Bitcoin Private Key Locked Transactions

Sergi Delgado-Segura, Cristina Pérez-Sola,
Jordi Herrera-Joancomarti, Guillermo Navarro-Arribas

Department of Information Engineering and Communications,
Universitat Autonoma de Barcelona
{sdelgado, cperez, jherrera, gnavarro}@deic.uab.cat

Abstract. Bitcoin smart contracts allow the development of new pro-
tocols on top of Bitcoin itself. This usually involves the definition of
complex scripts, far beyond the requirement of a single signature. In this
paper we introduce the concept of private key locked transactions, a novel
type of transactions that allows the atomic verification of a given private
key (belonging to an asymmetric key pair) during the script execution.

1 Introduction

Bitcoin transactions require the execution of a contract, that defines the terms
under which the transaction can actually be redeemed. The contract is defined by
the scripts provided by the sender (locking script) and the receiver or redeemer
of the transaction (unlocking script).

Hash locked outputs are transaction outputs that require the redeemer to
prove he knows the preimage of a given hash in order to redeem the output. So
that to create this construction, the transaction output includes the value of the
hash h, such that h = H(m) for some m, and a script that specifically asks for
the preimage of h (where H is a cryptographic hash function). Then, the output
can only be spent by providing a preimage m, whose hash is exactly h.

Hash locks have recently gained popularity in the Bitcoin system because
they are used, in combination with time locks, to create bidirectional micropay-
ment channels [4,9]. This kind of channels allows to securely transfer Bitcoins
between parties minimizing the amount of transactions stored in the blockchain.

The specific case of a hash locked transaction where the preimage m is a
symmetric key is of special interest as a building block for protocols that operate
on top of Bitcoin. For example, a possible idea behind this kind of schemes is to
encrypt data using a symmetric key cryptosystem, release the encrypted data,
and then create a hash locked output where the unlocking value corresponds to
the symmetric key used to encrypt the data. The amount of bitcoins deposited
into that output corresponds to the price that is going to be payed for ability to
decrypt (and thus obtain) the data. In order to collect the bitcoins deposited into
the output, the symmetric key must be disclosed, thus allowing the decryption
of the data [5].

Extending this idea, in this paper, we introduce and propose private key
locked transactions where the locked value is precisely a private key from an

asymmetric key pair. Note that standard scripts requiring a signature are already
useful to proof the possession of a private key (because the private key is needed
to create the signature). However, the scheme we propose requires not only to
proof that the private key is known in order to redeem an output but also to
reveal that private key. We believe this will open up the possibility to build new
applications on top of Bitcoin.

2 Private key locked transactions

Although current hash locked transactions can be used to encode a symmetric
key as the unlocking value, or even private keys from asymmetric key pairs, the
fact that a private key is verifiable with its corresponding public key can be used
to provide a more robust and secure approach.

Symmetric keys are arbitrary, in the sense that they are just a bit string.
There is, therefore, no direct way of certifying that a specific symmetric key is
valid, apart from ensuring that it correctly decrypts data which was previously
encrypted with the same key.

On the contrary, given a private key, one can check whether such private key
and a public key belong to the same key pair. Regarding ECDSA (Elliptic Curve
Digital Signature Algorithm), this test is trivial: one must check if the integer
representing the private key multiplied by the elliptic curve base point (which is
a known system parameter) results in the curve point that represents the public
key. The current secp256k1 implementation used by Bitcoin to perform ECDSA
operations already includes a function that multiplies the generator by a given
scalar (secp256k1_ecmult_gen). This function is used, for instance, during the
process of computing ECDSA signatures.

If we were able to create new Bitcoin script opcodes, we could implement a
new crypto opcode to perform exactly this validation: OP_CHECKKEYPAIRVERIFY.
The OP_CHECKKEYPAIRVERIFY opcode would pop out of the stack two values,
pubKey and privKey (corresponding, respectively, to an ECDSA public key and
private key) and check whether the two keys match. The execution will then fail
if the keys do not belong to the same keypair. Instead, if the keys match, the
opcode would push back the two operands to the stack and the execution will
continue.

Note that the execution of OP_CHECKKEYPATIRVERIFY would fail if the valida-
tion is unsuccessful and would leave the stack as it was before if the validation
is successful. This ensures that the new opcode can be implemented as a soft
fork by reusing one of the currently unused OP_NOPx opcodes, in a similar way
that it has been done in the past with OP_CHECKLOCKTIMEVERIFY (OP_NOP2) and
OP_CHECKSEQUENCEVERIFY (OP_NOP3).

