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Abstract. Firstly, by analyzing non-singular matrices with few XORs
in the matrix polynomial residue ring, we present an efficient method
for building lightweight maximum distance separable (MDS) matrices
with elements chosen from a fixed matrix polynomial residue ring. Com-
pared with that constructions of previous methods usually cost several
days or several weeks, our new method only cost within several minutes.
With this method, many different types of lightweight MDS matrices
can be quickly constructed. This method has a significance for research-
ing the lightweight MDS matrix. Surprisingly, it did not receive much
attention previously. We give 5 matrix templates which are suitable to
construct lightweight MDS matrices. Secondly, we investigate the exis-
tence of involutory MDS matrix for several matrix templates. Besides, we
present an efficient necessary-and-sufficient condition for judging whether
a Hadamard matrix is involutory. With this condition, an extremely effi-
cient algorithm for constructing lightweight Hadamard involutory MDS
matrices is given. By doing experiments, we get a lot of new Hadamard
involutory MDS matrices with much fewer XORs than previously optimal
results. Thirdly, in theory, we discuss reasons about why our methods
work very efficiently. Finally, we prove a series of propositions about the
parity of XORs of element-matrix and entirety-matrix.

Keywords: MDS matrix, XOR count, matrix polynomial residue ring,
involutory matrix

1 Introduction

Background. In block cipher, the linear diffusion layer is a significant
component required for the security of the cipher. The linear diffusion
layer with bigger branch number can more effectively resist differential
and linear cryptanalysis. The diffusion layer is often constructed by a
matrix. For any n × n matrix, the maximum possible branch number of
the corresponding diffusion layer is n + 1. Maximum distance separable
(MDS) matrices can indeed reach this limitation and thus are broadly
used in many ciphers like PHOTON [1], SQUARE [2], LED [3], AES



[4]. For lightweight cryptography, the cost of implementing a linear diffu-
sion layer will influence the efficiency of cryptography largely. Therefore,
constructions of lightweight MDS matrices are meaningful to design the
lightweight cryptography. Moreover, from the perspective of hardware
implementations, an efficient lightweight MDS matrix is extremely use-
ful for saving logical gates. Considering that the sum of XORs [15] is the
most important index for measuring the efficiency of MDS matrices, MDS
matrices with fewer XORs are more efficient.

Currently, a major method of constructing lightweight MDS matrices
is to use the recursive matrix. That is, we can firstly choose a special
non-singular matrix, and then compose it k times to get a MDS matrix
Ak, the so-called serial matrices. This method was successfully used in
constructions of hash function PHOTON [1], block cipher LED [3] and
authenticated encryption scheme PRIMATEs [10]. Further investigation
on this method can be found in [11–15]. However, this method has a
drawback: It is not suitable for low-latency implementations, since it has
to run several rounds to get results.

Sim et al.[18] constructed lightweight Hadamard involutory MDS ma-
trices over the finite field. Over the finite field, the newest lightweight
circulant MDS matrices are constructed by Beierle et al. [23] at CRYP-
TO 2016. At FSE 2016, Li et al. [19] construct many new involutory
and non-involutory lightweight MDS matrices over GL(m,F2). Although
Nakahara et al.[16] and Gupta et al.[17] proved that circulant MDS ma-
trices can not be involutory over the finite field, Li et al. [19] successfully
get circulant MDS matrices over GL(m,F2).

Hadamard matrix, circulant matrix and Optimal matrix [27] are usu-
ally used as templates in building MDS matrices. Since the elements of
these templates are repeatedly used, the searching space can be reduced
obviously. Liu et al. [22] and Sim et al. [18] employed the equivalence
of matrices to further reduce the searching space. Many constructions of
MDS matrices over the finite field were proposed [18, 23, 20, 21]. By in-
vestigating the multiplication of special element in GF (2m), Christof et
al. [23] got lightweight circulant MDS matrices over GF (2m).

Motivations. Although GF (2m) is suitable to efficiently construct MDS
matrices, it is not suitable to construct the lightest results. Although
GL(m,F2) is suitable to construct the lightest results, the construction
usually takes a large amount of time. For finding a efficient method to
construct MDS matrices with as few XORs as possible, we discover that
MDS matrices can be constructed over the matrix polynomial residue
ring.
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Contribution. We investigate the feasibility of building lightweight
MDS matrices over the matrix polynomial residue ring. By analyzing
non-singular matrices with few XORs in the matrix polynomial residue
ring, we propose an efficient method to construct lightweight MDS matri-
ces. Compared with that constructions of previous methods usually cost
several days or several weeks, our new method only use within several
minutes. It has a significance for researching the lightweight MDS matrix.
To our best knowledge, it is the first time to construct MDS matrices over
the matrix polynomial residue ring. With the matrix polynomial residue
ring, MDS matrices ont only have favourable XORs, but also construction
is very efficient. Our contributions are summarized as follows

– We search each T ∈ GL(m,F2) that satisfies #T=1 and T + I non-
singular. For each T , we find its minimum polynomial. We analyze
the distribution of the minimum polynomials and the distribution of
XOR count for all elements in the matrix polynomial residue ring.
Based on these work, we recommend 5 matrix templates which are
suitable to construct non-involutory lightweight MDS matrices.

