, where the circuit M1 is defined in Figure 4.
• Game 5. This is identical to Game 4 except that the challenger computes
βι = f(αι) with a truly random function f .14 The challenger also computes
k̃′ = f(t̃1‖ . . . t̃d‖b̃).
• Game 6. This is identical to Game 5 except that the challenger samples ỹ

uniformly at random from {0, 1}m.

Next, we prove the indistinguishability of each consecutive pair of games
defined above and show that the adversary A will win in the final game (Game
6) with a negligible probability. For simplicity of notation, we use Ei to denote
the output of Game i.

Claim 2. If PFE has sparseness, iO has correctness, both G and G′ are pseudo-
random generators and H is a family of collision-resistant hash functions, then
| Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. For i ∈ [1, Q], we use Badi to denote the event that bi = b̃ in Game 1. It
is obvious that the outputs of Game 0 and Game 1 are identical as long as for
all i ∈ [1, Q], Badi does not occur. So it is sufficient to prove that

Pr[∃i ∈ [1, Q], Badi] ≤ negl(λ) (2)

By the union bound, Equation (2) holds as long as for any i ∈ [1, Q], Pr[Badi] ≤
negl(λ). Next, we will analyze the probability that Badi occurs for any fixed
i ∈ [1, Q].

14 f is computed via lazy sampling, i.e., if αι is fresh, then βι is sampled uniformly
from K, and if there exists ι′ < ι that αι = αι′ , then βι is set to be βι′ .
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Ext1

Constant: mpk,CK
Input: a1, . . . , ad, b, ind, r

1. t1 = G′(a1), . . . , td = G′(ad).
2. x = PFE . Enc(mpk, t1‖ . . . ‖td‖b‖ind; r).
3. k′ = F . ConstrainEval(CK, t1‖ . . . ‖td‖b).
4. y = PRF . Eval(k′, x).
5. Output (x, y).

M1

Constant: sk, CK,H, k,msg, α, β
Input: x

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b = α) ∧ (ind ≤ msg)

(a) y = PRF . Eval(β, x).
(b) Output y.

3. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤ msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,
PRF . Eval(k,G(td))) = b)
(a) k′ = F . ConstrainEval(CK, t1‖ . . . ‖td‖b).
(b) y = PRF . Eval(k′, x).
(c) Output y.

4. Otherwise, output PRF . Eval(k, x).

Fig. 4 The circuits Ext1 and M1.

First, by the unforging-admissibility of A, we have C̃ and Ci differ on at least
a δ fraction of inputs. Also, by sparseness of PFE and correctness of iO, Ci and
PRF . Eval(ki, ·) differ on only a negligible fraction of inputs, thus, we have C̃

and PRF . Eval(ki, ·) differ on at least a δ − negl(λ) fraction of inputs. So, for

x
$← {0, 1}n, we have

Pr[C̃(x) = PRF . Eval(ki, x)] ≤ 1− (δ − negl(λ))

Next, let x1, . . . , xd
$← {0, 1}n, and let Fi be the event that

(PRF . Eval(ki, x1), . . . ,PRF . Eval(ki, xd)) = (C̃(x1), . . . , C̃(xd))

Then, we have

Pr[Fi] ≤ (1− (δ − negl(λ)))d

= (1− (δ − negl(λ)))
λ
δ

≤ (1− (δ − negl(λ)))
λ

2(δ−negl(λ))

≤ e−λ2
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which is negligible. Then, by the pseudorandomness of G(G′(·)) (which comes
from the pseudorandomness of G and G′), the probability that

(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d))) = (C̃(G(t1)), . . . , C̃(G(td)))

is also negligible. Finally, by the collision-resistance of H, the probability that
Badi occurs is also negligible.

This completes the proof of Claim 2.

Claim 3. If iO has correctness, Pr[E1 = 1] = Pr[E2 = 1].

Proof. Since the challenger uses an obfuscated version and an unobfuscated ver-
sion of the circuit Ext to compute (x̃, ỹ) in Game 1 and in Game 2 respectively,
equivalence of Pr[E1 = 1] and Pr[E2 = 1] comes from the correctness of iO
directly.

Claim 4. If G′ is a pseudorandom generator, then | Pr[E2 = 1]− Pr[E3 = 1] |≤
negl(λ).

Proof. In both Game 2 and Game 3, ã1, . . . , ãd are not used except generating
t̃1, . . . , t̃d. So, Claim 4 comes from the pseudorandomness of G′ directly.

Claim 5. If iO is a secure indistinguishability obfuscator and F has correctness,
then | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. As the only difference between Game 3 and Game 4 is that the adversary
A gets obfuscations of different circuits in these two games, it is sufficient to
prove that with all but negligible probability, all circuits A gets in Game 4 are
functionally equivalent to their counterparts in Game 3. More concretely, we
need to prove

Pr[Ext[mpk,K] 6≡ Ext1[mpk,CK]] ≤ negl(λ) (3)

and for any i ∈ [1, Q],

Pr[M[sk,K,H, ki,msgi] 6≡ M1[sk, CK,H, ki,msgi, αi, βi]] ≤ negl(λ) (4)

We start by proving Equation (3). For any input (a1, . . . , ad, b, ind, r), the
two circuits Ext[mpk,K] and Ext1[mpk,CK] compute differently only if (G′(a1),
. . . ,G′(ad)) = (t̃1, . . . , t̃d). Such input exists with only a negligible probability
since for any j ∈ [1, d], t̃j is chosen uniformly at random from {0, 1}l and the

probability that it falls in the range of G′, which contains only 2
l
2 elements, is

negligible.
Then we prove Equation (4). For any fixed i ∈ [1, Q] and for any input x, let

µ‖ind be the decryption of x, then we consider the following three cases:

1. Case I: µ = αi and ind ≤ msgi. In this case, the circuit M1[sk, CK,H, ki,
msgi, αi, βi] will output PRF . Eval(βi, x) on input x, where βi = F . Eval(K,
µ). Besides, since bi = H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d))),
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x could pass the check in step 2 of the circuit M[sk,K,H, ki,msgi]. Thus,
M[sk,K,H, ki,msgi] will also output PRF . Eval(F . Eval(K,µ), x) on input
x. Therefore, M1[sk, CK,H, ki,msgi, αi, βi](x) = M[sk,K,H, ki,msgi](x) in
this case.

2. Case II: µ‖ind 6=⊥, µ 6= αi, ind ≤ msgi, and b = H(PRF . Eval(ki,G(t1)),
. . . ,PRF . Eval(ki,G(td))), where (t1‖ . . . ‖td‖b) = µ. In this case, the circuit
M1[sk, CK,H, ki,msgi, αi, βi] will output PRF . Eval(k′1, x) on input x, where
k′1 = F . ConstrainEval(CK,µ). Also, we have

t1‖ . . . ‖td 6= t̃1‖ . . . ‖t̃d

This is because otherwise, we will have

b = H(PRF . Eval(ki,G(t1)), . . . ,PRF . Eval(ki,G(td)))

= H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d)))

= bi

which implies that µ = αi and contradicts the condition that µ 6= αi. As
a result, we have k′1 = F . Eval(K,µ). Moreover, the circuit M[sk,K,H, ki,
msgi] will also output PRF . Eval(F . Eval(K,µ), x) on input x. Therefore,
M1[sk, CK,H, ki,msgi, αi, βi](x) = M[sk,K,H, ki,msgi](x) in this case.

3. Case III: Otherwise, in both circuits, the output will be PRF . Eval(ki, x).

In summary, for any i ∈ [1, Q] and for any input, the output of the circuit M[sk,
K,H, ki,msgi] and that of the circuit M1[sk, CK,H, ki,msgi, αi, βi] are identical
and thus Equation (4) follows.

This completes the proof of Claim 5.

Claim 6. If F is a secure prefix puncturable PRF, then | Pr[E4 = 1] − Pr[E5 =
1] |≤ negl(λ).

Proof. Indistinguishability between Game 4 and Game 5 comes from the punc-
turable pseudorandomness of F directly.

Claim 7. If PRF has pseudorandomness, then | Pr[E5 = 1] − Pr[E6 = 1] |≤
negl(λ).

Proof. Since in step 3 of Game 5 (and Game 6), the experiment aborts and
outputs 2 if there exists i ∈ [1, Q] that b̃ = bi, we have for any i ∈ [1, Q],
t̃1‖ . . . ‖t̃d‖b̃ 6= αi in case the experiment does not abort. Thus, k̃′ will be sam-
pled freshly and uniformly at random in Game 5 (and Game 6). Consequently,
indistinguishability between Game 5 and Game 6 comes from the pseudoran-
domness of PRF directly.

Claim 8. Pr[E6 = 1] ≤ negl(λ).

Proof. In Game 6, ỹ is sampled uniformly and is independent of the view of
A. Thus, the probability that A succeeds in guessing ỹ in advance is negligible,
which implies that the probability that A wins in Game 6 is negligible.
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Combining Claim 2 to Claim 8, we can conclude that the probability that A
wins in Game 0 (i.e., in the real experiment AUF) is also negligible. This completes
the proof of Lemma C.3.

C.3 Proof of Unremovability

In this section, we prove the collusion resistant unremovability of WM. We start
with defining a few auxiliary lemmas (Lemma C.4 to Lemma C.6) in Appendix
C.3.1. Then we prove the collusion resistant unremovability of WM using these
lemmas in Appendix C.3.2. Finally, we prove Lemma C.4 to Lemma C.6 in
Appendix C.3.3 to Appendix C.3.5 respectively.

