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Abstract

This work shows that weighted majority voting games occur in cryptocurrencies. In particular,
two such games are highlighted. The first game, which we call the Rule Game, pertains to the
scenario where the entities in the system engage in a voting procedure to accept or reject a change
of rules. The second game, which we call the Attack Game, refers to the scenario where a group of
entities in a cryptocurrency system can form a coalition to engage in double spending. For the Rule
Game we provide analysis to argue that the Coleman’s preventive power measure is the appropriate
tool for measuring a player’s influence in the game while for the Attack Game, we define a notion of
stability based on the notion of minimal winning coalitions. For both the Rule Game and the Attack
Game, we show how to analyse the games based on a snapshot of real world data for Bitcoin which
is presently the most popular of all the cryptocurrencies.

1 Introduction

A cryptocurrency is a form of digital currency which is powered by tools from modern cryptography.
The first and to date the most successful cryptocurrency called Bitcoin was proposed by the eponymous
Satoshi Nakamoto (Nakamoto, 2008). Since then many cryptocurrencies have been proposed1. Bitcoin,
though remains the most popular and valuable cryptocurrency. In 2017, the exchange value of 1 Bitcoin
rose from about 1000 US Dollars to about 10000 US Dollars2.

The most remarkable feature of Bitcoin and other similar cryptocurrencies is that it is not backed
by any central authority. This makes such currencies stand apart from all fiat currencies that have been
proposed till date. It is perhaps due to this unique feature that cryptocurrencies are sometimes said
to be a disruptive technology with the potential to revolutionise the socio-economic framework of the
future.

From an academic point of view, the success and continuously growing popularity of cryptocurrencies
make them a very interesting object of research. There are multiple dimensions to such research. Apart
from the questions arising from the underlying cryptography, there are many questions which arise from
the standpoint of economics. In this work, we will look at two such questions arising from the viewpoint
of cooperative game theory, or more particularly voting games.

1https://en.wikipedia.org/wiki/List_of_cryptocurrencies
2https://en.wikipedia.org/wiki/History_of_bitcoin#2017
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Voting Games

Formation of coalitions of people or entities with the intention of achieving some common goal occur
in various socio-economic settings. A typical example is the process of decision making in committees.
For a resolution to be passed, it must receive a designated amount of support. A coalition of members
of the committee can provide the necessary support for the resolution to be adopted, or, it may also
block the resolution from being adopted. Such decision making procedures have been studied in the
literature as voting games. At an abstract level, a voting game consists of a set of players and the game
is given by a function which assigns a value of 0 or 1 to any coalition of players, where 0 denotes that
the coalition is losing while 1 denotes that the coalition is winning.

Of practical interest are weighted majority voting games. In such games, each player has a pre-
assigned weight. A coalition wins if the sum of the weights of all the players in the coalition is at least
a certain pre-specified fraction q of the sum total of the weights of all the players. A typical example of
a weighted majority voting game is a company boardroom where the weights represent the amount of
shares that board members own. In the domain of public policy, two well known examples of weighted
majority voting games are those arising in the decision making procedures of the International Monetory
fund and the European Union.

There is an extensive literature on voting games in general and also weighted majority voting games
in particular. One of the goals of the theory is to be able to capture the power or influence that a
player has in the game. Two central concepts that arise are the notion of a swing and that of a minimal
winning coalition. A player is a swing in a coalition if the coalition is winning, it contains the player
and becomes losing if the player is dropped from the coalition. The number of coalitions in which a
player is a swing can be taken as a measure of the power of the player in the game. A minimal winning
coalition is a winning coalition such that if any player is dropped from the coalition, then it becomes
a losing coalition. In other words, every player in a minimal winning coalition is a swing player. The
notion of minimal winning coalition has also been used to provide alternative ways of capturing the
notion of power of a player.

(Shapley, 1953; Shapley and Shubik, 1954) introduced the idea of measuring power in a voting game.
(Banzhaf, 1965) suggested the use of swings to measure voting power of players. Later work (Coleman,
1971) provided alternative proposals for capturing the notions of preventive and initiative powers of play-
ers. Voting power measures based on the idea of minimal winning coalitions were suggested in (Holler,
1982; Holler and Packel, 1983; Deegan and Packel, 1978). (Felsenthal and Machover, 1998) provides
an extensive overview of voting games and an introduction to the topic can be found in (Chakravarty
et al., 2015).

Voting Games in Cryptocurrencies

In most cryptocurrencies, generation of new currency requires computational power. The process of
creating new currency is called mining. There are commercial entities called miners who are engaged in
the task of mining. For Bitcoin, there is a sophisticated ecosystem for mining new coins3. At any point
of time, there is a total amount of computational power that is engaged in the process of mining. This
is usually specified in terms of the so-called “hash rate” which we explain later. Different miners have
different proportions of the total hash rate of the entire system. For certain aspects of a cryptocurrency,
the say of a miner is proportional to the fraction of the total hash rate that it possesses. This feature
indicates the presence of an implicit voting game in cryptocurrencies.

In this work, we show how weighted majority voting games arise in cryptocurrencies. The players
in the game are the miners and the weight of a miner is proportional to the fraction of the total hash

3https://en.bitcoin.it/wiki/Mining
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rate that it controls. To completely specify the game, it is required to specify the winning threshold.
The value of this threshold depends upon the particular situation. We identify two such scenarios.

The rules governing cryptocurrencies are described in terms of protocols which are initially specified
at the time of inception. At later points of time, these rules (or protocols) can be modified. There is
a well defined modification procedure. In the context of Bitcoin, this is called a Bitcoin Improvement
Protocol (BIP). We show that a BIP can be viewed as a weighted majority voting game among the
miners where the winning threshold q is 0.95. More generally, we use the term Rule Game to denote
the voting games arising in the context of change of rule of any cryptocurrency. The purpose of having
a high winning threshold in a Rule Game is to achieve near unanimity for a change of rule to take place.
From the viewpoint of voting games, having a high winning threshold results in several miners becoming
blockers. We discuss in details the appropriate measure of voting power that is applicable in this context.
Our analysis reveal that the Coleman preventive power measure (Coleman, 1971) and the Holler public
good measure (Holler, 1982) satisfy some basic intuition for measuring the influence of a miner. Further,
we prove that the Coleman preventive power measure increases monotonically with the weights while
the Holler public good index does not necessarily do so. It is perhaps an intuitive requirement that the
powers of voters increase monotonically with their weights. Based on this intuition, we propose the use
of Coleman preventive power measure as the appropriate tool for measuring a miner’s influence in a
Rule Game.

Cryptographic considerations show that if a coalition of miners acquire at least 51% of the hash rate
of the system, then with non-negligible probability, such a coalition can engage in double spending of the
currency. So, it is of interest to consider games where the winning threshold q is set to 0.51. We call such
a game to be an Attack Game. From the viewpoint of voting games, several questions can be formulated
to analyse the Attack Game. These are based upon the crucial notion of minimal winning coalitions.
For example, one may wish to know the minimum cardinality of any minimal winning coalition; another
relevant question would be the minimum cardinality of any minimal winning coalition containing a
particular miner. We formulate several such questions and finally come up with a notion of stability of
a cryptocurrency against the Attack Game.

Snapshot Analysis

To actually compute the power measures and the minimal winning coalitions in a cryptocurrency game,
it is required to obtain the weights of the miners which are their hash rates. The values of the hash
rates are not directly available. Instead, they need to be estimated. A simple estimate can be obtained
based on the assumption that the hash rate is proportional to the number of blocks mined by a miner
in a given interval of time. This provides a snapshot estimate of the actual hash rate of the miners. For
Bitcoin, we use such a snapshot estimate and show how to perform a meaningful analysis of the Rule
and the Attack Games. Performing similar snapshot analysis at regular time intervals will provide a
good understanding of the socio-economic dynamics of Bitcoin. More generally, such analysis can also
be performed for other cryptocurrencies.

Related works: There is already a fairly large and growing literature on cryptocurrencies4. Some
game theoretic aspects of cryptocurrencies have already been studied (Kiayias et al., 2016; Lewenberg
et al., 2015; Fisch et al., 2017; Kroll et al., 2013). To the best of our knowledge, the application of
weighted majority voting games to cryptocurrencies has not been considered earlier.

4https://github.com/decrypto-org/blockchain-papers
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2 An Overview of Cryptocurrencies

In this section we provide a high level overview of cryptocurrencies. The purpose of this overview is
to provide a sufficient background for understanding how voting games arise in cryptocurrencies. For
further details, the reader may consult Narayanan et al. (2016).

2.1 Cryptographic Tools

Modern cryptography has many tools to enable various tasks in the present digital era. Two such
cryptographic components are used in implementing cryptocurrencies. A brief overview of these two
primitives are provided below.

Hash functions: A hash function maps a domain D to a range R where D is the set of all binary
strings having some maximum possible length and R is the set of all binary strings of some fixed length.
For example, D could be the set of all strings of length less than 264 whereas R could be the set of all
strings of length equal to 256 bits. In this case, the cardinality of D is 22

64−1 − 1 and the cardinality of
R is 2256. So, a hash function maps a very large domain to a comparatively smaller range. In absolute
terms, however, the range itself is quite large. Since the domain of a hash function is larger than its
range, there will be two (or more) distinct strings in the domain which are mapped to the same string
in the range. Such a pair of strings is called a collision. For cryptocurrency applications, there are three
requirements on a hash function.

Efficient to evaluate: Given a string in the domain, it should be possible to compute the output of the
hash function very fast. The speed of evaluation of the hash function can often be improved by
using very efficient software implementation or customized hardware implementation.

Collision resistance: As mentioned above, a hash function will necessarily have collisions. The require-
ment of collision resistance is met by a hash function if it is computationally difficult to actually
find a collision.

One-way: Given a string in the range, it should be computationally difficult to find a pre-image for
it. In other words, while the hash function should be very efficient to evaluate in the forward
direction, it should be computationally difficult to invert the function.

Examples of practical hash functions which are efficient to evaluate and which are considered to be
collision resistant and one-way are SHA-256, RIPEMD160 and SHA-3 among others. The first two are
used in Bitcoin.

Digital signature scheme: This is the counterpart of usual handwritten signatures and have many
applications in enabling e-commerce. While a digital signature is not a complete analogue of hand-
written signatures, certain facets of hand-written signatures are indeed captured by digital signatures.
The two main aspects of a digital signature scheme are secret signing and public verifiability. Secret
signing means that signing of a digital message can be done only by the relevant person while public
verification means that the process of verfiying the signature on the message can be done by anybody.

In a little more details, a digital signature scheme consists of three algorithms, namely, a key
generation algorithm, a signing algorithm and a verification algorithm. A person (or an entity) invokes
the key generation algorithm to generate a key pair (sk, pk), where sk is the signing key and is kept
secret by the concerned entity; pk is the public (or, verification) key which is published and is used to
verify the signature. Given a message M , the signer uses the signing algorithm with its signing key sk

4



to produce a signature σ on the message. Given a message-signature pair (M,σ), anybody can run the
verification algorithm with the corresponding verification key pk to verify the validity of the signature
on the message.