With the usage of this new opcode, a transaction output could be constructed
such that, in order to be redeemed, the private key matching the specified public
key has to be revealed. An example of the scriptPubKey of one such output
together with the scriptSig needed to spend it would be:

ScriptPubKey: <pubKey> OP_CHECKKEYPAIRVERIFY OP_NIP OP_CHECKSIG
ScriptSig: <sig> <privKey>

The script will first check that the public and private keys belong to the
same key pair. Note that, if the validation is successful, the stack values will
remain untouched. Therefore, before checking the validity of the signature with
OP_CHECKSIG, the privKey value has to be removed from the stack (since it is
not needed for signature validation). The execution of OP_NIP removes privKey
from the stack. Finally, OP_CHECKSIG validates the signature with the public key.
If the signature is correct, the script terminates successfully.

3 Private key locked tansactions relying in ECDSA

Although being able to use the O0P_CHECKKEYPAIRVERIFY opcode proposed in the
previous section would be useful in building Bitcoin smart contracts, the fact is
that this opcode does not currently exist. Therefore, OP_CHECKKEYPAIRVERIFY
may be proposed as a BIP following the work flow of how new Bitcoin features are
proposed. Meanwhile, we propose to use a vulnerability in the ECDSA signature
scheme in order to achieve the same goal, that is, in order to build transaction
outputs that require the disclosure of a specific private key to be redeemed,
ensuring that the private key matches a targeted public key. Note that this
vulnerability in our case is considered as a property of ECDSA, which allows us
to nicely implement the key verification.

3.1 ECDSA vulnerability

ECDSA (Elliptic Curve Digital Signature Algorithm) is the crytographic algo-
rithm used by Bitcoin to create and validate digital signatures. ECDSA has a
set of system parameters: an elliptic curve field and equation C, a generator G
of the elliptic curve C, and a prime ¢ which corresponds to the order of GG. The
values for these parameters are defined to be secp256k1 [3] for Bitcoin.

Let use denote by * the operation of multiplying an elliptic curve point by a
scalar. Given a specific configuration of the parameters and a private key d, the
ECDSA signature algorithm over the message m is defined as follows:

1. Randomly choose an integer k in [1,q — 1]
2. (z,y) =k*xG

3. r=2z modgq

4. s =k71(m+rd) mod q

5. Output!: sig(m) = (r, s)

The ECDSA signature scheme is therefore probabilistic, that is, there exist
many different valid signatures made with the same private key for the same

1 A new integer k is chosen and the procedure is repeated if either s or r are 0.

message. The selection of a specific signature from the set of valid ones is deter-
mined by the election of the integer k.

There exists a well known ECDSA signature vulnerability (also present in the
non-elliptic curve signature scheme of ElGamal and its popular variant, DSA [6,
8]) by which an attacker that observes two signatures of different messages made
with the same private key is able to extract the private key if the signer reuses
the same k selected on step 1. Therefore, the selection of k is critical to the
security of the system.

Indeed, given two ECDSA signatures that have been created using the same
k and the same private key, sigi(m1) = (r,s1) and sigs(me) = (r,$2) with
mi # meo, an attacker that obtains mq, sig; and mo, sigo may derive the private
key d:

1. Recall that, by the definition of the signature scheme:

s1 =k~ Y(my +rd) mod ¢ = ks; =m +1rd mod q
sy =k~ Y(mg +1rd) mod q = ksy =msy+1rd mod q
Note that, since r is deterministically generated from k and the fixed pa-
rameters of the scheme, the r values of both signatures will be the same.
2. The attacker learns k by computing k = %
3. The attacker learns the private key d by computing d = 51’“%"“ or d =
Sok—mo
T
Moreover, the leakage of private key information is not only restricted to the
case where the exact same k values are used, but also to situations when similar
k values are generated [7,1].
Some Bitcoin wallets adopted deterministic ECDSA after this vulnerability
was found to affect some Bitcoin transactions [10,11,2].

3.2 Private key disclose mechanism

Our proposed scheme makes use of the aforementioned ECDSA vulnerability to
perform targeted private key disclosure within Bitcoin. The Private key disclo-
sure mechanism we propose allows to construct transaction outputs that need
to reveal a private key in order to be redeemed, in such a way that we ensure
the revealed private key is the counterpart of a certain public key.

Let {PK,SK} be an ECDSA key pair belonging to Bob (with Addr(PK)
the Bitcoin address associated to it) and sigpre, an existing signature made with
SK. Alice (that is interested in acquiring Bob’s private key) needs to know the
value of the previous signature sigy e, in order to be able to request, afterwards,
a second signature made with the same k. The previous signature may appear in
the blockchain as the input script of an existing transaction. For instance, if some
amount of bitcoins were sent to Addr(PK) with a standard pay-to-pubkey-hash
script output and Bob has already transferred those bitcoins to another output
by showing a valid signature made with SK, sigprer, Will be publicy available
in the Bitcoin blockchain. Therefore, any observer will know this value and the
signed message m will correspond to a Bitcoin transaction hash.