C.3.1 Definitions of Auxiliary Lemmas Before describing these lemmas,
we first define the map ρ from [1, 2κ − 1] to {1,msg∗1 , . . . ,msg∗Q, 2κ − 1}:

ρ(ind) =


1 if ind ≤ msg∗1 .
2κ − 1 if ind > msg∗Q.

msg∗i if ∃i ∈ [2, Q],msg∗i−1 < ind ≤ msg∗i .

where msg∗1 , . . . ,msg
∗
Q are messages submitted to the challenge oracle in the col-

lusion resistant unremovability experiment and satisfies msg∗1 < . . . < msg∗Q
15.

Note that for any ind ∈ [1, 2κ − 1] and any i ∈ [1, Q], ind ≤ msg∗i iff ρ(ind) ≤
msg∗i . Also, ρ(ρ(ind)) = ρ(ind).

Next, we state the auxiliary lemmas in Lemma C.4 to Lemma C.6 as fol-
lows. Note that the messages msg∗1 , . . . ,msg

∗
Q can divide the whole message

space [1, 2κ − 1] into Q + 1 sets, namely, [1,msg∗1 ], (msg∗1 ,msg
∗
2 ], . . . , (msg∗Q−1,

msg∗Q], (msg∗Q, 2
κ− 1]. Then, Lemma C.4 indicates that it is hard to distinguish

punctured points labeled with messages from the same set; Lemma C.5 claims
pseudorandomness of punctured points labeled with messages from the last set
(msg∗Q, 2

κ − 1]; and Lemma C.6 claims pseudorandomness of punctured points
labeled with messages from the first set [1,msg∗1 ].

Lemma C.4. If PFE is a secure puncturable functional encryption, PRF has
correctness, constrained one-wayness and weak key-injectivity, G and G′ are pseu-
dorandom generators, H is a family of collision-resistant hash function, and iO is
a secure indistinguishability obfuscator, then for any PPT unremoving-admissible
adversary A, the probability that AUR1A(1λ) = 1 is negligibly close to 1/2, where
AUR1 is defined as follows:

1. In the beginning of the experiment, the challenger first samples H
$← H and

generates K ← F . KeyGen(1λ). Then it generates (mpk,msk)← PFE . Setup(1λ)
and sk ← PFE . KeyGen(msk, ID) for the identity function ID. Next, it com-
putes E← iO(Ext[mpk,K]), and returns EK = (H, E) to A.

15 In this section, we always suppose msg∗1 < . . . < msg∗Q.
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2. Next, the challenger answers marking oracle queries from A and on receiving
a query (kι,msgι) (for the ιth marking oracle query), it returns Cι ← iO(M[sk,
K,H, kι,msgι]).

3. Once A makes a challenge oracle query with Q messages {msg∗1, . . . ,msg∗Q},
the challenger samples k∗ ← PRF . KeyGen(1λ), generates C∗i ← iO(M[sk,K,
H, k∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.

4. Then, the challenger answers marking oracle queries from A in the same
way as in step 2.

5. Next, A will output a circuit C̃ together with an integer ind∗ ∈ [1, 2κ), and
then the challenger works as follows:

(a) Sample ã1, . . . , ãd
$← {0, 1} l2 and r

$← R.
(b) t̃1 = G′(ã1), . . . , t̃d = G′(ãd).
(c) b̃ = H(C̃(G(t̃1)), . . . , C̃(G(t̃d))).
(d) (x̃0, ỹ0) = E(ã1, . . . , ãd, b̃, ind

∗, r).
(e) (x̃1, ỹ1) = E(ã1, . . . , ãd, b̃, ρ(ind∗), r).

(f) β
$← {0, 1}.

(g) Return x̃β to A.
6. Finally, A outputs a bit β′. Then, the challenger outputs 1 if β = β′ and

outputs 0 otherwise.

Lemma C.5. If PFE is a secure puncturable functional encryption, PRF has
constrained one-wayness and weak key-injectivity, G and G′ are pseudorandom
generators, H is a family of collision-resistant hash function, and iO is a secure
indistinguishability obfuscator, then for any PPT unremoving-admissible adver-
sary A, the probability that AUR2A(1λ) = 1 is negligibly close to 1/2, where AUR2

is defined as follows:

1. In the beginning of the experiment, the challenger first samples H
$← H and

generates K ← F . KeyGen(1λ). Then it generates (mpk,msk)← PFE . Setup(1λ)
and sk ← PFE . KeyGen(msk, ID) for the identity function ID. Next, it com-
putes E← iO(Ext[mpk,K]), and returns EK = (H, E) to A.

2. Next, the challenger answers marking oracle queries from A and on receiving
a query (kι,msgι) (for the ιth marking oracle query), it returns Cι ← iO(M[sk,
K,H, kι,msgι]).

3. Once A makes a challenge oracle query with Q messages {msg∗1, . . . ,msg∗Q},
the challenger samples k∗ ← PRF . KeyGen(1λ), generates C∗i ← iO(M[sk,K,
H, k∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.

4. Then, the challenger answers marking oracle queries from A in the same
way as in step 2.

5. Next, A will output a circuit C̃ together with an integer ind∗ ∈ (msg∗Q, 2
κ)16,

and then the challenger works as follows:

(a) Sample ã1, . . . , ãd
$← {0, 1} l2 and r

$← R.
(b) t̃1 = G′(ã1), . . . , t̃d = G′(ãd).
(c) b̃ = H(C̃(G(t̃1)), . . . , C̃(G(t̃d))).

16 Here we suppose msg∗Q < 2κ − 1 as otherwise Lemma C.5 holds trivially
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(d) (x̃0, ỹ0) = E(ã1, . . . , ãd, b̃, ind
∗, r).

(e) x̃1
$← {0, 1}n.

(f) k′ = F . Eval(K, t̃1‖ . . . ‖t̃d‖b̃)
(g) ỹ1 = PRF . Eval(k′, x̃1)

(h) β
$← {0, 1}.

(i) Return (x̃β , ỹβ) to A.
6. Finally, A outputs a bit β′. Then, the challenger outputs 1 if β = β′ and

outputs 0 otherwise.

Lemma C.6. If PFE is a secure puncturable functional encryption, PRF is a
secure puncturable PRF with constrained one-wayness and weak key-injectivity,
F is a secure prefix puncturable PRF, G and G′ are pseudorandom generators,
H is a family of collision-resistant hash function, and iO is a secure indistin-
guishability obfuscator, then for any PPT unremoving-admissible adversary A,
the probability that AUR3A(1λ) = 1 is negligibly close to 1/2, where AUR3 is defined
as follows:

1. In the beginning of the experiment, the challenger first samples H
$← H and

generates K ← F . KeyGen(1λ). Then it generates (mpk,msk)← PFE . Setup(1λ)
and sk ← PFE . KeyGen(msk, ID) for the identity function ID. Next, it com-
putes E← iO(Ext[mpk,K]), and returns EK = (H, E) to A.

2. Next, the challenger answers marking oracle queries from A and on receiving
a query (kι,msgι) (for the ιth marking oracle query), it returns Cι ← iO(M[sk,
K,H, kι,msgι]).

3. Once A makes a challenge oracle query with Q messages {msg∗1, . . . ,msg∗Q},
the challenger samples k∗ ← PRF . KeyGen(1λ), generates C∗i ← iO(M[sk,K,
H, k∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.

4. Then, the challenger answers marking oracle queries from A in the same
way as in step 2.

5. Next, A will output a circuit C̃ together with an integer ind∗ ∈ [1,msg∗1 ], and
then the challenger works as follows:

(a) Sample ã1, . . . , ãd
$← {0, 1} l2 and r

$← R.
(b) t̃1 = G′(ã1), . . . , t̃d = G′(ãd).
(c) b̃ = H(C̃(G(t̃1)), . . . , C̃(G(t̃d))).
(d) (x̃0, ỹ0) = E(ã1, . . . , ãd, b̃, ind

∗, r).

(e) x̃1
$← {0, 1}n.

(f) β
$← {0, 1}.

(g) Return x̃β to A.
6. Finally, A outputs a bit β′. Then, the challenger outputs 1 if β = β′ and

outputs 0 otherwise.

Remark C.2. Note that in both experiment AUR1 and experiment AUR3, the chal-
lenge x̃β could be generated publicly, so the adversary A can not win in these two
games even multiple challenges are given. Unfortunately, in experiment AUR2, K
is needed to generate the challenge (x̃β , ỹβ). However, as in the proof of Lemma
C.5, security of F is not used, the indistinguishability holds even K is public.
So, in experiment AUR2, multiple challenges also can not increase A’s advantage
noticeably. In summary, all three lemmas hold in the multiple challenges settings.
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C.3.2 Unremovability from Lemma C.4 to Lemma C.6 In this section,
we prove collusion resistant unremovability of WM based on these three lemmas
defined in Appendix C.3.1.

First, we define the following games between a challenger and a PPT unremoving-
admissible adversary A:

• Game 0. This is the real experiment ExptURA,q. In more detail, the challenger
proceeds as follows:

1. In the beginning, the challenger first samples H
$← H and generates

K ← F . KeyGen(1λ). Then it generates (mpk,msk) ← PFE . Setup(1λ)
and sk ← PFE . KeyGen(msk, ID) for the identity function ID. Next, it
computes E← iO(Ext[mpk,K]), and returns EK = (H, E) to A.

2. Next, the challenger answers marking oracle queries from A and on re-
ceiving a query (kι,msgι) (for the ιth marking oracle query), it returns
Cι ← iO(M[sk,K,H, kι,msgι]).

