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Abstract

We propose a framework for constructing efficient code-based encryption schemes from codes that do

not hide any structure in their public matrix. The framework is in the spirit of the schemes first proposed

by Alekhnovich in 2003 and based on the difficulty of decoding random linear codes from random errors

of low weight. We depart somewhat from Aleknovich’s approach and propose an encryption scheme based

on the difficulty of decoding random quasi-cyclic codes. We propose two new cryptosystems instantiated

within our framework: the Hamming Quasi-Cyclic cryptosystem (HQC), based on the Hamming metric,

and the Rank Quasi-Cyclic cryptosystem (RQC), based on the rank metric. We give a security proof,

which reduces the IND-CPA security of our systems to a decisional version of the well known problem

of decoding random families of quasi-cyclic codes for the Hamming and rank metrics (the respective

QCSD and RQCSD problems). We also provide an analysis of the decryption failure probability of our

scheme in the Hamming metric case: for the rank metric there is no decryption failure. Our schemes

benefit from a very fast decryption algorithm together with small key sizes of only a few thousand bits.

The cryptosystems are very efficient for low encryption rates and are very well suited to key exchange

and authentication. Asymptotically, for λ the security parameter, the public key sizes are respectively

in O(λ2) for HQC and in O(λ
4
3 ) for RQC. Practical parameter compares well to systems based on

ring-LPN or the recent MDPC system.

Index Terms
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I. INTRODUCTION

A. Background and Motivation

The first code-based cryptosystem was proposed by McEliece in 1978. This system, which can be seen

as a general encryption setting for coding theory, is based on a hidden trapdoor associated to a decodable

family of codes, hence a strongly structured family of codes. The inherent construction of the system

makes it difficult to formally reduce security to the generic difficulty of decoding random codes. Even

if the original McEliece cryptosystem, based on the family of Goppa codes, is still considered secure

today, many variants based on alternative families of codes (Reed-Solomon codes, Reed-Muller codes

or some alternant codes [MB09, BCGO09]) were broken by recovering in polynomial time the hidden

structure [FOPT10]. The fact that the hidden code structure may be uncovered (even possibly for Goppa

codes) lies like a sword of Damocles over the system, and finding a practical alternative cryptosystem

based on the difficulty of decoding unstructured or random codes has always been a major issue in

code-based cryptography. The recently proposed MDPC cryptosystem [MTSB13] (somewhat in the spirit

of the NTRU cryptosystem [HPS98]) addresses the problem by using a hidden code structure which is

significantly weaker than that of previously used algebraic codes like Goppa codes. The cryptosystem

[GMRZ13] followed this trend with a similar approach. Beside this weak hidden structure, the MDPC

system has very nice features and in particular relatively small key sizes, because of the cyclic structure

of the public matrix. However, even if this system is a strong step forward for code-based cryptography,

the hidden structure issue has not altogether disappeared.

In 2003, Alekhnovich proposed an innovative approach based on the difficulty of decoding purely

random codes [Ale03]. In this system the trapdoor (or secret key) is a random error vector that has been

added to a random codeword of a random code. Recovering the secret key is therefore equivalent to

solving the problem of decoding a random code – with no hidden structure. Alekhnovich also proved

that breaking the system in any way, not necessarily by recovering the secret key, involves decoding a

random linear code.

Even if the system was not totally practical, the approach in itself was a breakthrough for code-based

cryptography. Its inspiration was provided in part by the Ajtai-Dwork cryptosystem [AD97] which is

based on solving hard lattice problems. The Ajtai-Dwork cryptosystem also inspired the Learning With

Errors (LWE) lattice-based cryptosystem by Regev [Reg03] which generated a huge amount of work

in lattice-based cryptography. Attempts to emulate this approach in code-based cryptography were also

made and systems based on the Learning Parity with Noise (LPN) have been proposed by exploiting the

analogy with LWE [DV13, KMP14]: the LPN problem is essentially the problem of decoding random

2



linear codes of fixed dimension and unspecified length over a binary symmetric channel. The first version

of the LWE cryptosystem was not very efficient, but introducing more structure in the public key (as

for NTRU) lead to the very efficient Ring-LWE cryptosystem [LPR10]. One strong feature of this last

paper is that it gives a reduction from the decisional version of the ring-LWE problem to a search version

of the problem. Such a reduction is not known for the case of the ring-LPN problem. A ring version

(ring-LPN) was nevertheless introduced in [HKL+12] for authentication and for encryption in [DP12].

In this paper, we propose an efficient cryptosystem based on the difficulty of decoding random quasi-

cyclic codes. It is inspired by Ring-LWE encryption but is significantly adapted to the coding theory

setting. Our construction benefits from some nice features: a reduction to a decisional version of the

general problem of decoding random quasi-cyclic codes, hence with no hidden structure, and also quite

good parameters and efficiency. Since our approach is relatively general, it can also be used with other

metrics such as the rank metric. Finally, another strong feature of our approach is that inherently it leads

to a precise analysis of the decryption failure probability, which is also a hard point for the MDPC

cryptosystem and is not done in detail for other approaches based on the LPN problem. A relative

weakness of our system is its relatively low encryption rate, but this is not a major issue for classical

applications of public-key encryption schemes such as authentication or key exchange.

B. Our Contributions

We propose the first efficient code-based cryptosystem whose security relies on decoding small weight

vectors of random quasi-cyclic codes. We provide a reduction of our cryptosystem to this problem

together with a detailed analysis of the decryption failure probability. Our analysis allows us to give

small parameters for code-based encryption in Hamming and Rank metrics. When compared to the

MDPC [MTSB13] or LRPC [GMRZ13] cryptosystems, our proposal offers higher security (in terms of

security bits) and better decryption guarantees for similar parameters (i.e. key and communication size),

but with a lower encryption rate. Overall we propose concrete parameters for different levels of security,

in both the classical and quantum settings. These parameters show the great potential of rank metric for

cryptography especially for higher security settings. When compared to the ring-LPN based cryptosystem

[DP12] our system has better parameters with factors 10 and 100 respectively for the size of the ciphertext

and the size of the public key. We also give a general table comparing the different asymptotic sizes for

different code-based cryptosystems.
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C. Overview of Our Techniques

Our cryptosystem is based on two codes. A first code C[n, k], for which an efficient decoding algorithm

C.Decode(·) is known. The code C together with its generator matrix G are publicly known. The

second code is a [2n, n] random double-circulant code in systematic form, with generator matrix Q =

(In | rot(qr)) (see Eq. (2) for the definition of rot(·)). The general idea of the system is that the double-

circulant code is used to generate some noise, which can be handled and decoded by the code C. The

system can be seen as a noisy adaptation of the ElGamal cryptosystem.

The secret key for our cryptosystem is a short vector sk = (x,y) (for some metric), whose syndrome

s> = Q(x,y)> is appended to the public key pk = (G,Q, s>). To encrypt a message µ belonging to

some plaintext space, it is first encoded through the generator matrix G, then hidden using the syndrome

s and an additional short vector ε to prevent information leakage. In other words, encrypting a message

simply consists in providing a noisy encoding of it with a particular shape. Formally, the ciphertext is

(v = rQ>,ρ), for a short random vector r = (r1, r2) and ρ = µG+ s · r2 +ε for some natural operator

· defined in Sec. II. The legitimate recipient can obtain a noisy version of the plaintext ρ−v · y using his

secret key sk = (x,y) and then recover the (noiseless) plaintext using the efficient decoding algorithm

C.Decode.

