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Abstract

This paper gives the first bit security result for the elliptic curve Diffie–Hellman key exchange
protocol for elliptic curves defined over prime fields. About 5/6 of the most significant bits of the
x-coordinate of the Diffie–Hellman key are as hard to compute as the entire key. A similar result
can be derived for the 5/6 lower bits. The paper also generalizes and improves the result for elliptic
curves over extension fields, that shows that computing one component (in the ground field) of the
Diffie–Hellman key is as hard to compute as the entire key.

Keywords: hidden number problem, bit security, elliptic curve Diffie–Hellman

1. INTRODUCTION

The notion of hardcore functions goes back almost to the invention of public key cryptography. Loosely

speaking, for a one-way function f , a function b is a hardcore function for f if given f(x) it is hard to

compute b(x) (while given x, computing b(x) is easy).

The main interest is in functions b that output some bits of x, which gives this research field the

name bit security. That is, while computing x from f(x) is computationally hard by definition, one

tries to assess the hardness of computing partial information about x. This can be done by providing an

(efficient) algorithm that computes b(x), or more commonly by reducing the problem of computing x

to computing b(x). That is, one provides an (efficient) algorithm that inverts f given an algorithm that

computes b on f .

For popular candidates for one-way functions, such as the RSA function (RSAN,e(x) = xe mod N )

and discrete exponentiation in a subgroup of prime order (EXPg(x) = gx; g has prime order), all

single-bit functions are known to be hardcore. This result, which is standard these days, took more

than 15 years to achieve, where year after year small improvements were made. An important aspect

to consider is the success in computing b(x). The mentioned result applies to every algorithm that

computes b(x) with a non-negligible success over a trivial guess. See [12] for a survey on hardcore

functions which presents the developments over the years.

c©IACR 2017. This article is a minor revision of the version published by Springer-Verlag available at DOI:10.1007/978-3-
662-54365-8 15.
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The notion of a hardcore function can be generalized to suit the Diffie–Hellman key exchange

protocol. Let (G, ·) be a group and let g ∈ G. For a function b, given gu and gv, we consider the

hardness of computing b(s) for (the Diffie–Hellman key) s = guv. Proving bit security for Diffie–

Hellman key exchange has known less success than the aforementioned results. For G = Z∗p, the

multiplicative group of integers modulo a prime p, the
√

log p + log log p most (and least) significant

bits of s are hard to compute as s itself [9] (see also [14]; a similar result holds for twice as many

consecutive inner bits, as a consequence of [20, Section 5.1]). For G = F∗pm , the multiplicative group

of a finite extension field, represented as a vector space over Fp, computing a single component of s is

as hard to compute as s itself [26], which follows from the fact that a single component of a product st

is linear in all of the components of s. Moreover, using this linearity, a result in a similar fashion to the

case of G = Z∗p can be obtained from [23] for a single component (see also [17]). These results need –

essentially – a perfect success in computing the partial information.

The case of the elliptic curve Diffie–Hellman key exchange protocol has known even fewer results,

mainly because of the inherent nonlinearity of the problem. For elliptic curves over prime fields there

are no known (non-trivial) results. For the group of elliptic curve points over an extension field of

degree 2, computing a single component of the x-coordinate of s is as hard to compute as s itself [15,

Remark 3.1]. This result requires perfect success in computing the component. We mention that for the

case of elliptic curves over prime fields it is claimed in [7] that computing the top (1−ε) fraction of bits

of the x-coordinate of s, for ε ≈ 0.02, is as hard as computing all of them, but a proof is not provided,

probably since it is a weak result, as the authors mentioned. Obtaining bit security results for elliptic

curve Diffie–Hellman keys has been an open problem for almost 20 years (Section 5 in [6, 12]).

Some results on hardness of bits, related to the elliptic curve Diffie–Hellman protocol, were given

by Boneh and Shparlinski [8] and by Jetchev and Venkatesan [16] (building on [8] and assuming the

generalized Riemann hypothesis). These results differ from ours in two aspects. They do not provide

hardness of bits for the elliptic curve Diffie–Hellman protocol for a single fixed curve. Furthermore, the

techniques used to achieve these results are very different from ours, as they reduce the problem to an

easier linear problem, while we keep working with the non-linear addition law.

In this paper we study the bit security of the elliptic curve Diffie–Hellman key exchange protocol.

Our main result is Theorem 2, where we show that about 5/6 of the most significant bits of the x-

coordinate of the Diffie–Hellman key are as hard to compute as the entire key. As above, this result

holds if one assumes a perfect success in computing these bits. This result directly follows from the

solution to the elliptic curve hidden number problem given in Theorem 1. This solution is based on the

ideas behind the solution to the modular inversion hidden number problem given in [7] and follows the

formal proof given by Ling, Shparlinski, Steinfeld and Wang [18] (earlier ideas already appear in [2, 3]).

Additional results are given in Section 6. In Section 6.1 we show how to derive the same result for
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the least significant bits. Section 6.2 addresses the case of elliptic curves over extension fields. This

problem was first studied by Jao, Jetchev and Venkatesan [15]. We present a general approach to this

problem and improve the known result to hold for both coordinates of the Diffie–Hellman key and to

any constant extension degree.

As the literature on the elliptic curve hidden number problem is very minimal and incomplete, short

discussions – some of which are quite trivial – appear throughout the paper in order to give a complete

and comprehensive study of the problem. We hope that this work will initiate the study of bit security

of elliptic curve Diffie–Hellman key exchange that will lead to improvements either in the number of

hardcore bits or in the required success probability for computing them.

2. MATHEMATICAL BACKGROUND

Throughout the paper p > 3 is anm-bit prime number and Fp is the field with p elements represented by

{−p−1
2 , . . . , p−1

2 }. For k > 0 and x ∈ Fp, we denote by MSBk(x) any h ∈ Fp such that |x−h| ≤ p
2k+1 .1

We have h = MSBk(x) = x− e for |e| ≤ p
2k+1 , which we loosely call noise.

2.1 Elliptic curves

Throughout the paper E is an elliptic curve over Fp, given in a short Weierstrass form

y2 = x3 + ax+ b, a, b ∈ Fp and 4a3 + 27b2 6= 0 .

A point P = (x, y) ∈ F2
p that satisfies this equation is a point on the curve E. We denote the

x-coordinate (resp. y-coordinate) of a given point P by xP or Px (resp. yP or Py). The set of points

on E, together with the point at infinity O, is known to be an abelian group. Hasse’s theorem states that

the number of points #E on the curve E(Fp) satisfies

|#E − p− 1| ≤ 2
√
p .

The (additive) inverse of a point Q = (xQ, yQ) is−Q = (xQ,−yQ). For an integer n we denote by

[n]P the successive n-time addition of a point P ; [−n]P = [n](−P ). Addition of points P = (xP , yP )

and Q = (xQ, yQ), where P 6= ±Q, is given by the following formula. Let s = sP+Q =
yP−yQ
xP−xQ , then

(P +Q)x = s2 − xP − xQ and (P +Q)y = −(yP + s((P +Q)x − xP )) .

1The function MSBk is standard and thought of as providing the k most significant bits of x. It differs from the classical
definition of most-significant-bits functions by (at most) 1 bit. For broad discussions see [4, Section 5], [5, Section 3] and [20,
Section 5.1].
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2.2 Lattices

Let B = {b1, . . . , br} a set of linearly independent vectors in the Euclidean space Rs, for some integers

r ≤ s. The set L =
{∑r

i=1 nibi | ni ∈ Z
}

is called an r-dimensional lattice and B is a basis for L.

The (Euclidean) norm of a vector v ∈ Rs is denoted by ‖v‖.
For a lattice L in Rs and a real number γ ≥ 1, the γ-shortest vector problem (γ-SVP) is to find a

non-zero lattice vector v ∈ L with norm not larger than γ times the norm of the shortest non-zero vector

in L. In other words, ‖v‖ ≤ γmin{‖u‖ | 0 6= u ∈ L}.
This problem is a fundamental problem in lattice cryptography. References to surveys and state-of-

the-art algorithms for γ-SVP are given in Section 1.2 in the work of Ling, Shparlinski, Steinfeld and

Wang [18], and like their work our result uses the γ-SVP algorithms of Schnorr [21] and Micciancio–

Voulgaris [19].

3. HIDDEN NUMBER PROBLEMS

The hidden number problem was introduced by Boneh and Venkatesan [9] in order to study bit security

of the Diffie–Hellman key exchange protocol in the multiplicative group of integers modulo a prime p.

This problem is formulated as follows.

HNP: Fix a prime p, an element g ∈ Z∗p and a positive number k. Let α ∈ Z∗p be a hidden

number and let Oα,g be an oracle that on input x computes the k most significant bits of

αgx mod p. That is, Oα,g(x) = MSBk(α · gx mod p). The goal is to recover the hidden

number α, given query access to the oracle Oα,g.

Various natural variants of this problem can be considered, such as changing the group the elements are

taken from and the function the oracle is simulating. Moreover, one can consider oracles with different

probability of producing the correct answer. The survey [25] covers many of these generalizations as

well as different applications.

The elliptic curve equivalent, known as the elliptic curve hidden number problem, is formulated as

follows for ψ ∈ {x, y}.