3. Once A makes a challenge oracle query with Q messages {msg∗1, . . . ,
msg∗Q}, the challenger samples k∗ ← PRF . KeyGen(1λ) generates C∗i ←
iO(M[sk,K,H, k∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.

4. Then, the challenger answers marking oracle queries from A in the same
way as in step 2.

5. Finally, on input a circuit C̃, the challenger first computes ε = 1/((κ+1) ·
q+1), T = λ/ε2, and S = q·(κ+1), and sets a variable counter = 0. Next,
it computes L = Trace(0, 2κ, 1, 0, ε, T, E, H, C̃). During this procedure,
the challenger also maintains the variable counter and increase it by 1
each time the function Test(·) is invoked. The challenger aborts once
counter exceeds S. Finally,
(a) If q ≥ Q: then the challenger outputs 0 if it does not abort, L ⊆
{msg∗1 , . . . ,msg∗Q} and L 6= ∅. Otherwise, it outputs 1.

(b) If q < Q: then the challenger outputs 0 if it aborts or if L ⊆ {msg∗1 ,
. . . ,msg∗Q}. Otherwise, it outputs 1.

• Game 1. This is identical to Game 0 except that for ind ≤ msg∗Q, the

challenger uses Test1(ind,−,−,−, C̃, C∗Q) instead of Test(ind,−,−,−, C̃) in

the Trace algorithm, where Test1 is defined in Figure 5.
• Game 2. This is identical to Game 1 except that for ind ≤ msg∗1 , the chal-

lenger uses Test2(ind,−,−,−, C̃, C∗Q) instead of Test1(ind,−,−,−, C̃, C∗Q) in

the Trace algorithm, where Test2 is defined in Figure 5.
• Game 3. This is identical to Game 2 except that for ind ≤ msg∗1 , instead

of computing p3 = Test2(ind,−,−,−, C̃, C∗Q) in the Trace algorithm, the
challenger sets p3 to be 1 directly.
• Game 4 This is identical to Game 3 except that for msg∗1 < ind ≤ msg∗Q,

the challenger uses Test1(ρ(ind),−,−,−, C̃, C∗Q) instead of Test1(ind,−,−,
−, C̃, C∗Q) in the Trace algorithm.
• Game 5. This is identical to Game 4 except that for ind > msg∗Q, the

challenger uses Test3(ind,−,−,−, C̃,K) instead of Test(ind,−,−,−, C̃) in
the Trace algorithm, where Test3 is defined in Figure 5.
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• Game 6. This is identical to Game 5 except that for ind > msg∗Q, the chal-

lenger uses Test3(ind,−,−,−,PRF . Eval(k∗, ·),K) instead of Test3(ind,−,
−,−, C̃,K) in the Trace algorithm.

• Game 7. This is identical to Game 6 except that for ind > msg∗Q, the chal-

lenger uses Test4(ind,−,−,−,PRF . Eval(k∗, ·), k∗,K) instead of Test3(ind,
−,−,−,PRF . Eval(k∗, ·),K) in the Trace algorithm, where Test4 is defined
in Figure 5.

• Game 8. This is identical to Game 7 except that for ind > msg∗Q, instead

of computing p3 = Test4(ind,−,−,−,PRF . Eval(k∗, ·), k∗,K) in the Trace

algorithm, the challenger sets p3 to be 0 directly.

Test

Input: ind, T, E, H, C
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1}

l
2 , r

$←R.
(b) t1 = G′(a1), . . . , td = G′(ad).
(c) b = H(C(G(t1)), . . . , C(G(td))).
(d) (x, y) = E(a1, . . . , ad, b, ind, r).
(e) If C(x) = y: Acc = Acc+ 1.

3. Return Acc
T

.

Test1

Input: ind, T, E, H, C,C′

1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1}

l
2 , r

$←R.
(b) t1 = G′(a1), . . . , td = G′(ad).
(c) b = H(C(G(t1)), . . . , C(G(td))).
(d) (x, y) = E(a1, . . . , ad, b, ind, r).
(e) If C(x) = C′(x): Acc = Acc+ 1.

3. Return Acc
T

.

Test2

Input: ind, T, E, H, C, C′

1. Acc = 0
2. For i ∈ [1, T ]:

(a) x
$← {0, 1}n.

(b) If C(x) = C′(x): Acc = Acc+ 1.
3. Return Acc

T
.

Test3

Input: ind, T, E, H, C,K
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1}

l
2

(b) t1 = G′(a1), . . . , td = G′(ad).
(c) b = H(C(G(t1)), . . . , C(G(td))).

(d) x
$← {0, 1}n.

(e) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(f) y = PRF . Eval(k′, x).
(g) If C(x) = y: Acc = Acc+ 1.

3. Return Acc
T

.

Test4

Input: ind, T, E, H, C,k,K
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample a1, . . . , ad
$← {0, 1}

l
2

(b) t1 = G′(a1), . . . , td = G′(ad).
(c) b = H(C(G(t1)), . . . , C(G(td))).

(d) x
$← {0, 1}n.

(e) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(f) If k = k′: return 0.
(g) y = PRF . Eval(k′, x).
(h) If C(x) = y: Acc = Acc+ 1.

3. Return Acc
T

.

Fig. 5 Variants of function Test that are used in Game 0 to Game 8 defined above.
For completeness, we also include the original function Test here.

Next, we prove the indistinguishability of each consecutive pair of games and
show that the adversary A will win in the final game (Game 8) with a negligible
probability. For simplicity of notation, we use Ei to denote the output of Game
i.

48



Claim 9. If both G and G′ are pseudorandom generators, iO has correctness and
PFE has sparseness and correctness, then | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. For any ind ≤ msg∗Q that Test(ind,−,−,−, C̃) is called in step 5 of Game

0, let a1, . . . , ad
$← {0, 1} l2 , r

$← R, t1 = G′(a1), . . . , td = G′(ad), b = H(C̃(G(t1)),
. . . , C̃(G(td))) and (x, y) = E(a1, . . . , ad, b, ind, r). Also, let µ = t1‖ . . . ‖td‖b. It is
sufficient to prove that C∗Q(x) = y with all but negligible probability.

First, by the unremoving-admissibility of A, the sparseness of PFE, and the
correctness of iO, C̃ differs with PRF . Eval(k∗, ·) on only a negligible fraction of
inputs. Then, by the pseudorandomness of G and G′, which implies the pseudo-
randomness of G(G′(·)), b = H(PRF . Eval(k∗,G(t1)), . . . ,PRF . Eval(k∗,G(td)))
with all but negligible probability. Thus, by the correctness of PFE and iO,
C∗Q(x) = PRF . Eval(F . Eval(K,µ), x). Besides, by the correctness of iO, we also
have y = PRF . Eval(F . Eval(K,µ), x). This completes the proof of Claim 9.

Claim 10. If Lemma C.6 holds, then | Pr[E1 = 1]− Pr[E2 = 1] |≤ negl(λ).

Proof. Claim 10 comes from the multiple challenges version of Lemma C.6 by a
direct reduction, where the latter is implied by Lemma C.6 as we have discussed
in Remark C.2.

Claim 11. If PFE has sparseness and iO has correctness, then | Pr[E2 = 1] −
Pr[E3 = 1] |≤ negl(λ).

Proof. First, by sparseness of PFE and correctness of iO, for any i ∈ [1, Q], C∗i
differs with C∗Q on only a negligible fraction of inputs. Then, by the unremoving-

admissibility of A, C̃ differs with C∗Q on only a negligible fraction of inputs.

Therefore, for a randomly sampled x, C̃(x) 6= C∗Q(x) with only a negligible prob-
ability. Finally, by the union bound, with all but negligible probability, for all
ind ≤ msg∗1 that Test2(ind,−,−,−, C̃, C∗Q) is invoked in step 5 of Game 2, we

have Test2(ind,−,−,−, C̃, C∗Q) = 1. This completes the proof of Claim 11.

Claim 12. If Lemma C.4 holds, then | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. Claim 12 comes from the multiple challenges version of Lemma C.4 by a
direct reduction, where the latter is implied by Lemma C.4 as we have discussed
in Remark C.2.

Claim 13. If Lemma C.5 holds, then | Pr[E4 = 1]− Pr[E5 = 1] |≤ negl(λ).

Proof. Claim 13 comes from the multiple challenges version of Lemma C.5 by a
direct reduction, where the latter is implied by Lemma C.5 as we have discussed
in Remark C.2.

Claim 14. If both G and G′ are pseudorandom generators, PFE has sparseness,
iO has correctness, then | Pr[E5 = 1]− Pr[E6 = 1] |≤ negl(λ).

49



Proof. First, by the unremoving-admissibility of A, sparseness of PFE and cor-
rectness of iO, C̃ differs with PRF . Eval(k∗, ·) on only a negligible fraction of
inputs. Thus, for a random or pseudorandom input x, C̃(x) 6= PRF . Eval(k∗, x)
with only a negligible probability. Therefore, with all but negligible probabil-
ity, replacing C̃ with PRF . Eval(k∗, ·) will not change the output of the Test

algorithm.

Claim 15. If F has pseudorandomness, then | Pr[E6 = 1]−Pr[E7 = 1] |≤ negl(λ).

Proof. Let a1, . . . , ad
$← {0, 1} l2 , t1 = G′(a1), . . . , td = G′(ad), b = H(PRF . Eval(k∗,

G(t1)), . . . ,PRF . Eval(k∗,G(td))) and k′ = F . Eval(K, t1‖ . . . ‖td‖b). It is suffi-
cient to prove that k∗ = k′ with only a negligible probability.