For correctness, all previous constructions based on a McEliece approach rely on the fact that the

error term added to the encoding of the message is less than or equal to the decoding capability of the

code being used. In our construction, this assumption is no longer required and the correctness of our

cryptosystem is guaranteed assuming the legitimate recipient can remove sufficiently many errors from

the noisy encoding ρ of the message using sk.

The above discussion leads to the study of the probability that a decoding error occurs, which would

yield a decryption failure. We study the typical weight of the error vector e that one needs to decode in

order to decrypt (see Sec. V for details). With the reasonable assumption, backed up by simulations, that

the weight of e behaves in a way that is close to a binomial distribution, we manage a precise estimation

of a decoding failure and hence calibrate coding parameters accordingly.

Comparison with the McEliece framework. In the McEliece encryption framework, a hidden code is

considered. This leads to two important consequences: first, the security depends on hiding the structure

of the code, and second, the decryption algorithm consists of decoding the hidden code which cannot be

changed. This yields different instantiations depending on the choice of the hidden code, many of which

succumb to attacks and few of which resist.

In our framework there is not one unique hidden code, but two independent codes: the random double-
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circulant structure guarantees the security of the scheme, and the public code C guarantees correct

decryption. It makes it possible to consider public families of codes which are difficult to hide but

very efficient for decoding: also it requires finding a tradeoff for the code C, between decoding efficiency

and practical decoding complexity. But unlike the McEliece scheme, where the decryption code is fixed,

it can be changed depending on the application.

The global decryption failure for our scheme depends on the articulation between the error-vector

distribution induced by the double-circulant code and the decoding algorithm C.Decode(·). After having

studied the error-vector distribution for the Hamming metric we associate it with a particular code adapted

to low rates and bit error probability of order 1/3. Notice that the system could possibly be used for

greater encryption rate at the cost of higher parameters. This led us to choose tensor product codes, the

composition of two linear codes. Tensor product codes are defined (Def. 14) in Sec. VI, and a detailed

analysis of the decryption failure probability for such codes is provided there. For the rank metric case,

we consider Gabidulin codes and the case when the error-vector is always decodable, with zero decryption

failure probability.

Comparison with Ring-LWE. Our scheme may be considered as in the spirit of the Ring-LWE

Encryption scheme but with proofs that work in the coding theory context (for both the Hamming

and Rank metrics). It may be considered as a special instance. of the general LWE/LPN methodology, as

described, for example, in the recent paper [BS+16]. As is mentioned there, even though full LWE-based

schemes may, given current knowledge, be asymptotically more efficient than their LPN counterparts,

there is still significant appeal in providing a workable variation over the more simple binary field (as

it was done with Ring-LWE for the LWE setting). This was previously attempted in [DP12] by relying

on the Ring-LPN problem. One of the drawbacks of this last work is to be limited to rings of the form

F2[X]/(P (X)) that are extension fields of F2. In contrast, we suggest using Fq[X]/(Xn − 1), which

reduces security to a decoding problem for quasi-cyclic codes and draws upon Coding Theory’s experience

of using this family of codes. Quasi-cyclic codes have indeed been studied for a long time by coding-

theorists, and many of the records for minimum distance are held by quasi-cyclic codes. However, no

efficient generic decoding algorithm for quasi-cyclic codes has been found, lending faith to the assumption

that decoding random quasi-cyclic codes is a hard algorithmic problem. Also, this particular setting also

allows us to obtain very good parameters compared to the approach of [DP12] with at least a factor 10

for the size of the keys and messages Departing from the strict LWE/LPN paradigm also enabled us to

derive a security reduction to decoding quasi-cyclic codes and arguably gives us more flexibility for the

error model. Notably the rank-metric variation that we introduce has not been investigated before in the
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LWE/LPN setting, and looks very promising. As mentioned before, one of its features is that it enables

a zero error probability of incorrect decryption.

D. Road Map

The rest of the paper is organized as follows: Sec. II gives necessary background on coding theory for

Hamming and Rank metrics. Sec. III describes the cryptosystem we propose and its security is discussed

in Sec. IV. Sec. V and VI study the decryption failure probability and the family of tensor product codes

we consider to perform the decoding for small rate codes. Finally, Sec. VII give parameters.

II. PRELIMINARIES

A. General Definitions

Notation. Throughout this paper, Z denotes the ring of integers, F denotes a finite (hence commutative)

field, typically Fq for a prime q ∈ Z for Hamming codes or Fqm for Rank Metric codes. V is a vector

space of dimension n over F for some positive n ∈ Z. Elements of V will be represented by lower-case

bold letters, and interchangeably considered as row vectors or polynomials in R = F[X]/(Xn − 1).

By extension Rq and Rqm will denote the latter ring when the base field is Fq or Fqm instead of F,

respectively. Matrices will be represented by upper-case bold letters.

For any two elements x,y ∈ V , we define their product similarly as in R, i.e. x · y = c ∈ V with

ck =
∑

i+j≡k mod n

xiyj , for k ∈ {0, 1, . . . , n− 1}. (1)

Notice that as the product of two elements over the commutative ring R, we have x · y = y · x.

For any finite set S, x $← S denotes a uniformly random element sampled from S. For any x ∈ R, let

bxc denotes the biggest integer smaller than (or equal to) x. Finally, all logarithms log(·) will be base-2

unless explicitly mentioned. For a probability distribution D, we denote by X ∼ D the fact that X is a

random variable following D.

Definition 1 (Circulant Matrix). Let x = (x1, . . . , xn) ∈ Fn. The circulant matrix induced by x is defined

and denoted as follows:

rot(x) =


x1 xn . . . x2

x2 x1 . . . x3
...

...
. . .

...

xn xn−1 . . . x1

 ∈ Fn×n (2)
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As a consequence, it is easy to see that the product of any two elements x,y ∈ V can be expressed

as a usual vector-matrix (or matrix-vector) product using the rot(·) operator as

x · y = x.rot(y)> =
(

rot(x)y>
)>

= y.rot(x)> = y · x. (3)

Coding Theory. We now turn to recall some basic definitions and properties relating to coding theory

that will be useful to our construction. We mainly focus on generic definitions, and refer the reader

to Sec. II-B for instantiations with a specific metric, and also, to [Ove07] for a complete survey on

Code-based Cryptography due to space restrictions.

Definition 2 (Linear Code). A Linear Code C of length n and dimension k (denoted [n, k]) is a subspace

of V of dimension k. Elements of C are referred to as codewords.

Definition 3 (Generator Matrix). We say that G ∈ Fk×n is a Generator Matrix for the [n, k] code C if

C =
{
µG, for µ ∈ Fk

}
. (4)

Definition 4 (Parity-Check Matrix). Given an [n, k] code C, we say that H ∈ F(n−k)×n is a Parity-Check

Matrix for C if H is a generator matrix of the dual code C⊥, or more formally, if

C⊥ = {x ∈ Fn such that σ(x) = 0} . (5)

where

σ(x) = Hx>

denotes the syndrome of x.