EC-HNPψ: Fix a prime p, an elliptic curveE over Fp, a pointR ∈ E and a positive number

k. Let P ∈ E be a hidden point and let OP,R be an oracle that on input t computes the

k most significant bits of the ψ-coordinate of P + [t]R. That is, OP,R(t) = MSBk((P +

[t]R)ψ). The goal is to recover the hidden point P , given query access to the oracle OP,R.

The elliptic curve hidden number problem, to the best of our knowledge, was first considered (more

generally, and only for the x-coordinate) by Boneh, Halevi and Howgrave-Graham [7], and besides
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being mentioned in the surveys [24, 25] there is no other literature about it.2 We remark that there

are no known solutions to this problem, even for large k’s (except, of course, of trivial cases, i.e.,

k ≥ log p−O(log log p)).

A related3 non-linear problem is the modular inversion hidden number problem, which was intro-

duced by Boneh, Halevi and Howgrave-Graham [7]. It is formulated as follows.

MIHNP: Fix a prime p and positive numbers k, d. Let α ∈ Zp be a hidden number and

let t1, . . . , td ∈ Zp \ {−α} chosen independently and uniformly at random. The goal is to

find the secret number α given the d pairs
(
ti,MSBk

(
1

α+ti

))
.

We now explain the relation between the elliptic curve hidden number problem and bit security of

the elliptic curve Diffie–Hellman key exchange protocol.

Remark 1. Given an elliptic curve E over a field Fq, a point Q ∈ E and the values [a]Q and [b]Q, the

Diffie–Hellman key P is the value P = ECDHQ([a]Q, [b]Q) = [ab]Q. Suppose one has an oracle that

on input [u]Q and [v]Q outputs some partial information on [uv]Q. Then, one can choose an integer t

and calculate [t]Q, and by adding [t]Q and [a]Q, one gets [a]Q+ [t]Q = [a+ t]Q. Querying the oracle

on [b]Q and [a+ t]Q, one gets partial information on [(a+ t)b]Q = [ab]Q+ [tb]Q = P + [t]([b]Q) =

P + [t]R, for R = [b]Q. Repeating for several t’s, if it is possible to solve the elliptic curve hidden

number problem, one can find the Diffie–Hellman key P = [ab]Q.

In the proof below we use the fact that one can get MSBk(xP ) for the secret point P . This can be

easily justified by taking t = 0 in EC-HNP, or equivalently querying the oracle from Remark 1 on [a]Q

and [b]Q. Moreover,

Remark 2. Similar to HNP [9, Section 4.1] and MIHNP [7, Section 2.1], EC-HNP can be self-

randomized. Indeed, given {(Qi,O((P + Qi)ψ))}1≤i≤n, for an oracle O, choose 1 ≤ i0 ≤ n, and

define a new secret P ′ := P + Qi0 . Let Q′i := Qi − Qi0 , then we have P + Qi = P ′ + Q′i, and so

O((P ′ + Q′i)ψ) = O((P + Qi)ψ). If one can find P ′, recovering P = P ′ − Qi0 is easy. This shows

that given {(Qi,O((P +Qi)ψ))}i, one can randomize the secret P as well as the ‘multipliers’ Qi. Al-

ternatively, if access to the oracle is still provided, one can query on ti0 + ti to receive O((P ′ +Qi)ψ),

as well as taking the approach of [9, Section 4.1]. This self-randomization allows us to assume without

loss of generality that R in EC-HNP is a generator for 〈Q〉.
2In [15] (a variant of) this problem is studied for elliptic curves over extension fields.
3We show below that the technique used to solve this problem also applies to EC-HNP. In addition, [24] reveals that

obtaining bit security results for the elliptic curve Diffie–Hellman scheme has been a primary motivation for studying this
problem.
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4. MAIN RESULTS

The main result is Theorem 2, which gives the first bit security result for prime-field elliptic curve

Diffie–Hellman key exchange. This result follows from the following theorem, which shows how to

recover the secret point in EC-HNPx given a γ-SVP algorithm.

Theorem 1. Let E be an elliptic curve over a prime field Fp, let n be an integer and k a real number.

Let an unknown P = (xP , yP ) ∈ E \{O} and a known generator R ∈ E \{O} be points on the curve.

Let O be a function such that O(t) = MSBk((P + [t]R)x), and denote Qi := [ti]R. Then, given a

γ-SVP algorithm, there exists a randomised polynomial-time algorithm that recovers the unknown xP
with 2n+ 1 calls to O and a single call to the γ-SVP algorithm on a (3n+ 3)-dimensional lattice with

polynomially bounded basis, except with probability

P1 ≤
8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆ + 1)6

p− 2
√
p− 2

+
2n+ 3

p− 2
√
p

over the choices of xQ1 , . . . , xQn , when it returns no answer or a wrong answer, where η = 2γ
√

3n+ 1

and ∆ = d p
2k+1 e.4 If the correct x-coordinate xP has been recovered, the algorithm determines which

of the two candidates ±yP is the correct y-coordinate, except with probability

P2 ≤
(16∆)n

(p− 2
√
p− 2)n

over the choices of xQ1 , . . . , xQn .

Remark 3. In the theorem, as in the corollary below, R is taken to be a generator of E in order to

give precise bounds on the probabilities. Both results hold even if R is not a generator of E, as long

as it generates a “large enough” subgroup. The size of the subgroup appears in the denominator of the

probabilities bounds (see footnote 7), and so the results also hold if the subgroup’s order is greater than

p/poly(log(p)), for example. For substantially smaller subgroups, one would need to adjust the value

for k.

The following corollary shows that one can solve EC-HNPx given an oracle for k > (5
6 + ε)m most

significant bits (where m is the bit length of p, and for any constant ε). Similar to Ling et al. [18], we

consider two different SVP approximation algorithms to show the influence of ε on the running time

and the minimum allowed value for p.

Corollary 1. Fix 0 < δ ≤ 3ε < 1/2. Let n0 = d 1
6εe, p be an m-bit prime, E be an elliptic curve

over Fp and k > (5/6 + ε)m. There exist randomised algorithms Ai, for i = 1, 2, that solve EC-HNPx
4As the matter of exact precision is not important, we set ∆ to be an integer.
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(with MSBk and a generator R) for m ≥ mi, with probability at least 1 − p−δ over the choices of

xQ1 , . . . , xQn0 where

m1 = dc1ε
−1 log ε−1e and m2 = dc2ε

−2 (log log ε−1)2

log ε−1
e ,

for some absolute effectively computable constants c1, c2, and their running time is Ti where

T1 = (2ε
−1
m)O(1) and T2 = (ε−1m)O(1) .

As a consequence, following Remark 1, we get a hardcore function for the elliptic curve Diffie–

Hellman problem and the following bit security result for elliptic curve Diffie–Hellman key exchange.

Theorem 2. Fix 0 < δ ≤ 3ε < 1/2. Let p be an m-bit prime, E be an elliptic curve over Fp, a point

P ∈ E \ {O} of order at least p/poly(log(p)) and k > (5/6 + ε)m. Given an efficient algorithm to

compute MSBk
(
([ab]P )x

)
from [a]P and [b]P , there exists a polynomial-time algorithm that computes

[ab]P with probability at least 1− pδ.

In a nutshell, the approach of solving non-linear problems like MIHNP and EC-HNP is to form

some polynomials with desired small roots, and use a lattice basis reduction algorithm to find some of

these roots. The polynomials’ degree, the number of their monomials, and subsequently the dimension

of the lattice play a main role in the quality of the result one can obtain.

4.1 Our approach

The first obstacle in approaching EC-HNP is the nonlinearity (over the ground field) of the addition rule.

This can be easily overcome by the “linearization” approach of Boneh et al. [7], which we adopt, but at

the cost of not being able to use Babai’s algorithm for closest lattice point [1]. This prevents non-linear

problems, like MIHNP and EC-HNP, of achieving results as good as the result for the linear HNP.

The second obstacle in approaching EC-HNPx (and similarly EC-HNPy) is that while one only

gets partial information of xP , the formula for (P + Q)x also involves (the unbounded unknown) yP .

Similar to the approach of [7], one can isolate this unknown in one equation, and substitute to all of the

other equations, hence ‘losing’ one equation. Doing so will impose an extra bounded unknown in each

equation, as well as many additional monomials, coming from the noise term of the equation we use to

eliminate yP .5 This will therefore result in a significantly large dimension of the lattice one constructs.6

Instead, we show how one can combine two correlated equations to eliminate yP . This helps us to
5Alternatively, once yP is isolated, one can square both sides of the equation to eliminate yP using the elliptic curve

equation. While this allows us to keep all initial equations, doing so will result in polynomials of a larger degree with many
more monomials.

6We speculate that this is the reason why [7] can only rigorously solve EC-HNPx given (1 − ε) fraction of the bits, for
ε ≈ 0.02.
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define one bounded unknown (twice as large) while keeping the number of monomials relatively small.

Taking this approach we form new equations from pairs of initial equations, causing a ‘loss’ of about

half of the equations.

Formally, we proceed as follows.

4.1.1 Eliminating yP

For some integer t consider the pair Q = [t]R,−Q = [−t]R ∈ E, and suppose P 6= ±Q. Let

P = (xP , yP ) and Q = (xQ, yQ), therefore −Q = (xQ,−yQ), and write sP+Q =
yP−yQ
xP−xQ and

sP−Q =
yP−y−Q
xP−x−Q =

yP+yQ
xP−xQ . The following operations take place in Fp.