– For constructing lightweight MDS matrices, an efficient algorithm is
given. Results are shown as follows
(1) When elements are 4×4 binary matrices, 288 4×4 MDS matrices
with 10 XORs are built within 2 minutes.
(2) When elements are 8 × 8 binary matrices, 40320 MDS matrices
with 10 XORs are built within 2 minutes.
(3) When elements are 16×16 binary matrices, one 4×4 MDS matrix
with 10 XORs is found within 1 minute.

– We extend some results about the existence of involutory MDS matrix
as follows
(1) Over the matrix polynomial residue ring, n × n(n ≥ 3) circulant
MDS matrices can not be involutory.
(2) Over GL(m,F2), n×n(n ≥ 2) special MDS matrices as mentioned
in Section 5 can not be involutory.
(3) We give an efficient necessary-and-sufficient condition for judging
whether a Hadamard matrix is involutory. With this condition, anoth-
er extremely efficient algorithm for constructing lightweight Hadamard
involutory MDS matrices is proposed. With this algorithm, over 8×8
matrix over F2, we only use 1 minute and 4 second to construct 80640
4 × 4 Hadamard involutory MDS matrices with 20 XORs, which are
much lighter than previous optimal results.

– In the computation efficiency of matrix polynomial residue ring, search
space and theory, we discuss reasons about why our methods work
very efficiently.
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– We prove a series of propositions about the parity of XOR count of
element-matrix and entirety-matrix.

Roadmap. In Sec. 2, necessary preliminaries are presented. In Sec. 3, we
investigate the distributions of the minimum polynomial and distribu-
tions of XOR count on matrix polynomial residue rings, and then intro-
duce 5 matrix templates. In Sec. 4, we design an algorithm for efficiently
constructing lightweight non-involutory MDS matrices. In Sec. 5, we in-
vestigate the involutory MDS matrix. In Sec. 6, we discuss reasons about
why our methods work very efficiently. In Sec. 7, we prove a series of
properties about the parity of XOR count. A short conclusion is given in
Sect. 8.

2 Preliminaries

In this section, we introduce the basic definitions and theorems about the
lightweight MDS matrix.

2.1 MDS Matrices

Let R be a ring with identity and x ∈ Rm. The bundle weight of x is
defined as the number of nonzero entries of x and is expressed by ωb(x).
Let M be a n×n matrix over R. The branch number of M is the minimum
number of nonzero components in the input vector v and output vector
u = M ·v as we search all nonzero v ∈ Rn. I.e. the branch number of M is
BM = minv 6=0{ωb(v) + ωb(Mv)}, and BM ≤ n+ 1. A maximum distance
separable (MDS) n×n matrix is a matrix that has the maximum branch
number n+1. GL(n,F2) denotes the set of all non-singular n×n matrices
over F2.

Eevry linear diffusion layer is a linear map and can be represented by
a matrix as follow

L =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n
...

...
. . .

...
Ln,1 Ln,2 · · · Ln,n


where Li,j (1 ≤ i, j ≤ n) is an m×m non-singular matrix over F2. Denote
M(n,m) be all matrices, which are n × n matrices over GL(m,F2). For
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X = (x1, x2, ..., xn)T ∈ (F2
m
2 )n,

L(X) =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n
...

...
. . .

...
Ln,1 Ln,2 · · · Ln,n



x1
x2
...
xn

 =


∑n

i=1 L1,i(xi)∑n
i=1 L2,i(xi)

...∑n
i=1 Ln,i(xi)

 ,

where Li,j(xk) = Li,j · xk, for 1≤ i, j ≤ n, 1 ≤ k ≤ n.

Theorem 1. [19] Let L be a matrix, then L is MDS if and only if all
square sub-matrices of L are of full rank.

2.2 XOR Count

Let a, b ∈ F2, a + b is called a bit XOR operation. Let A ∈ GL(m,F2),
x = (x1, x2, ..., xm)T ∈ F2

m, #A denotes the number of XOR operations
required to evaluate Ax directly. Let ω(A) be the number of 1 in A. #A
denotes the XOR count of A and #A = ω(A) − m. For L ∈ M(n,m),
#(L) denotes the sum of XORs of L and #(L) =

∑n
i,j=1 #(Lij). For

instance, let x = (a, b, c, d)T ∈ F2
4
2, and the following matrix with 4 XOR

count.

A =


0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 0

 .

Ax =


0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 0



a
b
c
d

 =


d

c+ d
b+ c+ d
a+ c

 .

For A ∈ GL(m,F2), a simplified representation of A is given by ex-
tracting the non-zero positions in each of row ofA. For example, [3,2,4,[1,3]]
is the representation of the following matrix with 1 XOR count.

0 0 1 0
0 1 0 0
0 0 0 1
1 0 1 0


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3 Matrix Polynomial Residue Ring

In this section, we analyze distributions of the minimum polynomials
and distributions of XOR count on matrix polynomial residue rings. We
introduce 5 matrix templates of matrices which are suitable to construct
lightweight MDS matrices.

Let T be an n×nmatrix over F2, and f(x) be the minimum polynomial
of T . Let the order of f(x) be k, then k ≤ n. F2[T ] ∼= F2[x]/(f(x))
since T satisfies f(T ) = 0, where F2[T ] denotes the matrix polynomial
residue ring generated by T . Therefore matrix computations is equivalent
to polynomial computations in F2[T ].