Definition 5 (Minimum Distance). Let C be an [n, k] linear code over V and let ω be a norm on V . The

Minimal Distance of C is

d = min
x,y∈C,x 6=y

ω(x− y). (6)

A code with minimum distance d is capable of decoding arbitrary patterns of up to δ = bd−12 c errors.

Code parameters are written denoted [n, k, d].

Code-based cryptography usually suffers from huge keys. In order to keep our cryptosystem efficient,

we will use the strategy of Gaborit [Gab05] for shortening keys. This results in Quasi-Cyclic Codes, as

defined below.

Definition 6 (Quasi-Cyclic Codes [MTSB13]). View a vector x = (x1, . . . ,xs) of Fsn2 as s successive

blocks (n-tuples). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of order s if, for any c = (c1, . . . , cs) ∈
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C, the vector obtained after applying a simultaneous circular shift to every block c1, . . . , cs is also a

codeword.

More formally, by considering each block ci as a polynomial in R = F[X]/(Xn − 1), the code C is

QC of order s if for any c = (c1, . . . , cs) ∈ C it holds that (X · c1, . . . , X · cs) ∈ C.

Definition 7 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, (s− `)n] code of order s

is a quasi-cyclic code with a parity-check matrix of the form:

H =


In 0 · · · 0 A1

0 In A2

. . .
...

0 · · · In A`

 (7)

where A1, . . . ,A` are circulant n× n matrices.

B. Different Types of Metric

The previous definitions are generic and can be adapted to any type of metric.

Besides the well known Hamming metric, we also consider, in this paper, the rank metric which has

interesting properties for cryptography.

We recall some definitions and properties of Rank Metric Codes, and refer the reader to [Loi06]

for more details. Consider the case where F is an extension of a finite field, i.e. F = Fqm , and let

x = (x1, . . . , xn) ∈ Fnqm be an element of some vector space V of dimension n over Fqm . A basic

property of field extensions is that they can be seen as vector spaces over the base field they extend.

Hence, by considering Fqm as a vector space of dimension m over Fq, and given a basis (e1, . . . , em)

∈ Fmq , one can express each xi as

xi =

m∑
j=1

xj,iej (or equivalently xi = (x1,i, . . . , xm,i) ). (8)

Using such an expression, we can expand x ∈ Fnqm to a matrix E(x) such that:

x =
(
x1 x2 . . . xn

)
∈ Fnqm (9)

E(x) =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n
...

...
. . .

...

xm,1 xm,2 . . . xm,n

 ∈ Fm×nq . (10)
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The definitions usually associated to Hamming metric codes such as norm (Hamming weight), support

(non-zero coordinates), and isometries (n× n permutation matrices) can be adapted to the Rank metric

setting based on the representation of elements as matrices in Fm×nq .

For an element x of Fnqm we define its rank norm ω(x) as the rank of the matrix E(x). A rank metric

code C of length n and dimension k over the field Fqm is a subspace of dimension k of Fnqm embedded

with the rank norm. In the following, C is a rank metric code of length n and dimension k over Fqm ,

where q = pη for some prime p and positive η ≥ 1. The matrix G denotes a k × n generator matrix of

C and H is one of its parity check matrices. The minimum rank distance of the code C is the minimum

rank of non-zero vectors of the code. We also considers the usual inner product which allows to define

the notion of dual code.

Let x = (x1, x2, · · · , xn) ∈ Fnqm be a vector of rank r. We denote by E = 〈x1, . . . , xn〉 the Fq-

subspace of Fqm generated by the coordinates of x i.e. E = Vect (x1, . . . , xn). The vector space E is

called the support of x and denoted Supp(x). Finally, the notion of isometry which in Hamming metric

corresponds to the action of the code on n× n permutation matrices, is replaced for the Rank metric by

the action of n× n invertible matrices over the base field Fq.

Bounds for Rank Metric Codes. The classical bounds for Hamming metric have straightforward rank

metric analogues.

Singleton Bound. The classical Singleton bound for linear [n, k] codes of minimum rank r over Fqm

applies naturally in the Rank metric setting. It works in the same way as for linear codes (by finding an

information set) and reads r ≤ 1 + n− k. When n > m this bound can be rewritten [Loi06] as

r ≤ 1 +

⌊
(n− k)m

n

⌋
. (11)

Codes achieving this bound are called Maximum Rank Distance codes (MRD).

Deterministic Decoding. Unlike the situation for the Hamming metric, there do not exist many families

of codes for the rank metric which are able to decode rank errors efficiently up to a given norm. When

we are dealing with deterministic decoding, there is essentially only one known family of rank codes

which can decode efficiently: the family of Gabidulin codes [Gab85]. These codes are an analogue of

Reed-Solomon codes [RS60] where polynomials are replaced by q-polynomials. These codes are defined

over Fqm and for k ≤ n ≤ m, Gabidulin codes of length n and dimension k are optimal and satisfy the

Singleton bound for m = n with minimum distance d = n− k + 1. They can decode up to bn−k2 c rank

errors in a deterministic way.

Probabilistic Decoding. There also exists a simple family of codes which has been described for

the subspace metric in [SKK10] and can be straightforwardly adapted to rank metric. These codes reach
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asymptotically the equivalent of the Gilbert-Varshamov bound for the rank metric, however their non-zero

probability of decoding failure makes them less interesting for the cases we consider in this paper.

C. Difficult Problems for Cryptography

In this section we describe difficult problems which can be used for cryptography. We give generic

definitions for these problems which are usually instantiated with the Hamming metric but can also be

instantiated with the rank metric. After defining the problems we discuss their complexity.

All problems are variants of the decoding problem, which consists of looking for the closest codeword

to a given vector: when dealing with linear codes, it is readily seen that the decoding problem stays the

same when one is given the syndrome of the received vector rather than the received vector. We therefore

speak of Syndrome Decoding (SD).

Definition 8 (SD Distribution). For positive integers, n, k, and w, the SD(n, k, w) Distribution chooses

H
$← F(n−k)×n and x

$← Fn such that ω(x) = w, and outputs (H, σ(x) = Hx>).

Definition 9 (Search SD Problem). Let ω be a norm over V . On input (H,y>) ∈ F(n−k)×n × F(n−k)

from the SD distribution, the Syndrome Decoding Problem SD(n, k, w) asks to find x ∈ Fn such that

Hx> = y> and ω(x) = w.

Depending on the metric the above problem is instantiated with, we denote it either by SD for the

Hamming metric or by Rank-SD (RSD) for the Rank metric.

For the Hamming distance the SD problem has been proven to be NP-complete in [BMvT78]. This

problem can also be seen as the Learning Parity with Noise (LPN) problem with a fixed number of

samples [AIK07]. The RSD problem has recently been proven difficult with a probabilistic reduction to

the Hamming setting in [GZ16]. For cryptography we also need a Decisional version of the problem,

which is given in the following Definition:

Definition 10 (Decisional SD Problem). On input (H,y>)
$← F(n−k)×n × F(n−k), the Decisional SD

Problem DSD(n, k, w) asks to decide with non-negligible advantage whether (H,y>) came from the

SD(n, k, w) distribution or the uniform distribution over F(n−k)×n × F(n−k).