(P +Q)x + (P −Q)x = s2
P+Q − xP − xQ + s2

P−Q − xP − xQ

=

(
yP − yQ
xP − xQ

)2

+

(
yP + yQ
xP − xQ

)2

− 2xP − 2xQ

= 2

(
y2
P + y2

Q

(xP − xQ)2
− xP − xQ

)
= 2

(
xQx

2
P + (a+ x2

Q)xP + axQ + 2b

(xP − xQ)2

)
.

(1)

4.1.2 Constructing polynomials with small roots

Write h0 = MSBk(xP ) = xP − e0, h = MSBk((P + Q)x) = (P + Q)x − e and h′ = MSBk((P −
Q)x) = (P −Q)x − e′. Letting h̃ = h+ h′ and ẽ = e+ e′ and plugging xP = h0 + e0 in (1) we get

h̃+ ẽ = (P +Q)x + (P −Q)x

= 2

(
xQ(h0 + e0)2 + (a+ x2

Q)(h0 + e0) + axQ + 2b

(h0 + e0 − xQ)2

)
.

Multiplying by (h0 + e0 − xQ)2 and rearranging we get that the following bivariate polynomial

F (X,Y ) = X2Y + (h̃− 2xQ)X2 + 2(h0 − xQ)XY + 2[h̃(h0 − xQ)− 2h0xQ − a− x2
Q]X

+ (h0 − xQ)2Y + [h̃(h0 − xQ)2 − 2h2
0xQ − 2(a+ x2

Q)h0 − 2axQ − 4b]

satisfies F (e0, ẽ) ≡ 0 (mod p).

Repeating with n different Qi leads to n polynomials of the form

Fi(X,Y ) = X2Y +AiX
2 +A0,iXY +BiX +B0,iY + Ci , (2)

that satisfy Fi(e0, ẽi) ≡ 0 (mod p). Our aim is to find “small” roots for Fi; if one of these roots

satisfies X = e0, we can substitute in h0 and recover xP .

We start with a simple argument that shows that indeed we expect to solve EC-HNPx with more

than the top 5/6 fraction of the bits. The argument is identical to the argument given in [7, Section 3.1].
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4.2 A simple heuristic argument

The solutions to the system of the n polynomials in (2) can be represented by a lattice of dimension

4n+ 3, as follows. The lattice is spanned by the rows of a matrix M of the following structure

M =

(
E R

0 P

)

where E and P are diagonal square matrices of dimensions 3n + 3 and n, respectively, and R is a

(3n+ 3)× n matrix. Each of the first 3n+ 3 rows of M is associated with one of the terms in (2), and

each of the last n columns is associated with one of these equations. For example, for n = 2 we get the

matrix (m is the bit size of p and k the number of bits we get)

M =



1 0 0 0 0 0 0 0 0 C1 C2

0 2k−m 0 0 0 0 0 0 0 B0,1 0

0 0 2k−m 0 0 0 0 0 0 0 B0,2

0 0 0 2k−m 0 0 0 0 0 B1 B2

0 0 0 0 22(k−m) 0 0 0 0 A0,1 0

0 0 0 0 0 22(k−m) 0 0 0 0 A0,2

0 0 0 0 0 0 22(k−m) 0 0 A1 A2

0 0 0 0 0 0 0 23(k−m) 0 1 0

0 0 0 0 0 0 0 0 23(k−m) 0 1

0 0 0 0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 0 0 0 p


.

For e0, ẽi, the last n columns give us equations over the integers:

e2
0ẽi +Aie

2
0 +A0,ie0ẽi +Bie0 +B0,iẽi + Ci − kip = 0 .

For the corresponding solution vector

v := 〈1, ẽ1, . . . , ẽn, e0, e0ẽ1, . . . , e0ẽn, e
2
0, e

2
0ẽ1, . . . , e

2
0ẽn, k1, . . . , kn〉 ,

we get that vM =

〈1, ẽ1

2m−k
, . . . ,

ẽn
2m−k

,
e0

2m−k
,
e0ẽ1

22(m−k)
, . . . ,

e0ẽn

22(m−k)
,

e2
0

22(m−k)
,
e2

0ẽ1

23(m−k)
, . . . ,

e2
0ẽn

23(m−k)
, 0, . . . , 0〉 .

Therefore, vM is a lattice point with 3n + 3 non-zero entries, all of which are smaller than 1, so its

Euclidean norm is smaller than
√

3n+ 3.

The determinant of the lattice is pn

2(m−k)(6n+3) . We apply the heuristic for short lattice vectors and

expect that vM is the shortest vector if
√

3n+ 3�
√

4n+ 3
(

2(k−m)(6n+3)pn
)1/(4n+3)

. Substituting

p = 2m+O(1) and ignoring lower terms we get 2k � 25/6m, and so we expect that vM is the shortest
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lattice vector when we get more than 5
6m bits. Therefore, this becomes a problem of recovering the

shortest lattice vector.

Boneh et al. [7] suggest using Coppersmith’s method [10] and construct a lattice that leads to a

smaller bound on the number of bits one needs in order to recover the secret element in this kind of

non-linear problems. This approach has to assume linear independence of the equations involved, and

therefore does not provide a proof, but only a heuristic. Since the aim of this paper is to prove bit

security, we do not follow this path.

We now turn to a complete formal proof of Theorem 1. It follows the same arguments as in the

proof of Theorem 1 in [18], where necessary adaptations have been made.

5. PROOFS

The proof of Theorem 1 is very technical. The algorithm of recovering xP appears in Algorithm 1, but

we first lay the groundwork, so that the probability analysis that appears after the algorithm could be

understood. We first give an overview of the key points of the proof.

Overview

In the algorithmic part:

• Using O, we construct the polynomial relations (as in (2) above)

Fi(X,Y ) = X2Y +AiX
2 +A0,iXY +BiX +B0,iY + Ci

for which Fi(e0, ẽi) ≡ 0 (mod p).

• Using these relations, we construct a lattice (see (4)), such that the vector

e := (∆3,∆2e0,∆
2ẽ1, . . . ,∆

2ẽn,∆e
2
0,∆e0ẽ1, . . . ,∆e0ẽn, e

2
0ẽ1, . . . , e

2
0ẽn)

is a short lattice vector.

• We run a γ-SVP algorithm on the lattice to receive a short lattice vector

f := (∆3f ′0,∆
2f0,∆

2f1 . . . ,∆
2fn,∆f0,0,∆f0,1, . . . ,∆f0,n, f00,1, . . . , f00,n) .

As e and f are two short lattice vectors, we expect them to be a (scalar) multiple of each other.

• Supposing this is the case, the scalar f ′0 is found by observing the first coordinate of e and f . We

then compute e0 = f0/f
′
0 provided f ′0 6= 0.

• From the relation h0 = xP − e0 we derive xP = h0 + e0.
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The second part of the proof analyzes the success probability of the algorithm, as follows:

• If e0 6= f0/f
′
0 or f ′0 = 0 the algorithm fails.

• To derive the probability of these events we form a certain family of low-degree polynomials (see

(12)), for which we are interested in their set of zeros. The number of polynomials in the family

is a function of ∆ = d p
2k+1 e, and so a function of k.

• Claim 1 shows that if yP 6= 0, then the polynomials are not identically zero.

• We show that these events occur if the points xQi are roots of some of these polynomials. Thus,

we derive an exact expression of the probability of these events to hold.

The last part of the proof shows how one can determine the correct value for yP using a consistency

check with all of the given values.

5.1 Proof of Theorem 1

Assume without loss of generality 3η∆ ≤ 3η∆3 < p, as otherwise the bound on the probability makes

the claim trivial, and that the unknown P is chosen uniformly at random (see Remark 2). Throughout,

unless stated otherwise, i, j are indices such that 1 ≤ i ≤ n and 0 ≤ j ≤ n. Set t0 = 0, choose

ti ∈ [1,#E−1] independently and uniformly at random, and query the oracleO on±tj to get the 2n+1

values O(±tj) denoted by h0 = MSBk(Px) = xP − e0, hi = MSBk((P + Qi)x) = (P + Qi)x − ei
and hi′ = MSBk((P − Qi)x) = (P − Qi)x − ei′ , for some integers −∆ ≤ ej , ei′ ≤ ∆. Denote

h̃i = hi + hi′ and ẽi = ei + ei′ , and suppose P 6= ±Qi.
The following has been shown in Section 4.1.2. For every 1 ≤ i ≤ n, one has

h̃i + ẽi = hi + ei + hi′ + ei′ = (P +Qi)x + (P −Qi)x

≡ 2

(
xQi(h0 + e0)2 + (a+ x2

Qi
)(h0 + e0) + axQi + 2b

(h0 + e0 − xQi)2

)
(mod p) .

Consider the polynomials

Fi(X,Y ) := X2Y +AiX
2 +A0,iXY +BiX +B0,iY + Ci ,

where (all congruences hold mod p)

Ai ≡ h̃i − 2xQi ,

Bi ≡ 2[h̃i(h0 − xQi)− 2h0xQi − a− x2
Qi ] ,

Ci ≡ h̃i(h0 − xQi)2 − 2((h2
0 + a)xQi + (a+ x2

Qi)h0 + 2b) .