For example, let B,C ∈ F2[T ],

B = bk−1T
k−1 + · · ·+ b1T + b0I,

C = ck−1T
k−1 + · · ·+ c1T + c0I,

b(x) = bk−1x
k−1 + · · ·+ b1x+ b0,

c(x) = ck−1x
k−1 + · · ·+ c1x+ c0.

Then B + C = b(x) + c(x)|x=T , BC = b(x)c(x)|x=T .

3.1 Analyzing the 4 × 4 Matrix Polynomial Residue Ring

In this subsection, we analyze distributions of the minimum polynomial
and distributions of XOR count on 4×4 matrix polynomial residue rings.

We search every T satisfying T ∈ GL(4,F2), #T=1 and I + T non-
singular. The number of T is 72. Let f(x) be the minimum polynomial
of T , b(x) ∈ F2[x]/(f(x)). We search all b(x) satisfying 1≤ #b(T ) ≤ 3.
Results are as follows

(1) f(x) must be one of following polynomials

x4 + x+ 1, x4 + x2 + 1, x4 + x3 + 1.

(2) For #b(T )=1, b(x) must be one of following polynomials

x, x3 + 1, x3 + x, x3 + x2.

(3) For #b(T )=2, b(x) must be one of following polynomials

x2, x2 + 1, x2 + x, x3.

(4) For #b(T )=3, b(x) must be one of following polynomials

x+ 1, x2, x3, x3 + x2 + 1.

Distributions of f(x) and b(x) are described in Table 1, where
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– MP4 denotes the set of the minimum polynomials of 4 × 4 matrices
with 1 XOR,

– Xi4 means the set of b(x) satisfying #b(T ) = i,

– Num indicates the number of T satisfying #b(T ) =1, 2 or 3.

Table 1: Distributions of Polynomials on The 4× 4 Binary Matrix Polynomial Residue
Ring

Minimum Polynomial

MP4

f(x) Num

x4 + x + 1 24

x4 + x2 + 1 24

x4 + x3 + 1 24

1 XOR

X14

b(x) Num

x 72

x3 + 1 24

x3 + x 24

x3 + x2 24

2 XORs

X24

b(x) Num

x2 48

x2 + 1 24

x2 + x 24

x3 24

3 XORs

X34

b(x) Num

x + 1 24

x2 24

x3 24

x3 + x2 + 1 24

3.2 Analyzing the 8 × 8 Matrix Polynomial Residue Ring

In this subsection, we analyze the distributions of the minimum polyno-
mial and XOR count on 8× 8 matrix polynomial residue rings.

We search all matrix T satisfying T ∈GL(8,F2), #T=1 and I+T non-
singular. The number of T is 282240. Let f(x) be the minimum polynomial
of T , b(x) ∈ F2[x]/(f(x)). We search every T to find every f(x) and all
b(x), where b(x) satisfies 1≤ #b(T ) ≤ 3. Search results are as follows

(1) f(x) must be one of following polynomials

x8+x+1, x8+x2+1, x8+x3+1, x8+x4+1, x8+x5+1, x8+x6+1, x8+x7+1.

(2) For #b(T )=1, b(x) must be one of following polynomials

x, x7 + 1, x7 + x, x7 + x2, x7 + x3, x7 + x4, x7 + x5.
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(3) For #b(T )=2, b(x) must be one of following polynomials

x2, x6 + 1, x6 + x, x6 + x2, x6 + x3, x6 + x4.

(4) For #b(T )=3, b(x) must be one of following polynomials

x3, x5 + 1, x5 + x, x5 + x2, x5 + x3, x7 + x6 + 1

Distributions of f(x) and b(x) are described in Table 2, where

– MP8 denotes the set of the minimum polynomials of 8 × 8 matrices
with 1 XOR,

– Xi8 means the set of b(x) satisfying #b(T ) = i,
– Num indicates the number of T satisfying #b(T ) =1, 2 or 3.

Table 2: Distributions of Polynomials on on The 8 × 8 Binary Matrix Polynomial
Residue Ring

Minimum Polynomial

MP8

f(x) Num

x8 + x + 1 40320

x8 + x2 + 1 40320

x8 + x3 + 1 40320

x8 + x4 + 1 40320

x8 + x5 + 1 40320

x8 + x6 + 1 40320

x8 + x7 + 1 40320

1 XOR

X18

b(x) Num

x 282240

x7 + 1 40320

x7 + x 40320

x7 + x2 40320

x7 + x3 40320

x7 + x4 40320

x7 + x5 40320

x7 + x6 40320

2 XORs

X28

b(x) Num

x2 241920

x6 + 1 40320

x6 + x 40320

x6 + x2 40320

x6 + x3 40320

x6 + x4 40320

x6 + x5 40320

3 XORs

X38

b(x) Num

x2 40320

x3 201600

x5 + 1 40320

x5 + x 40320

x5 + x2 40320

x5 + x3 40320

x5 + x4 40320

x7 + x6 + 1 40320
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Remark 1. Let T ∈ GL(m,F2), #T=1. T + I is non-singular and f(x)
is the minimum polynomial of T . Advantages of the matrix polynomial
residue ring for constructing the lightest MDS matrices are as follows

(I) Over the matrix polynomial residue ring, the non-singular matrix
with 1 XOR can be used to be an entry of a MDS matrix. But in the
matrix representation of finite field F28, there does not exist any matrix
with 1 XOR count.