As mentioned above, this problem is the problem of decoding random linear codes from random

errors. The random errors are often taken as independent Bernoulli variables acting independently on

vector coordinates, rather than uniformly chosen from the set of errors of a given weight, but this hardly

makes any difference and one model rather than the other is a question of convenience. The DSD problem
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has been shown to be polynomially equivalent to its search version in [AIK07]. The rank metric version

of the problem is denoted by DRSD, by applying the transformation described in [GZ16] it can be

shown that the problem can be reduced to a search problem for the Hamming metric. Hence even if the

reduction is not optimal, it nevertheless shows the hardness of the problem.

Finally, as for both metrics our cryptosystem will use QC-codes, we explicitly define the problem

on which our cryptosystem will rely. The following Definitions describe the DSD problem in the QC

configuration, and are just a combination of Def. 6 and 10. Quasi-Cyclic codes are very useful in

cryptography since their compact description allows to decrease considerably the size of the keys. In

particular the case s = 2 corresponds to double circulant codes with generator matrices of the form

(In | A) for A a circulant matrix. Such double circulant codes have been used for almost 10 years

in cryptography (cf [GG07]) and more recently in [MTSB13]. Quasi-cyclic codes of order 3 are also

considered in [MTSB13].

Definition 11 (s-QCSD Distribution). For positive integers n, k, w and s, the s-QCSD(n, k, w, s)

Distribution chooses uniformly at random a parity matrix H
$← F(sn−k)×sn of a systematic QC code C of

order s (see Definition 7) together with a vector x = (x1, . . . ,xs)
$← Fsn such that ω(xi) = w, i = 1..s,

and outputs (H,Hx>).

Definition 12 ((Search) s-QCSD Problem). For positive integers n, k, w, s, a random parity check matrix

H of a systematic QC code C and y
$← Fsn−k, the Search s-Quasi-Cyclic SD Problem s-QCSD(n, k, w)

asks to find x = (x1, . . . ,xs) ∈ Fsn such that ω(xi) = w, i = 1..s, and y = xH>.

It would be somewhat more natural to choose the parity-check matrix H to be made up of independent

uniformly random circulant submatrices, rather than with the special form required by (7). We choose this

distribution so as to make the security reduction to follow less technical. It is readily seen that, for fixed

s, when choosing quasi-cyclic codes with this more general distribution, one obtains with non-negligeable

probability, a quasi-cyclic code that admits a parity-check matrix of the form (7). Therefore requiring

quasi-cyclic codes to be systematic does not hurt the generality of the decoding problem for quasi-cyclic

codes. A similar remark holds for the slightly special form of weight distribution of the vector x.

Assumption 1. Although there is no general complexity result for quasi-cyclic codes, decoding these

codes is considered hard by the community. There exist general attacks which uses the cyclic structure of

the code [Sen11, HT15] but these attacks have only a very limited impact on the practical complexity of

the problem. The conclusion is that in practice, the best attacks are the same as those for non-circulant

codes up to a small factor.
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The problem has a decisional form:

Definition 13 (Decisional s-QCSD Problem). For positive integers n, k, w, s, a random parity check

matrix H of a systematic QC code C and y
$← Fsn, the Decisional s-Quasi-Cyclic SD Problem

s-DQCSD(n, k, w) asks to decide with non-negligible advantage whether (H,y>) came from the s-

QCSD(n, k, w) distribution or the uniform distribution over F(sn−k)×sn × Fsn−k.

As for the ring-LPN problem, there is no known reduction from the search version of s-QCSD problem

to its decisional version. The proof of [AIK07] cannot be directly adapted in the quasi-cyclic case, however

the best known attacks on the decisional version of the problem s-QCSD remain the direct attacks on

the search version of the problem s-QCSD.

The situation is similar for the rank versions of these problems which are respectively denoted by s-

RQCSD and s-DRQCSD, and for which the best attacks over the decisional problem consist in attacking

the search version of the problem.

D. Practical Attacks

The practical complexity of the SD problem for the Hamming metric has been widely studied for more

than 50 years. For small weights the best known attacks are exponential in the weight of the researched

codeword. The best attacks can be found in [BJMM12].

The RSD problem is less known in cryptography but has also been studied for a long time, ever since

a rank metric version of the McEliece cryptosystem was introduced in 1991 [GPT91]. We recall the main

types of attack on the RSD problem below.

The complexity of practical attacks grows very quickly with the size of parameters: there is a structural

reason to this. For the Hamming distance, attacks typically rely on enumerating the number of words

of length n and support size (weight) t, which amounts to the Newton binomial coefficient
(
n
t

)
, whose

value is bounded from above by by 2n. In the rank metric case, counting the number of possible supports

of size r for a rank code of length n over Fqm corresponds to counting the number of subspaces of

dimension r in Fqm : this involves the Gaussian binomial coefficient of size roughly q(m−r)m, whose

value is also exponential in the blocklength but with a quadratic term in the exponent.

There exist two types of generic attacks on the problem:

• Combinatorial attacks: these attacks are usually the best ones for small values of q (typically

q = 2) and when n and k are not too small: when q increases, the combinatorial aspect makes them

less efficient. The best combinatorial attack has recently been updated to (n− k)3m3q(r−1)b
(k+1)m

n
c

to take into account the value of n [GRS16].
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• Algebraic attacks: the particular nature of the rank metric makes it a natural field for algebraic

attacks using Gröbner bases, since these attacks are largely independent of the value of q and in

some cases may also be largely independent of m. These attacks are usually the most efficient when

q increases. For the cases considered in this paper where q is taken to be small, the complexity is

greater than the cost of combinatorial attacks (see [LdVP06, FdVP08, GRS16]).

Note that the recent improvements on decoding random codes for the Hamming distance correspond to

birthday paradox attacks. An open question is whether these improvements apply to rank metric codes.

Given that the support of the error on codewords in rank metric is not related to the error coordinates,

the birthday paradox strategy has failed for the rank metric, which for the moment seems to keep these

codes protected from the aforementioned advances.

III. A NEW ENCRYPTION SCHEME

A. Encryption and Security

Encryption Scheme. An encryption scheme is a tuple of four polynomial time algorithms

(Setup,KeyGen,Encrypt,Decrypt):

• Setup(1λ), where λ is the security parameter, generates the global parameters param of the scheme;

• KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private) decryption

key sk;

• Encrypt(pk,µ, θ) outputs a ciphertext c, on the message µ, under the encryption key pk, with the

randomness θ;

• Decrypt(sk, c) outputs the plaintext µ, encrypted in the ciphertext c or ⊥.

Such an encryption scheme has to satisfy both Correctness and Indistinguishability under Chosen Plaintext

Attack (IND-CPA) security properties.

Correctness: For every λ, every param← Setup(1λ), every pair of keys (pk, sk) generated by KeyGen,

every message µ, we should have P [Decrypt(sk,Encrypt(pk,µ, θ)) = µ] = 1− ε(λ) for ε a negligible

function, where the probability is taken over varying randomness θ.

IND-CPA [GM84]: This notion formalized by the adjacent game, states that an adversary shouldn’t

be able to efficiently guess which plaintext has been encrypted even if he knows it is one among two

plaintexts of his choice.