A0,i ≡ 2(h0 − xQi) ,
B0,i ≡ (h0 − xQi)2, and

It holds that F (e0, ẽi) ≡ 0 (mod p) for every 1 ≤ i ≤ n. As e0, ẽi are relatively small, one hopes that

11



finding a small solution to one of these polynomials would allow to recover e0 and subsequently P . To

achieve this goal, we use these relations to construct a lattice and apply the γ-SVP algorithm.

Formally, we start by ‘balancing’ the coefficients (as lattice basis reduction algorithms work better

where all the coefficients are of similar size). For every 1 ≤ i ≤ n, set

ai ≡ ∆−1Ai (mod p) , a0,i ≡ ∆−1A0,i (mod p) ,

bi ≡ ∆−2Bi (mod p) , b0,i ≡ ∆−2B0,i (mod p) , and

ci ≡ ∆−3Ci (mod p) .

(3)

The vector

e = (∆3,∆2e0,∆
2ẽ1, . . . ,∆

2ẽn,∆e
2
0,∆e0ẽ1, . . . ,∆e0ẽn, e

2
0ẽ1, . . . , e

2
0ẽn)

belongs to the lattice L consisting of solutions

x = (x′0, x0, x1, . . . , xn, x0,0, x0,1, . . . , x0,n, x00,1, . . . , x00,n) ∈ Z3n+3

of the congruences

cix
′
0 + bix0 + b0,ixi + aix0,0 + a0,ix0,i + x00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

x′0 ≡ 0 (mod ∆3) ,

xj ≡ 0 (mod ∆2) 0 ≤ j ≤ n , and

x0,j ≡ 0 (mod ∆) 0 ≤ j ≤ n .

The lattice L is generated by the rows of a (3n+3)× (3n+3) matrix M of the following structure:

M =

∆2 0 M1

0 ∆ M2

0 0 P

 (4)

where ∆2, ∆ and P are diagonal square matrices of dimensions n + 2, n + 1 and n, respectively,

such that the diagonal of P consists of the prime p, the matrix ∆ consists of ∆ and the matrix ∆2

of ∆2, except of the first diagonal entry which is ∆3; and the matrices M1 and M2 are of dimensions

(n+ 2)× n and (n+ 1)× n respectively, given by

M1 =



−C1 −C2 . . . −Cn
−B1 −B2 −Bn
−B0,1 0 0

0 −B0,2
... 0

. . .
...

0 0 −B0,n


, M2 =



−A1 −A2 . . . −An
−A0,1 0 0

0 −A0,2
...

... 0
. . .

...
0 0 −A0,n


.
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As |ẽi| = |ei + ei′ | ≤ 2∆ for every 1 ≤ i ≤ n, we have

‖e‖ ≤
√

3∆6 + 12n∆6 =
√

3 + 12n∆3 ≤ 2∆3
√

3n+ 1 .

Run the γ-SVP algorithm and denote the vector it outputs by

f = (∆3f ′0,∆
2f0,∆

2f1 . . . ,∆
2fn,∆f0,0,∆f0,1, . . . ,∆f0,n, f00,1, . . . , f00,n) , (5)

where f ′0, fj , f0,j , f00,i ∈ Z. Notice that

‖f‖ ≤ γ‖e‖ ≤ 2γ∆3
√

3n+ 1 = η∆3 for η = 2γ
√

3n+ 1 ,

and also that

|f ′0| ≤ ‖f‖∆−3 ≤ η ,

|fj | ≤ ‖f‖∆−2 ≤ η∆ ,

|f0,j | ≤ ‖f‖∆−1 ≤ η∆2 , and

|f00,i| ≤ ‖f‖ ≤ η∆3 .

As e, f are both short lattice vectors, we expect them to be scalar multiples of each other. Therefore, let

d = f ′0e− f = (0,∆2d0,∆
2d1, . . . ,∆

2dn,∆d0,0,∆d0,1, . . . ,∆d0,n, d00,1, . . . , d00,n) ,

where

d0 = f ′0e0 − f0 , |d0| = |f ′0e0 − f0| ≤ η|e0|+ |f0| ≤ η∆ + η∆ = 2η∆ ,

di = f ′0ẽi − fi , |di| = |f ′0ẽi − fi| ≤ η|ẽi|+ |fi| ≤ η2∆ + η∆ = 3η∆ ,

d0,0 = f ′0e
2
0 − f0,0 , |d0,0| = |f ′0e2

0 − f0,0| ≤ η|e0|2 + |f0,0| ≤ η∆2 + η∆2 = 2η∆2 , (6)

d0,i = f ′0e0ẽi − f0,i , |d0,i| = |f ′0e0ẽi − f0,i| ≤ η|e0ẽi|+ |f0,i| ≤ η2∆2 + η∆2 = 3η∆2 , and

d00,i = f ′0e
2
0ẽi − f00,i , |d00,i| = |f ′0e2

0ẽi − f00,i| ≤ η|e2
0ẽi|+ |f00,i| ≤ η2∆3 + η∆3 = 3η∆3 .

Notice that if f ′0 6= 0 and also one of the coordinates of d (except of the first one) is zero, we can recover

some previously unknown information. More precisely, suppose f ′0 6= 0, then

If d0 = 0, then e0 = f0/f
′
0 ; (7)

If di = 0, then ẽi = fi/f
′
0 , 1 ≤ i ≤ n ; (8)

If d0,0 = 0, then e2
0 = f0,0/f

′
0 ; (9)

If d0,i = 0, then e0ẽi = f0,i/f
′
0 , 1 ≤ i ≤ n ; (10)

If d00,i = 0, then e2
0ẽi = f00,i/f

′
0 , 1 ≤ i ≤ n . (11)
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As ẽi = ei + ei′ it is unclear how to use these values in general to recover the secret xP . We therefore

focus on e0, from which we derive xP . Although there are several ways to recover e0 from these

equations, for the sake of the proof we only focus on (7), thus in case f ′0 6= 0 we take h0 + f0/f
′
0 as

the candidate for xP , and if f ′0 = 0, we fail. We remark that a more involved approach can be taken (to

determine e0 and in the case f ′0 = 0), using the consistency check in Appendix A.

A pseudocode for the algorithm that recovers xP is the following.

Algorithm 1: Find xP
1: Construct a lattice, generated by the rows of the matrix M as in (4).
2: Run the γ-SVP algorithm on the lattice to get the vector f as in (5).
3: if f ′0 6= 0 then

return h0 + f0/f
′
0

else
Fail

Probability of failure

We now define the following events:

(E-1) yP = 0;

(E-2) d0 6= 0 and (E-1) does not hold;

(E-3) f ′0 = 0 and (E-1) and (E-2) do not hold.

It is clear that if none of the events hold, one can recover xP . The requirement yP 6= 0 will be made

clear in Claim 1 below.

As there are at most 3 values for xP ∈ Fp that satisfy the equation x3
P + axP + b ≡ 0 (mod p),

and since P is assumed to be chosen uniformly at random, the probability that (E-1) holds satisfies

Pr[(E-1)] ≤ 3

#E − 1
≤ 3

p− 2
√
p
.

In order to derive a bound on the probability of the other events we form some useful equations. As

ci∆
3 + bi∆

2e0 + b0,i∆
2ẽi + ai∆e

2
0 + a0,i∆e0ẽi + e2

0ẽi ≡ 0 (mod p), 1 ≤ i ≤ n ,

and

ci∆
3f ′0 + bi∆

2f0 + b0,i∆
2fi + ai∆f0,0 + a0,i∆f0,i + f00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

we get (by the definition of d)

bi∆
2d0 + b0,i∆

2di + ai∆d0,0 + a0,i∆d0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

14



and therefore (using (3) above)

Bid0 +B0,idi +Aid0,0 +A0,id0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n .

Multiplying by (xP − xQi)2 and using the definitions for Ai, A0,i, Bi and B0,i we get

(xP − xQi)2
(

2[h̃i(h0 − xQi)− 2h0xQi − a− x2
Qi ]d0 + (h2

0 − 2h0xQi + x2
Qi)di

+ (h̃i − 2xQi)d0,0 + 2(h0 − xQi)d0,i + d00,i

)
≡ 0 (mod p), 1 ≤ i ≤ n ,

which simplifies, as a polynomial in xQi , to

Uix
4
Qi − Vix

3
Qi +Wix

2
Qi + YixQi + Zi ≡ 0 (mod p), 1 ≤ i ≤ n , (12)

where (all congruences hold mod p)

Ui ≡ di − 2d0 ,

Vi ≡ 2(2xP − 2e0 − ẽi)d0 + (4xP − 2e0)di + 2d0,0 + 2d0,i ,

Wi ≡ 2(3x3
P − 6e0xP − 3ẽixP + e0ẽi − 3a)d0 + (6x2

P − 6e0xP + e2
0)di + (6xP − ẽi)d0,0

+ (6xP − 2e0)d0,i + d00,i ,

Yi ≡ 2(3ẽix
2
P − 2e0ẽixP + 2axP − 2ae0 − 4b)d0 − 2(2x3

P − 3e0x
2
P + e2

0xP )di (13)

+ (2ẽixP + 2a)d0,0 − (6x2
P − 4e0xP )d0,i − 2xPd00,i , and

Zi ≡ 2(−ẽix3
P + e0ẽix

2
P + ax2

P − 2ae0xP + 4bxP − 4be0)d0 + (x4
P − 2e0x

3
P + e2

0x
2
P )di

+ (−ẽix2
P + 2axP + 4b)d0,0 + (2x3

P − 2e0x
2
P )d0,i + x2

Pd00,i .