This comes from the pseudorandomness of F directly since both t1‖ . . . ‖td‖b
and k∗ can be computed without knowing the secret key K of F.

Claim 16. If PRF has weak key-injectivity, then | Pr[E7 = 1] − Pr[E8 = 1] |≤
negl(λ).

Proof. It is sufficient to prove that Test4(ind,−,−,−,PRF . Eval(k∗, ·), k∗,K)
equals to 0 with all but negligible probability for any ind > msg∗Q that Test4(ind,
−,−,−,PRF . Eval(k∗, ·), k∗,K) is invoked.

We consider two cases. First, if the check in step 2.(f) is validated during the
execution of the algorithm, then the function will output 0. Otherwise, by the
weak key-injectivity of PRF, with all but negligible probability, the variable Acc
will never increase at step 2.(h), so the output will also be 0.

This completes the proof of Claim 16.

Claim 17. Pr[E8 = 1] ≤ negl(λ).

Proof. Now, in Game 8, for any invoked interval [ind1, ind2) (recall that we use
an interval [ind1, ind2) to denote the invocation of the algorithm Trace(ind1,
ind2,−,−,−,−,−,−,−)) that does not contain any message submitted to the
challenge oracle, it must belong to one of the following three cases:

1. 0 ≤ ind1 < ind2 ≤ msg∗1 . In this case, both pind1 and pind2 will be 1.
2. ∃i ∈ [2, Q],msg∗i−1 < ind1 < ind2 ≤ msg∗i . In this case, we have ρ(ind1) =
ρ(ind2), so pind1 and pind2 are outputs of the algorithm Test1 on the same in-
put. Now, let p be the probability that the check in step 2.(e) of Test1(ρ(ind1),
T,−,−,−,−) can be validated in one iteration and Acc be a random variable
for the final value of variable Acc when running Test1(ρ(ind1), T,−,−,−,
−). Then by the chernoff bounds, we have

Pr[Acc ≥ (1 +
ε

2p
) · p · T ] ≤ e−

ε2

8p+2εT = e−
λ

8p+2ε

Pr[Acc ≤ (1− ε

2p
) · p · T ] ≤ e−

ε2

8pT = e−
λ
8p

Since both p and ε do not exceed 1, both probabilities are negligible. There-
fore, we have |pind1 − pind2 | ≤ ε with all but negligible probability.
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3. msg∗Q < ind1 < ind2 ≤ 2κ. In this case, both pind1 and pind2 will be 0.

In all three cases, we have |pind1−pind2 | ≤ ε with all but negligible probability.
Thus, if q ≥ Q, by Lemma C.1, with all but negligible probability, the challenger
can obtain the set L by invoking the Test algorithm no more than q · (κ + 1)
times and L is a non-empty subset of the set {msg∗1 , . . . ,msg∗Q}. On the other
hand, if q < Q, by Lemma C.2, with all but negligible probability, the challenger
can obtain a subset of {msg∗1 , . . . ,msg∗Q} if it does not abort. In summary, in
both cases, namely, the case q ≥ Q and the case q < Q, the challenger will
output 0 with all but negligible probability. This completes the proof of Claim
17.

Combining Claim 9 to Claim 17, we can conclude that the probability that
A wins in Game 0 (i.e., in the real experiment ExptUR) is also negligible. This
completes the proof of collusion resistant unremovability.

C.3.3 Proof of Lemma C.4 In this section, we prove Lemma C.4. First,
we define the following games between a challenger and a PPT unremoving-
admissible adversary A:

• Game 0. This is the real experiment AUR1.
• Game 1. In Game 1, the challenger changes the way for generating variables

in step 5. In particular, in step 5, on receiving the circuit C̃ and ind∗, the
challenger proceeds as follows:

1. Sample t̃1, . . . , t̃d
$← {0, 1}l.

2. b̃ = H(PRF . Eval(k∗,G(t̃1)), . . . ,PRF . Eval(k∗,G(t̃d))).
3. x̃0 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ind∗)
4. x̃1 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ρ(ind∗))

5. β
$← {0, 1}.

6. Return x̃β to A.

• Game 2. This is identical to Game 1 except that the challenger samples
k∗, t̃1, . . . , t̃d and computes b̃ immediately after it generates H,K,mpk, sk in
step 1.
• Game 3. This is identical to Game 2 except that the challenger further checks

if k∗ has been submitted to the marking oracle. In particular, in step 2 and
in step 4, on receiving a query (kι,msgι), the challenger checks if kι = k∗.
It aborts and outputs 2 if this is the case; otherwise, it proceeds identically
as in Game 2.
• Game 4. This is identical to Game 3 except that the challenger changes the

way to answer the marking oracle and the challenge oracle. In particular, it
generates sk1 ← PFE . KeyGen(msk, f1) and sk2 ← PFE . KeyGen(msk, f2) in
step 2 and step 3 respectively, where f1 and f2 is defined as:

f1(t1‖ . . . ‖td‖b‖ind) =

{
t1‖ . . . ‖td‖b‖0 if t1‖ . . . ‖td‖b = t̃1‖ . . . ‖t̃d‖b̃
t1‖ . . . ‖td‖b‖ind otherwise
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f2(t1‖ . . . ‖td‖b‖ind) =


t1‖ . . . ‖td‖b‖ρ(ind) if t1‖ . . . ‖td‖b = t̃1‖ . . . ‖t̃d‖b̃

∧ind ∈ [1, 2κ)

t1‖ . . . ‖td‖b‖ind otherwise

Then in step 2 and step 4, on receiving a query (kι,msgι) (for the ιth marking
oracle query), it returns Cι ← iO(M[sk1,K,H, kι,msgι]). Also, in step 3,
on receiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger generates C∗i ←
iO(M[sk2,K,H, k

∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.

Next, we prove the indistinguishability of each consecutive pair of games and
show that the adversary A will win in the final game (Game 4) with a negligible
probability. For simplicity of notation, we use Ei to denote the output of Game
i.

Claim 18. If both G and G′ are pseudorandom generators, iO has correctness
and PFE has sparseness, then | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. To prove Claim 18, we further define the following auxiliary games:

• Game 0.1. This is identical to Game 0 except that the challenger samples

r1
$← R and r2

$← R in the beginning of step 5. Then it computes x̃0 and x̃1
as follows:

(x̃0, ỹ0) = E(ã1, . . . , ãd, b̃, ind
∗, r1)

(x̃1, ỹ1) = E(ã1, . . . , ãd, b̃, ρ(ind∗), r2)

• Game 0.2. This is identical to Game 0.1 except that the challenger computes
b̃ as follows:

b̃ = H(PRF . Eval(k∗,G(t̃1)), . . . ,PRF . Eval(k∗,G(t̃d)))

• Game 0.3. This is identical to Game 0.2 except that the challenger computes
x̃0 and x̃1 as follows:

x̃0 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ind∗)

x̃1 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ρ(ind∗))

• Game 0.4. This is identical to Game 0.3 except that the challenger samples

t̃1
$← {0, 1}l, . . . , t̃d

$← {0, 1}l.

Next, we will argue the indistinguishability between each consecutive pair of
games:

• Game 0 and Game 0.1. As either x̃0 or x̃1 will be hidden from A, the
changes in Game 0.1 are purely conceptual and will not affect the output of
the game.
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• Game 0.1 and Game 0.2. First, by the unremoving-admissibility of A, the
sparseness of PFE, and the correctness of iO, C̃ differs with PRF . Eval(k∗,
·) on only a negligible fraction of inputs. Then, by the pseudorandomness
of G and G′, which implies the pseudorandomness of G(G′(·)), C̃(G(tj)) =
PRF . Eval(k∗,G(tj)) with all but negligible probability for j ∈ [1, d]. Thus,

by the union bound, with all but negligible probability, b̃ is identically com-
puted in Game 0.1 and Game 0.2, and the indistinguishability between these
two games follows.

• Game 0.2 and Game 0.3. Since the challenger uses an obfuscated version
and an unobfuscated version of the circuit Ext to compute x̃0, x̃1 in Game
0.2 and in Game 0.3 respectively, equivalence of Pr[E0.2 = 1] and Pr[E0.3 = 1]
comes from the correctness of iO directly.

• Game 0.3 and Game 0.4. As in both games, ã1, . . . , ãd are not used except
generating t̃1, . . . , t̃d, indistinguishability of Game 0.3 and Game 0.4 comes
from the pseudorandomness of G′ directly.

• Game 0.4 and Game 1. It is easy to verify that Game 0.4 and Game 1 are
identical and the indistinguishability follows.

Claim 19. Pr[E1 = 1] = Pr[E2 = 1].

Proof. Obviously, the changes in Game 2 are purely conceptual and will not
affect the output of the game, thus, Claim 19 follows.

Claim 20. If PRF has correctness and constrained one-wayness, and iO is a
secure indistinguishability obfuscator, then | Pr[E2 = 1]− Pr[E3 = 1] |≤ negl(λ).