By searching all non-zero and non-identity elements in all matrix rep-
resentations of F28 , we discover that the XOR count must be greater than
1. Fortunately, over matrix polynomial residue rings, if we want to use
a matrix T with 1 XOR to be an entry in a MDS matrix, we just need
to let T be an entry of MDS matrix, and other entries are chosen from
F2[T ]. In this way, T is successfully used to construct MDS matrix, and
this MDS matrix is over F2[T ].

(II) Computation of the matrix polynomial residue ring is more effi-
cient than GL(m,F2).

Since the matrix polynomial residue ring is isomorphic to polynomial
residue ring. Therefore computation of the matrix polynomial residue ring
is more efficient than GL(m,F2).

3.3 5 Templates of Matrix

In this subsection, we introduce 5 matrix templates used in constructing
algorithms.

Let L1, L2 ∈ M(n,m), if L1 can be transformed to become L2 by
exchanging rows or columns, then L1 is equivalent to L2. For constructing
the lightest MDS matrix, the lightest MDS matrix should have as many
identity matrices to be entries as possible since identity matrix over F2

has 0 XOR count. However, any sub-matrix of order 2, in MDS matrix,

must not be

(
I I
I I

)
.Otherwise, such matrix is not MDS.

In our algorithms, we only use 5 matrix templates as follows

S1 =


I I I

I I
I I
I I

 , S2 =


I I I

I I
I I

I

 , S3 =


I I I

I I
I I

I

 ,

S4 =


I I I

I I
I I
I

 , S5 =


I I
I I
I I

I I

 ,
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where I is the identity matrix over F2 and others can be any other non-
singular matrices over F2.

According to [27], in a MDS matrix of degree n, there exist at most
3(n−1) identity matrices to be entries. This matrix is called the Optimal
matrix. For example, the following matrix is an Optimal matrix.

A1,1 I I · · · I
I I A2,3 · · · A2,n

I A3,2 I · · · A3,n
...

...
...

. . .
...

I An,2 An,3 · · · I


In previous papers, circulant matrix, Hadamard matrix and Optimal

matrix are usually used to construct lightweight MDS matrices. They are
as follows

Circ(I, I, A,B) =


I I A B
B I I A
A B I I
I A B I

 , Had(I, A,B,C) =


I A B C
A I C B
B C I A
C B A I

 ,

Optimal matrix =


A I I I
I I A B
I B I A
I A B I

 .

It should be pointed that Circ(I, I, A,B) is the particular case of S5
and the Optimal matrix is the particular case of S1.

Generally, when we construct the lightest MDS matrices, if A, which
is not identity matrix, is an entry in one of 5 equivalence classes, then
A+ I should be non-singular. The reason is that there must exist a sub-

determinant of order 2 like

∣∣∣∣I II A
∣∣∣∣ = A+ I in such matrix. Because of the

requirement of MDS, A+ I should be non-singular.

4 Lightweight Non-involutory MDS Matrices

In this section, we investigate the efficient algorithm for constructing
lightweight MDS matrices.
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4.1 Entries Expression

In this subsection, we investigate entries expression in the constructing
algorithm.

Entries of MDS matrices are chosen from the m×m matrix polynomial
residue ring, m=4, 8 or 16. For example, like Optimal matrix

Optimal Matrix =


A I I I
I I A B
I B I A
I A B I

 .

In such Optimal matrix, T is a non-singular matrix, #T=1, and f(x) is
the minimum polynomial of T . A,B ∈ F2[T ], a(T ) = A, b(T ) = B and
a(x), b(x) ∈ F2[x]/(f(x)). In our algorithms, x replaces T , 1 replaces I,
a(x) replaces A and b(x) replaces B. Therefore this Optimal matrix is
replaced as the following matrix

a(x) 1 1 1
1 1 a(x) b(x)
1 b(x) 1 a(x)
1 a(x) b(x) 1

 .

4.2 MDS Judgment

In this subsection, we investigate how to judge whether a matrix is MDS
in our constructing algorithms.

Necessary and sufficient condition of MDS According to Theorem
1, L ∈ M(n,m), L is MDS if and only if all square sub-matrices of L
are full rank. That a sub-matrix is full rank is equivalent to that the
corresponding sub-determinant is non-singular since entries are m × m
matrices over F2. Therefore the necessary-and-sufficient condition of MDS
can also be described as follow

Theorem 2. [19] Let L ∈ M(n,m), L is MDS if and only if all sub-
determinants of L are non-singular.

Above theorem is the method to judge whether matrix is MDS in our
algorithms.
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Sub-determinant calculation For instance, because entries are ex-
pressed as polynomials in our algorithms, so a matrix can be expressed
as follow 

x 1 1 1
1 1 x x2 + 1
1 x2 + 1 1 x
1 x x2 + 1 1

 .

Sub-determinants are calculated according to the determinant com-
plete expansion formula. In above matrix, a sub-determinant of order 3
can be calculated as follow∣∣∣∣∣∣

x 1 1
1 1 x
1 x2 + 1 1

∣∣∣∣∣∣ = x+ x+ (x2 + 1) + 1 + (x4 + x2) + 1 = x4 + 1.