We now show that if for some 1 ≤ i ≤ n the left hand side of (12) is the constant zero polynomial,

then d0 = 0 = d0,0. We conclude that if d0 6= 0 or d0,0 6= 0, then the left hand side of (12) is a

non-constant polynomial in xQi (of degree at most 4) for every 1 ≤ i ≤ n.

Claim 1. Let 1 ≤ i ≤ n, and assume yP 6= 0. The left hand side of (12) is constant if and only if

d0 = d0,0 = di = d0,i = d00,i = 0.

Proof. The first implication is clear from (13). Suppose that the left hand side of (12) is constant for

some 1 ≤ i ≤ n. Then Ui ≡ Vi ≡Wi ≡ Yi ≡ Zi ≡ 0 (mod p). One can express the latter as a system

of 5 equations in the 5 variables d0, di, d0,0, d0,i and d00,i. A non-zero solution exists if and only if the

system is singular. We show that the system is nonsingular if and only if yP 6= 0, which completes the

proof.

We use the first 4 equations to eliminate di, d0,i, d00,i and remain with the “global” variables d0, d0,0.

One then has

−2(2x3
P + 3e0x

2
P + 2axP + ae0 + 2b)d0 + (3x2

P + a)d0,0 ≡ 0 (mod p) ,
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which simplifies to

−4yPd0 − 2e0(3x2
P + a)d0 + (3x2

P + a)d0,0 ≡ 0 (mod p) .

If 3x2
P + a ≡ 0 (mod p), then yPd0 ≡ 0 (mod p). Otherwise, one can express d0,0 in terms of d0.

Plugging this value, with the other recovered variables, to the last equation, one gets

(x6
P + 2ax4

P + 2bx3
P + a2x2

P + 2abxP + b2)d0 ≡ y4
Pd0 ≡ 0 (mod p) .

In both cases, since yP 6= 0, we have d0 ≡ d0,0 ≡ di ≡ d0,i ≡ d00,i ≡ 0 (mod p), and since all of

these values are of size smaller than p (as we suppose 3η∆ < 3η∆3 < p), the claim follows.

We use this claim to bound the probabilities of (E-2) and (E-3), which will prove the first claim in

the theorem. The probability of events (E-2) and (E-3) is taken over the choice of the points Qi for

1 ≤ i ≤ n. That is, we consider the number of n-tuples

(xQ1 , . . . , xQn) ∈
(
Ex \ {xP }

)n
such that (E-2) holds or (E-3) holds, where Ex := {z ∈ Fp | ∃Q ∈ E,Qx = z}.7 Note that #E − 1 ≤
2|Ex| ≤ #E + 2.

Probability of event (E-2). Assume (E-2) holds, that is d0 6= 0 and yP 6= 0, and fix some values of

dj , d0,j for 0 ≤ j ≤ n and d00,i for 1 ≤ i ≤ n. Let us consider the number of n-tuples

(xQ1 , . . . , xQn) ∈
(
Ex \ {xP }

)n
satisfying (12).

Since d0 6= 0 Claim 1 shows that the left hand side of (12) is nonconstant for all 1 ≤ i ≤ n. Thus,

as all the relations in (12) are satisfied, there are at most 4 values xQi that satisfy each relation, and so

there are at most 4n n-tuples that satisfy these n non-constant polynomials.

From (6) above we get: as d0 6= 0 it can take at most 4η∆ values, each di can take at most 6η∆ + 1

values, d0,0 can take at most 4η∆2 + 1 values, each d0,i can take at most 6η∆2 + 1 values, and each

d00,i can take at most 6η∆3 + 1 values. Therefore, there are at most

4n4η∆(6η∆ + 1)n(4η∆2 + 1)(6η∆2 + 1)n(6η∆3 + 1)n <

4n4η∆(6η∆ + 1)n(4η∆ + 1)2(6η∆ + 1)2n(6η∆ + 1)3n < 4n(6η∆ + 1)6n+3

n-tuples (xQ1 , . . . , xQn) for which event (E-2) happens. Denote them by Q. The probability that

d0 6= 0 (given yP 6= 0) satisfies

Pr[(E-2)] ≤ |Q|∣∣Ex \ {xP }∣∣n < 4n(6η∆ + 1)6n+3(
1
2(#E − 1)− 1

)n ≤ 8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

.

7 In the case that R is not a generator of E, one would define Ex := {z ∈ Fp | ∃Q ∈ 〈R〉, Qx = z}. Proving the theorem
for any R boils down to proving that the roots of (12) are not restricted to Ex.
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Probability of event (E-3). Assume (E-3) holds, that is f ′0 = 0, d0 = 0 and yP 6= 0. We may suppose

that for all the n-tuples in Q event (E-3) holds, and thus consider the remaining n-tuples which are not

in Q. We first notice that d0,0 = 0. Indeed, if d0,0 6= 0, then by Claim 1 the left hand side of (12) is

nonconstant for all 1 ≤ i ≤ n. In that case, the only n-tuples that satisfy (12) are in Q. We therefore

have f0 = f ′0e0 − d0 = 0 = f ′0e
2
0 − d0,0 = f0,0.

Consider the set S = {i ∈ {1, . . . , n} | di = d0,i = d00,i = 0}. Let l = |S|, and notice that if l = n

then f0 = fi = f0,0 = f0,i = f00,i = 0, and since f ′0 = 0 by assumption then f = 0. As f is a non-zero

vector by construction, l < n.

Fix some values of di, d0,i, d00,i for 1 ≤ i ≤ n. We now consider the number of n-tuples

(xQ1 , . . . , xQn) /∈ Q

satisfying (12). If i ∈ S then the left hand side of (12) is the constant zero, and so there are |Ex| − 1

possible values for xQi satisfying (12). If i /∈ S then either di 6= 0 or d0,i 6= 0 or d00,i 6= 0 and by Claim

1 the left hand side of (12) is nonconstant, so there are at most 4 solutions xQi to the corresponding

equation in (12).

Overall, there are at most 4n−l(|Ex| − 1)l n-tuples (xQ1 , . . . , xQn) /∈ Q that satisfy (12). The

possible values for each di, d0,i, d00,i for each i /∈ S are given above. So overall there are at most

4n−l(|Ex| − 1)l(6η∆ + 1)n−l(6η∆2 + 1)n−l(6η∆3 + 1)n−l <

4n−l(|Ex| − 1)l(6η∆ + 1)n−l(6η∆ + 1)2(n−l)(6η∆ + 1)3(n−l) = 4n−l(|Ex| − 1)l(6η∆ + 1)6(n−l)

n-tuples (xQ1 , . . . , xQn) /∈ Q for which event (E-3) happens. Denote them by Q′. Over these tuples

(not in Q), the probability that f ′0 = 0 (given d0 = 0 and yP 6= 0) is bounded by

|Q′|∣∣Ex \ {xP }∣∣n ≤
n−1∑
l=0

(
4(6η∆ + 1)6

|Ex| − 1

)n−l
≤

n∑
l=1

(
4(6η∆ + 1)6

1
2(#E − 1)− 1

)l
=

n∑
l=1

(
1

2

16(6η∆ + 1)6

#E − 3

)l
≤

n∑
l=1

(
1

2

)l(16(6η∆ + 1)6

p− 2
√
p− 2

)l
.

If 16(6η∆+1)6

p−2
√
p−2 < 1, then the latter is smaller than 16(6η∆+1)6

p−2
√
p−2 . In any case we get that this probability is

bounded by
16(6η∆ + 1)6

p− 2
√
p− 2

.

We finally get that the probability that event (E-3) happens satisfies

Pr[(E-3)] ≤ |Q|∣∣Ex \ {xP }∣∣n +
|Q′|∣∣Ex \ {xP }∣∣n < 8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆ + 1)6

p− 2
√
p− 2

.
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Notice that the probability that Qi = ±P for some 1 ≤ i ≤ n is

2

#E − 1
≤ 2

p− 2
√
p
.

Thus, the probability that Qi = ±P for any 1 ≤ i ≤ n is bounded by

2n

p− 2
√
p
.

This concludes the first claim in the theorem.

Now suppose xP has been recovered. To determine which of the two values ±
√
x3
P + axP + b

is the correct y-coordinate of P , we run the consistency check, which is presented in Appendix A, on

both candidates. It is clear that the correct candidate will pass the test. If both candidates pass the

consistency check then we cannot determine the point P . We analyze the probability of the event in

which the incorrect candidate −P = (xP ,−yP ) passes the test.

We consider how many Qi lead the system to be consistent with both ±yP . Recall that

hi + ei =

(
yQi − yP
xQi − xP

)2

− xP − xQi =
xPx

2
Qi

+ (a+ x2
P )xQi + axP + 2b− 2yQiyP

(xQi − xP )2
.

If−P passes the test, then there exist ēi with |ēi| ≤ ∆ such that hi = (P −Qi)x− ēi, for all 1 ≤ i ≤ n.

We therefore have

hi + ēi =

(
yQi + yP
xQi − xP

)2

− xP − xQi =
xPx

2
Qi

+ (a+ x2
P )xQi + axP + 2b+ 2yQiyP

(xQi − xP )2
.