There is a large literature on digital signature algorithms addressing several aspects of its security
and efficiency. Here we only mention the well known elliptic curve digital signature algorithm (ECDSA)
which is used in the implementation of Bitcoin.

2.2 Cryptocurrency Basics

As mentioned above, cryptocurrencies are built using a hash function H and a digital signature algo-
rithm. Whichever entity wishes to participate in the cryptocurrency uses the digital signature algorithm
to first generate a signing-verification key pair. In fact, a single entity can generate several such key
pairs. The cryptocurrency setup only recognises the key pairs and is not concerned about who created
these.

A cryptocurrency is designated in a particular unit. Different cryptocurrencies have different units
with different names. Examples are Bitcoin and Ether. The units are divisible and the extent to
which a unit is divisible is governed by the rules of the particular cryptocurrency. Most present day
cryptocurrencies are essentially based on Bitcoin5. Accordingly, our description below is primarily based
on Bitcoin though the ideas are general enough and apply to other cryptocurrencies as well.

Public ledger: Public keys are owners of the cryptocurrency. There is a public ledger which records
which public key owns what amount of the cryptocurrency. We later describe how the public ledger is
maintained and updated and also how new units of the currency are created. For the moment, assume
that the public ledger is available and consider the issue of spending.

Transactions: Spending is the transfer of a certain amount of the currency from one public key to
one or more public keys. This is done via a transaction which specifies the spender public key and
the set of recipient public keys, i.e., the amount of currency owned by the spender public key is to
be assigned to one or more recipient public keys. The entire transaction is considered as a message
which is digitally signed with the signing key corresponding to the spender public key. This signifies
the spender’s commitment to the transaction. Since the ledger is publicly available, it is easy to verify
from the recorded history in the ledger if the spender public key indeed owned the stated amount of
the currency. Also, since the signature can be publicly verified, it is possible to verify that the spender
indeed signed the transaction. Once such verification is confirmed and the transaction enters the public
ledger, the owners of the recipient public keys may provide the goods and/or services for which the
spending has been made. After a transaction becomes a permanent part of the public ledger, the
amount of currency associated to the spender public key is considered to be spent and this public key
cannot spend this currency any further.

Blockchain: Let us now consider the public ledger. This is structured as a chain of blocks giving rise
to the term blockchain. Each block consists of a link to the previous block, a set of transactions and a
solution to a puzzle. Suppose B0, B1, B2, . . . , Br is the current chain of blocks. The block B0 is called
the genesis block. It is a special block and does not contain any link to a previous block. For i ≥ 1, a
block Bi is a triplet (h,R, η), where h is H(Bi−1), R is the (ordered) set of transactions in block Bi and

5Wikipedia https://en.wikipedia.org/wiki/Cryptocurrency mentions: “As of September 2017, over a thousand
cryptocurrency specifications exist; most are similar to and derived from the first fully implemented decentralized cryp-
tocurrency, bitcoin.”
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η is a solution to the puzzle. The value h in Bi is said to point to the previous block Bi−1. The last
block Br in the chain is called the header block of the chain.

Difficulty: The puzzle can be described in the following manner. The output of the hash function H
is a binary string of some fixed length n and this string can be considered to be the binary representation
of an integer in the range [0, . . . , 2n − 1]. The puzzle specifies an integer d called the difficulty value.
The quantity η in the block Bi is a solution to the puzzle if H(Bi) = H(h,R, η) < d. In this case, the
block Bi is said to have been solved with difficulty d. Since H is one-way, it is computationally difficult
to invert H. So, the only way to solve the puzzle is to repeatedly apply H to (h,R, η) with different
values of η until a solution to the puzzle is obtained. Heuristically assuming that the outputs of H are
uniformly distributed (which is a very common assumption), the probability that a single invocation of
H returns a value less than d is d/2n. So, for example, if d = 2n−32, then 232 invocations of H will be
required on an average to solve the puzzle specified by d.

The value of d is not constant. The cryptocurrency rules (or protocols) specify how it changes over
time. It is determined so that the time required to solve a puzzle does not vary much with time. For
example, in the case of Bitcoin, the difficulty is adjusted so that a puzzle is solved in about 10 minutes
and 2016 blocks are mined in about two weeks. Starting from the genesis block, segments of every 2016
blocks constitute a window. The difficulty remains constant in each window and based on the time
required to complete the current window, the difficulty is determined for the next window. The details
of the difficulty adjustment procedure are not important for our purposes and so we do not describe
these details.

Distributed public ledger: We have mentioned that the ledger is publicly available. Let us consider
how this is done. There is no central user in the system which maintains the public ledger. Instead the
system consists of a number of nodes which are globally distributed. A node is essentially a computer
running the particular cryptocurrency software. There is no restriction on who can or cannot be a
node. The cryptocurrency protocol is publicly available and anybody can implement the protocol on a
computer and thus become a node in the system. The chain of blocks which forms the public ledger
is maintained by all the nodes in the system. Each node can communicate with its nearby nodes
and exchange information regarding transactions and blocks. Information initiated by any node in the
system propagates very fast (within seconds) to all the nodes in the system. So, instead of having
a central authority maintaining and updating the public ledger, it is maintained and updated in a
distributed manner using a network of nodes. Such a system is called a peer-to-peer network.

Creating a new block: We next turn to the issue of how the public ledger is updated and new
currency is created. The updation of the ledger consists of appending a new block to the end of the
already existing chain of blocks. A block packs a number of transactions. These transactions enter the
system through the nodes and are quickly propagated to all the nodes in the system. Any node can
select a set R of valid transactions from those which have not been currently assigned to blocks, use the
link h which is the output of H on the header block of the chain that it maintains and then obtain the
solution η to the puzzle determined by d. Once a node obtains a solution to the puzzle, it appends the
block (h,R, η) to the end of the chain that it locally maintains thus making the new block the current
header of the chain and then the node propagates the new block to the other nodes. Any node which
receives the block (h,R, η) performs some verification checks on the block and then appends to the end
of the chain locally maintained by it thereby also making the new block the current header of its chain.
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Updation of the blockchain: Several conflicting scenarios may arise. Suppose a node receives two
blocks both of which point to the block which is the header block of the chain that the node presently
maintains. Clearly, the node cannot insert both the blocks into the chain. The cryptocurrency protocol
specifies which block it should insert as the new header. For Bitcoin, the node selects the block it
obtained earlier as the new header of its chain.

More generally, consider the following scenario. Suppose the local chain maintained by a node
is . . . , Bi, Bi+1, . . . , Br. Due to possible delay in the network, suppose it receives a chain of blocks
B′i+1, . . . , B

′
r′ where B′i+1 points to Bi. This means that from block Bi the chain has forked, i.e., one

segment of the network has created the chain extension Bi+1, . . . , Br of length r − 1 while another
segment of the network has created the chain extension B′i+1, . . . , B

′
r′ of length r′ − 1. At this point,

the node needs to determine which chain it will follow. This is again specified by the rules of the
cryptocurrency system. For Bitcoin, the node keeps the extension which is more difficult, i.e., for which
the sum of difficulties of the blocks in the extension is greater. If the difficulty did not change during
the time interval in which the fork has formed, then greater difficulty amounts to longer chain, i.e., the
node keeps the longer of the two chains.

Confirmation of transactions: To diminish the chances of the above kind of transient behaviour,
one usually waits until the block containing the transaction gets embedded sufficiently deeply in the
chain. For Bitcoin, the recommendation is that one should wait until the transaction is embedded six
blocks deep in the chain. Then the chances of the block containing the transaction getting dropped
from the chain becomes negligible. Since the difficulty level of Bitcoin is determined so that a block is
mined every ten minutes, confirmation of a transaction takes about an hour.

Immutability of the public ledger: As described above, the public ledger is constructed as a chain
of blocks. The links in the chain are created using the one-way hash function. As a result, the chain
is considered to be immutable in the following sense. Suppose that all the nodes in the system have
the same copy of the chain. Let us consider the possibility of going back into the chain and modifying
one of the blocks to create a new chain. Since the hash function is one-way, it is not possible to invert
the links. So, the only way of creating the new chain is to work forward from the modified block.
This requires solving the puzzles for each of the blocks appearing after the modified block. A sufficient
number of blocks will have to be added so that the difficulty of the modified chain becomes more than
the difficulty of the publicly available chain. Unless one entity acquires majority of the computational
power, this will not be possible and the modified chain will be rejected by the nodes of the system.

Mining of blocks: Currency is created through successfully solving the puzzle. This procedure is
also called mining a block. When a block is mined, the rules of the cryptocurrency permits assigning a
certain amount of the currency to a public key. This amount of currency was not previously assigned
to any public key and hence the mining procedure creates new currency. The amount of currency that
is created by successful mining of a block is specified by the rules of the cryptocurrency and is called
the block reward. It is through the block reward that new currency is created. The block reward is not
constant and for Bitcoin it decreases at a constant rate over time.

The presence of block rewards incentivises nodes to invest computer effort into mining a block. The
activity is profitable for a node if the cost of mining is less than the block reward. Commercial entities
which primarily aim to mine blocks are called miners.

There is competition among miners to perform successful block mining. For Bitcoin, this competition
is very intense and has led to a huge amount of dedicated hardware consuming enormous amount of
energy for block mining. Block mining essentially boils down to computing the hash function H a large
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number of times. So, an entity which can compute H faster is more likely to solve a puzzle sooner. The
hash rate of an entity is the number of times it can invoke H in one second.

Mining pools: While in principle, any node can be a miner, due to the huge resource requirement,
it may not be possible for nodes with limited resources to successfully mine a block in a reasonable
amount of time. So, individual nodes join what are called mining pools. Such pools integrate the efforts
of many miners and rewards the individual miners by apportioning the obtained block reward among
the members of the mining pool.

Double spending: A basic concern for any currency is that there should not be any double spending,
i.e. a particular amount of currency should be spent at most once. In the context of cryptocurrency,
double spending means that there are two or more transactions which spends the amount of currency
associated to a single public key. This should normally not be possible. Once a transaction enters the
public ledger through a block, any other node can verify that the amount associated to the spender’s
public key has been spent and so will reject any transaction which attempts to double spend from this
public key. This possibility, however, arises in the following manner. Suppose a miner (or a coalition
of miners) spends the amount of currency associated to a public key, creates a block consisting of the
transaction and propagates this block. After some time, the block enters the chain of all the nodes
and the miner receives the goods and/or services arising out of the spending. Now the miner initiates
another transaction where currency is spent from the same public key. Suppose that the miner has
sufficient computational power to quickly create a chain of blocks which is more difficult than the chain
of blocks available with the other nodes. The miner now creates such a chain and propagates the new
chain. Since the rules entail that a node will reject a less difficult chain in favour of a more difficult
chain, the nodes in the system reject their present less difficult chains and accept the new more difficult
chain. So, the earlier transaction consisting of the spend from the public key in question gets purged
from the network and the new transaction enters the system. Correspondingly, the miner is also able to
reap the benefits of the spend recorded in the new transaction. This creates a double spending scenario.