Then let T be substituted into x4 + 1 to get T 4 + I.

Finally, judge whether T 4 +I is non-singular. T 4 +I is non-singular if
and only if x4 + 1 is relatively prime to f(x), where f(x) is the minimum
polynomial of T . We just need to find the greatest common factor of
x4 + 1 and f(x). If the greatest common factor equals to 1, then T + I is
non-singular. Otherwise, it is singular.

4.3 Algorithm for Constructing the Lightest MDS matrices

For constructing lightweight 4×4 MDS matrices over the m×m(m= 4, 8
or 16) matrix polynomial residue ring, Algorithm 1 is given below. MPm

is the set of the minimum polynomials. Xim is the set of b(x) satisfying
that, for some matrix T , #b(T ) = i. Si is the template of MDS matrices
mentioned in Section 3.

The platform for running Algorithm 1 is specified as follows: Intel
i5-5300 CPU with 2.30GHz, 4GB memory, Windows 10 OS. The pro-
gramming language is the C language. By running Algorithm 1, results
are organized as follows:

1. Entries are 4 × 4 matrices over F2. We use 1 minute 42 seconds to
construct 288 MDS matrices with 10 XORs by using S1 matrix tem-
plate. It takes about 13 minutes to verify that there does not exist
MDS matrices with 10 XORs in S2, S4 or S5. An example is given as
follow:
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Algorithm 1 Construct Lightweight MDS matrices
1: for Search all T , #T=1, T and T + I are non-singular do
2: Find the minimum polynomial of T in MPm.
3: Find polynomials b1(x), · · · , bk(x) in X1m, X2m and X3m, which satisfy that

#bt(T ) ≤ 3.
4: for i from 1 to 5 do
5: for In Si, every place, which is not 1, searches in {b1(x), · · · , bk(x)} do
6: if Matrix is MDS then
7: Record this MDS matrix and its sum of XORs.
8: end if
9: end for

10: end for
11: end for

Example 1. m=4. T = [[1, 2], 3, 4, 1]. The following matrix is a MDS
matrix with 10 XORs.

T 2 + T I I I
I I T T 2 + T
I T 2 + T I T 3 + T 2

I T T 3 + T 2 I


2. Entries are 4 × 4 matrices over F2. We use 1 minute 16 seconds to

construct 40320 MDS matrices with 10 XORs. An example is given
as follow:
Example 2. m=8. T = [[2, 4], 3, 4, 5, 6, 7, 8, 1]. The following matrix is
a MDS matrix with 10 XORs.

T 2 I I I
I I T T 2

I T I T 7 + T
I T 7 + T T 2 I


3. Over 16× 16 matrix polynomial residue rings, we use about 1 minute

to construct Circulant MDS matrix with 12 XORs and Optimal MDS
matrix with 10 XORs. Let T ∈ GL(16,F2) and T = [[1, 2], 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 1]. The minimum polynomial of T is x16 +
x15 + 1. Two examples are given below:
Example 3. L1 is a circulant MDS matrix with 12 XORs.

L1 =


I I T T 14 + T 13

T 14 + T 13 I I T
T T 14 + T 13 I I
I T T 14 + T 13 I


13



Example 4. L2 is an Optimal MDS matrix with 10 XORs.

L2 =


T I I I
I I T T 14 + T 13

I T 14 + T 13 I T
I T T 14 + T 13 I


Details of constructions of Algorithm 1 is shown at Table 3.

Table 3: Number of Lightweight Non-involutory MDS Matrices and Running Time

Matrix type Element Sum of XORs Number Running time

Circ(I, I, A,B) F2[T4×4] 12 96 00:00:01
Had(I, A,B,C) F2[T4×4] 20 288 00:00:04
Optimal F2[T4×4] 13 48 00:00:01
S1 F2[T4×4] 10 288 00:01:42
S3 F2[T4×4] 10 48 00:05:05

Circ(I, I, A,B) F2[T8×8] 12 96 00:01:27
Had(I, A,B,C) F2[T8×8] 20 241920 00:07:00
Optimal F2[T8×8] 10 40320 00:01:16
S1 F2[T8×8] 10 1128960 14:00:00

5 Lightweight Involutory MDS Matrices

In this section, we investigate the existence of involutory MDS matrix
for some matrix structures. Then we prove an efficient necessary-and-
sufficient condition for judging whether a Hadamard matrix is involutory.
With this condition, we propose an extremely efficient algorithm to con-
struct lightweight involutory MDS matrices.

5.1 Existence of Involutory MDS Matrices

In this subsection, we investigate the existence of involutory MDS matrix
for some matrix structures.

Theorem 3. Let L be a n × n(n ≥ 2) MDS matrix over GL(m,F2) as
the following matrix. In L, the number of identity matrices is greater than
or equal to 2n− 1. Then L is not involutory.

14



L =



A1,1 · · · A1,i−1 I A1,i+1 · · · A1,n
...

...
...

... I
...

Ai−1,1 · · · Ai−1,i−1 I Ai−1,i+1 · · · Ai−1,n
I · · · I Ai,i I · · · I

Ai+1,1 · · · Ai+1,i−1 I Ai+1,i+1 · · · Ai+1,n
...

...
...

...
...