Proof. To prove Claim 20, we further define the following auxiliary games:

• Game 2.1. This is identical to Game 2 except that the challenger does not
use k∗ directly. More precisely, after sampling k∗, the challenger further
generates ck∗ ← PRF . Constrain(k∗, 0n) and computes y0 = PRF . Eval(k∗,
0n). Then it uses PRFck∗,y0(·) instead of PRF . Eval(k∗, ·) when computing b̃,
where for any constrained key ck of PRF and for any y ∈ {0, 1}m, PRFck,y(·)
is defined as follows:

PRFck,y(x) =

{
PRF . ConstrainEval(ck, x) Ifx 6= 0n

y Otherwise

Besides, in step 3, on receiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger

generates C∗i ← iO(M2[sk,K,H, ck∗, y0,msg
∗
i ]) for i ∈ [1, Q] and returns {C∗1,

. . . , C∗Q} back, where the circuit M2 is defined in Figure 6.
• Game 2.2. This is identical to Game 2.1 except that in step 2 and in step

4, on receiving a query (kι,msgι), the challenger checks if kι = k∗. It aborts
and outputs 2 if this is the case; otherwise, it proceeds identically as in Game
2.1.
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M2

Constant: sk,K,H, ck, y,msg
Input: x

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤ msg) ∧ (H(PRFck,y(G(t1)), . . . ,

PRFck,y(G(td))) = b)

(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) Output PRF . Eval(k′, x).

3. Otherwise, output PRFck,y(x).

Fig. 6 The circuit M2.

Next, we will argue the indistinguishability between each consecutive pair of
games.

• Game 2 and Game 2.1. By the correctness of PRF,

PRF . Eval(k∗, ·) ≡ PRFck∗,y0(·) (5)

so b̃ is identically computed in these two games. Equation (5) also implies
that the two circuits M[sk,K,H, k∗,msg∗] and M2[sk,K,H, ck∗, y0,msg

∗] are
identically evaluated on all inputs. Then, by the indistinguishability of iO,
the views of A in Game 2 and Game 2.1 are indistinguishable.

• Game 2.1 and Game 2.2. Game 2.1 and Game 2.2 are identically proceeded
as long as for all kι submitted to the marking oracle, kι 6= k∗. This occurs
with all but negligible probability due to the constrained one-wayness of
PRF.

• Game 2.2 and Game 3. Indistinguishability of Game 2.2 and Game 3 can
be argued in a similar way as that of Game 2 and Game 2.1, and we just
omit its details.

Claim 21. If PFE has iO-compatible correctness, PRF has weak key-injectivity,
H is a family of collision-resistant hash function, and iO is a secure indistin-
guishability obfuscator, then | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. As the only difference between Game 3 and Game 4 is that the adversary
A gets obfuscations of different circuits in these two games, it is sufficient to
prove that with all but negligible probability, all circuits A gets in Game 4 are
functionally equivalent to their counterparts in Game 3. More concretely, let Q′

be the number of marking oracle queries that is not aborted, we need to prove
that:

∀i ∈ [1, Q′],Pr[M[sk,K,H, ki,msgi] 6≡ M[sk1,K,H, ki,msgi]] ≤ negl(λ) (6)

∀i ∈ [1, Q],Pr[M[sk,K,H, k∗,msg∗i ] 6≡ M[sk2,K,H, k
∗,msg∗i ]] ≤ negl(λ) (7)
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First, by the iO-compatible correctness of PFE, with all but negligible prob-
ability, we have

∀x ∈ I(mpk,msk),PFE . Dec(sk, x) = PFE . Dec(sk1, x) = PFE . Dec(sk2, x) =⊥

∀x ∈ V(mpk,msk),PFE . Dec(sk1, x) = f1(PFE . Dec(sk, x))

∀x ∈ V(mpk,msk),PFE . Dec(sk2, x) = f2(PFE . Dec(sk, x))

Moreover, as ki 6= k∗ for i ∈ [1, Q′], then by the weak key-injectivity of PRF and
the collision resistance of H, we have

b̃ 6= H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d)))

with all but negligible probability. Next, we suppose the above four equations
hold, which occurs with all but negligible probability.

We start by proving Equation (6). For any i ∈ [1, Q′] and for any input x, let
µ1‖ind1 = PFE . Dec(sk, x) and µ2‖ind2 = PFE . Dec(sk1, x). Then we consider
the following three cases:

1. Case I: x ∈ I(mpk,msk). In this case, both µ1‖ind1 and µ2‖ind2 are ⊥. Thus,
both circuits will output PRF . Eval(ki, x).

2. Case II: x ∈ V(mpk,msk) and µ1 = t̃1‖ . . . ‖t̃d‖b̃. In this case, we have µ2 =

µ1. As b̃ 6= H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d))), we have both
M[sk1,K,H, ki,msgi](x) = PRF . Eval(ki, x) and M[sk,K,H, ki,msgi](x) =
PRF . Eval(ki, x).

3. Case III: x ∈ V(mpk,msk) and µ1 6= t̃1‖ . . . ‖t̃d‖b̃. In this case, we have
µ2‖ind2 = µ1‖ind1. Thus, the outputs of the two circuits are also equal on
input x.

In summary, for any i ∈ [1, Q′] and for any input, the output of the circuit
M[sk,K,H, ki,msgi] and that of the circuit M[sk1,K,H, ki,msgi] are identical.

Then, we prove Equation (7). For any i ∈ [1, Q] and for any input x, let
µ1‖ind1 = PFE . Dec(sk, x) and µ2‖ind2 = PFE . Dec(sk2, x). Then we consider
the following three cases:

1. Case I: x ∈ I(mpk,msk). In this case, both µ1‖ind1 and µ2‖ind2 are ⊥. Thus,
both circuits will output PRF . Eval(k∗, x).

2. Case II: x ∈ V(mpk,msk), µ1 = t̃1‖ . . . ‖t̃d‖b̃ and ind ∈ [1, 2κ). In this case, we
have µ2 = µ1 and ind2 = ρ(ind1). As ind1 ≤ msg∗i iff ρ(ind1) ≤ msg∗i , the
two circuits M[sk,K,H, k∗,msg∗i ] and M[sk2,K,H, k

∗,msg∗i ] are identically
evaluated.

3. Case III: Otherwise, we have µ2‖ind2 = µ1‖ind1. Thus, the outputs of the
two circuits are also equal on input x.

In summary, for any i ∈ [1, Q] and for any input, the output of the circuit
M[sk,K,H, k∗,msg∗i ] and that of the circuit M[sk2,K,H, k

∗,msg∗i ] are identical.
As with all but negligible probability, we have both Equation (6) and Equa-

tion (7) hold, Claim 21 follows.
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Claim 22. If PFE is a secure puncturable functional encryption scheme, then
Pr[E4 = 1] ≤ negl(λ).

Proof. Now, in the view of A, only sk1 and sk2 are available and each of them
decrypts identically on x̃0 and x̃1. Thus, by the adaptive indistinguishability of
PFE, the adversary can win in Game 4 with only a negligible probability.

Combining Claim 18 to Claim 22, we can conclude that the probability that
A wins in Game 0 (i.e., in the real experiment AUR1) is also negligible. This
completes the proof of Lemma C.4.

C.3.4 Proof of Lemma C.5 In this section, we prove Lemma C.5. First,
we define the following games between a challenger and a PPT unremoving-
admissible adversary A:

• Game 0. This is the real experiment AUR2.

• Game 1. In Game 1, the challenger changes the way for generating variables
in step 5. In particular, in step 5, on receiving the circuit C̃ and ind∗, the
challenger proceeds as follows:

1. Sample t̃1, . . . , t̃d
$← {0, 1}l.

2. b̃ = H(PRF . Eval(k∗,G(t̃1)), . . . ,PRF . Eval(k∗,G(t̃d))).

3. x̃0 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ind∗)
4. x̃1

$← {0, 1}n.

5. k′ = F . Eval(K, t̃1‖ . . . ‖t̃d‖b̃)
6. ỹ0 = PRF . Eval(k′, x̃0)

7. ỹ1 = PRF . Eval(k′, x̃1)

8. β
$← {0, 1}.

9. Return (x̃β , ỹβ) to A.

• Game 2. This is identical to Game 1 except that the challenger samples
k∗, t̃1, . . . , t̃d and computes b̃ immediately after it generates H,K,mpk, sk in
step 1.

• Game 3. This is identical to Game 2 except that the challenger further checks
if k∗ has been submitted to the marking oracle. In particular, in step 2 and
in step 4, on receiving a query (kι,msgι), the challenger checks if kι = k∗.
It aborts and outputs 2 if this is the case; otherwise, it proceeds identically
as in Game 2.

• Game 4. This is identical to Game 3 except that the challenger changes the
way to answer the marking oracle and the challenge oracle. In particular, it
generates sk1 ← PFE . KeyGen(msk, f1) and sk2 ← PFE . KeyGen(msk, f2) in
step 2 and step 3 respectively, where f1 and f2 is defined as:

f1(t1‖ . . . ‖td‖b‖ind) =

{
t1‖ . . . ‖td‖b‖0 if t1‖ . . . ‖td‖b = t̃1‖ . . . ‖t̃d‖b̃
t1‖ . . . ‖td‖b‖ind otherwise
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f2(t1‖ . . . ‖td‖b‖ind) =


t1‖ . . . ‖td‖b‖ρ(ind) if t1‖ . . . ‖td‖b = t̃1‖ . . . ‖t̃d‖b̃

∧ind ∈ [1, 2κ)

t1‖ . . . ‖td‖b‖ind otherwise

Then in step 2 and step 4, on receiving a query (kι,msgι) (for the ιth marking
oracle query), it returns Cι ← iO(M[sk1,K,H, kι,msgι]). Also, in step 3,
on receiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger generates C∗i ←
iO(M[sk2,K,H, k

∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.
• Game 5. This is identical to Game 4 except that the challenger computes x̃0

as follows:
x̃0 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ρ(ind∗))

Recall that as ind∗ ∈ (msg∗Q, 2
κ), ρ(ind∗) = 2κ − 1.