The global advantage for polynomial time adversaries (running in time less than t) is:

Advind
E (λ, t) = max

A≤t
Advind

E,A(λ), (12)

13



where Advind
E,A(λ) is the advantage the adversary A has in winning game Expind−b

E,A (λ):

Expind−b
E,A (λ)

1. param← Setup(1λ)

2. (pk, sk)← KeyGen(param)

3. (µ0,µ1)← A(FIND : pk)

4. c∗ ← Encrypt(pk,µb, θ)

5. b′ ← A(GUESS : c∗)

6.RETURN b′

Advind
E,A(λ) =

∣∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣∣ . (13)

B. Presentation of the Scheme

We begin this Section by describing a generic version of the proposed encryption scheme. This

description does not depend on the particular metric used. The particular case of the Hamming metric is

denoted by HQC (for Hamming Quasi-Cyclic) and RQC (for Rank Quasi-Cyclic) in the case of the rank

metric. Parameter sets for binary Hamming Codes and Rank Metric Codes can be respectively found in

Sec. VII-A and VII-B.

Presentation of the scheme. Recall from the introduction that the scheme uses two types of codes,

a decodable [n, k] code which can correct δ errors and a random double-circulant [2n, n] code. In the

following, we assume V is a vector space on some field F, ω is a norm on V and for any x and y ∈ V ,

their distance is defined as ω(x− y) ∈ R+. Now consider a linear code C over F of dimension k and

length n (generated by G ∈ Fk×n), that can correct up to δ errors via an efficient algorithm C.Decode(·).

The scheme consists of the following four polynomial-time algorithms:

• Setup(1λ): generates the global parameters n = n(1λ), k = k(1λ), δ = δ(1λ), and w = w(1λ). The

plaintext space is Fk. Outputs param = (n, k, δ, w).

• KeyGen(param): generates qr
$← V , matrix Q = (In | rot(qr)), the generator matrix G ∈ Fk×n

of C, sk = (x,y)
$← V2 such that ω(x) = ω(y) = w, sets pk =

(
G,Q, s = sk ·Q>

)
, and returns

(pk, sk).

• Encrypt(pk = (G,Q, s),µ, θ): uses randomness θ to generate ε $← V , r = (r1, r2)
$← V2 such that

ω(ε), ω(r1), ω(r2) ≤ w, sets v> = Qr> and ρ = µG + s · r2 + ε. It finally returns c = (v,ρ), an

encryption of µ under pk.
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• Decrypt(sk = (x,y), c = (v,ρ)): returns C.Decode(ρ− v · y).

Notice that the generator matrix G of the code C is publicly known, so the security of the scheme and

the ability to decrypt do not rely on the knowledge of the error correcting code C being used.

Correctness. The correctness of our new encryption scheme clearly relies on the decoding capability

of the code C. Specifically, assuming C.Decode correctly decodes ρ− v · y, we have:

Decrypt (sk,Encrypt (pk,µ, θ)) = µ. (14)

And C.Decode correctly decodes ρ− x · y whenever

ω (s · r2 − v · y + ε) ≤ δ (15)

ω ((x + qr · y) · r2 − (r1 + qr · r2) · y + ε) ≤ δ (16)

ω (x · r2 − r1 · y + ε) ≤ δ (17)

In order to provide an upper bound on the decryption failure probability, an analysis of the distribution

of the error vector x · r2 − r1 · y + ε is provided in Sec. V.

IV. SECURITY OF THE SCHEME

In this section we prove the security of our scheme, the proof is generic for any metric, and the security

is reduced to the respective quasi-cyclic problems defined for Hamming and rank metric in Section 2.

Theorem 1. The scheme presented above is IND-CPA under the 2-DQCSD and 3-DQCSD assumptions.

Proof. To prove the security of the scheme, we are going to build a sequence of games transitioning

from an adversary receiving an encryption of message µ0 to an adversary receiving an encryption of a

message µ1 and show that if the adversary manages to distinguish one from the other, then we can build

a simulator breaking the DQCSD assumption, for QC codes of order 2 or 3 (codes with parameters

[2n, n] or [3n, 2n]), and running in approximately the same time.

Game G0: This is the real game, we run an honest KeyGen algorithm, and after receiving (µ0,µ1)

from the adversary we produce an encryption of µ0.

Game G1: In this game we start by forgetting the decryption key sk, and taking s at random, and then

proceed honestly.

Game G2: Now that we no longer know the decryption key, we can start generating random ciphertexts.

So instead of picking correctly weighted r1, r2, ε, the simulator now picks random vectors in the

full space.
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Game G3: We now encrypt the other plaintext. We chose r′1, r
′
2, ε
′ uniformly and set v> = Qr′> and

ρ = µ1G + s · r′2 + ε′.

Game G4: In this game, we now pick r′1, r
′
2, ε
′ with the correct weight.

Game G5: We now conclude by switching the public key to an honestly generated one.

The only difference between Game G0 and Game G1 is the s in the public key sent to the attacker

at the beginning of the IND-CPA game. If the attacker has an algorithm A able to distinguish these two

games he can build a distinguisher for the DQCSD problem. Indeed for a DQCSD challenge (Q, s) he

can: adjoin G to build a public key; run the IND-CPA game with this key and algorithm A; decide on

which Game he is. He then replies to the DQCSD challenge saying that (Q, s) is uniform if he is on

Game G1 or follows the QCSD distribution if he is in Game G0.

In both Game G1 and Game G2 the plaintext encrypted is known to be µ0 the attacker can compute: v

ρ− µ0G

 =

In 0 rot(qr)

0 In rot(s)

 · (r1, ε, r2)>
The difference between Game G1 and Game G2 is that in the former (v,ρ−µ0G) follows the QCSD

distribution (for a 2n× 3n QC matrix of order 3), and in the latter it follows a uniform distribution (as

r1 and ε are uniformly distributed and independently chosen One-Time Pads). If the attacker is able to

distinguish Game G1 and Game G2 he can therefore break the 3− DQCSD assumption.

The outputs from Game G2 and Game G3 follow the exact same distribution, and therefore the two

games are indistinguishable from an information-theoretic point of view. Indeed, for each tuple (r, ε)

of Game G2, resulting in a given (v,ρ), there is a one to one mapping to a couple (r′, ε′) resulting in

Game G3 in the same (v,ρ), namely r′ = r and ε′−µ0G+µ1G. This implies that choosing uniformly

(r, ε) in Game G2 and choosing uniformly (r′, ε′) in Game G3 leads to the same output distribution for

(v,ρ).

Game G3 and Game G4 are the equivalents of Game G2 and Game G1 except µ1 is used instead of

µ0. A distinguisher between these two games breaks therefore the 3−DQCSD assumption too. Similarly

Game G3 and Game G5 are the equivalents of Game G1 and Game G0 and a distinguisher between

these two games breaks the DQCSD assumption.

We managed to build a sequence of games allowing a simulator to transform a ciphertext of a message

µ0 to a ciphertext of a message µ1. Hence the advantage of an adversary against the IND-CPA experiment

is bounded:

Advind
E,A(λ) ≤ 2 ·

(
Adv2-DQCSD(λ) + Adv3-DQCSD(λ)

)
. (18)
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V. ANALYSIS OF THE DISTRIBUTION OF THE ERROR VECTOR OF THE SCHEME FOR HAMMING

DISTANCE

The aim of this Section is to determine the probability that the condition in Eq. (17) holds. In order

to do so, we study the error distribution of the error vector e = x · r2 − r1 · y + ε.