The 51% attack: Suppose a miner, or, a mining pool acquires more than 50% of the proportional
hash rate of system. Such a powerful entity may gain control over the blockchain. It has more than
50% chance of mining every new block. Correspondingly, it has a high probability of mounting a double
spending attack on the system. In the cryptocurrency community this scenario is called a 51% attack.
In the case of Bitcoin, between 25th and 27th September 2013, the mining pool named Ghash.io was
in possession of 51% of the total hash rate in the Bitcoin network and it launched a double-spending
attack on the online gambling website named BetCoin Dice6.

Cryptocurrency community: There are several kinds of users and entities that make up the com-
munity of any particular cryptocurrency.

Miners: These are individual entities who possess a substantial amount of computational ability to
have a significant chance of successfully mining a new block.

Mining pools: These are coalitions of individual miners who choose to work together with the goal of
successfully mining blocks. Mining pools have declared mechanisms for sharing the block rewards
among the members of the mining pools.

6https://bitcointalk.org/index.php?topic=321630.0,http://arstechnica.com/security/2014/06/
bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
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Users: These are persons and entities constituting the end users of the currency. They use the currency
for purchasing various kinds of goods and services.

Sellers: These are entities which accept the currency for the goods and services that they provide.

Exchanges: These are organisations which allow conversion between cryptocurrencies and more con-
ventional fiat currencies.

All the entities in the cryptocurrency community are bound by the rules governing the currency
which are specified by the protocols of the system. These rules are not enforced by any central agency.
Rather, the backing of the rules arise from their being accepted by all the entities in the system. Needless
to say, a set of rules determined at a single point of time may not be the best option at all future time
points. Thus arises the need to change the rules. A change of rule can affect different entities in different
manners. So, not all entities may be agreeable to a proposed rule change. Since a rule is considered
valid only if it is accepted by all the entities, it is problematic to change any rule. If one set of entities
accept a change while another set does not, then blocks mined by the former set may not be accepted
by the later set and vice versa. This can lead to a fork in the system where the blockchain is common
up to a certain block and from that point on bifurcates into two distinct chains. Such a fork is called a
hard fork.

Entities in a cryptocurrency community have their own particular requirements. We explain this
with an example in the context of Bitcoin. A block in the Bitcoin blockchain can accommodate a
certain number of transactions. As more and more people begin to use Bitcoins, a lot of transactions
are generated. Not all of these can get into the next block and would have to wait quite some time
before getting into a block. Also, after it gets into a block there is the recommended one hour waiting
time for confirmation as explained earlier. While the one hour waiting time is a security feature, it is
indeed possible to change the rules of Bitcoin so that each block can accommodate more transactions.
This will reduce the delay time before a transaction can get into a block. Increasing the size of a block
constitute a change of rules of the Bitcoin cryptocurrency. For this change to be effected it has to be
accepted by all the entities in the community.

Change of rules: There is a procedure for proposing a change of rules. For the Bitcoin cryptocur-
rency, changes are defined and proposed through a Bitcoin Improvement Proposal (BIP) (Taaki, 2011).
For the Ethereum network, it is done similarly through an Ethereum Improvement Proposal (EIP)7.

Let us consider the Bitcoin cryptocurrency in more details. In addition to the information contained
in a block as described above, each block also has a header. This contains meta information such as
the time when it was mined. It also contains a provision for indicating support to a proposed BIP.
Corresponding to the currently proposed BIPs, there is a set of bits in the header of a block. If the
value of a bit corresponding to a BIP is 1, then it indicates support to the BIP, while if the value is 0,
then it indicates opposition to the BIP. Upon successful mining of a new block, a miner can specify the
values of the bits corresponding to the currently proposed BIPs. These indicate the miner’s support to
these BIPs.

Evolution of a BIP: Let us consider how a BIP evolves in some more details. A BIP is initially
proposed by a handful of developers. For any BIP, one month after it is defined it moves into a phase
called the started phase. When miners mine blocks, they show their support or disagreement towards
a BIP by appropriately setting the value of the corresponding bit in the header of the mined block. A
BIP is said to time-out or fail if it is not activated within one year of its being started.

7https://github.com/ethereum/EIPs
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A target, or, difficulty period is a window of 2016 blocks during which the difficulty of block mining
remains the same. Since the difficulty is adjusted so as to ensure that a target period is two weeks,
there are 26 target periods covering the time period of a BIP from when it is started to when it times
out. For a BIP, consider one such target period. If in this target period, at least a threshold number of
blocks recorded their support for the BIP, then in the following difficulty period all entities who wish
to upgrade can do so. After that, the BIP is activated and transactions generated by the new rules
are accepted by Bitcoin miners. The required threshold is 1916 blocks (≈ 95% of 2016). As mentioned
above, there are 26 target periods from the proposal of a BIP to its timing out. If in any of these target
periods, the BIP receives the required threshold of support, it gets activated.

3 Voting Games Arising from Cryptocurrencies

In this section, we consider the voting games that arise in the context of cryptocurrencies. First we
introduce the notion of voting games and then show how such voting games arise in the operation of
cryptocurrencies.

3.1 Background on Voting Games

We provide a brief account of voting games. More details can be found in (Felsenthal and Machover,
1998; Chakravarty et al., 2015).

Let N = {A1, A2, . . . , An} be a set of n players. A subset of N is called a coalition and the power
set of N , i.e., the set of all possible coalitions is denoted by 2N . A voting game G comprising of the
players in N is given by its characteristic function Ĝ : 2N → {0, 1} where a winning coalition is assigned
the value 1 and a losing coalition is assigned the value 0. The set of all winning coalitions is denoted
by W (G) and the set of all losing coalitions is denoted by L(G).

Below we recall some basic notions about voting games. For a finite set S, #S will denote the
cardinality of S.

Swing: For any S ⊆ N , Ai ∈ N is called swing in S if Ai ∈ S, Ĝ(S) = 1 but Ĝ(S \ {Ai}) = 0. For
any S ⊆ N , Ai ∈ N is called swing outside S if Ĝ(S) = 0 but Ĝ(S ∪ {Ai}) = 1. For any Ai ∈ N ,
the number of winning coalitions in which Ai is a swing is the same as the number of losing coalitions
outside which Ai is a swing. The number of subsets S ⊂ N such that Ai is a swing in S will be denoted
by mG(Ai).

Dummy player: A player Ai ∈ N is called a dummy player if Ai is not a swing in any coalition, i.e.,
if mG(Ai) = 0.

Minimal winning coalition: A coalition S ⊆ N is called a minimal winning coalition if Ĝ(S) = 1
and there is no T ⊂ S for which Ĝ(T ) = 1. The set of all minimal winning coalitions in G will be
denoted by MW(G) and the set of minimal winning coalitions containing the player Ai will be denoted
as MWG(Ai).

Dictator: A player Ai ∈ N is called a dictator if {Ai} is the only minimal winning coalition.

Blocking coalition: A coalition S ⊆ N is called a blocking coalition in G if Ĝ(N \ S) = 0. A player
Ai is called a blocker if {Ai} is a blocking coalition. Equivalently, Ai is a blocker if and only if Ai is
present in every winning coalition.
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Definition 1 Consider a triplet (N,w, q), where N = {A1, . . . , An} is a set of players, w = (w1, w2, . . . , wn)
is a vector of non-negative weights with wi being the weight of Ai and q is a real number in (0, 1). Let
ω =

∑n
i=1wi. The triplet (N,w, q) defines a weighted majority voting game G given by its characteristic

function Ĝ : 2N → {0, 1} in the following manner. Let wS =
∑

Ai∈S wi denote the sum of the weights
of all the players in the coalition S ⊆ N . Then

Ĝ(S) =

{
1 if wS/ω ≥ q,
0 otherwise.

We will write G = (N,w, q) to denote the weighted majority voting game G arising from the triplet
(N,w, q).

3.2 Cryptocurrency Voting Games

Cryptocurrencies give rise to at least two weighted majority voting games. One such game pertains to
the 51% attack, while the other pertains to change of rules. To define a weighted majority voting game,
it is required to identify the set of players, the weights of the players and the winning threshold.

The set of players: The miners and the mining pools are the players in the game. For the purposes
of voting game analysis, the distinction between miners and mining pools is not important. We will
simply write miner to mean either an individual miner or a mining pool.

The weights of the players: Intuitively, the weight of a player is its ability to mine a new block.
As mentioned earlier, mining a new block is to solve a puzzle and the solution of the puzzle is made
possible by repeated application of the hash function H. So, a player which has a higher hash rate is
more likely to solve the puzzle. Thus, the hash rate of a miner is a measure of its ability to mine new
blocks.

Suppose there are k miners having hash rates h1, . . . , hk with the total hash rate h of the system being
equal to h = h1 + · · ·+hk. The weights of the miners are the hash rates h1, . . . , hk. For any positive real
number λ, it is possible to use λh1, . . . , λhk as the weights without changing the characteristic function
of the game.

The hash rate of a miner is not directly available. Instead, it has to be estimated from the activity of
the miner. The proportion of the total hash rate that the i-th miner has is hi/h. It might turn out that
the proportional hash rates h1/h, . . . , hk/h are easier to estimate than the absolute hash rates h1, . . . , hk.
In this case, instead of using h1, . . . , hk as the weights one may use the proportions h1/h, . . . , hk/h as
the weights.

Several Internet sites provide the number of blocks mined by various miners in a given time period.
From this, it is possible to obtain an estimate of the hash rate of the miners. Suppose that for a given
time period, a list (A1, b1), . . . , (Ak, bk) is available indicating that the miner Ai has mined bi blocks in
that time period. It is reasonable to assume that the fraction of blocks mined by Ai in a given time
period is proportional to hi/h. Under this assumption, an estimate of the proportional hash rate of
the miner Ai can be taken to be bi/b where b = b1 + · · · + br. Since for a particular time period, b is
constant, the weight of a miner can be taken to be the number of blocks it has mined in the given time
period. The choice of this time period is not definite. It should not be too long since then miners who
had been active earlier but, are no longer active will get positive weights. Neither should it be too short
as then the estimate would not be accurate.

The theoretical aspects of our work is not dependent on the method employed to obtain estimates
of the hash rates of the miners. From the point of view of applications, it is of course necessary to know
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the hash rates so as to be able to apply the theory to the cryptocurrency of interest. Later we consider
in more details the application to Bitcoin where the hash rates are assumed to be proportional to the
number of blocks mined by a miner in a given time period. We note though that our theory could be
equally well applied to hash rates obtained using some other method.

The winning threshold: This depends on the particular game. Below, we identify the thresholds in
two such games.

3.3 The Rule Game

The procedure for change of rules has been described above. As explained above, for Bitcoin, this is
done through a BIP. Based on this, more generally we identify the Rule Game for change of rules in a
cryptocurrency system.