An,1 · · · An,i−1 I An,i+1 · · · An,n


(1)

Proof. For proving that L is not involutory, we assume that L is involu-
tory. According to this assumption, if we find a contradiction in following
process of proof, then L is not involutory. Now we prove this theorem.

When n = 2k, k=1,2,3· · ·. Then

L2 =


∗ · · · ∗ · · · ∗
...

...
...

∗ · · · A2
i,i + I · · · ∗

...
...

...
∗ · · · ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I



⇒ A2
i,i = 0⇒ Ai,i is singular.

Because L is MDS, so Ai,i is non-singular. This is a contradiction.
Therefore in this case, L can not be involutory.

When n = 2k + 1, k=1,2,3· · ·. Then

L2 =


∗ · · · ∗ · · · ∗
...

...
...

∗ · · · A2
i,i · · · ∗

...
...

...
∗ · · · ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
i,i = I

⇒ A2
i,i + I = 0⇒ (Ai,i + I)2 = 0⇒ Ai,i + I is singular.

Because L is as Eq. 1, there must exist a sub-determinant like

∣∣∣∣I I
I Ai,i

∣∣∣∣ =

Ai,i +I in |L|. Becuase L is MDS, so Ai,i +I should be non-singular. This
is a contradiction. Therefore in this case, L must not be involutory.

In a word, L mentioned in this theorem is not involutory.
ut
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Theorem 4. Let L be a MDS matrix of degree 2k + 1(k = 1, 2, · · ·) over
GL(m,F2) as the following matrix. Then L is not involutory.

L =



A1,1 · · · A1,j−1 I A1,j+1 · · · A1,2k+1
...

...
...

... I
...

Ai−1,1 · · · Ai−1,j−1 I Ai−1,j+1 · · · Ai−1,2k+1

I · · · I Ai,j I · · · I
Ai+1,1 · · · Ai+1,j−1 I Ai+1,j+1 · · · Ai+1,2k+1

...
...

...
...

...
A2k+1,1 · · · A2k+1,j−1 I A2k+1,j+1 · · · A2k+1,2k+1


(2)

Proof. For proving that L is not involutory, we assume that L is involu-
tory. According to this assumption, if we find a contradiction in following
process of proof, then L is not involutory. Now we prove this theorem.

According to Eq. 2, then

L2 =



∗ ∗ ∗ ∗ ∗

∗ . . . ∗ ∗ ∗

∗ ∗ . . . ∗ ∗

∗ I ∗ . . . ∗
∗ ∗ ∗ ∗ ∗


(3)

Where I is at ith row and jth column.

According to the assumption, L is involutory. Then

L2 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

 (4)

According Eq. 3, at ith row and jth column, this element is I. But
according to Eq. 4, at ith row and jth column, this element is 0. It is a
contradiction. So the assumption is wrong. Therefore L is not involutory.

ut

Theorem 5. Let T ∈ GL(m,F2), A1, A2, · · ·, An ∈ F2[T ]. If Circ(A1, A2,
..., An) is MDS, then Circ(A1, A2, ..., An) is not involutory, where n ≥ 3.
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Proof. L = Circ(A1, A2, ..., An) is a MDS matrix as the following matrix,
where A1, A2, · · ·, An ∈ F2[T ].

Circ(A1, A2, ..., An) =


A1 A2 · · · An

An A1 · · · An−1
...

...
. . .

...
A2 A3 · · · A1


For proving that Circ(A1, A2, ..., An) is not involutory, we assume that

Circ(A1, A2, ..., An) is involutory. According to this assumption, if we find
a contradiction in following process of proof, then Circ(A1, A2, ..., An) is
not involutory. Now we prove this theorem.

When n = 2k + 1, k = 1, 2, 3 · · ·. Then

L2 =


A1 · · · Ak+1 · · · A2k+1
...

...
...

∗ · · · ∗ · · · Ak+1
...

...
...

∗ · · · ∗ · · · A1




A1 · · · Ak+1 · · · A2k+1
...

...
...

∗ · · · ∗ · · · Ak+1
...

...
...

∗ · · · ∗ · · · A1



=


∗ ∗ · · · A2

k+1

∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
k+1 = 0⇒ Ak+1 is singular.

Because L is MDS, so Ak+1 is non-singular. This is a contradiction.
Therefore in this case, L can not be involutory.

When n = 2k, k = 2, 3, 4 · · ·. Then

L2 =



A1 · · · Ak · · · A2k−1 A2k
...

...
...

...
∗ · · · ∗ · · · Ak Ak+1
...

...
...

...
∗ · · · ∗ · · · A1 A2

∗ · · · ∗ · · · A2k A1





A1 · · · Ak · · · A2k−1 A2k
...

...
...

...
∗ · · · ∗ · · · Ak Ak+1
...

...
...

...
∗ · · · ∗ · · · A1 A2

∗ · · · ∗ · · · A2k A1



=


∗ · · · A2

k +A2
2k 0

∗ · · · ∗ ∗
... · · ·

...
...

∗ · · · ∗ ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
k +A2

2k = 0.
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There is a 2× 2 sub-matrix

(
Ak A2k

A2k Ak

)
in L.

L =


A1 · · · Ak · · · A2k
...

...
...

Ak+1 · · · A2k · · · Ak
...