Subtracting one from the other and multiplying by (xP − xQi)2 we get

(ei − ēi)(xP − xQi)2 = −4yP yQi .

Squaring both sides and rearranging results in

(ei − ēi)2(xP − xQi)4 − 16y2
P (x3

Qi + axQi + b) ≡ 0 (mod p) .

This is a non-constant polynomial in xQi of degree 4 and therefore for every ēi there are at most 4

values for xQi that satisfy this equation. Since there are at most 2∆ possible values for each ēi, and

since we can form n such equations,8 we conclude that the probability that the point (xP ,−yP ) passes

the consistency check is bounded by

4n(2∆)n

(|Ex| − 1)n
≤ (16∆)n

(p− 2
√
p− 2)n

.

This concludes the proof.
8Notice that we can also form n equations from the values hi′ . For each i each solution xQi should satisfy an additional

equation (ei′−ēi′)(xP−xQi)
2 = 4yP yQi . However, adding the two equations results in the condition ei+ei′−ēi−ēi′ = 0.

While this condition can be always satisfied (e.g. ēi′ = ei, ēi = ei′ ), the probability it holds depends on the model for the
oracle, i.e. how the noise terms ei, ei′ are generated.
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5.2 Proof of Corollary 1

Consider the bounds on P1 and P2 in Theorem 1. One needs 1 − P1 − P2 ≥ 1 − p−δ, therefore

P1 +P2 ≤ p−δ, for the claim to hold. As P2 is smaller than the first bound on P1 in Theorem 1 we get

that P1 + P2 is bounded by

2
8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆ + 1)6

p− 2
√
p− 2

+
2n+ 3

p− 2
√
p
. (14)

It is sufficient to bound the latter by p−δ.

Consider the third term in (14). For the claim to hold, one needs

2n0 + 3

p− 2
√
p
<

1

pδ
,

from which it is easy to derive the minimal p (thus the minimal bit size m of p) for the condition to

hold. We therefore let δ′ such that p−δ
′

= p−δ − 2n0+3
p−2
√
p (assuming the later is positive) and bound each

of the other terms in (14) by p−δ
′

2 . Notice that δ′ > δ.

Plugging p = 2m+O(1) and ∆ = 2m−k+O(1) in the first term (14), and since k > (5/6 + ε)m, we

have

2 · 8n(6η∆ + 1)6n+3

(p− 2
√
p− 2)n

=
23n+1(2O(1)η2m−k+O(1) + 1)6n+3

(2m+O(1) − 2m/2+O(1) − 2)n
= η6n+32(6n+3)(m−k+O(1))−(m+O(1))n

≤ η6n+32(6n+3)(m/6−mε+O(1))−(m+O(1))n = 2(6n+3)(log η−mε)+m/2+O(n) .

The latter is smaller than p−δ
′

2 = 2−δ
′(m−1+O(1)) if (6n+ 3)(log η − εm) +m/2 +O(n) ≤ −δ′(m+

O(1)), which simplifies to (for some sufficiently large absolute constant C0)

(6n+ 3)(ε−m−1(log η + C0)) ≥ δ′ + 1

2
> δ +

1

2
. (15)

Using 3ε ≥ δ and n ≥ n0, it is easy to verify that (for a sufficiently large absolute constant C1)

m > ε−1(2 log η + C1) (16)

implies (15).

Similarly, to show that the second term in (14) is bounded by p−δ
′

2 one gets the condition (for some

sufficiently large absolute constant C2)

6(ε−m−1(log η + C3)) ≥ δ′ > δ ,

which can be shown to hold when (for a sufficiently large absolute constant C3)

m > (6 log η + C3)(6ε− δ)−1 .
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The latter is implied by (15), therefore by (16), provided C0 is large enough.

For A1 we apply the 1-SVP algorithm (with running time Õ(22d)) of Micciancio and Voulgaris

[19] to a lattice of dimension d = 3n0 + 3, which gives η = 2
√

3n0 + 1. For A2, we use the

2O(d(log log d)2/ log d)-SVP algorithm (with running time Õ(d)) of Schnorr [21] for the dimension d =

3n0 + 3, which gives η = 2n0+2
√

3n0 + 1. Using n0 = d 1
6εe, the bounds mi follow.

6. ADDITIONAL RESULTS

The techniques presented in the previous sections can be used to show some additional results. Con-

sidering EC-HNP with the LSBk function, similar results can be derived for the least significant 5/6

bits of the x-coordinate as we show in Section 6.1. In Section 6.2 we consider the Diffie–Hellman

key exchange protocol in elliptic curves over extension fields Fq for q = pd with d > 1 (an example

of such useful curves are the GLS curves [11], for which d = 2), and the problem of recovering the

Diffie–Hellman key given ability to compute one component of the key. That is, we consider the prob-

lem of recovering a Diffie–Hellman key [ab]P ∈ E(Fq) from an algorithm that takes P, [u]P, [v]P and

outputs a single component in Fp of ([uv]P )ψ for a coordinate ψ ∈ {x, y}. We give a general method to

solve this problem, discuss several approaches, and improve the known result to any constant extension

degree.

6.1 EC-HNP with least significant bits

We first revise the approach for HNP, where one transforms HNP with the LSBk function to HNP with

MSBk. As we allow k to take any (positive) real value, we define LSBk by LSBk(x) := x (mod d2ke).

In other words, LSBk(x) gives x mod l for 2 ≤ l = d2ke ≤ p, not necessarily a power of 2.

Let h = LSBk(st) = (st mod p) mod l = (st − qp) − el for some q and |e| < p
2l ≤

p
2k+1 . For

u = l−1 ∈ Z∗p we have

h := hu = (st− qp− el)u = (sut− q′p)− e ≡ sut− e = MSBk(sut) (mod p) .

This shows that for HNP the solution for MSBk also gives a solution to LSBk, as one can reduce

the latter to the former. In contrast, for EC-HNP it is not clear how to transform EC-HNP with LSBk to

EC-HNP with MSBk. Instead, as we now show, one can “linearize” the problem and then solve it with

a similar approach to the solution for EC-HNPx with the MSBk function.

Let h = LSBk((P + Q)x) = (P + Q)x mod l = (s2
P+Q − xP − xQ − qp) − le for some q and
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|e| < p
2l ≤

p
2k+1 . For u = l−1 ∈ Z∗p we have (where the operations are in Fp)

h : = hu =

( yP − yQ
xP − xQ

)2

− xP − xQ − qp− le

u

= u

( yP − yQ
xP − xQ

)2

− xP − xQ

− q′p− e ≡ u
( yP − yQ

xP − xQ

)2

− xP − xQ

− e .
Now let h0 = LSBk(xP ) = xP − le0 and h′ = LSBk((P − Q)x) = (P − Q)x mod l =

(s2
P−Q − xP − xQ − rp)− le′ for some r and |e0|, |e′| < p

2l ≤
p

2k+1 . Then

h′ := h′u ≡ u

( yP + yQ
xP − xQ

)2

− xP − xQ

− e′ (mod p) .

Letting h̃ = h+ h′ and ẽ = e+ e′ and plugging xP = h0 + le0 in (1) above we get

h̃+ ẽ = u
(
(P +Q)x + (P −Q)x

)
≡ 2u

(
xQ(h0 + le0)2 + (a+ x2

Q)(h0 + le0) + axQ + 2b

(h0 + le0 − xQ)2

)
(mod p) .

Multiplying by (h0 + le0 − xQ)2 results in a bivariate polynomial in e0, ẽ of degree 3, similar to (2)

above, and the rest of the solution follows.

Remark 4. Nguyen and Shparlinski used continued fractions to generalize this conversion for inner

bits [20, Section 5.1]. That is, they showed how to convert a hidden number problem with inner bits to

hidden number problem with most significant bits (MSB). When converting to MSB, the noise level in

this technique grows by a factor of at least 2.9 Again, it is unclear how to convert EC-HNP with inner

bits to EC-HNP with MSB, but we can form “linear” equations as above. Nevertheless, to achieve the

noise level coming from the most significant 5/6 bits, would require to start with 2 · 5/6 fraction of

inner bits. As this value exceeds 1, this problem is trivial.

6.2 Bit security of elliptic curve Diffie–Hellman over extension fields

The field Fq = Fpd is a d-dimensional vector space over Fp. We fix a basis {b1, . . . ,bd} for Fq, and

represent points x ∈ Fq with respect to that basis: for x =
∑d

i=1 x
ibi we write x = (x1, . . . , xd). We

consider E(Fq), the group of elliptic curve points over Fq.
The elliptic curve hidden number problem in this setting can be formulated as the problem of com-

puting a secret point P ∈ E, given partial information on a specific component. For example, one gets

MSBk
(
(P +Q)ix

)
for some component 1 ≤ i ≤ d and some number k.

9Depends whether the bits are consecutive or not.
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A natural and important question is whether the ability to recover one component – that is, when

k = log p in the example above – allows to recover the entire secret point. This question is natural as

extension fields provide additional algebraic structure that can be exploited, and it is important since it

potentially allows to prove stronger results than in prime-field cases as one component represents only

a fraction of 1/d of all bits. For example, for HNP over F∗q , Verheul [26] used the fact that a single

component of the product st is linear in all of the components of s, to give a reduction from computing

the entire secret to computing any component. In particular it shows that for fields of characteristic 2,

single bits are as hard to compute as the entire secret point.