The Rule Game arising from a BIP has the following feature. Once started and before time-out,
each of the 26 target periods creates a new voting game for the BIP. As mentioned above, the winning
threshold for a BIP is 95%, i.e., at least 95% of the 2016 blocks in a target period must indicate support
for the BIP for it to become active.

So, BIP games are played during fixed time intervals which are the periods of constant difficulty.
Coalitions of players can form for the activation (or blocking) of a BIP. The interests of the members
of such a coalition would be aligned, i.e., all of them would benefit (or, suffer) in the same manner if a
BIP is activated.

Simultaneous voting games: Several BIPs could be under consideration at the same point of time.
In any target period, a miner who mines a new block has to indicate its preference for all of these BIPs.
So, in each time period a number of voting games are being simultaneously played. If the outcomes of
the BIPs are unrelated, then the effect of simultaneous voting games can be captured by considering the
voting games to be played sequentially. While some BIPs can indeed be unrelated, it is unlikely that
BIPs under consideration will always be unrelated. The interaction between the outcomes can create
complex voting and coalition strategies among the miners. For example, a miner may indicate support
for a BIP only if some other miners indicate support for some other BIP.

Repeated voting games: Voting for a BIP takes place in at most 26 consecutive target periods. A
BIP may not receive adequate support in a target period. This, however, does not mean that the BIP
has failed. It will again be open for voting in the subsequent target period. This process continues until
the BIP gets locked-in, or, it times out after the 26 target periods. This feature is again very different
from conventional voting game scenarios where once a motion fails, it is not taken up for voting any
more.

Limitations of the model: Our modelling of rule change has some limitations. These are mentioned
below.

1. We assume the weight of a miner to be its hash rate. In a voting game, a player is always able
to cast a vote with its weight. In the case of the Rule Game, the casting of votes is implicit and
takes place by indicating support or opposition to the proposal in every block mined in a certain
interval of time. So, the actual weight of miner’s vote is the number of blocks that it is able to
mine in the requisite time interval. While this number is expected to be proportional to the hash
rate of the miner, it is not an exact correspondence. For example, it is possible that miners with
low weights are unable to mine any block in the required time interval. As a result, they are
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unable to vote in that interval even though they have positive hash rates. While this is indeed an
issue, for the miners with high hash rates, the proportion of mined blocks would be quite close to
the proportional hash rates. This would lead to the casting of votes by the miners with high hash
rates to be more or less equal to their weight.

2. A miner may mine several blocks in the time period over which voting takes place. We have
assumed that the miner indicates its support or opposition to a rule change proposal in all the
blocks in a consistent manner. This seems to be a reasonable assumption. We do not know if
there is any situation where a miner in a given time interval may indicate support to a proposal in
some of the mined blocks and indicate opposition to the same proposal in the other mined blocks.

3.4 The Attack Game

In this game, the goal of a player or a coalition of players is to get control of the network by ensuring
that the sum total of their hash rates is at least 51% of the entire hash rate of the network. So, the
winning threshold in this game is 51%.

A set of miners may form a coalition whereby they pool their computational resources so that the
combined hash rate of the coalition becomes 51%. Such a coalition can attempt to launch a double
spending attack on the network and agree to divide the income from the double spending among
themselves in accordance with some criterion. It is possible that different coalitions of players can
achieve the 51% threshold. A particular player may choose a coalition depending on the pay-off that
it would obtain by participating in that particular coalition. This is a typical scenario of weighted
majority voting games.

Continuously playable game: The Attack Game has the potential of being played at any point of
time. There is no fixed time when the game is to be played. If we assume that the players are constantly
trying to maximise their profits, then they are potentially exploring coalitions which will increase the
hash rate. The aspect of the Attack Game whereby it is always possible to be played is not present in
more conventional weighted majority voting games which are played at certain points of time and with
adequate notice.

Remark: We have taken 51% as the winning threshold for the Attack Game. (Eyal and Sirer, 2014)
suggested that the Bitcoin system can be attacked with even lower threshold. The actual value of the
winning threshold is not important for the method of analysis outlined in this work. So, even though
we later work with only the 51% threshold, a similar analysis can be done with other thresholds.

4 Analysis of the Rule Game

The BIP game can be analysed from the viewpoint of voting power. Before getting into the details of
the analysis, we provide a brief background on the very rich topic of measuring voting powers.

4.1 Measurement of Voting Power

The notion of power is an important concept in a voting system. A power measure captures the
capability of a player to influence the outcome of a vote.

Given a game G and a player Ai in G, a power measure P associates a non-negative real number
vi = PG(Ai) to the player Ai. The number vi captures the power that Ai has in the game G. If
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∑
A∈G PG(A) = 1 for all games G, then P is called a power index. In other words, for a power index

the powers of the individual players sum to 1.
A widely studied index of voting power is the Shapley-Shubik index (Shapley, 1953; Shapley and

Shubik, 1954). This index, however, is defined for a voting game where the order in which the players
cast their votes is important. In our application of voting power to the voting games arising from
cryptocurrencies, the order of casting votes is not important. So, we do not consider the Shapley-
Shubik index in this work. Below we provide the definitions of some of the previously proposed power
measures. See (Felsenthal and Machover, 1998; Chakravarty et al., 2015) for further details.

Banzhaf Power Measures. (Banzhaf, 1965) put forward the notion of using the number of swings
of a player as a measure of the voting power of the player.

The raw Banzhaf power measure BRG(Ai) for an entity Ai in the game G is defined as the number
of distinct coalitions in which Ai is a swing. Hence,

BRG(Ai) = mG(Ai).

The non-normalized Banzhaf power measure BZNG(Ai) is defined as follows.

BZNG(Ai) =
BRG(Ai)

2n−1
=
mG(Ai)

2n−1
.

The Banzhaf normalized power index BZG(Ai) is defined as follows.

BZG(Ai) =
BRG(Ai)∑n
j=1 BRG(Aj)

=
mG(Ai)∑n
j=1mG(Aj)

.

Coleman Power Measures. (Coleman, 1971) argued that to interpret ‘power’ as the ‘influence’ over
the outcome of a coalition, the number of coalitions in which a player Ai ∈ N is a ‘swing in’ with respect
to the winning coalitions or ‘swing outside’ with respect to the losing coalitions, determines its influence
or voting power.

The Coleman preventive power measure CPG(Ai) for a player Ai in the game G is a measure of its
ability to stop a coalition S from achieving wS ≥ q. It is defined as follows.

CPG(Ai) =
mG(Ai)

#W (G)
.

The Coleman initiative power measure CIG(Ai) for a player Ai in the game G is a measure of its
ability to turn an otherwise losing coalition S with wS < q into a winning coalition with wS∪{Ai} ≥ q.
It is defined as follows.

CIG(Ai) =
mG(Ai)

#L(G)
.

Holler Public Good Index. A public good is the undivided value of the coalition that each player
in the system (and not just the winning coalition) will enjoy as a common benefit without rivalry in
consumption and with access to all players in the coalition. (Holler, 1982) proposed the public good
index PGIAi(G) as follows.

PGIAi(G) =
#MWG(Ai)∑

Aj∈N #MWG(Aj)
.

The public good index for a player Ai differs from the Banzhaf normalized power index in only considering
the minimal winning coalitions containing Ai instead of the number of swings. The rationale behind
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choosing the minimal winning coalitions is as follows. The fact that the undivided value of the coalition
gets consumed without rivalry or non-excludability in access, creates scope for free riders. We pointed
out before that all players of a minimal winning coalition have a swing position, but it is not necessary
that every swing in G is for a minimal winning coalition. Winning coalitions will tend to be minimal
because the supply of the public good will anyway be shared with those outside that coalition.

The non-normalised version of PGIAi(G) is called the absolute public good measure. It is defined as

PGMAi(G) =
#MWG(Ai)

#MW(G)
.

Deegan-Packel Power Measure. (Deegan and Packel, 1978) argued that when the prize for a win
is to be split only among the players in the winning coalition, only minimal winning coalitions should
be looked at while determining a player’s power. They assumed that all minimal winning coalition
are equally likely and players in a minimal winning coalition will share the prize of the victory in the
winning camp. This implies that any two players belonging to the same minimal winning coalition will
have the same power. Based on this idea, the following is defined. The Deegan-Packel power measure
DPG(Ai) for a player Ai in the game G is defined to be

DPG(Ai) =
1

#MW(G)

∑
S∈MWG(Ai)

1

#S
.

Power Profile. Suppose P is a measure of voting power. Then P assigns a non-negative real number
to each of the n players in the game. So, P is given by a vector of non-negative real numbers. We will
call this vector to be the P-power profile of the game.

Computing Voting Powers. Let G = (N,w, q) be a weighted majority voting game. Given inputs
w and q, there are known algorithms to compute the various power profiles. We refer to (Chakravarty
et al., 2015) for a brief account of the relevant algorithms.

Consider a weighted majority voting game G = (N,w, q) having n players and weight vector w =
(w1, . . . , wn) with ω =

∑n
i=1wi. The time complexity for computing the above indices is O(n2ω). The

space complexity of computing the above indices other than the Deegan-Packel index is O(ω) while for
the Deegan-Packel index it is O(nω).

4.2 Power in the Rule Game

Among the various proposals for measurement of power of individual players, which is the one suitable
in the context of voting games arising from cryptocurrencies? This is an important question whose
answer depends on the expectations of the participants in the game. For the BIP game, the winning
threshold is 95%. The objective of such a high threshold is to ensure near unanimity. What would be
an appropriate power measure of an individual player for such a scenario?

The basic Banzhaf index (or, the non-normalised Banzhaf measure) indicates a player’s ability to
influence the outcome. This index certainly captures one aspect of a player’s voting power. On the other
hand, this index does not capture a crucial notion which becomes relevant in the context of the BIP
game. Consider a weighted majority voting game G = (N,w, q). Any player whose weight is greater
than (1 − q)ω (where as before ω =

∑n
i=1wi), is necessarily a blocker. The influence of a blocker in

a game should be seen in its role in preventing winning. So, a blocker should be considered from the
viewpoint of preventive power.
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Theorem 1 Let G = (N,w, q) be a weighted majority voting game and suppose a player A is a blocker
in the game G. Then

1. CPG(A) = 1.

2. PGMG(A) = 1.

Proof: Consider any winning coalition S. Since A is a blocker, it is present in every winning coalition
and hence in S. Further, the removal of A from S results in a losing coalition, as otherwise, A would
not be a blocker. So, A is a swing in S. In other words, A is a swing in every winning coalition showing
that mG(A) = WG and so CPG(A) = 1.

Any minimal winning coalition T in G is also a winning coalition and since A is a blocker, T must
contain A. So, the number of minimal winning coalitions in G is equal to the number of minimal winning
coalitions in G containing A. This shows that PGMG(A) = 1. �

From Proposition 1 we get that the Coleman preventive power measure and the Holler’s public good
measure assign the maximum power to a blocker. This captures the intuition that a blocker has absolute
power in the game. For a game where the threshold q is high, there are many blockers. For example,
in the BIP game, the threshold is 95% and so any player whose weight is more than 5% of the total
weight is a blocker. For such games, it is perhaps more meaningful to consider the power of a player
to prevent winning with a blocker being assigned the maximum possible power. This leads to either of
Coleman’s preventive power measure or Holler’s public good measure as natural choices.