• Game 6. This is identical to Game 5 except that the challenger changes the
way to answer the marking oracle and the challenge oracle. In particular, in
step 2 and step 4, on receiving a query (kι,msgι) (for the ιth marking oracle
query), it returns Cι ← iO(M[sk,K,H, kι,msgι]). Also, in step 3, on receiving
Q messages {msg∗1, . . . ,msg∗Q}, the challenger generates C∗i ← iO(M[sk,K,
H, k∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.
• Game 7. This is identical to Game 6 except that the challenger computes x̃0

and x̃1 in step 1.
• Game 8. This is identical to Game 7 except that the challenger changes the

way to answer the marking oracle and the challenge oracle. In particular, it
generates sk′ ← PFE . Puncture(sk, {x̃0, x̃1}) in step 1.
Then, in step 2 and step 4, on receiving a query (kι,msgι) (for the ιth
marking oracle query), it first computes y0,ι = PRF . Eval(kι, x̃0) and y1,ι =
PRF . Eval(kι, x̃1) and sets Pι = {(x̃0, y0,ι), (x̃1, y1,ι)}. Then it returns Cι ←
iO(M3[sk′,K,H, kι,msgι,Pι]), where M3 is defined in Figure 7.
Also, in step 3, on receiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger
first computes y∗0 = PRF . Eval(k∗, x̃0) and y∗1 = PRF . Eval(k∗, x̃1) and sets
P∗ = {(x̃0, y∗0), (x̃1, y

∗
1)}. Then it generates C∗i ← iO(M3[sk′,K,H, k∗,msg∗i ,

P∗]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.

Next, we prove the indistinguishability of each consecutive pair of games and
show that the adversary A will win in the final game (Game 8) with a negligible
probability. For simplicity of notation, we use Ei to denote the output of Game
i.

Claim 23. If PRF has correctness, weak key-injectivity and constrained one-
wayness, PFE has sparseness and iO-compatible correctness, both G and G′ are
pseudorandom generators, H is a family of collision-resistant hash function, and
iO is a secure indistinguishability obfuscator, then | Pr[E0 = 1] − Pr[E4 = 1] |≤
negl(λ).

Proof. Claim 23 can be proved in a similar way as the proofs of Claim 18 to
Claim 21. It is worth noting that, as security of F is not used in the proof of
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M3

Constant: sk,K,H, k,msg,P
Input: x

1. For (xi, yi) ∈ P:
(a) If x = xi, then outputs yi

2. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
3. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤ msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,

PRF . Eval(k,G(td))) = b)
(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) Output PRF . Eval(k′, x).

4. Otherwise, output PRF . Eval(k, x).

Fig. 7 The circuit M3.

Claim 23, simulators of reductions in this proof can always handle the secret key
K of F and thus is able to generate ỹ0 and ỹ1 for the adversary.

Claim 24. If PFE is a secure puncturable functional encryption scheme, then
| Pr[E4 = 1]− Pr[E5 = 1] |≤ negl(λ).

Proof. In Game 4 (and Game 5), only sk1 and sk2 are available in the view
of A and each of them decrypts identically on x̃0 from these two games. Thus,
Indistinguishability between Game 4 and Game 5 comes from the adaptive in-
distinguishability of PFE by a direct reduction.

Claim 25. If PFE has iO-compatible correctness, PRF has weak key-injectivity,
H is a family of collision-resistant hash function, and iO is a secure indistin-
guishability obfuscator, then | Pr[E5 = 1]− Pr[E6 = 1] |≤ negl(λ).

Proof. Proof of Claim 25 is similar to the proof of Claim 21, and we just omit
the details here.

Claim 26. Pr[E6 = 1] = Pr[E7 = 1].

Proof. Obviously, the changes in Game 7 are purely conceptual and will not
affect the output of the game, thus, Claim 26 follows.

Claim 27. If PFE has punctured correctness and sparseness, PRF has weak key-
injectivity, H is a family of collision-resistant hash function, and iO is a secure
indistinguishability obfuscator, then | Pr[E7 = 1]− Pr[E8 = 1] |≤ negl(λ).

Proof. As the only difference between Game 7 and Game 8 is that the adversary
A gets obfuscations of different circuits in these two games, it is sufficient to
prove that with all but negligible probability, all circuits A gets in Game 8 are
functionally equivalent to their counterparts in Game 7. More concretely, let Q′

be the number of marking oracle queries that is not aborted, we need to prove
that:

∀i ∈ [1, Q′],Pr[M[sk,K,H, ki,msgi] 6≡ M3[sk′,K,H, ki,msgi,Pi]] ≤ negl(λ) (8)

58



∀i ∈ [1, Q],Pr[M[sk,K,H, k∗,msg∗i ] 6≡ M3[sk′,K,H, k∗,msg∗i ,P∗]] ≤ negl(λ)
(9)

First, by the punctured correctness of PFE, with all but negligible probability,
we have

∀x ∈ {0, 1}n\{x̃0, x̃1},PFE . Dec(sk, x) = PFE . Dec(sk′, x)

In addition, by the correctness of PFE, with all but negligible probability, we
have

PFE . Dec(sk, x̃0) = t̃1‖ . . . ‖t̃d‖b̃‖1κ

Also, by the sparseness of PFE, with all but negligible probability, we have

PFE . Dec(sk, x̃1) =⊥

Besides, as ki 6= k∗ for i ∈ [1, Q′], then by the weak key-injectivity of PRF and
the collision resistance of H, we have

b̃ 6= H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d)))

with all but negligible probability. Next, we suppose the above four equations
holds, which occurs with all but negligible probability.

We start by proving Equation (8). For any i ∈ [1, Q′] and for any input x,
we consider the following three cases:

1. Case I: x 6∈ {x̃0, x̃1}. In this case, the check in step 1 of circuit M3 will not
be validated and PFE . Dec(sk, x) = PFE . Dec(sk′, x). Thus the outputs of
the two circuits M[sk,K,H, ki,msgi] and M3[sk′,K,H, ki,msgi,Pi] are equal
on input x.

2. Case II: x = x̃0. In this case, M3[sk′,K,H, ki,msgi,Pi](x) = y0,i = PRF . Eval(ki,

x). Moreover, as b̃ 6= H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d))), we
also have M[sk,K,H, ki,msgi](x) = PRF . Eval(ki, x).

3. Case III: x = x̃1. In this case, M3[sk′,K,H, ki,msgi,Pi](x) = y1,i = PRF . Eval(ki,
x). Moreover, as PFE . Dec(sk, x̃1) =⊥, we also have M[sk,K,H, ki,msgi](x) =
PRF . Eval(ki, x).

In summary, for any i ∈ [1, Q′] and for any input, the output of the circuit M[sk,
K,H, ki,msgi] and that of the circuit M3[sk′,K,H, ki,msgi,Pi] are identical.

Then, we prove Equation (9). For any i ∈ [1, Q] and for any input x, we
consider the following three cases:

1. Case I: x 6∈ {x̃0, x̃1}. In this case, the check in step 1 of circuit M3 will
not be validated and PFE . Dec(sk, x) = PFE . Dec(sk′, x). Thus the outputs
of the two circuits M[sk,K,H, k∗,msg∗i ] and M3[sk′,K,H, k∗,msg∗i ,P∗] are
equal on input x.

2. Case II: x = x̃0. In this case, M3[sk′,K,H, k∗,msg∗i ,P∗](x) = y∗0 = PRF . Eval(k∗,
x). Moreover, as 2κ − 1 > msg∗Q (otherwise, the lemma holds trivially), we
also have M[sk,K,H, k∗,msg∗i ](x) = PRF . Eval(k∗, x).
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3. Case III: x = x̃1. In this case, M3[sk′,K,H, k∗,msg∗i ,P∗](x) = y∗1 = PRF . Eval(k∗,
x). Moreover, as PFE . Dec(sk, x̃1) =⊥, we also have M[sk,K,H, k∗,msg∗i ](x) =
PRF . Eval(k∗, x).

In summary, for any i ∈ [1, Q] and for any input, the output of the circuit M[sk,
K,H, k∗,msg∗i ] and that of the circuit M3[sk′,K,H, k∗,msg∗i ,P∗] are identical.

As with all but negligible probability, we have both Equation (8) and Equa-
tion (9) hold, Claim 27 follows.

Claim 28. If PFE has ciphertext pseudorandomness, then Pr[E8 = 1] ≤ negl(λ).

Proof. In Game 8, the two challenge inputs x̃0 and x̃1 are delt with identically
once generated. Thus, Claim 28 comes from the ciphertext pseudorandomness
of PFE via a direct reduction.

Combining Claim 23 to Claim 28, we can conclude that the probability that
A wins in Game 0 (i.e., in the real experiment AUR2) is also negligible. This
completes the proof of Lemma C.5.

C.3.5 Proof of Lemma C.6 In this section, we prove Lemma C.6. First,
we define the following games between a challenger and a PPT unremoving-
admissible adversary A:

• Game 0. This is the real experiment AUR3.

• Game 1. In Game 1, the challenger changes the way for generating variables
in step 5. In particular, in step 5, on receiving the circuit C̃ and ind∗, the
challenger proceeds as follows:

1. Sample t̃1, . . . , t̃d
$← {0, 1}l.

2. b̃ = H(PRF . Eval(k∗,G(t̃1)), . . . ,PRF . Eval(k∗,G(t̃d))).

3. x̃0 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ind∗)
4. x̃1

$← {0, 1}n.

5. β
$← {0, 1}.

6. Return x̃β to A.

• Game 2. This is identical to Game 1 except that the challenger samples
k∗, t̃1, . . . , t̃d and computes b̃ immediately after it generates H,K,mpk, sk in
step 1.