Once an existing previous signature sigpre, is known by Alice, she creates
a transaction with an output that requires a second signature sig to be spent.
However, instead of using the classical pay-to-pubkey-hash script, she uses a
special script that forces Bob (the redeemer) not only to prove he has the private
key SK associated to the given address Addr(PK) by creating a valid signature,
but also to deliver a signature that has exactly the same k value that was used
when creating sigpre,. The output may also have a time lock that allows Alice
to get back her bitcoins if Bob chooses not to reveal the private key.

Doing so accomplishes two purposes: on the one hand, Bob proves he knows
the private key associated to the public key by generating a signature that cor-
rectly validates with that public key; on the other hand, Bob is implicitly re-
vealing the private key associated to the same public key. Note that Bob does
not directly provide the private key, but provides information from which the
private key can be derived.

Moreover, the operation is atomic, in the sense that Bob gets Alice’s bit-
coins (the amount deposited into the output) only when Alice gets Bob’s private
key (derived from the two signatures by exploiting the reusage of k& ECDSA
vulnerability).

Furthermore, unlike when revealing symmetric keys with hash locks, the pri-
vate key disclosure mechanism allows to validate that the leaked secret key is
correct, that is, it matches the specified public key.

Figure 1 shows an scheme of the Bitcoin transactions involved in the construc-
tion of a a private key locked output. In this example, the input of transaction
Tz, contains the signature sig,.., made by Bob in the past.

Once the previous signature is known, Alice can construct the transaction
Tx,4, that transfers some bitcoins of her property to Bob, only if Bob provides
a valid signature that has the same r as the previous signature sigpre, that
appeared on Txo. Moreover, the output has an additional condition with a time
lock allowing Alice to get a refund of her bitcoins if Bob decides not to colaborate
and does not redeem T'z4’s output.

In the next section, we describe how to construct the output of Tz, taking
into account Bitcoin’s signature format and Bitcoin’s scripting language.

3.3 Implementation

Although ECDSA signatures are made of two values, 7 and s, Bitcoin signatures
are just a single hexadecimal value, which corresponds to the DER encoding of
the two-element sequence of the two integers. Figure 2 describes the format of
a Bitcoin signature, where z denotes the bytes representing r and s (that is, for
each value, the 0x02 integer flag, the size, and the value itself) and ht denotes
the hash type, a flag that indicates the parts of the transaction that are hashed
and signed.

Both r and s are 32 byte integers. However, when the first bit of any of the
values is set (that is, the fist byte is > 0x7f), an additional byte (0x00) is added
in front of the value, thus making it 33 byte long. The reason is that DER rules

From: 1BTC

Signed:

<
Bl |
To: 1BTC o
Required to unlock:
X1 X2
From: Alice 1BTC
Signed:
To: | Alice 1BTC
Required to unlock:
3 o
| Alice Signature |1 ~ @ T

Fig. 1. Transactions involved in the scheme.

30 len(z) 02 len(r) r 02 len(s) s ht hex value
| ! ! ! I ! ! ! ! I
T T 1 tamt 1 T 1 T ass 1 | bytelength

Fig. 2. Bitcoin signature format.

interpret this first bit as a sign, and therefore not adding 0x00 would cause the
value to be interpreted as negative.

Recall that Alice was in possession of a previous signature sigpre, that Bob
had made in the past, and that Alice wanted to construct a transaction output
that can be redeemed by Bob only if he presents a new signature sig that uses
the same k (i.e. has the same r component).

For the sake of simplicity, let us assume that we are dealing with 71-byte
signatures, that is, signatures where both r and s are 32 byte long (Figure 3a).
Taking into account the format of signatures in Bitcoin, Alice can construct a
signature mask sigmqsx: @ byte array that has ones on the positions where r
is specified and zeros in the rest of positions. Figure 3b shows the construction
of $igmask- Alice can also construct a byte array rpre, (Figure 3c) that results
from the bitwise AND operation between the previous signature sigpre, and the
signature mask $igqsk-

. L 30 44 02 20 - 02 20 s bt hex value

a) sig UL U UL BT IR BT BT byte length
)) 00) 00) fr) fr If- -f , fr , 00 , 0---0 , 00 , hex value

b) sigmask . t 7 5 &5 T ;. 5t 51 byte length
) 00 , 00 , 02 , 20 LT 02 , 00 \ 0---0 \ 00 } hex value

c) rprev LT T B B O R BT BT byte length

Fig. 3. Values used in the proposed script.