The vectors x,y, r1, r2, ε have been taken to be uniformly and independently chosen among vectors

of weight w. A very close probabilistic model is when all these independent vectors are chosen to follow

the distribution of random vectors whose coordinates are independent Bernoulli variables of parameter

p = w/n. To simplify analysis we shall assume this model rather than the constant weight uniform

model. Both models are very close, and our cryptographic protocols work just as well in both settings.

We first evaluate the distributions of the products x · r2 and r1 · y.

Proposition 2. Let x = (X1, . . . , Xn) be a random vector where the Xi are independent Bernoulli

variables of parameter p, P (Xi = 1) = p. Let y = (Y1, . . . , Yn) be a vector following the same

distribution and independent of x. Let z = x · y = (Z1, . . . , Zn) as defined in Eq. (1). Then
Pr[Zk = 1] =

∑
0≤i≤n,

i odd

(
n

i

)
p2i
(
1− p2

)n−i
,

Pr[Zk = 0] =
∑

0≤i≤n,

i even

(
n

i

)
p2i
(
1− p2

)n−i
.

(19)

Proof. We have

Zk =
∑

i+j=k mod n

XiYj mod 2. (20)

Every term XiYj is the product of two independent Bernoulli variables of parameter p, and is therefore

a Bernoulli variable of parameter p2. The variable Zk is the sum of n such products, which are all

independent since every variable Xi is involved exactly once in (20), for 0 ≤ i ≤ n − 1, and similarly

every variable Yj is involved once in (20). Therefore Zk is the sum modulo 2 of n independent Bernoulli

variables of parameter p2.

Let us denote by p̃ = p̃(n,w) = Pr[zk = 1] from Eq. (19). We will be working in the regime where

w = ω
√
n, meaning p2 = (wn )2 = ω2/n. When n goes to infinity we have that the binomial distribution

of the weight of the binary n-tuple

(XiXj)i+j=k mod n
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converges to the Poisson distribution of parameter ω2 so that, for fixed ω = w/
√
n,

p̃(n,w) = Pr[zk = 1] −−−→
n→∞

e−ω
2
∑
` odd

ω2`

`!
= e−ω

2

sinhω2. (21)

Let x,y, r1, r2 be independent random vectors whose coordinates are independently Bernoulli dis-

tributed with parameter p. Then the k-th coordinates of x · r2 and of r1 ·y are independent and Bernoulli

distributed with parameter p̃. Therefore their modulo 2 sum t = x · r2 − r1 · y is Bernoulli distributed

with Pr[tk = 1] = 2p̃(1− p̃),

Pr[tk = 0] = (1− p̃)2 + p̃2.

(22)

Finally, by adding the final term ε to t, we obtain the distribution of the coordinates of the error vector

e = x · r2−r1 ·y+ε. Since the coordinates of ε are Bernoulli of parameter p and those of t are Bernoulli

distributed as (22) and independent from ε, we obtain :

Theorem 3. Let x,y, r1, r2 ∼ B
(
n, wn

)
, ε ∼ B (n, ε), and let e = x · r2 − r1 · y + ε. ThenPr[ek = 1] = 2p̃(1− p̃)(1− ε

n) +
(
(1− p̃)2 + p̃2

)
ε
n ,

Pr[ek = 0] =
(
(1− p̃)2 + p̃2

)
(1− ε

n) + 2p̃(1− p̃) εn .
(23)

Theorem 3 gives us the probability that a coordinate of the error vector e is 1. In our simulations to

follow, which occur in the regime p = ω
√
n with constant ω, we make the simplifying assumption that

the coordinates of e are independent, meaning that the weight of e follows a binomial distribution of

parameter p?, where p? is defined as in Eq. (23): p? = p?(n,w) = 2p̃(1− p̃)(1− ε
n) +

(
(1− p̃)2 + p̃2

)
ε
n .

This approximation will give us, for 0 ≤ d ≤ min(2w2 + ε, n),

Pr[ω(e) = d] =

(
n

d

)
(p?)d(1− p?)(n−d). (24)

In practice, the results obtained by simulation on the decryption failure are very coherent with this

assumption.

VI. DECODING CODES WITH LOW RATES AND GOOD DECODING PROPERTIES

The previous Section allowed us to determine the distribution of the error vector e in the configuration

where a simple linear code is used. Now the decryption part corresponds to decoding the error described

in the previous section. Any decodable code can be used at this point, depending on the considered

application: clearly small dimension codes will allow better decoding, but at the cost of a lower

encryption rate. The particular case that we consider corresponds typically to the case of key exchange or

authentication, where only a small amount of data needs to be encrypted (typically 80, 128 or 256 bits,

18



a symmetric secret key size). We therefore need codes with low rates which are able to correct many

errors. Again, a tradeoff is necessary between efficiently decodable codes but with a high decoding cost

and less efficiently decodable codes but with a smaller decoding cost.

An example of such a family of codes with good decoding properties, meaning a simle decoding algo-

rithm which can be analyzed, is given by Tensor Product Codes, which are used for biometry [BCC+07],

where the same type of issue appears. More specifically, we will consider a special simple case of Tensor

Product Codes (BCH codes and repetition codes), for which a precise analysis of the decryption failure

can be obtained in the Hamming distance case.

A. Tensor Product Codes

Definition 14 (Tensor Product Code). Let C1 (resp. C2) be a [n1, k1, d1] (resp. [n2, k2, d2]) linear code

over F. The Tensor Product Code of C1 and C2 denoted C1 ⊗ C2 is defined as the set of all n2 × n1
matrices whose rows are codewords of C1 and whose columns are codewords of C2.

More formally, if C1 (resp. C2) is generated by G1 (resp. G2), then

C1 ⊗ C2 =
{
G>2 XG1 for X ∈ Fk2×k1

}
(25)

Remark 4. Using the notation of the above Definition, the tensor product of two linear codes is a

[n1n2, k1k2, d1d2] linear code.

B. Specifying the Tensor Product Code

Even if tensor product codes seem well-suited for our purpose, an analysis similar to the one in Sec. V

becomes much more complicated. Therefore, in order to provide strong guarantees on the decryption

failure probability for our cryptosystem, we chose to restrict ourselves to a tensor product code C =

C1 ⊗ C2, where C1 is a BCH(n1, k, δ1) code of length n1, dimension k, and correcting capability δ1

(i.e. it can correct up to δ1 errors), and C2 is the repetition code of length n2 and dimension 1, denoted

1n2
. (Notice that 1n2

can decode up to δ2 = bn2−1
2 c.) Subsequently, the analysis becomes possible and

remains accurate but the negative counterpart is that there probably are some other tensor product codes

achieving better efficiency (or smaller key sizes).

In the Hamming metric version of the cryptosystem we propose, a message µ ∈ Fk is first encoded

into µ1 ∈ Fn1 with a BCH(n1, k1 = k, δ1) code, then each coordinate µ1,i of µ1 is re-encoded into

µ̃1,i ∈ Fn2 with a repetition code 1n2
. We denote n = n1n2 the length of the tensor product code (its

dimension is k = k1 × 1), and by µ̃ the resulting encoded vector, i.e. µ̃ = (µ̃1,1, . . . , µ̃1,n1
) ∈ Fn1n2 .
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The efficient algorithm used for the repetition code is the majority decoding, i.e. more formally:

1n2
.Decode(µ̃1,j) =

 1 if
∑n2−1

i=0 µ̃1,j,i ≥ dn2+1
2 e,

0 otherwise.
(26)

Decryption Failure Probability. With a tensor product code C = BCH(n1, k, δ) ⊗ 1n2
as defined

above, a decryption failure occurs whenever the decoding algorithm of the BCH code does not succeed

in correcting errors that would have arisen after wrong decodings by the repetition code. Therefore, the

analysis of the decryption failure probability is again split into three steps: evaluating the probability

that the repetition code does not decode correctly, the conditional probability of a wrong decoding for

the BCH code given an error weight and finally, the decryption failure probability using the law of total

probability.