...
...

∗ · · · ∗ · · · ∗


According above discussions, A2

k + A2
2k = 0. Because L is MDS, so∣∣∣∣ Ak A2k

A2k Ak

∣∣∣∣ = A2
k + A2

2k should be non-singular. This is a contradiction.

Therefore in this case, L can not be involutory. ut

5.2 Hadamard Involutory Matrices

In this subsection, we investigate the Hadamard involutory matrix.

Theorem 6. Let T ∈ GL(m,F2). f(x) is the minimum polynomial of
T . a1(x), a2(x), · · ·, a2k(x) ∈ F2[x]/(f(x)). L = Had(a1(T ), a1(T ), · · ·,
a2k(T )) is involutory if and only if

(
2k∑
i=1

ai(x))2 ≡ 1 (mod f(x))

Proof. Because T ∈ GL(m,F2) and L = Had(a1(T ), a1(T ), · · · , a2k(T ))
is involutory, so

L2 =


∑2k

i=1(ai(T ))2 ∑2k

i=1(ai(T ))2

. . . ∑2k

i=1(ai(T ))2

 =


I
I

. . .

I



⇔
2k∑
i=1

(ai(x))2 ≡ (
2k∑
i=1

ai(x))2 ≡ 1 (mod f(x))

ut

Corollary 1. Let T ∈ GL(m,F2). f(x) is the minimum polynomial of
T . a(x), b(x) and c(x) ∈ F2[x]/(f(x)). L = Had(I, a(T ), b(T ), c(T )) is
involutory if and only if

(a(x) + b(x) + c(x))2 ≡ 0 (mod f(x))
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Proof. According to Theorem 6, Had(I, a(T ), b(T ), c(T )) is involutory if
and only if (1 + a(x) + b(x) + c(x))2 ≡ 1 (mod f(x)). (1 + a(x) + b(x) +
c(x))2 ≡ 1 (mod f(x)) ⇔ (a(x) + b(x) + c(x))2 ≡ 0 (mod f(x)). ut

We construct lightweight Hadamard involutory MDS matrices asHad(I,
A,B,C). In our experiments, A ∈ GL(8,F2), #A=1, A+I is non-singular.
f(x) is the minimum polynomial of A. b(x), c(x) ∈ F2[x]/(f(x)) and
B = b(A), C = c(A). According to above theorem, Had(I, A,B,C)
is involutory if and only if (x + b(x) + c(x))2 ≡ 0 (mod f(x)). So
x2 ≡ (b(x) + c(x))2 (mod f(x)). As mentioned in section 4, the min-
imum polynomial of A must be one of the following polynomials

x8+x+1, x8+x2+1, x8+x3+1, x8+x4+1, x8+x5+1, x8+x6+1, x8+x7+1.

We find all g(x) satisfying g2(x) ≡ x2 (mod f(x)), where f(x) is one
of above the minimum polynomials. Each of x8 +x+ 1, x8 +x3 + 1, x8 +
x5 + 1 and x8 + x7 + 1 only has one solution. Each of x8 + x2 + 1, x8 +
x4 + 1 and x8 + x6 + 1 has 16 solutions.

Specifically, solutions of g(x) satisfying g2(x) ≡ x2 (mod x8+x2+1)
are as follows

x, x4+1, x5+x2, x5+x4+x2+x1+1, x6+x3+x2+x1, x6+x4+x3+x2+1,

x6 + x5 + x3, x6 + x5 + x4 + x3 + x1 + 1, x7 + x3 + 1, x7 + x4 + x3 + x1,

x7+x5+x3+x2+x1+1, x7+x5+x4+x3+x2, x7+x6+x2+1, x7+x6+x4+x2+x1,

x7 + x6 + x5 + x1 + 1, x7 + x6 + x5 + x4.

Solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x4 + 1) are as follows

x, x4+x2+x1+1, x5+x3, x5+x4+x3+x2+1, x6+x1+1, x6+x4+x2+x1,

x6+x5+x3+1, x6+x5+x4+x3+x2, x7, x7+x4+x2+1, x7+x5+x3+x1,

x7 + x5 + x4 + x3 + x2 + x1 + 1, x7 + x6 + 1, x7 + x6 + x4 + x2,

x7 + x6 + x5 + x3 + x1 + 1, x7 + x6 + x5 + x4 + x3 + x2 + x1.

Solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x6 + 1) are as follows

x, x4 + x3 + x1 + 1, x5 + x3 + 1, x5 + x4, x6 + x3 + x2 + 1, x6 + x4 + x2,

x6+x5+x2+x1, x6+x5+x4+x3+x2+x1+1, x7+x2+1, x7+x4+x3+x2,

x7 + x5 + x3 + x2 + x1, x7 + x5 + x4 + x2 + x1 + 1, x7 + x6 + x3 + x1,
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x7 + x6 + x4 + x1 + 1, x7 + x6 + x5 + 1, x7 + x6 + x5 + x4 + x3.

Algorithm 2 is specially designed to construct lightweight 4×4 Hadamard
involutory MDS matrices over the matrix polynomial residue ring. The
platform of Algorithm 2 is the same as Algorithm 1. By running Algo-
rithm 2, results are organized as follows:

(I) Over 8 × 8 matrix polynomial residue rings, constructing 80640
Hadamard involutory MDS matrices with 20 XORs only takes about 1
minutes and 4 seconds.