We take a closer look at the scenario. Since the blockers have absolute powers in game G, to consider
the powers of the non-blockers, it is helpful to consider the game arising by removing the blockers from
G. Motivated by this, we make the following definition.

Definition 2 Let G = (N,w, q) be a weighted majority voting game with n players N = {A1, . . . , An}
and ω =

∑n
i=1wi. Let B be the set of all blockers in G. Suppose #B = n1 and wB be the sum of the

weights of all the players in B. Assume that wB < q ·ω. Let B = N \B and wB = ω−wB. Define a new
game GB = (B,wB, qB) with wB to be the weight vector w restricted to B and qB = (q · ω − wB)/wB.

Remark: The condition wB < q · ω is required to ensure that qB > 0. If, on the other hand, wB ≥ q · ω,
then the set B of blockers form a minimal winning coalition which is the only minimal winning coalition
in the game. Further, none of the non-blockers are swings in any coalition and hence they are dummies.
Such a game is relatively simple to analyse and Definition 2 does not cover such games.

Essentially gameGB is formed by removing the blockers from gameG and appropriately recalibrating
the winning threshold as is given by the following result.

Proposition 1 Let G = (N,w, q) be a weighted majority voting game and B its set of blockers. Let
S ⊆ B.

1. S is a winning coalition in GB if and only if S ∪ B is a winning coalition in G. Consequently,
#W (G) = #W (GB).

2. S is a minimal winning coalition in GB if and only if S ∪B is a minimal winning coalition in G.
Consequently, #MW(G) = #MW(GB).
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Proof: Let wS be the sum of weights of all players in S. Then wS + wB is the sum of weights of all
players in S∪B. The coalition S is winning in GB if and only if ws ≥ qB ·wB if and only if ws ≥ q ·ω−wB

if and only if ws + wB ≥ q · ω if and only if the coalition S ∪ B is winning in G. This shows the first
point.

Suppose S is a minimal winning coalition in GB. Since every element of B is a blocker in G, we
have that S ∪ B is a minimal winning coalition in G. Conversely, any minimal winning coalition in G
is of the form S ∪ B where S is a subset of the non-blockers. Since wB < q · ω, S cannot be empty.
Suppose A ∈ S and has weight w. Since S ∪B is a minimal winning coalition in G, wS +wB ≥ q ·ω and
wS +wB −w < q ·ω. Recalling that qB = (q ·ω−wB)/wB we have wS ≥ qB ·wB and wS −w < qB ·wB.
So, dropping any player from S results in a losing coalition in GB. Therefore S is a minimal winning
coalition in GB. This shows the second point. �

The next result shows that the Coleman preventive power measure and the Holler’s public good
measure remains unchanged for the non-blockers in moving from game G to game GB.

Theorem 2 Let G = (N,w, q) be a weighted majority voting game and B its set of blockers. Let A be
any non-blocker in G. Then

1. CPG(A) = CPGB
(A).

2. PGMG(A) = PGMGB
(A).

Proof: From Proposition 1, we have #W (G) = #W (GB). Suppose S ⊂ B. The player A is a swing
in S in the game GB if and only if “A ∈ S, S is a winning coalition in GB and S \ {A} is a losing
coalition in GB” if and only if “A ∈ S, S ∪B is a winning coalition in G and (S ∪B) \ {A} is a losing
coalition in G” if and only if A is a swing in S ∪ B in the game G. So, mGB

(A) = mG(A). This fact

together with #W (G) = #W (B) shows that CPG(A) = CPGB
(A).

An almost identical argument shows that #MWG(A) = #MWGB
(A) which combined with #MW(G) =

#MW(GB) shows that PGMG(A) = PGMGB
(A). �

There is a consequence of Theorem 2 to the computation of the CP and the PGM indices. This is stated
in the following result.

Theorem 3 Let G = (N,w, q) be a weighted majority voting game on n players and B be its set of
blockers, with n1 = #B. Let ω be the sum of weights of all the players in G and wB be the sum of
weights of all the blockers. Then the values of CPG(·) and PGMG(·) for all the non-blockers in G can
be computed in time O(n2wB) and requiring space O(wB) where n2 = n− n1 and wB = ω − wB.

Proof: From Theorem 2, for any non-blocker A in G, we have CPG(A) = CPGB
(A) and PGMG(A) =

PGMGB
(A). So, it is sufficient to compute the values of CP and PGM of all the players in the game GB.

The number of players in GB is clearly n2. The weight of all the players in GB is the weight of all the
non-blockers in G and this value is equal to ω2. So, the computation of CP and PGM for all the players
in GB can be done in O(n2ω2) time and requires O(ω2) space. �

In the case where ω is large and there are a number of blockers in G, the savings in time and space
guaranteed by Theorem 3 becomes significant.

From Theorem 1 and Theorem 2, we have two power measures which seem to be appropriate to
quantify power in the setting where there are a number of blockers and a player’s ability to prevent
a resolution from being adopted is required to be quantified. The Coleman preventive power measure
is based on the number of swings for a player while the Holler public good measure is based on the
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number of minimal winning coalitions containing a player. Compared to the number of minimal winning
coalitions, the number of swings better reflects the variation in the weights. The next result shows that
the number of swings increases monotonically with the increase in the weights of the players.

Theorem 4 Let G = (N,w, q) be a weighted majority voting game with the set of players N =
{A1, . . . , An} and player Ai having weight wi. If wi ≤ wj, then mG(Ai) ≤ mG(Aj) and consequently
CPG(Ai) ≤ CPG(Aj).

Proof: Let ω =
∑n

i=1wi. Consider a coalition S ⊆ N of weight wS in which Ai is a swing. So, S is
winning in G but, S \ {Ai} is losing in G. This means, wS/ω ≥ q but (wS − wi)/ω < q. There are two
cases to consider.

• Case Aj ∈ S: Since wi ≤ wj , (wS − wj)/ω ≤ (wS − wi)/ω < q. Hence, Aj is also a swing in S.

• Case Aj /∈ S: Consider the coalition S′ = (S \ {Ai}) ∪ {Aj} and let its weight be wS′ . We have
wS′ = wS − wi + wj and wS′ \ {Aj} = wS − wi. Then wS′/ω = (wS − wi + wj)/ω ≥ wS/ω ≥ q.
Also, (wS′ − wj)/ω = (wS − wi)/ω < q which means that Aj is a swing in S′.

The above two points show that for every set S in which Ai is a swing there is a corresponding set S′

in which Aj is a swing. From this the theorem follows. �

We next provide an example to show that the number of minimal winning coalitions is not necessarily
monotone increasing with the weights of the players.

Example 1: Let G = (N,w, q) be a weighted majority voting game on 6 players N = {A1, . . . , A6}
with the weight of Ai being wi. Let w1 = w2 = 8, w3 = 5, w4 = 3, w5 = 2 and w6 = 1. The sum of
weights is ω = 27. Set q = 20/27. Then A1 and A2 are blockers. The only minimal winning coalition
containing A3 is {A1, A2, A3} while {A1, A2, A4, A5} and {A1, A2, A4, A6} are the two minimal winning
coalitions containing A4. So, we have w3 > w4 but MWG(A3) < MWG(A4).

Given a measure of voting power, it is perhaps not very intuitive that the powers of the players
do not increase monotonically with their weights. Such a phenomenon can be difficult to explain to
the general public. The two possibilities CP and PGM have been identified earlier as appropriate for
capturing the power to prevent action. Among the two, CP is based on swings whereas PGM is based
on minimal winning coalitions. Based on Theorem 4 and Example 1, we may conclude that it is more
meaningful to choose a voting power measure which is defined based on swings rather than on minimal
winning coalitions. So, we suggest that CP, i.e., the Coleman preventive power measure is an appropriate
measure of voting power arising in the context of the Rule Game arising in cryptocurrency systems.

5 Analysis of the Attack Game

The features of Attack Game are different from that of the Rule Game, or, other usual voting games.
In this game, the goal is not to decide upon some resolution, i.e., there is no proposal which is to be
accepted or rejected by the players. Rather, the idea is to secretly form a coalition of miners which
possesses 51% or more of the hash rate of the system so that double spending becomes a possibility. In
any such coalition, one can still talk about a miner becoming a swing, i.e., the presence of the miner
in the coalition makes the hash rate at least 51% while its absence drops the hash rate below 51%. It
may be of interest for a miner to know in how many coalitions it plays a swing role. This is captured
by the (raw or non-normalised) Banzhaf index.
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More generally, the various voting power indices and measures have been proposed with some in-
tuition. For example, the Coleman measures are intended to capture a player’s ability to prevent or
initiate an action while the Holler indices are intended to capture the notion of power when voting takes
place on an issue of public good. The relevance of the background motivation of these indices to the
context of the Attack Game is not clear. So, a simple computation of the various indices for this game
will not provide much useful information.

On the other hand, certain aspects of the formal analysis of voting games are very relevant to the
Attack Game. These are all built around the central concept of minimal winning coalitions. We identify
these questions below.

Considering success in the Attack Game to be compromising the security of the system, it is of
interest to know the number of different ways in which the system can be compromised. This is
formulated as follows.

Question 1 What is the number of minimal winning coalitions in the game?

It is unlikely that all possible minimal winning coalitions can actually form. More granular infor-
mation provides better understanding of the system. The relevant question is the following.

Question 2 Given a positive integer c, how many minimal winning coalitions of cardinality c are
present in the game?

Denoting mwc to be the number of minimal winning coalitions of size c, we are essentially looking
for the distribution (c,mwc) for c = 1, . . . , n For example, if mw1 > 0, then a single miner can win the
Attack Game. So, one measure of stability is the maximum value of c such that mwc = 0. This would
ensure that the system is secure against a coalition of c or less number of miners. This leads to the
following definition.

Definition 3 Let G = (N,w, q) be a weighted majority voting game. The game G is said to be c-stable
if c = max{c : mwc = 0}. Equivalently, G is said to be c-stable if mwc = 0 for all c ≤ c and mwc+1 6= 0.

It is possible to consider the Attack Game from the viewpoint of a particular player A. Suppose
A wishes to win the Attack Game. Then a relevant question for A is the minimum number of other
players it needs to form a coalition with. This is captured by considering minimal winning coalitions
containing A. More generally, we pose the following question.

Question 3 For a subset S of players and for any positive integer c, how many minimal winning
coalitions of cardinality c containing all elements of S are present in the game?

For any subset S, denote by mwc(S) the number of minimal winning coalitions of cardinality c which
contain all elements of S. The distribution (c,mwc(S)) is of interest. The maximum value of c such
that mwc(S) = 0 is a measure of stability of the system with respect to the subset S. It indicates
the minimum number of other miners that the coalition S will need to collude with to compromise the
system. This leads to the following definition.