Finally, Alice can create an output that requires a second signature sig with
the same r as the previous signature sigprev by using the values sigmqsr and
Tprev she has computed. The ScriptPubKey of the output (and its corresponding
ScriptSig) would then be:

ScriptPubKey: OP_DUP <pubKey> OP_CHECKSIGVERIFY
OP_SIZE <0x47> OP_EQUALVERIFY
<sigmask> OP_AND <rprev> OP_EQUAL

ScriptSig: <sig>

First, the script validates the signature against the specified public key. Then,
the length of the signature is checked. Finally, a bitwise AND between the new
signature and sigmqsk is computed, and the result is compared with rppe,. If
both values are equal (that is, both signatures have the same r and thus were
made using the same k), the script terminates successfully; otherwise, the script
terminates with a False value on the stack, making it fail.

Note that the only way to ensure that the script succeeds is by providing a
valid signature that has exactly the same r as the previous signature. Therefore,
although the redeem ScriptSig that spends the output does not include the
value of the private key directly, it is implicitly leaking its value by the ECDSA
vulnerabilty.

Also note that the ScriptSig needed to spend the output only requires one
value: the new signature.

We have created a set of transactions in the Bitcoin testnet that exemplify the
proposed protocol. Following the transaction naming used in Figure 1, the input?
of Tz contains a signature made by Bob with his private key SK, together with
the public key PK needed to validate it. This signature is public, and thus can
be used as the previous signature sig,r., needed by our scheme. The private
key SK is, therefore, the private key that is going to be disclosed by Bob by
providing a second signature with the same k. With this previous signature,
Alice can construct T'z4, whose output® contains the special script that requires
a second signature from Bob with the same private key and the same k in order
to redeem it.

3.4 Discussion

In the implementation performed in the testnet, the output of transaction Tx,
is currently unspendable due to the fact that it uses an OP_AND opcode that
is now disabled. The OP_AND opcode was disabled together with many other
script opcodes because developers were worried about the security of the existing
implementation.

Another detail that has to be taken into account is that, upon finalization of
the protocol, a private key corresponding to a specific Bitcoin address is revealed.

2
http://tbtc.blockr.io/api/v1l/tx/info/ea3f5444aee210f632d00cf208cc69d6f2cb70b42d73a0afa32b6a05794c551d
http://tbtc.blockr.io/api/vl/tx/info/a5a985ee80a68434c46f9f3216b7fe294cd6de9c82f3bcfl19ad6ab4c2el3e49

Therefore, the owner of that private key must ensure that there are no bitcoins
left from previous uses of the address. This can be easily accomplished by using
a new public key pair for the execution of the protocol or by just transferring
any existing funds to other addresses before making the second signature (that
effectively discloses the private key).

4 Conclusions

We have presented a private key locked transaction for Bitcoin, where the re-
deemer is required to disclose a given private key corresponding to a ECDSA
asymmetric key pair. This can be achieved by the creation of a new opcode for
the Bitcoin Script language, or by disclosing the private key using an existing
vulnerability of the ECDSA signature scheme. In the later case the private key
can be obtained from two different signatures of the same key re-using a given pa-
rameter. Although our current implementation uses a currently disabled opcode
(OP_AND), we have shown the feasibility of the implementation of our proposal.
We believe that, as shown by the recent popularity of hash locked transac-
tions, a private key locked transaction can be used to implement novel protocols
on top of Bitcoin, without introducing more complexity or the need to signifi-
cantly increase computational capabilities of the Bitcoin Script language.

References

1. Mihir Bellare, Shafi Goldwasser, and Daniele Micciancio. Pseudo-random number
generation within cryptographic algorithms: The DDS case. In Annual Interna-
tional Cryptology Conference, pages 277-291. Springer, 1997.

2. Bitcoin.org. Android security vulnerability, 2013.

3. Certicom Research. Sec 2: Recommended elliptic curve domain parameters. Tech-
nical report, Certicom Corp., January 2010.

4. Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with Bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, pages 3—18. Springer, 2015.

5. Gregory Maxwell. The first successful Zero-Knowledge Contingent Pay-
ment, February 2016. https://bitcoincore.org/en/2016/02/26/zero-knowledge-
contingent-payments-announcement,/.

6. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
applied cryptography. CRC press, 1996.

7. Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. Journal of Cryptology, 15(3):151-176, 2002.

8. Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students
and practitioners. Springer Science & Business Media, 2009.

9. Joseph Poon and Thaddeus Dryja. The Bitcoin lightning network: Scalable off-
chain instant payments. Technical report, 2015. https://lightning.network.

10. Nils Schneider. Recovering Bitcoin private keys using weak signatures from the
blockchain, 2013.
11. Filippo Valsorda. Exploiting ECDSA failures in the Bitcoin blockchain, 2014.