• Game 3. This is identical to Game 2 except that the challenger further checks
if k∗ has been submitted to the marking oracle. In particular, in step 2 and
in step 4, on receiving a query (kι,msgι), the challenger checks if kι = k∗.
It aborts and outputs 2 if this is the case; otherwise, it proceeds identically
as in Game 2.

• Game 4. This is identical to Game 3 except that the challenger changes the
way to answer the marking oracle and the challenge oracle. In particular, it
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generates sk1 ← PFE . KeyGen(msk, f1) and sk2 ← PFE . KeyGen(msk, f2) in
step 2 and step 3 respectively, where f1 and f2 is defined as:

f1(t1‖ . . . ‖td‖b‖ind) =

{
t1‖ . . . ‖td‖b‖0 if t1‖ . . . ‖td‖b = t̃1‖ . . . ‖t̃d‖b̃
t1‖ . . . ‖td‖b‖ind otherwise

f2(t1‖ . . . ‖td‖b‖ind) =


t1‖ . . . ‖td‖b‖ρ(ind) if t1‖ . . . ‖td‖b = t̃1‖ . . . ‖t̃d‖b̃

∧ind ∈ [1, 2κ)

t1‖ . . . ‖td‖b‖ind otherwise

Then in step 2 and step 4, on receiving a query (kι,msgι) (for the ιth marking
oracle query), it returns Cι ← iO(M[sk1,K,H, kι,msgι]). Also, in step 3,
on receiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger generates C∗i ←
iO(M[sk2,K,H, k

∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.
• Game 5. This is identical to Game 4 except that the challenger computes x̃0

as follows:
x̃0 ← PFE . Enc(mpk, t̃1‖ . . . ‖t̃d‖b̃‖ρ(ind∗))

Recall that as ind∗ ∈ [1,msg∗1 ], ρ(ind∗) = 1.
• Game 6. This is identical to Game 5 except that the challenger changes the

way to answer the marking oracle and the challenge oracle. In particular, in
step 2 and step 4, on receiving a query (kι,msgι) (for the ιth marking oracle
query), it returns Cι ← iO(M[sk,K,H, kι,msgι]). Also, in step 3, on receiving
Q messages {msg∗1, . . . ,msg∗Q}, the challenger generates C∗i ← iO(M[sk,K,
H, k∗,msg∗i ]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.
• Game 7. This is identical to Game 6 except that the challenger computes x̃0

and x̃1 in step 1.
• Game 8. This is identical to Game 7 except that the challenger changes the

way to answer the challenge oracle. More precisely, in step 3, on receiving Q

messages {msg∗1, . . . ,msg∗Q}, the challenger first samples y∗1
$← {0, 1}m and

sets P∗ = {(x̃1, y∗1)}. Then it generates C∗i ← iO(M3[sk,K,H, k∗,msg∗i ,P∗])
for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.
• Game 9. This is identical to Game 8 except that the challenger changes the

way to answer the challenge oracle. More precisely, in step 3, on receiving Q

messages {msg∗1, . . . ,msg∗Q}, the challenger first samples y∗0 , y
∗
1

$← {0, 1}m
and sets P∗ = {(x̃0, y∗0), (x̃1, y

∗
1)}. Then it generates C∗i ← iO(M3[sk,K,H,

k∗,msg∗i ,P∗]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back.
• Game 10. This is identical to Game 9 except that the challenger changes the

way to answer the marking oracle and the challenge oracle. In particular, it
generates sk′ ← PFE . Puncture(sk, {x̃0, x̃1}) in step 1.
Then, in step 2 and step 4, on receiving a query (kι,msgι) (for the ιth
marking oracle query), it first computes y0,ι = PRF . Eval(kι, x̃0) and y1,ι =
PRF . Eval(kι, x̃1) and sets Pι = {(x̃0, y0,ι), (x̃1, y1,ι)} Then it returns Cι ←
iO(M3[sk′,K,H, kι,msgι,Pι]).
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Also, in step 3, on receiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger

first samples y∗0 , y
∗
1

$← {0, 1}m and sets P∗ = {(x̃0, y∗0), (x̃1, y
∗
1)}. Then it

generates C∗i ← iO(M3[sk′,K,H, k∗,msg∗i ,P∗]) for i ∈ [1, Q] and returns {C∗1,
. . . , C∗Q} back.

Next, we prove the indistinguishability of each consecutive pair of games and
show that the adversary A will win in the final game (Game 10) with a negligible
probability. For simplicity of notation, we use Ei to denote the output of Game
i.

Claim 29. If PRF has correctness, weak key-injectivity and constrained one-
wayness, PFE is a secure puncturable functional encryption scheme, both G and
G′ are pseudorandom generators, H is a family of collision-resistant hash func-
tion, and iO is a secure indistinguishability obfuscator, then | Pr[E0 = 1]−Pr[E7 =
1] |≤ negl(λ).

Proof. Claim 29 can be proved in a similar way as the proofs of Claim 23 to
Claim 26.

Claim 30. If PRF is a secure puncturable PRF with weak key-injectivity, PFE
has sparseness, and iO is a secure indistinguishability obfuscator, then | Pr[E7 =
1]− Pr[E8 = 1] |≤ negl(λ).

Proof. To prove Claim 30, we further define the following auxiliary games:

• Game 7.1. This is identical to Game 7 except that the challenger changes
the way to generate b̃. More precisely, after sampling k∗ and x̃1 in step 1,
the challenger generates ck∗ ← PRF . Constrain(k∗, x̃1). Then it computes

b̃ = H(PRF . ConstrainEval(ck∗,G(t̃1)), . . . ,PRF . ConstrainEval(ck∗,G(t̃d)))

• Game 7.2. This is identical to Game 7.1 except that the challenger uses
ck∗ instead of k∗ to test if k∗ has been submitted to the marking oracle. In
particular, on receiving a query (kι,msgι) in step 2 and step 4, the challenger
first chooses an arbitrary x ∈ {0, 1}n that x 6= x̃1. Then it aborts and outputs
2 if and only if

PRF . Eval(kι, x) = PRF . ConstrainEval(ck∗, x)

• Game 7.3. This is identical to Game 7.2 except that the challenger changes
the way to answer the challenge oracle. In more detail, in step 3, on re-
ceiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger first computes y∗1 =

PRF . Eval(k∗, x̃1) and sets P∗ = {(x̃1, y∗1)}. Then it generates C∗i ← iO(M4[sk,
K,H, ck∗,msg∗i ,P∗]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q} back, where the

circuit M4 is defined in Figure 8.
• Game 7.4. This is identical to Game 7.3 except that the challenger samples

y∗1
$← {0, 1}m instead of computing it from x̃1.
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M4

Constant: sk,K,H, ck,msg,P
Input: x

1. For (xi, yi) ∈ P:
(a) If x = xi, then outputs yi

2. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
3. If (t1‖ . . . ‖td‖b‖ind 6=⊥)∧(ind ≤ msg)∧(H(PRF . ConstrainEval(ck,G(t1)), . . . ,

PRF . ConstrainEval(ck,G(td))) = b)

(a) k′ = F . Eval(K, t1‖ . . . ‖td‖b).
(b) Output PRF . Eval(k′, x).

4. Otherwise, output PRF . ConstrainEval(ck, x).

Fig. 8 The circuit M4.

Next, we will argue the indistinguishability between each consecutive pair of
games:

• Game 7 and Game 7.1. By the correctness of PRF, b̃ is differently computed
in Game 7 and Game 7.1 only if there exists j ∈ [1, d] that x̃1 = G(t̃j). This
can occur with only a negligible probability since x̃1 is sampled uniformly in
{0, 1}n.

• Game 7.1 and Game 7.2. The outputs of Game 7.1 and Game 7.2 differ
only if there exists ki that ki 6= k∗ and PRF . Eval(ki, x) = PRF . ConstrainEval(ck∗,
x) = PRF . Eval(k∗, x), which occurs with only a negligible probability due
to the weak key-injectivity of PRF.

• Game 7.2 and Game 7.3. As the only difference between Game 7.2 and
Game 7.3 is that the adversary A gets obfuscations of different circuits in
these two games, it is sufficient to prove that with all but negligible prob-
ability, all circuits A gets in Game 7.3 are functionally equivalent to their
counterparts in Game 7.2. More concretely, we need to prove that:

∀i ∈ [1, Q],Pr[M[sk,K,H, k∗,msg∗i ] 6≡ M4[sk,K,H, ck∗,msg∗i ,P∗]] ≤ negl(λ)
(10)

First, as x̃1 is sampled uniformly from {0, 1}n, the probability that it falls
in the range of G, which contains only 2l elements in {0, 1}n, is negligible,
thus we have

∀t ∈ {0, 1}l,G(t) 6= x̃1

Also, by the sparseness of PFE, with all but negligible probability, we have

PFE . Dec(sk, x̃1) =⊥

Next, we suppose the above two equations hold, which occurs with all but
negligible probability.
Now, for any i ∈ [1, Q] and for any input x, we consider the following two
cases:
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1. Case I: x 6= x̃1. In this case, the check in step 1 of circuit M4 will not
be validated. Moreover, PRF . ConstrainEval(ck∗, ·) is not required to
compute on x̃1, thus the outputs of the two circuits M[sk,K,H, k∗,msg∗i ]
and M4[sk,K,H, ck∗,msg∗i ,P∗] are equal on input x.