Definition 4 Let G = (N,w, q) be a weighted majority voting game and let S ⊂ N . The game G is
said to be c-stable with respect to S if c = max{c : mwc(S) = 0}. Equivalently, G is said to be c-stable
with respect to S if mwc(S) = 0 for all c ≤ c and mwc+1(S) 6= 0.

If S = {A} is a singleton set consisting of a single player A, then we can talk about G be c-stable with
respect to the player A. In this case, we write mwc(A) instead of mwc({A}).

Proposition 2 Let G = (N,w, q) be a weighted majority voting game such that G is c-stable. Then
c = minA∈N max{c : mwc(A) = 0}.
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Proof: Since G is c-stable, there are no minimal winning coalitions of size c with c ≤ c and there is
at least one minimal winning coalition S of size c + 1. Let A be a player such that G is d-stable with
respect to A and d = minA∈N max{c : mwc(A) = 0}. Then G does not have any minimal winning
coalition of size ≤ d and it has at least one minimal winning coalition of size d+ 1. Then by definition,
d = c. �

So far, we have assumed that all coalitions are possible. In a realistic setting, it is reasonable to
postulate that not all coalitions will form. There could be two competing miners who will not be part of
any coalition. This leads to the following question. More generally, we consider the following question.

Question 4 Given disjoint subsets S1 and S2 of players A and a positive integer c, how many minimal
winning coalitions of cardinality c containing all elements of S1 but not containing any element of S2
are present in the game?

For a positive integer c, we define mw(S1, S2, c) to be the number of minimal winning coalitions in
G of cardinalities c containing all elements of S1 and no element of S2.

Definition 5 Let G = (N,w, q) be a weighted majority voting game and S1 and S2 be two subsets of
N . G is c-stable with respect to the pair (S1, S2) if c = max{c : mw(S1, S2, c) = 0}.

Remarks:

1. Consider mw(∅, ∅, c). This is simply the number of minimal winning coalitions in G as postulated
in Question 2.

2. For any player A, mw({A}, ∅, c) is the number of minimal winning coalitions in G containing A
and having cardinalities equal to c. So, we get back to the scenario of Question 3. Consequently,
G is c-stable with respect to A if and only if it is c-stable with respect to the pair ({A}, ∅).

3. For any subset S of players, mw(∅, S, c) is the number of minimal winning coalitions in G not
containing any element of S and having cardinalities equal to c. Consequently, G is c-stable with
respect to the pair (∅, S) if the size of any minimal winning coalition in G not containing any
element of S is at least c + 1. By leaving out a set of players, we ask for the possiblity of the
system being compromised by some coalition of the other players. The maximum value of c such
that G is c-stable with respect to the pair (∅, S) provides a measure of stability of the system
against coalitions of miners who are not in S.

Definition 6 Let G = (N,w, q) be a weighted majority voting game. We say that G is (c1, c2, c)-stable,
if

c = max{c : mw(S1, S2, c) = 0 for all subsets S1, S2 ⊆ N with #S1 ≤ c1, #S2 ≤ c2}.

Remarks:

1. If S1 = S2 = ∅, then there are no constraints and in this case mw(S1, S2, c) is the number of
minimal winning coalitions of cardinality c in G.
G is (0, 0, c)-stable if the size of any minimal winning coalition in G is at least c.

2. If S1 = {Ai} and S2 = ∅, then mw(S1, S2, c) is the number of minimal winning coalitions of
cardinality c containing Ai in G.
G is (1, 0, c)-stable if for any player Ai, the size of any minimal winning coalition containing Ai is
at least c.
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3. G is (0, 0, c)-stable if and only if the cardinality of any minimal winning coalition in G is at least
C+1. On the other hand, G is (1, 0, c)-stable if and only if the cardinality of any minimal winning
coalition in G containing at least one player is at least c + 1. Since a minimal winning coalition
must contain at least one player, it follows that G is (0, 0, c)-stable if and only if G is (1, 0, c)-stable.

4. If S1 = {Ai} and S2 6= ∅, then mw(S1, S2, c) is the number of minimal winning coalitions of
cardinality c in G containing Ai in G, but, not containing any element of S2.
G is (1, 1, c)-stable if for any two players Ai and Aj , the size of any minimal winning coalition
containing Ai but not containing Aj is at least c.

5. If S1 = ∅ and S2 6= ∅, then mw(S1, S2, c) is the number of minimal winning coalitions of cardinality
c in G not containing any element of S2.
G is (0, c2, c)-stable if for any set S2 of size at most c2, the size of any minimal winning coalition
not containing any element of S2 is at least c.

5.1 Stability with Respect to “Large” Miners

Typically, in a cryptocurrency system the set of miners can be roughly divided into two sets, those
having “large” hash rates and those have significantly smaller hash rates. Let L be such a set of “large”
miners. Any successful attack is likely to involve the miners in L. On the other hand, it is also quite
unlikely that all the miners in L will collude. So, one can consider a partition (S1, S2) of L where the
miners in S1 are part of the coalition attacking the system while the miners in S2 are not part of this
coalition, i.e., L = S1 ∪ S2 and S1 ∩ S2 = ∅. The relevant question is what is the minimum number of
miners outside L who need to form a coalition with the miners in S1 to win the Attack Game.

Let G be a weighted majority voting game on a set N of players and L be a subset of N . For any
subset S of L, by mwL(S, c) we will denote the number of minimal winning coalitions in G containing
S and disjoint from L \ S and having cardinalities equal to c.

Definition 7 Let G = (N,w, q) be a weighted majority voting game and L be a subset of N . We say
that G is (L, c1, c)-stable if

c = max{c : mwL(S, c) = 0 for all subsets S ⊆ L with #S = c1}.

For an (L, c1, c)-stable game G, the following is ensured. Consider any partition of L into S and L \ S
with #S = c1 and suppose that the coalition S does not collude with any player in L \ S. Then to win
the Attack Game the coalition S must collude with at least c−#S players from N \ L.

6 A Snapshot Analysis of Bitcoin

To compute the relevant parameters of the Rule Game and the Attack Game, it is required to identify
the actual players and their weights. The players are the miners and the weight of a miner is its hash
rate. The hash rate of a miner is not directly available and has to be estimated. As explained earlier,
under the assumption that the number of blocks mined by a miner is proportional to the hash rate of
the miner, one may use the number of blocks as the weight of the miner. In this section, we proceed
under the assumption that the hash rate of a miner is a constant multiple of the number of blocks mined
by a miner. So, the weights of the players are taken to be the numbers of blocks mined by these players
over some interval of time.

For Bitcoin, several online websites provide information regarding the miners and the numbers
of blocks that were mined by the different miners. We have used data from the following website:
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https://www.blocktrail.com/BTC. From this website, the number of mined blocks can be obtained
in a specified previous interval of time. This interval can be the last 24 hours, the last week, the last
month, the last six months and the last year. By fixing a particular date and an interval of time, it
is possible to obtain a snapshot of the number of blocks generated in the given time interval prior to
the given date. The ensuing analysis following from this data provides a snapshot analysis of the Rule
and the Attack Games. To illustrate how such a snapshot analysis can be meaningfully carried out, we
have done the analysis with data for the last six months from the date 7th November, 2017. This data
is shown in Figure 1. Before proceeding with the actual analysis, we note the following point.

1. There is nothing special about the particular date that we have used and the analysis can be
applied to data corresponding to any date; also, the analysis can be applied to data obtained for
other time intervals.

2. We proceed under the assumption that the hash rate of a miner is proportional to the number
of blocks mined by it based on which we have taken the weights of miners to be the numbers of
blocks that they mined in a given time period. There is nothing really particular about using the
number of blocks as estimates of the hash rates. Our analysis can be applied equally well if the
hash rates are estimated using some other methods.

3. While we work with data for Bitcoin, similar analysis can also be applied to data obtained from
other cryptocurrencies.

4. The snapshot analysis that we carry out can be performed on a cryptocurrency system at regu-
lar time intervals. This will provide valuable insights into the nature of evolution of the socio-
economics dynamics of the cryptocurrency system.

The data in Figure 1 attributes a rather high number of blocks to “Unknown”. This means that
these many blocks were mined by miners whose identities are not known. It is most likely that it is
not a single entity which mined these blocks. So, in the computation of the voting powers, it is not
appropriate to consider “Unknown” as a player. Let U be the set of all miners in the group “Unknown”.
It is reasonable to assume that the miners in U are those with limited computational resources, i.e., any
one of them would have mined a small number of blocks. So, the weights of the miners in U are small,
though the sum total of all these weights is quite significant. We handle the miners in “Unknown” in
the following manner.

Suppose the total weight of the components w is ω out of which the the miners in U have a total
weight of w. Suppose that a fraction p of the total weight of the miners in “Unknown” play to win
the game while the other (1− p) fraction of the total weight of the miners in “Unknown” try to block
the winning. By considering different values of p in [0, 1], it becomes possible to study the effect of the
“Unknown” miners on the game. To capture this idea we make the following definition.

Definition 8 Given the game G = (N,w, q), a player U with weight w and p ∈ [0, 1], we define the
game G(p) with respect to U as G(p) = (N \ {U},wU , q

(p)) where q(p) = (q · ω − p · w)/(ω − w) and ω
is the sum of the weights of all the players in the original game G. Here wU denotes the weight vector
obtained from w by leaving out the entry corresponding to U .

The miners in “Unknown” are not present in G(p) so the total weight of the miners in G(p) is ω − w.
To win, a coalition in the original game G needed to have weight at least q · ω. So, in G(p), to win a
coalition needs to have weight at least q · ω − p · w.

22

https://www.blocktrail.com/BTC


Figure 1: Number of blocks mined by various miners in the last one six months before 7th November,
2017. Data available from https://www.blocktrail.com/BTC.

Remark: Note that setting p = 1, we obtain the case where all miners in “Unknown” try to win while
setting p = 0, we obtain the case where all players in “Unknown” try to block the proposal.

In the game G = (N,w, q) obtained from Figure 1, there are a total of n = 24 miners with the
weight vector w as given in Figure 1 and q = 0.95. The value of ω is 28215 and “Unknown” miners
have total weight of w = 2684. In the game G(p), the group U is removed from the game while the
threshold q(p) is modified depending upon the value of p. The numbers of the players in G(p) and their
weights are shown in Table 1.

6.1 Computation of Voting Powers in the Rule Game

As discussed earlier, in the Rule Game, whether a miner is a blocker is of interest.

Proposition 3 Let G = (N,w, q) where the sum of the weights of all the players in G is ω. Let U be
a player with weight w. For p ∈ [0, 1] consider the game G(p) with respect to U . A player Ai in G(p) of
weight wi is a blocker if and only if wi > (1− q)ω + (p− 1)w.