Step 1. We now focus on the probability that an error occurs while decoding the repetition code. As

shown in Sec. V, the probability for a coordinate of e = x · r2− r1 ·y+ ε to be 1 is p? = p?(n1n2, w, ε)

(see Eq. (23)). As mentioned above, 1n2
can decode up to δ2 = bn2−1

2 c errors. Therefore, assuming that

the error vector e has weight γ (which occurs with the probability given in Eq. (24)), the probability of

getting a decoding error on a single block of the repetition code 1n2
is hence given by:

p̄γ = p̄γ(n1, n2) =

n2∑
i=bn2−1

2
c+1

(
n2
i

)(
γ

n1n2

)i(
1− γ

n1n2

)n2−i
. (27)

Step 2. We now focus on the BCH(n1, k, δ1) code, and recall that it can correct up to δ1 errors. Now

the probability P that the BCH(n1, k, δ1) code fails to decode correctly the encoded message µ1 back

to µ is given by the probability that an error occurred on at least δ1 + 1 blocks of the repetition code.

Therefore, we have

P = P(δ1, n1, n2, γ) =

n1∑
i=δ1+1

(
n1
i

)
(p̄γ)i (1− p̄γ)n1−i. (28)

Step 3. Finally, using the law of total probability, we have that the decryption failure probability is given

by the sum, over all the possible weights, of the probability that the error has this specific weight times

the probability of a decoding error for this weight. This is captured in the following theorem, whose

proof is a straightforward consequence of the formulae of Sec. V and VI-A.

Theorem 5. Let C = BCH(n1, k, δ) ⊗ 1n2
, (pk, sk) ← KeyGen, µ $← Fk2 , and some randomness

θ ∈ {0, 1}∗, then with the notations above, the decryption failure probability is
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pfail = Pr[Decrypt (sk,Encrypt (pk,µ, θ)) 6= µ.] (29)

=

min(2w2+ε,n1n2)∑
γ=0

Pr[ω(e) = γ] · P(δ1, n1, n2, γ) (30)

VII. PARAMETERS

A. HQC Instantiation for Hamming Metric

In this Section, we describe our new cryptosystem in the Hamming metric setting. As mentioned in

the previous Section, we use a tensor product code (Def. 14) C = BCH(n1, k, δ) ⊗ 1n2
. A message

µ ∈ Fk is encoded into µ1 ∈ Fn1 with the BCH code, then each coordinate µ1,i of µ1 is encoded into

µ̃1,i ∈ Fn2 with 1n2
. To match the description of our cryptosystem in Sec. III-B, we have µG = µ̃ =

(µ̃1,1, . . . , µ̃1,n1
) ∈ Fn1n2 . To obtain the ciphertext, r = (r1, r2)

$← V2 and ε $← V are generated and the

encryption of µ is c = (rQ>,ρ = µG + s · r2 + ε).

Parameters for Our Scheme. We provide two sets of parameters: the first one in Tab. I targets different

pre-quantum security levels while the second one in Tab. II is quantum-safe. For each parameter set, the

parameters are chosen so that the minimal workfactor of the best known attack exceeds the security param-

eter. For classical attacks, best known attacks include the works from [CC98, BLP08, FS09, BJMM12]

and for quantum attacks, the work of [Ber10]. We consider w = O (
√
n) and follow the complexity

described in [CS16].

Note that our cryptosystem is quite efficient since the decryption simply involves a decoding of a

repetition code and a small length BCH code.

Specific structural attacks. Quasi-cyclic codes have a special structure which may potentially open

the door to specific structural attacks. Such attacks have been studied in [GJL15, LJK+16, Sen11],

these attacks are especially efficient in the case when the polynomial xn − 1 has many small factors.

These attacks become inefficient as soon as xn − 1 has only two factors of the form (x − 1) and

xn−1 + xn−2 + ...+ x+ 1, which is the case when n is primitif in Fq, for q = 2 it corresponds to cases

when 2 generates (Z/nZ)∗, such numbers are known up to very large values. We consider such n for

our parameters. In Tab. I and II, n1 denotes the length of the BCH code, n2 the length of the repetition

code 1 so that the length of the tensor product code C is n = n1n2 (actually the smallest primitive prime

greater than n1n2). k is the dimension of the BCH code and hence also the dimension of C. δ is the

decoding capability of the BCH code, i.e. the maximum number of errors that the BCH can decode. w
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Cryptosystem Parameters

Instance n1 n2 n1n2 = n k δ w ε = 3w security pfail

Toy 255 25 6, 379 63 30 36 108 64 < 2−64

Low 255 37 9, 437 79 27 45 135 80 < 2−80

Medium 255 53 13, 523 99 23 56 168 100 < 2−100

Strong 511 41 20, 959 121 58 72 216 128 < 2−128

Table I

PARAMETER SETS FOR OUR CRYPTOSYSTEM IN HAMMING METRIC. THE TENSOR PRODUCT CODE USED IS

C = BCH(n1, k, δ)⊗ 1n2 . THE PARAMETERS FOR THE BCH CODES WERE TAKEN FROM [PW72]. SECURITY IN THE FIRST

FOUR INSTANCES IS GIVEN IN BITS, IN THE CLASSICAL MODEL OF COMPUTING. IN THE LAST FOUR INSTANCES, THE

SECURITY LEVEL IS THE EQUIVALENT OF THE CLASSICAL SECURITY LEVEL BUT IN THE QUANTUM COMPUTING MODEL,

FOLLOWING THE WORK OF [BER10]. THE PUBLIC KEY SIZE, CONSISTING OF (qr,x+ qr · y), HAS SIZE 2n (IN BITS)

(ALTHOUGH CONSIDERING A SEED FOR qr THE SIZE CAN BE REDUCED TO n PLUS THE SIZE OF THE SEED), AND THE

SECRET KEY (CONSISTING OF x AND y BOTH OF WEIGHT w) HAS SIZE 2wdlog2(n)e (BITS) - WHICH AGAIN CAN BE

REDUCED TO THE SIZE OF A SEED. FINALLY, THE SIZE OF THE ENCRYPTED MESSAGE IS 2n.

Cryptosystem Parameters

Instance n1 n2 n1n2 = n k δ w ε = 3w security pfail

Toy 255 65 16, 603 63 87 72 216 64 < 2−64

Low 511 47 24, 019 76 85 89 267 80 < 2−80

Medium 255 141 35, 963 99 23 112 336 100 < 2−100

Strong 511 109 55, 711 121 58 143 429 128 < 2−128

Table II

PARAMETERS FOR QUANTUM-SAFE HQC. ALL PARAMETERS ARE SIMILAR TO TAB. I.

is the weight of the n-dimensional vectors x, y, r1, and r2 and similarly ε = ω(ε) = 3 × w for our

cryptosystem.