2. Case II: x = x̃1. In this case, M4[sk,K,H, ck∗,msg∗i ,P∗](x) = y∗1 =
PRF . Eval(k∗, x). Moreover, as PFE . Dec(sk, x̃1) =⊥, we also have M[sk,
K,H, k∗,msg∗i ](x) = PRF . Eval(k∗, x).

As with all but negligible probability, Equation (10) holds, indistinguisha-
bility between Game 7.2 and Game 7.3 follows.
• Game 7.3 and Game 7.4. Indistinguishability between Game 7.3 and Game

7.4 comes from the constrained pseudorandomness of PRF via a direct re-
duction.
• Game 7.4 and Game 8. In Game 8, we reverse changes introduced in Game

7.1 to Game 7.3. Thus, indistinguishability between Game 7.4 and Game 8
can be proved in a similar way as that of indistinguishabilities from Game 7
to Game 7.3.

Claim 31. If PRF is a secure puncturable PRF with weak key-injectivity, F
is a secure prefix puncturable PRF, H is a family of collision-resistant hash
function, PFE has correctness, and iO is a secure indistinguishability obfuscator,
then | Pr[E8 = 1]− Pr[E9 = 1] |≤ negl(λ).

Proof. To prove Claim 31, we further define the following auxiliary games:

• Game 8.1. This is identical to Game 8 except that the challenger changes
the way to generate E. More precisely, the challenger computes

CK ← F . Constrain(K, t̃1‖ . . . ‖t̃d‖b̃)

after generating K. Then it computes E as

E← iO(Ext1[mpk,CK])

Recall that the circuit Ext1 is defined in Figure 4.
• Game 8.2. This is identical to Game 8.1 except that the challenger changes

the way to answer marking oracles. More precisely, in step 2 and step 4, on
receiving a query (kι,msgι), the challenger returns Cι ← iO(M5[sk, CK,H,
kι,msgι]), where M5 is defined in Figure 9.
• Game 8.3. This is identical to Game 8.2 except that the challenger changes

the way to answer the challenge oracle. More precisely, in step 3, on re-
ceiving Q messages {msg∗1, . . . ,msg∗Q}, the challenger first computes k̂′ =

F . Eval(K, t̃1 . . . ‖t̃d‖b̃) and generates a circuit F = PRF . Eval(k̂′, ·). Then

it samples y∗1
$← {0, 1}m and sets P∗ = {(x̃1, y∗1)}. Next, it generates C∗i ←

iO(M6[sk, CK,H, k∗,msg∗i , µ̃, F,P∗]) for i ∈ [1, Q] and returns {C∗1, . . . , C∗Q}
back, where µ̃ = t̃1‖ . . . ‖t̃d‖b̃ and M6 is defined in Figure 9.
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• Game 8.4. This is identical to Game 8.3 except that the challenger generates
k̂′ ← PRF . KeyGen(1λ) instead of generating it from K and ũ. Recall that

this is equal to sample k̂′ uniformly at random from K.
• Game 8.5. This is identical to Game 8.4 except that the challenger changes

the way to generate circuit F. In particular, it first computes ĉk
′
← PRF . Constrain(k̂′,

x̃0) and y∗0 = PRF . Eval(k̂′, x̃0). Then, it sets

F(x) =

{
PRF . ConstrainEval(ĉk

′
, x) if x 6= x̃0

y∗0 Otherwise

• Game 8.6. This is identical to Game 8.5 except that the challenger samples

y∗0
$← {0, 1}m.

• Game 8.7. This is identical to Game 8.6 except that the challenger sets P∗
as P∗ = {(x̃0, y∗0), (x̃1, y

∗
1)}.

M5

Constant: sk, CK,H, k,msg
Input: x

1. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
2. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤ msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,

PRF . Eval(k,G(td))) = b)
(a) k′ = F . ConstrainEval(CK, t1‖ . . . ‖td‖b).
(b) Output PRF . Eval(k′, x).

3. Otherwise, output PRF . Eval(k, x).

M6

Constant: sk, CK,H, k,msg, µ, F,P
Input: x

1. For (xi, yi) ∈ P:
(a) If x = xi, then outputs yi

2. (t1‖ . . . ‖td‖b‖ind) = PFE . Dec(sk, x).
3. If (t1‖ . . . ‖td‖b‖ind 6=⊥) ∧ (ind ≤ msg) ∧ (H(PRF . Eval(k,G(t1)), . . . ,

PRF . Eval(k,G(td))) = b)
(a) If t1‖ . . . ‖td‖b = µ:

i. Output F(x).

(b) k′ = F . ConstrainEval(CK, t1‖ . . . ‖td‖b).
(c) Output PRF . Eval(k′, x).

4. Otherwise, output PRF . Eval(k, x).

Fig. 9 The circuits M5 and M6.

Next, we will argue the indistinguishability between each consecutive pair of
games:

• Game 8 and Game 8.1. As the only difference between Game 8 and Game
8.1 is that the adversary A gets obfuscations of different circuits in these
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two games, it is sufficient to prove that with all but negligible probability, all
circuits A gets in Game 8.1 are functionally equivalent to their counterparts
in Game 8. More concretely, we need to prove

Pr[Ext[mpk,K] 6≡ Ext1[mpk,CK]] ≤ negl(λ) (11)

For any input (a1, . . . , ad, b, ind, r), the two circuits Ext[mpk,K] and Ext1[mpk,
CK] compute differently only if (G′(a1), . . . ,G′(ad)) = (t̃1, . . . , t̃d). Such in-
put exists with only a negligible probability since for any j ∈ [1, d], t̃j is
chosen uniformly at random from {0, 1}l and the probability that it falls in

the range of G′, which contains only 2
l
2 elements, is negligible.

• Game 8.1 and Game 8.2. As the only difference between Game 8.1 and
Game 8.2 is that the adversary A gets obfuscations of different circuits in
these two games, it is sufficient to prove that with all but negligible prob-
ability, all circuits A gets in Game 8.2 are functionally equivalent to their
counterparts in Game 8.1. More concretely, let Q′ be the number of marking
oracle queries that is not aborted, we need to prove that:

∀i ∈ [1, Q′],Pr[M[sk,K,H, ki,msgi] 6≡ M5[sk, CK,H, ki,msgi]] ≤ negl(λ)
(12)

First, as ki 6= k∗ for i ∈ [1, Q′], by the weak key-injectivity of PRF and the
collision resistance of H, we have

b̃ 6= H(PRF . Eval(ki,G(t̃1)), . . . ,PRF . Eval(ki,G(t̃d)))

with all but negligible probability. Thus, with all but negligible probability, in
circuit M5[sk, CK,H, ki,msgi], PRF . ConstrainEval(CK, ·) is not required
to compute on t̃1‖ . . . ‖t̃d‖b̃. Then, by the correctness of PRF, equivalence of
M[sk,K,H, ki,msgi] and M5[sk, CK,H, ki,msgi] follows.
• Game 8.2 and Game 8.3. It is easy to see that by the correctness of F,

M3[sk,K,H, k∗,msg∗i ,P∗] ≡ M6[sk, CK,H, k∗,msg∗i , µ, F,P∗]

Thus, indistinguishability of Game 8.2 and Game 8.3 comes from indistin-
guishability of iO directly.
• Game 8.3 and Game 8.4. Indistinguishability of Game 8.3 and Game 8.4

comes from punctured pseudorandomness of F by a direct reduction.
• Game 8.4 and Game 8.5. By the correctness of PRF, the circuit F in

Game 8.4 and that in Game 8.5 are functionally equivalent. Thus, the circuit
M6[sk, CK,H, k∗,msg∗i , µ, F,P∗] in Game 8.4 and that in Game 8.5 are also
functionally equivalent. As a result, indistinguishability of Game 8.4 and
Game 8.5 comes from indistinguishability of iO directly.
• Game 8.5 and Game 8.6. Indistinguishability of Game 8.5 and Game 8.6

comes from punctured pseudorandomness of PRF by a direct reduction.
• Game 8.6 and Game 8.7. To prove indistinguishability of Game 8.6 and

Game 8.7, we need to show that M6[sk, CK,H, k∗,msg∗i , µ, F,P∗] is identi-
cally evaluated in these two games. First, as x̃1 is sampled uniformly, with
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all but negligible probability, we have x̃0 6= x̃1. Thus, it is sufficient to prove
that in Game 8.6 we also have M6[sk, CK,H, k∗,msg∗i , µ, F,P∗](x̃0) = y∗0 .
This comes from the correctness of PFE straightforwardly.

• Game 8.7 and Game 9. In Game 9, we reverse changes introduced in Game
8.1 to Game 8.5. Thus, indistinguishability between Game 8.7 and Game 9
can be proved in a similar way as that of indistinguishabilities from Game 8
to Game 8.5.

Claim 32. If PFE has punctured correctness and sparseness, PRF has weak key-
injectivity, H is a family of collision-resistant hash function, and iO is a secure
indistinguishability obfuscator, then | Pr[E9 = 1]− Pr[E10 = 1] |≤ negl(λ).

Proof. Proof of Claim 32 can be proved in a similar way as the proof of Claim
27 and we omit the details here.

Claim 33. If PFE has ciphertext pseudorandomness, then Pr[E10 = 1] ≤ negl(λ).

Proof. In Game 10, the two challenge inputs x̃0 and x̃1 are delt with identically
once generated. Thus, Claim 33 comes from the ciphertext pseudorandomness
of PFE via a direct reduction.

Combining Claim 29 to Claim 33, we can conclude that the probability that
A wins in Game 0 (i.e., in the real experiment AUR3) is also negligible. This
completes the proof of Lemma C.6.
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