Proof: In G(p), we have q(p) = (q · ω − p · w)/(ω − w) and the total weight of all the players in G(p)

is ω −w. Ai is a blocker in G(p) if and only if wi/(ω −w) > 1− q(p). Simplifying, we obtain the stated
condition. �
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Table 1: Numbers and weights of miners other than “Unknown” as obtained from Figure 1.
player 1 2 3 4 5 6 7 8

weight 5094 3572 2740 2454 2100 1997 1528 1378

player 9 10 11 12 13 14 15 16

weight 1029 1017 644 538 530 331 260 193

player 17 18 19 20 21 22 23

weight 76 28 9 8 2 2 1

So, whether a player is a blocker depends on the value of p. It may happen that for a certain value of
p, the player is a blocker, but, fails to be a blocker for a different value of p. For a specified value of p,
the set of blockers B(p) in G(p) is fixed. From Proposition 1, both the CP and the PGM indices assign
a value of 1 to a blocker. So, it is the power of the non-blockers which need to be computed. From
Theorem 3, the computation of these powers become more efficient by considering the modified game
G(p).

We consider the game G(p) for various values of p. The players of G(p) and their weights are given in
Table 1. The power profiles for the CP and PGM for G(p) for various values of p are shown in Tables 2
and 3. In both Tables 2 and 3, a value of 1 in the (i, p) cell indicates that player number i is a blocker
in G(p). Based on these tables, we make the following observations.

1. From Table 2 we observe that for a fixed value of p, i.e., in the game G(p), the values of CP
decreases monotonically with decrease in the weights. This confirms the behaviour predicted in
Theorem 4.

2. From Table 3 we observe that for a fixed value of p, i.e., in the game G(p), the values of PGM do
not decrease monotonically with decrease in the weights. For example, from Table 1 the weight
of player number 11 is 644 and the weight of player number 12 is 538, yet for p = 0, 0.1, 0.2 and
0.3, the PGM value of player number 12 is more than that of player number 11. The possibility
of such behaviour was given in Example 1.

3. As p increases, the number of blockers decreases. In Table 2, the numbers of blockers are 8, 6, 6, 5,
4, 3, 2, 2, 2, 1 and 1 corresponding to the values of p = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
1. Player 1 is a blocker in all the games, but as the fraction of miners in “Unknown” who support
the rule change increases, the blocking capability of the other players go down. More generally,
in Table 2, with increase in p, the power of any particular player decreases monotonically. This,
however, is not true for the PGM measure as indicated by the values in Table 3.

6.2 Computation of Swings and Minimal Winning Coalitions in the Attack Game

As in the Rule Game, the role of the miners in the group marked “Unknown” is tackled by considering
the game G(p) for various values of p. This indicates that a fraction p of the total weight of the miners
in “Unknown” are trying to attack the system while a fraction 1 − p of the total weight of the miners
in “Unknown” do not form part of any such attack coalition.

Swings: As mentioned earlier, it is of interest to a miner to know the number of swings that it has in
the game. Table 4 provides the values of the non-normalised Banzhaf index of the different players for
various values of p. It is of interest to note that as p increases, the power of the player with the highest
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Table 2: Values of the Coleman preventive power index of the different players in the Rule Game for
various values of p. The entries are shown up to three decimal places.

p
player 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.992

03 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.982 0.965 0.947 0.926

04 1.000 1.000 1.000 1.000 1.000 0.991 0.975 0.953 0.930 0.904 0.880

05 1.000 1.000 1.000 1.000 0.982 0.960 0.927 0.894 0.858 0.826 0.792

06 1.000 1.000 1.000 0.990 0.964 0.935 0.900 0.863 0.829 0.793 0.759

07 1.000 0.993 0.952 0.906 0.849 0.793 0.743 0.700 0.662 0.630 0.602

08 1.000 0.962 0.906 0.839 0.780 0.718 0.677 0.635 0.602 0.573 0.548

09 0.912 0.829 0.726 0.641 0.581 0.544 0.517 0.494 0.472 0.445 0.421

10 0.911 0.827 0.720 0.634 0.575 0.539 0.512 0.489 0.466 0.439 0.415

11 0.545 0.461 0.418 0.401 0.377 0.354 0.328 0.313 0.295 0.280 0.265

12 0.475 0.419 0.378 0.358 0.328 0.302 0.282 0.265 0.249 0.236 0.223

13 0.473 0.413 0.372 0.353 0.324 0.297 0.278 0.262 0.246 0.233 0.220

14 0.278 0.252 0.238 0.212 0.204 0.185 0.176 0.163 0.155 0.147 0.139

15 0.266 0.175 0.218 0.151 0.173 0.140 0.142 0.128 0.121 0.117 0.105

16 0.174 0.156 0.139 0.137 0.118 0.114 0.099 0.099 0.090 0.087 0.081

17 0.069 0.052 0.056 0.051 0.042 0.046 0.036 0.037 0.034 0.032 0.032

18 0.027 0.024 0.019 0.019 0.019 0.016 0.014 0.012 0.011 0.010 0.009

19 0.007 0.007 0.005 0.007 0.005 0.005 0.004 0.004 0.004 0.004 0.004

20 0.007 0.006 0.005 0.006 0.004 0.005 0.004 0.004 0.004 0.003 0.003

21 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

22 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

23 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000
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Table 3: Values of the Holler Public Good Measure of the different players in the Rule Game for various
values of p. The entries are shown up to three decimal places.

p
player 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.993

03 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.974 0.950 0.924 0.901

04 1.000 1.000 1.000 1.000 1.000 0.994 0.978 0.965 0.960 0.919 0.920

05 1.000 1.000 1.000 1.000 0.983 0.975 0.944 0.896 0.850 0.817 0.806

06 1.000 1.000 1.000 0.960 0.950 0.917 0.866 0.857 0.864 0.855 0.839

07 1.000 0.938 0.913 0.880 0.824 0.790 0.765 0.749 0.761 0.773 0.742

08 1.000 0.979 0.928 0.900 0.882 0.809 0.816 0.745 0.738 0.730 0.730

09 0.935 0.917 0.870 0.820 0.731 0.732 0.737 0.762 0.728 0.695 0.693

10 0.903 0.854 0.812 0.740 0.706 0.675 0.648 0.649 0.621 0.628 0.622

11 0.484 0.438 0.522 0.560 0.689 0.650 0.670 0.658 0.615 0.596 0.577

12 0.613 0.750 0.681 0.640 0.605 0.618 0.615 0.584 0.638 0.613 0.558

13 0.742 0.667 0.609 0.620 0.605 0.561 0.642 0.584 0.611 0.625 0.565

14 0.613 0.438 0.377 0.410 0.420 0.446 0.447 0.455 0.522 0.552 0.551

15 0.677 0.562 0.565 0.550 0.429 0.605 0.413 0.632 0.432 0.578 0.499

16 0.581 0.562 0.449 0.490 0.454 0.490 0.492 0.532 0.465 0.523 0.475

17 0.355 0.479 0.391 0.380 0.395 0.363 0.391 0.398 0.372 0.378 0.395

18 0.355 0.250 0.232 0.280 0.311 0.287 0.302 0.294 0.282 0.297 0.272

19 0.161 0.271 0.203 0.290 0.235 0.236 0.218 0.255 0.239 0.265 0.234

20 0.161 0.292 0.246 0.290 0.227 0.217 0.229 0.264 0.229 0.230 0.229

21 0.097 0.125 0.130 0.190 0.168 0.146 0.134 0.177 0.166 0.163 0.156

22 0.097 0.125 0.130 0.190 0.168 0.146 0.134 0.177 0.166 0.163 0.156

23 0.097 0.104 0.087 0.120 0.109 0.096 0.078 0.117 0.113 0.099 0.099
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Table 4: Values of the non-normalised Banzhaf index of the different players in the Attack Game for
various values of p. The entries are shown up to three decimal places.

p
player 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

01 0.548 0.549 0.548 0.544 0.537 0.528 0.516 0.502 0.486 0.468 0.449

02 0.337 0.337 0.337 0.336 0.333 0.330 0.325 0.320 0.313 0.306 0.298

03 0.256 0.256 0.255 0.254 0.252 0.249 0.245 0.240 0.235 0.229 0.222

04 0.227 0.227 0.227 0.226 0.224 0.221 0.218 0.214 0.210 0.204 0.198

05 0.193 0.193 0.193 0.192 0.190 0.188 0.185 0.182 0.178 0.174 0.169

06 0.183 0.184 0.183 0.183 0.181 0.179 0.176 0.173 0.169 0.165 0.161

07 0.139 0.139 0.139 0.138 0.137 0.136 0.134 0.132 0.129 0.126 0.122

08 0.126 0.126 0.126 0.125 0.124 0.122 0.120 0.118 0.116 0.113 0.110

09 0.093 0.094 0.093 0.093 0.092 0.091 0.090 0.088 0.086 0.084 0.082

10 0.092 0.092 0.092 0.092 0.091 0.090 0.089 0.087 0.085 0.083 0.081

11 0.058 0.058 0.058 0.058 0.058 0.057 0.056 0.055 0.054 0.053 0.051

12 0.049 0.049 0.049 0.048 0.048 0.047 0.047 0.046 0.045 0.044 0.043

13 0.048 0.048 0.048 0.048 0.047 0.047 0.046 0.045 0.044 0.043 0.042

14 0.030 0.030 0.030 0.029 0.029 0.029 0.029 0.028 0.028 0.027 0.026

15 0.024 0.023 0.024 0.023 0.023 0.023 0.023 0.022 0.022 0.021 0.021

16 0.017 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.015

17 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006

18 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002

19 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

20 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

weight decreases much more steeply compared to the powers of players with lower weights. Also, more
generally, with increase in p, the decrease in power of a player with a larger weight is more significant
compared to the decrease in power of a player with a lower weight. This is due to the fact that the
total weight of the “Unknown” miners is quite significant and so as p increases, a significant portion of
this weight contributes to the attack. This in turn leads to a dimunition of the influence of players with
larger weights.

Number of minimal winning coalitions: The cardinality wise number of minimal winning coali-
tions in G(p) for different values of p are shown in Table 5. The value of 0 means that there is no minimal
winning coalition for the particular values of c and p. There is, however, a nuance in the interpretation
of this condition. For c ≤ 4, the value 0 denotes that there is actually no winning coalition in the game
while for c ≥ 17, the value 0 denotes that the winning coalitions are not minimal, i.e., dropping any
miner from the coalition does not convert it into a losing coalition. We have the following observations
from Table 5.

1. There is no winning coalition of cardinality 3 or less.

2. If 20% of the weight of the ‘Unknown’ miners can be roped in then there is a minimal winning
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Table 5: Cardinality wise number of minimal winning coalitions in G(p).
p

c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 1 3 5 7 9 15 21 29

5 23 33 33 54 52 59 79 100 97 110 137

6 118 135 170 185 240 217 230 275 298 315 286

7 331 358 424 403 415 499 490 503 523 562 587

8 584 566 592 695 686 661 709 738 741 668 684

9 700 693 735 682 700 744 719 680 687 681 733

10 654 626 668 625 652 614 607 658 533 558 507

11 493 545 489 518 549 471 484 447 437 476 364

12 407 397 354 420 382 333 342 252 317 253 269

13 305 220 247 251 204 227 190 195 190 141 161

14 120 124 139 128 104 106 100 105 67 77 53

15 49 63 59 46 60 35 35 38 26 29 24

16 20 23 32 25 16 23 12 11 9 5 5

17 3 7 3 5 3 2 1 1 0 0 1

18 0 3 1 0 0 0 0 0 0 0 0

19 0 1 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0

coalition of the other 23 miners of cardinality 4.