Computational Cost. The most expensive part of the encryption and decryption is the matrix vector

product, in practice the complexity is hence O(n
3

2 ) (for w = O(
√
n)). Asymptotically the cost becomes

linear in n.

Notice that it would be possible to consider other types of decodable codes in order to increase the

encryption rate to 1/4 (say), but at the cost of an increase of the length of the code, for instance using
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LDPC (3,6) codes would increase the rate, but multiply the length by a factor of roughly three.

B. RQC Instantiation for Rank Metric

Error distribution and decoding algorithm: no decryption failure. The case of the rank metric

is much more simpler than for Hamming metric. Indeed in that case the decryption algorithm of our

cryptosystem asks to decode an error e = x · r2 − r1 · y + ε where the words (x,y) and (r1, r2) have

rank weight w. At the difference of Hamming metric the rank weight of the vector x · r2 − r1 · y is

almost always w2 and is in any case bounded above by w2. In particular with a strong probability the

rank weight of x · r2−r1 ·y is the same than the rank weight of x · r2 since x and y share the same rank

support, so as r1 and r2. Hence for decoding, we consider Gabidulin [n, k] codes over Fqn , which can

decode n−k
2 rank errors and choose our parameters such that w2 + ε ≤ n−k

2 , so that, unlike the Hamming

metric case, there is no decryption failure.

Parameters for Our Scheme. In Tab. III and IV, n denotes the length of the Rank metric code, k

its dimension, q is the number of elements in the base field Fq, and m is the degree of the extension.

Similarly to the Hamming instantiation, w is the rank weight of vectors x, y, r1, and r2, and ε the rank

weight of ε.

Specific structural attacks. Specific attacks were described in [HT15, GRSZ14] for LRPC cyclic

codes. These attack use the fact that the targeted code has a generator matrix formed from shifted low

weight codewords and in the case of [HT15], also uses multi-factor factorization of xn− 1. These attack

corresponds to searching for low weight codewords of a given code of rate 1/2. In the present case the

attacker has to search for a low weight word associated to a non null syndrom, such that previous attacks

imply considering a code with a larger dimension so that in practice these attacks do no improve on

direct attacks on the syndrome. Meanwhile in practice by default, we choose n a primitive prime number,

such that the polynomial xn − 1 has no factor of degree less than n−1
2 except x − 1. The best attacks

consists in decoding a random double-circulant [2n, n] over Fqm for rank weight ω.

Examples of parameters are given in Tab. III according to best known attacks (combinatorial attacks

in practice) described in Sec. II-D. Quantum-safe parameters for RQC are given in Tab. IV. For the case

of rank metric, we always consider n′ = n = m.

Remark. The system is based on cyclic codes, which means considering polynomials modulo xn − 1,

interestingly enough, and only in the case of the rank metric, the construction remains valid when

considering not only polynomials modulo xn − 1 but also modulo a polynomial with coefficient in the
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Cryptosystem Parameters

Instance n k m q w ε plaintext key size security

RQC-I 53 13 53 2 4 4 689 2, 809 95

RQC-II 61 3 61 2 5 4 183 3, 721 140

RQC-III 83 3 83 2 6 4 249 6, 889 230

Table III

PARAMETER SETS FOR RQC: OUR CRYPTOSYSTEM IN RANK METRIC. THE PLAINTEXTS, KEY SIZES, AND SECURITY ARE

EXPRESSED IN BITS.

Cryptosystem Parameters

Instance n k m q w ε plaintext key size security

RQC-I 61 3 61 2 5 4 183 3, 721 70

RQC-II 83 3 83 2 6 4 249 6, 889 115

RQC-III 61 3 61 4 5 4 366 7, 442 132

RQC-IV 89 5 89 3 6 6 705 12, 555 192

Table IV

PARAMETER SETS FOR QUANTUM-SAFE RQC, WITH RESPECT TO [GHT16]. PARAMETERS ARE ANALOG TO TAB. III.

base field GF (q). Indeed in that case the modulo does not change the rank weight of a codeword. Such

a variation on the scheme may be interesting to avoid potential structural attacks which may use the

factorization of the quotient polynomial for the considered polynomial ring.

Computational Cost. The encryption cost corresponds to a matrix-vector product over Fqm , for a

multiplication cost of elements of Fqm in m log(m) log(log(m)), we obtain an encryption complexity

in O
(
n2m log (m) log (log (m))

)
. The decryption cost is also a matrix-vector multiplication plus the

decoding cost of the Gabidulin codes, both have the complexities in O
(
n2m log (m) log (log (m))

)
.

C. Comparison with Other Code-based Cryptosystems

In the following we consider the different types of code-based cryptosystems and express different

parameters of the different systems in terms of the security parameters λ, considering best known attacks

of complexity 2O(w) for decoding a word of weight w for Hamming distance and complexity in 2O(wn)

for decoding a word of rank weight w for a code of double-circulant code of length 2n for rank metric.
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Cryptosystem
Code Public Ciphertext Hidden Cyclic

Length Key Size Size Structure Structure

Goppa-
[McE78] O (λ log λ) O

(
λ2 (log λ)2

)
O (λ log λ) Strong No

McEliece

MDPC [MTSB13] O
(
λ2

)
O

(
λ2

)
O

(
λ2

)
Weak Yes

LRPC [GMRZ13] O
(
λ

2
3

)
O

(
λ

4
3

)
O

(
λ

4
3

)
Weak Yes

HQC [Sec. VII-A] O
(
λ2

)
O

(
λ2

)
O

(
λ2

)
No Yes

RQC [Sec. VII-B] O
(
λ

2
3

)
O

(
λ

4
3

)
O

(
λ

4
3

)
No Yes

Table V

PARAMETERS COMPARISON FOR DIFFERENT CODE-BASED CRYPTOSYSTEMS WITH RESPECT TO THE SECURITY PARAMETER

λ

McEliece-Goppa corresponds to the original scheme proposed by McEliece [McE78] of dimension rate
1
2 .

Tab. V shows that even if the recent cryptosystem MDPC has a smaller public key and a weaker hidden

structure than the McEliece cryptosystem, the size of the ciphertext remains non negligible. The HQC

benefits from the same type of parameters than the MDPC systems but with no hidden structure at the

cost of a smaller encryption rate. Finally, the table shows the very strong potential of rank metric based

cryptosystems, whose parameters remain rather low compared to MDPC and HQC cryptosystems.

VIII. CONCLUSION AND FUTURE WORK

We have presented an efficient approach for constructing code-based cryptosystems. This approach

originates in Alekhnovich’s blueprint [Ale03] on random matrices. Our construction is generic enough so

that we provide two instantiations of our cryptosystem: one for the Hamming metric (HQC), and one for

the Rank metric (RQC). Both constructions are pretty efficient and compare favourably to previous work,

especially for the rank metric setting. Additionally, we provide for the Hamming setting an analysis of

the error term yielding a concrete, precise and easy-to-verify decryption failure.

This analysis was facilitated by the shape of the tensor product code, and more complex-to-analyze

tensor product codes might yield slightly shorter keys and better efficiency.

However, for such a tensor product code the analysis of the decryption failure probability becomes

much more tricky, and finding suitable upper bounds for it will involve future work.
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