This problem, in the elliptic curve context, was studied by Jao, Jetchev and Venkatesan (JJV) [15].

They consider the following hidden number problem for elliptic curves, which they call multiplier

elliptic curve hidden number problem: Given an oracle O that computes a single component of the

x-coordinate of the map r → [r]P , that isO(r) = ([r]P )ix, recover the point P . Similar to the direction

taken in Remark 1, one can easily see that solving this problem will give a bit security result for elliptic

curve Diffie–Hellman key exchange.

The algorithm given by JJV to this problem is polynomial in log(p) but not in d, and therefore suits

problems where one fixes the degree d and let log p grow. That is, for extension fields Fpd of a constant

degree. However, there is a drawback in JJV’s approach that leads them to prove that their algorithm

gives a polynomial time solution only for degrees d = 2, 3. We explain this drawback below. We also

show that the solution for d = 3 has a minor mistake and is incomplete.

The approach presented here overcomes this drawback, and therefore gives a complete solution to

any constant extension degree. Moreover, the solution holds for the y-coordinate as well. Our solution

is based on (a generalization of) the algorithm given by JJV.

The following section generalizes the method taken in [15, Section 3.3], and thus unifies the differ-

ent approaches one can take to solve elliptic curve hidden number problems. Afterwards, we state the

new result and compare our approach with the previous one.

In a nutshell, the essence of the solution is to construct a system of (small degree) polynomials with

small number of variables, for which either xP = (x1
P , . . . , x

d
P ) or yP = (y1

P , . . . , y
d
P ) or (xP,yP)

is a simultaneous solution, which will result in some small number of candidates for P . JJV suggest

using a Gröbner basis algorithm to find the solutions to the system. Approaching such elimination

problem, the polynomials’ degree, the number of variables in the system and the number of solutions to

the polynomial system play a main role in the complexity of this task.

6.2.1 A general method

The method presented in this section applies for both EC-HNP considered in this paper and the mul-

tiplier version considered in [15]. To make this section more accessible, we first give a few concrete
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approaches to the problem. Fix a point Q ∈ E, let P = (x,y) ∈ E be a variable, and let ψ ∈ {x, y}.
The following facts give rise to three approaches.

natural: Both point addition (P +Q)ψ and point multiplication ([r]P )ψ can be represented by rational

functions in x,y; the former has small degree, and the degree of the latter is polynomial in r.

JJV: Point multiplication ([r]P )x can be represented by a rational function only in x using the elliptic

curve division polynomials, where its degree is polynomial in r.10

our: The function (P +Q)x + (P −Q)x and the function (P +Q)y − (P −Q)y can be represented

by small-degree rational functions in x.

The JJV approach is taken by Jao, Jetchev and Venkatesan [15]. This paper shows that (P + Q)x +

(P −Q)x is a rational function of degree 2, and similarly one can derive that (P +Q)y − (P −Q)y is

a rational function of degree 3 (see below).

To unify these different approaches, we let an unknown P ∈ E and a known R ∈ E be points

and consider a family of functions ft : E → Fq; in the first approach above ft(P ) = (P + [t]R)ψ or

ft(P ) = ([t]P )ψ, in the second ft(P ) = ([t]P )x and in the third ft(P ) = (P +[t]R)ψ±(P +[−t]R)ψ.

We also consider an oracle O : [0,#E − 1] → Fp that outputs a single component of ft(P ), that is

O(t) = OP (t) = f it (P ). It is clear that in these three approaches given an oracle for a component of

the Diffie–Hellman key, one can form O.

Suppose we can represent f(P ) = ft(P ) as a rational function, that is

f(P ) =
R1(x1

P , . . . , x
d
P , y

1
P , . . . , y

d
P )

R2(x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P )

,

where R1, R2 are polynomials in Fq[z1, . . . , z2d].11 Rewrite

R1(z1, . . . , z2d)

R2(z1, . . . , z2d)
=
R1

1b1 + . . .+Rd1bd

R1
2b1 + . . .+Rd2bd

,

where for 1 ≤ j ≤ d each polynomial Rj1(z1, . . . , z2d), R
j
2(z1, . . . , z2d) has coefficients in Fp. We

“rationalize” the denominator (by multiplying the numerator and denominator by a polynomial such

that the denominator belongs to Fp[z1, . . . , z2d]) to express

R1(z1, . . . , z2d)

R2(z1, . . . , z2d)
= r1(z1, . . . , z2d)b1 + . . .+ rd(z1, . . . , z2d)bd ,

where rj are rational functions with coefficients in Fp. We assume to have access to component i of

ft(P ), that is, we have

O(t) = f it (P ) = rit(x
1
P , . . . , x

d
P , y

1
P , . . . , y

d
P ) =

rit,1(x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P )

rit,2(x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P )

.

10Also ([r]P )y can be represented by a rational function using the division polynomials, in variables x,y.
11This is the general method. In JJV and our approaches we have functions only in x = (x1, . . . , xd).
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Multiplying by rit,2 and rearranging we get that the following polynomials

gt(z1, . . . , z2d) := rit,1(z1, . . . , z2d)− rit,2(z1, . . . , z2d)f
i
t (P )

are polynomials in Fp[z1, . . . , z2d], for which the pointP = (x1
P , . . . , x

d
P , y

1
P , . . . , y

d
P ) is a simultaneous

solution, and so if one can find the solutions to this system, then one can recover P .

Notice that in the rationalization step one multiplies the denominator by all of its d−1 conjugates (to

admit the norm). Thus, if the denominator’s degree is l, one would multiply in general by a polynomial

of degree l(d − 1). Hence, each of the polynomials gt is in general of degree at least d. Furthermore,

we need at least 2d equations to solve a system with 2d variables. Elimination techniques can then be

used to reduce the number of variables. This elimination process is polynomial in terms of the ground

field, that is in log(p), but not necessarily in the degrees. The current algorithms to solve systems of 2d

equations, all of degree at least d, do not run in time polynomial in d. Therefore, this method is efficient

if one fixes the extension degree d, as then the affect of d on the elimination process running time is

constant.

6.2.2 Improved results

As noted above, JJV suggest computing a Gröbner basis for the ideal generated by {gt}, and range

over its roots, one of which is P . We remark that the analysis of time complexity of current Gröbner

bases algorithms is complex and depends on the number of solutions to the system, the degree of the

polynomials and number of variables. Therefore, it seems desirable to take approaches in which the

resulting polynomials have fewer variables, like JJV or our approaches described above, and that are of

minimal degree.

We start by explaining the drawback in the approach of JJV. As identified in [15], there are two

complexities in their approach: as the degree of the division polynomials grows exponentially in the size

of the multiplier r, one can only write down the explicit algebraic expressions for small multipliers; as

a consequence, it is not clear that by considering only small multipliers r, this hidden number problem

has a unique solution, or a small set of solutions.12

Specifically, this leads the paper [15] to give precise statements only for degrees 2 and 3 (Propo-

sitions 3.1 & 3.2), but to leave the constant degree case (Section 3.3) with a description of a general

approach, and so a proof of bit security cannot be derived in this case.

In contrast, our approach overcomes these complexities. Indeed, as the degree of the polynomials

is independent of the size of the ‘multipliers’ Q, the points Q are not restricted to any (short) interval.
12For comparison, it is easy to show that restricting to small multipliers in HNP in F∗p yields exponentially many solutions.
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As already mentioned in [15], in the case of random multipliers, it is easy to argue for uniqueness.13

Indeed, in our case we get

(P +Q)x + (P −Q)x = 2

(
xQx2

P + (a + x2
Q)xP + axQ + 2b

(xP − xQ)2

)
=
R1(x1

P , . . . , x
d
P )

R2(x1
P , . . . , x

d
P )

,

and by the aforementioned method we have

gQ(x1, . . . , xd) := riQ,1(x1, . . . , xd)− riQ,2(x1, . . . , xd)
(

(P +Q)ix + (P −Q)ix

)
,

for low degree polynomials riQ,1, r
i
Q,2. Standard arguments (like the root counting above) can be used

to show that for uniform and independent Q’s, a sufficiently large system {gQ} is expected to have a

unique (simultaneous) root. The same arguments hold for the y-coordinate, where one takes the third-

degree polynomial

(P +Q)y − (P −Q)y = 2yQ

(
x3
P + 3xQx2

P + 3axP + axQ + 4b

(xP − xQ)3

)
.

This overcomes the difficulty [15] has in proving their result for every constant extension degree.

We therefore get the following results (for a more structured proof see [22]).

Proposition 1. Let E be an elliptic curve over an extension field Fpd . There exists an algorithm,

polynomial in log p, that solves EC-HNP given an oracle that outputs a complete component of either

the x or y coordinates.

Corollary 2. For an elliptic curve defined over a constant-degree extension field, computing a single

component of the Diffie–Hellman key (for either the x or y coordinates) is as hard as computing the

entire key.

We now give a comparison between JJV’s approach and our approach. As explained, both ap-

proaches have systems with d variables, therefore both need d queries to the oracle. We therefore focus

on the polynomials’ degree and subsequently the running time.