3. There are several minimal winning coalitions of cardinalities 5 (or more).

4. In general, as p increases, the number of minimal coalitions initially increases and then decreases.
The increase indicates that the number of winning coalitions itself goes up while the decrease
indicates that some of the winning coalitions fail to remain minimal.

In Table 6, we provide the cardinality wise number of minimal winning coalitions containing the
largest miner. It is possible to compute similar data for all the players. Table 6 shows that if 20% of
the miners in ‘Unknown’ can be roped in, then the largest miner can form a coalition consisting of itself
and 3 of the other 22 miners to win the Attack Game. On the other hand, if coalitions of size 5 or more
are considered, then the largest miner can form several winning coalitions in the Attack Game without
involving any of the miners in ‘Unknown’.

(L, c1, c)-stability: For a set L of large miners, we consider (L, c1, c)-stability in G(p) for different
values of p. We have considered several options for L, namely, L consists of the miners with i of the
largest weights where we have taken i = 1, 2, 3, 4, 5 and 6. The value of c1 is in the set {0, 1, . . . , i}. In
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Table 6: Cardinality wise number of minimal winning coalitions containing the largest miner in G(p).
p

c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 1 3 5 7 9 15 21 29

5 23 33 33 54 52 59 78 99 93 105 126

6 117 133 166 179 228 196 203 230 250 237 205

7 310 331 383 338 316 384 377 345 344 311 298

8 497 434 424 500 483 418 419 392 348 322 294

9 476 482 501 406 379 379 334 309 276 214 249

10 431 380 371 324 320 273 253 233 169 199 140

11 277 301 258 265 250 179 173 162 154 150 80

12 248 218 178 179 151 131 137 78 96 57 59

13 170 104 99 102 70 71 52 51 32 26 34

14 42 49 54 37 31 34 15 23 7 12 1

15 18 23 20 14 10 8 6 2 1 4 0

16 6 9 4 8 2 2 1 1 2 0 0

17 3 0 1 0 0 1 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0
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each case, we have computed the corresponding value of c. Table 7 provides values of d such that G(p)

is (L, c1, c1 + d − 1)-stable for different values of p and c1. In the table, a ‘–’ denotes that there is no
winning coalition for the corresponding condition whereas a ‘∗’ denotes that any coalition of size c1 of
L is already a winning coalition in G(p). Based on Table 7, we make the following observations.

1. Case #L = 4 and c1 = 0. All corresponding entries in the table are ‘–’. This means that if the
largest four miners are left out, then there is no way to win the Attack Game. Similar observation
holds for #L = 5 and #L = 6. Put another way, any attack on the system certainly involves one
of the six largest miners.

2. Case #L = 5 and c1 = 5. All corresponding entries in the table are marked by ‘∗’. Similarly, for
#L = 6. This means that if five (or more) of the largest miners collude, then the Attack Game is
immediately won.

3. Case #L = 3 and c1 = 0, i.e., the three largest miners are left out. The entry for p = 0 is ‘–’.
This means that if none of the miners in ‘Unknown’ are involved in the attack, then the attack
cannot be successful. On the other hand, the entry for p = 0.1 is 18. This means that if 10% of
the miners in ‘Unknown’ are involved in the attack, then leaving out the three largest miners, a
coalition of 18 of the other 20 miners in N \ L is both necessary and sufficient to win the Attack
Game.

4. Case #L = 4 and c1 = 3 and p = 0.4. The corresponding entry in the table is 1. The condition
#L = 4 and c1 = 3 means that out of the four largest miners, one is left out. If 40% of the
miners in ‘Unknown’ can be roped in, then out of the 19 other miners in N \ L, it is necessary
and sufficient to have only 1 miner to win the Attack Game.

5. Case #L = 5, c1 = 1 and p = 0.9. The corresponding entry in the table is 5. The condition
#L = 5 and c1 = 1 means that out of the five largest miners, four are left out. If 90% of the
miners in ‘Unknown’ can be roped in, then out of the 18 other miners in N \ L, it is necessary
and sufficient to have only 5 miners to win the Attack Game.

6. Consider the cases (#L = 5, c1 = 3, p = 0) and (#L = 6, c1 = 3, p = 0). The corresponding
entries in the table are 2 and 3. This may appear to be surprising, since in both cases c1 = 3.
The explanation is that in the first case, out of the five largest miners, two are left out, while in
the second case, out of the six largest miners, three are left out. Since in the second case, more
miners are left out, a larger number of miners is required from the remaining N \ L miners.

Remark: For the analysis of the Attack Game, we have considered only the cardinalities of the
minimal winning coalitions under different settings. From a practical point of view, it would be of
interest to obtain the actual minimal winning coalitions. The algorithms for computing the cardinalities
of the minimal winning coalitions can be extended to compute the actual sets of players who form the
relevant minimal winning coalitions. We refer to (Chakravarty et al., 2015) for such details.

7 Conclusion

In this work, we have shown that weighted majority voting games arise naturally in the context of
cryptocurrencies. Two such games, namely the Attack Game and the Rule Game have been identi-
fied and appropriately analysed. We hope that this will stimulate interest in the connection between
cryptocurrencies and voting games leading to further interesting work on the intersection of these two
topics.
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Table 7: The entries in the table are d such that G(p) is (L, c1, c1 + d− 1)-stable where L consists of the
miners with the i largest weights as given in Table 1 for i = 1, 2, 3, 4, 5, 6.

p
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

#L = 1
c1 = 0 6 6 6 6 6 6 5 5 5 5 5
c1 = 1 4 4 3 3 3 3 3 3 3 3 3

#L = 2
c1 = 0 9 8 8 8 8 7 7 7 7 6 6
c1 = 1 5 4 4 4 4 4 4 4 3 3 3
c1 = 2 3 3 2 2 2 2 2 2 2 2 2

#L = 3

c1 = 0 – 18 13 12 11 10 10 9 9 8 8
c1 = 1 5 5 5 5 5 4 4 4 4 4 4
c1 = 2 3 3 3 3 3 2 2 2 2 2 2
c1 = 3 2 2 1 1 1 1 1 1 1 1 1

#L = 4

c1 = 0 – – – – – – – – – – –
c1 = 1 7 6 6 6 6 5 5 5 5 4 4
c1 = 2 4 3 3 3 3 3 3 2 2 2 2
c1 = 3 2 2 2 2 1 1 1 1 1 1 1
c1 = 4 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

#L = 5

c1 = 0 – – – – – – – – – – –
c1 = 1 11 10 9 8 8 7 7 6 6 5 5
c1 = 2 4 4 4 4 3 3 3 3 3 2 2
c1 = 3 2 2 2 2 1 1 1 1 1 1 1
c1 = 4 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
c1 = 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

#L = 6

c1 = 0 – – – – – – – – – – –
c1 = 1 – – – – – – – 10 9 8 7
c1 = 2 6 5 5 4 4 4 4 3 3 3 3
c1 = 3 3 2 2 2 2 2 1 1 1 1 1
c1 = 4 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
c1 = 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
c1 = 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

31



References

Banzhaf, J. F. (1965). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review,
19:317–343.

Chakravarty, S. R., Mitra, M., and Sarkar, P. (2015). A Course on Cooperative Game Theory. Cambridge
University Press.

Coleman, J. S. (1971). Control of collectives and the power of a collectivity to act. In Lieberma, B.,
editor, Social Choice, pages 269–298. Gordon and Breach, New York.

Deegan, J. and Packel, E. W. (1978). A new index of power for simple n-person games. International
Journal of Game Theory, 7(2):113–123.

Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. In Christin, N. and
Safavi-Naini, R., editors, Financial Cryptography and Data Security - 18th International Conference,
FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers, volume 8437 of Lecture
Notes in Computer Science, pages 436–454. Springer.

Felsenthal, D. S. and Machover, M. (1998). The Measurement of Voting Power. Edward Elgar, Chel-
tenham.

Fisch, B. A., Pass, R., and A.Shelat (2017). Socially optimal mining pools. In Devanur, N. R. and
Lu, P., editors, Proceedings of the 2017 International Conference on Web and Internet Economics,
WINE, 2017, Bengaluru, India, December 17–20, 2017, volume 10660 of Lecture Notes in Computer
Science, pages 205–218. Springer.

Holler, M. J. (1982). Forming coalitions and measuring voting power. Political Studies, 30(2):262–271.

Holler, M. J. and Packel, E. W. (1983). Power, luck and the right index. Journal of Economics,
43(1):21–29.

Kiayias, A., Koutsoupias, E., Kyropoulou, M., and Tselekounis, Y. (2016). Blockchain mining games.
In Conitzer, V., Bergemann, D., and Chen, Y., editors, Proceedings of the 2016 ACM Conference on
Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages 365–382.
ACM.

Kroll, J., Davey, I., and Felten, E. W. (2013). The economics of Bitcoin mining, or Bitcoin in the
presence of adversaries. In Workshop on the Economics of Information Security.

Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., and Rosenschein, J. S. (2015). Bitcoin mining
pools: A cooperative game theoretic analysis. In Weiss, G., Yolum, P., Bordini, R. H., and Elkind,
E., editors, Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, pages 919–927. ACM.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.
pdf.

Narayanan, A., Bonneau, J., Felten, E. W., Miller, A., and Goldfeder, S. (2016). Bitcoin and Cryp-
tocurrency Technologies: A Comprehensive Introduction. Princeton University Press.

Shapley, L. S. (1953). A value for n-person games. In Kuhn, H. W. and Tucker, A. W., editors,
Contributions to the Theory of Games II (Annals of Mathematics Studies), pages 307–317. Princeton
University Press.

32

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


Shapley, L. S. and Shubik, M. J. (1954). A method for evaluating the distribution of power in a
committee system. American Political Science Review, 48:787–792.

Taaki, A. (2011). Bitcoin Improvement Proposal 1. https://github.com/bitcoin/bips/blob/

master/bip-0001.mediawiki, created on 19-08-2011.

33

https://github.com/bitcoin/bips/blob/master/bip-0001.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0001.mediawiki

	Introduction
	An Overview of Cryptocurrencies
	Cryptographic Tools
	Cryptocurrency Basics

	Voting Games Arising from Cryptocurrencies
	Background on Voting Games
	Cryptocurrency Voting Games
	The Rule Game
	The Attack Game

	Analysis of the Rule Game
	Measurement of Voting Power
	Power in the Rule Game

	Analysis of the Attack Game
	Stability with Respect to ``Large'' Miners

	A Snapshot Analysis of Bitcoin
	Computation of Voting Powers in the Rule Game
	Computation of Swings and Minimal Winning Coalitions in the Attack Game

	Conclusion