6.2.3 Comparison of approaches

We show that the new approach leads to a more efficient algorithm. In JJV’s approach the polynomials

gr are of different form (given by different division polynomials) and their degree can be as large as

d(r2 − 1) + 1, for each multiplier r. On the other hand, the polynomials gQ in our approach are of the

same form and of degree at most 2d (3d for the y-coordinate). Moreover, for both the x-coordinate and

the y-coordinate our approach results in polynomials only in x, that is, in d variables.
13We note that the multipliers here and in [15] have different context, as the elliptic curve hidden number problem is defined

differently. However, the arguments for uniqueness stay the same.
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We remark that in practice it is suggested to use Gröbner bases algorithms with more equations than

information theoretically needed (to reduce the system to dimension zero). While in our approach each

new equation is of a fixed degree, in the JJV approach this involves equations of higher degrees, and so

it is not clear that adding new equations to the system will indeed result in a better running time.

Specifically, following the approach of JJV for degrees d = 2, 3 (even without our uniqueness

argument) one can see that our approach results in smaller lists of candidates for P than those coming

from using division polynomials (see [15, Sections 3.1 & 3.2] for the exact details). Indeed, for d =

2, JJV’s approach ends with a univariate polynomial of degree 7 (therefore there are at most 7 Fp-
solutions), while our approach leads to a polynomial of degree 4; for d = 3, JJV’s approach results

in two bivariate polynomials of degree 10, 25 in each variable, and using the resultant one forms a

univariate polynomial of degree at most 500, while our approach leads to two bivariate polynomials,

both of degree 6, and so with at most 72 Fp-solutions.

Correction. We finish with a couple of remarks regarding the solution for d = 3 in [15, Section

3.2]. As mentioned above, JJV take the resultant of two bivariate polynomials of degree 10, 25 in each

variable. First, as we show in Appendix B, this resultant is a univariate polynomial of degree at most

500, not 250 as written there. More importantly, while the resultant’s degree is bounded by a constant

value, in general it can also be identically zero, which will then not yield a constant-sized set of possible

solutions (as the zero polynomial is satisfied by every point). This point is important, especially because

the authors identify a problem with showing uniqueness of the solution, or the existence of a small set

of solutions. However, the paper [15] does not treat this point.

7. COMMENTS

It is desirable to get bit security results also in the case of an imperfect oracle. The main obstacle in

achieving such a result is that the lattice constructed by the algorithm has to be of an exact shape, which

will not be achieved in general if some equations are not of the right form. It should be noted that

like other problems (see for example [9, Section 4.1] for HNP) one can consider an imperfect oracle

which is very likely to answer all the queries correctly, when its inputs are random. In addition, one can

consider the approach suggested in [13] for imperfect oracles.

A natural question is whether a similar strong bit security result can be shown for the y-coordinate of

the elliptic curve Diffie–Hellman key. Unfortunately, the trick presented in this paper, using 2 correlated

equations to eliminate one variable, seems out of reach when one works with the y-coordinate. We

remark that one can still get some results using the approaches described in Section 4.1, but they ought

to be weak results.

Moreover, while Weierstrass equations are normally used to represent elliptic curves, Edwards
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curves are also of interest. The y-coordinate in Edwards curves is considered analogous to the x-

coordinate in Weierstrass curves. One therefore expects to have analogous equations for (P + Q)y +

(P −Q)y and for the y-coordinate of point multiplication, i.e. ([r]P )y. It is of interest to get solutions

for the elliptic curve hidden number problem using Edwards curves as well.

Acknowledgements Many thanks to my supervisor Steven Galbraith for his help and guidance.
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A. CONSISTENCY CHECK – FILTERING IMPOSSIBLE SECRETS.

We introduce a test that takes a candidate P ′ for the secret point P , and determines whether P ′ is not

the secret. That is, after running the test, P ′ is either guaranteed not to be P or it is potentially the secret

point P . We give a bound on the probability that the outcome of the test is inconclusive, for P ′ 6= P (it

is clear that if P ′ = P the test is inconclusive). Specifically, given the candidate for xP from Theorem

1, one can test which value (if any) is the correct y-coordinate yP . Moreover, one can test whether

yP 6= 0 or P 6= ±Qi.
Given a candidate P ′ = (xP ′ , yP ′), the consistency check goes over the pairs (Q, h = MSBk((P +

Q)x)) and checks if these values are consistent with the problem’s settings. That is, we use h to derive

a candidate ē for the noise e, and check if |ē| ≤ ∆. Formally, using h0 = xP − e0 we compute

ē0 := xP ′ − h0 mod p ,

and check if |ē0| ≤ ∆. If so then for every 1 ≤ i ≤ n using hi = MSBk((P +Qi)x) we compute

ēi :=

(
yP ′ − yQ
xP ′ − xQ

)2

− xP ′ − xQ − hi mod p ,
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and check if |ēi| ≤ ∆. We do the same process with hi′ . If at any point this inequality does not hold,

we can stop the test and determine that P ′ 6= P . Otherwise, P ′ passes the consistency check and is

potentially the secret point P .

For completeness, we analyze the probability (over the samplesQi) of the event in which a candidate

P ′ 6= P passes the consistency check. Hence, suppose that P ′ = (xP ′ , yP ′) passed the consistency

check.

Probability of xP ′ 6= xP . Given hi, hi′ , from Section 4.1.2 above we have

hi + hi′ = 2

(
xPx

2
Qi

+ (a+ x2
P )xQi + axP + 2b

(xP − xQi)2

)
− ei − ei′ .

Since P ′ passed the consistency check there exist |ēi|, |ēi′ | ≤ ∆ such that

hi + hi′ = 2

(
xP ′x

2
Qi

+ (a+ x2
P ′)xQi + axP ′ + 2b

(xP ′ − xQi)2

)
− ēi − ēi′ .

Subtracting these two equations and multiplying by (xP − xQi)2(xP ′ − xQi)2 we get

(ei + ei′ − ēi − ēi′)(xP − xQi)2(xP ′ − xQi)2 =

2
(

(xPx
2
Qi + (a+ x2

P )xQi + axP + 2b)(xP ′ − xQi)2

− (xP ′x
2
Qi + (a+ x2

P ′)xQi + axP ′ + 2b)(xP − xQi)2
)
.

By rearranging we get a polynomial in xQi of degree 4. By simple algebra one can check that this

polynomial is identically zero if and only if xP ′ = xP (thus ei + ei′ − ēi − ēi′ = 0). We assume

xP ′ 6= xP . Therefore for every ēi, ēi′ there are at most 4 values for xQi that satisfy this equation. Since

there are 2∆ + 1 possible values for each ēi, ēi′ we conclude that the probability that xP ′ 6= xP is

bounded by
4n(2∆ + 1)2n

(|Ex| − 1)n
≤ 2n(4∆ + 2)2n

(p− 2
√
p− 2)n

.

Probability of xP ′ = xP and yP ′ 6= yP . The probability that P ′ = (xP ,−yP ) passes the consistency

check, is analyzed at the end of the proof of Theorem 1, and shown to be bounded by

4n(2∆)n

(|Ex| − 1)n
≤ (16∆)n

(p− 2
√
p− 2)n

.

Remark 5. Although the aim of this paper is to give a bit security result and not a practical algorithm,

for completeness purposes we consider a matter of practice. In the case in which the value d0 6= 0,

the recovered value e := f0/f
′
0 6= e0, and therefore xP ′ := h + e 6= xP . Running the consistency

check on P ′ might reveal that indeed P ′ 6= P . One can derive from equations (8)-(11) other candidates

for e0 and subsequently candidates for xP , and apply the consistency check on them. If none of these
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candidates pass the consistency check, then one can test P ′ where yP ′ = 0 and P ′ = ±Qi. We analyze

the probability that there exists P ′ 6= P that is consistent with all 2n+ 1 samples.

We use the analysis above which shows that the probability that a candidate P ′ with xP ′ 6= xP

passes the test with the 2n equations is bounded by

(4∆ + 2)2n

(|Ex| − 1)n
≤ 2n(4∆ + 2)2n

(p− 2
√
p− 2)n

.

We also have xP ′ − ē0 = h0 = xP − e0, so xP ′ = xP − e0 + ē0 can take 2∆ values. Thus, the

probability that any P ′ with xP ′ 6= xP passes the consistency check is bounded by

2n+1∆(4∆ + 2)2n

(p− 2
√
p− 2)n

.

With the above bound for yP ′ 6= −yP we get that the probability that there exists P ′ 6= P that

passes the consistency check is bounded by

2n+1∆(4∆ + 2)2n

(p− 2
√
p− 2)n

+
(16∆)n

(p− 2
√
p− 2)n

.

B. RESULTANT’S DEGREE

Claim 2. Let p, q ∈ k[x, y] be two polynomials with

degx p = nx , degy p = ny ,

degx q = mx , degy q = my .

Then the degree (in x) of the resultant of p and q in variable y is at most mynx + nymx.

Proof. The Sylvester matrix of p and q with respect to y is a (my + ny)× (my + ny) matrix. The first

my rows, coming from the coefficients of p, contain polynomials in x of degree at most nx. Similarly,

the last ny rows contain polynomials in x of degree at most mx. The resultant of p and q in variable y

is given by the determinant of this matrix, which is formed by summing products of an entry from each

row. The first my rows contribute at most mynx to the degree of x, and the last ny rows contribute at

most nymx.
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