(II) When entries are 4 × 4 matrices over F2, the lightest Hadamard
involutory MDS matrices with 24 XORs.

(III)When entries are 8 × 8 matrices over F2, the lightest Hadamard
involutory MDS matrices with 20 XORs.

Algorithm 2 Construct lightweight Hadamard involutory MDS matrices
1: Define matrix structure as Had(I, A,B,C).
2: for Search all A ∈ GL(8, F2), #A = 1, A and A + I are non-singular do
3: x replaces A.
4: Find f(x), which is the minimum polynomial of A in MP8.
5: Find polynomials b1(x), · · · , bk(x) in X18, X28 and X38, which satisfy that

XOR count is less than 4.
6: Find all quadratic congruences of x2 (mod f(x)).
7: for i from 1 to k do
8: bi(x) replaces B.
9: for j from 1 to 16 do bi(x) + qj(x) replace C, where qj is a quadratic

congruence of x2 (mod f(x)).
10: if Matrix is MDS then
11: Record this MDS matrix and its sum of XORs.
12: end if
13: end for
14: end for
15: end for

Example 3

(1) m=4. T = [[1, 2], 3, 4, 1]. The following matrix is a Hadamard
involutory MDS matrix with 24 XORs.


I T T 2 T 2 + T
T I T 2 + T T 2

T 2 T 2 + T I T
T 2 + T T 2 T I


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(2)m=8. T = [4, 1, 2, 8, 6, 3, [5, 8], 7]. The following matrix is a Hadamard
involutory MDS matrix with 20 XORs.

I T T 6 + T 4 T 2

T I T 2 T 6 + T 4

T 6 + T 4 T 2 I T
T 2 T 6 + T 4 T I


Comparisons with previous constructions of lightweight involutory

MDS matrices are shown at table 4. Comparisons with [19] are at ta-
ble 5. In table 4 and table 5, the sum of XORs denotes the sum of XORs
of the entirety-matrix.

Table 4: Comparisons with previous constructions of lightweight involutory MDS ma-
trices

Matrix type Element Sum of XORs Ref.

Had(I, A,A−1, A+A−1) GL(4,F2) 24 [19]

Had(0× 1, 0× 4, 0× 9, 0× d) F24/0× 13 24 [26][18]

Had(0× 1, 0× 2, 0× 6, 0× 4) F24/0× 19 24 [10]

Had(I, A,B,C) F2[T4×4] 24 Ours

Hadamard− Cauchy(0× 01, 0× 02, 0× fc, 0× fe) F28/0× 11b 296 [17]

Had(0× 01, 0× 02, 0× 04, 0× 06) F28/0× 11d 88 [25]

Had(0× 01, 0× 02, 0× b0, 0× b2) F28/0× 165 64 [18]

Subfield−Had(0× 1, 0× 4, 0× 9, 0× d) F24/0× 13 48 [18]

Had(I, A,A−1, A+A−1) GL(8,F2) 40 [19]

Had(I, A,B,C) F2[T8×8] 20 Ours

6 Reasons of Construction Efficiency

In this section, we discuss reasons of efficiently constructing lightweight
MDS matrices.

6.1 Efficiency of Constructing Lightweight Non-involutory
MDS Matrices

In this subsection, we introduce reasons of efficiently constructing lightweight
non-involutory MDS matrices.
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Table 5: Comparisons of construction efficiency with [19]

Matrix type Element Sum of XORs Number Running time Ref.

Optimal GL(8,F2) 10 40320 no mentioned [19]

Optimal F2[T8×8] 10 40320 1min 16sec Ours

S1 F2[T8×8] 10 1128960 14hours Ours

Circ(I, I, A,B) GL(8,F2) 12 80640 3days [19]

Circ(I, I, A,B) F2[T8×8] 12 80640 1min 27sec Ours

Had(I, A,AT , B) GL(8,F2) 20 622 4weeks [19]

Had(I, A,B,C) F2[T8×8] 20 241920 7min Ours

InvolutoryHad(I, A,A−1, A+A−1) GL(8,F2) 40 80640 1day [19]

InvolutoryHad(I, A,B,C) F2[T8×8] 20 80640 1min 04sec Ours

In previous papers, lightweight MDS matrices are usually construct-
ed with templates like Circulant matrix, Hadamard matrix or Optimal
matrix. The following matrix is a circulant matrix.

Cir(I, I, A,B) =


I I A B
B I I A
A B I I
I A B I

 .

With Cir(I, I, A,B), we and [19] get the same results as mentioned in
Table 5. Next we take m = 8 as an example. [19] use about 3 days. But we
use only 1 minute and 27 seconds. In [19], elements are from GL(m,F2).
But in our method, elements are from the matrix polynomial residue ring
F2[T ]. Deeper reasons of this difference are as follows

(I) With GL(8,F2), computations of elements do not have a obvi-
ously efficient way. But with F2[T ], computations are isomorphic to the
polynomial. So computations in F2[T ] is obviously more efficient than
GL(8,F2).

(II) For GL(8,F2). There are 1048320 matrices with 1, 2 or 3 XORs in
GL(8,F2). Then overGL(8,F2),A andB, in Cir(I, I, A,B), have 1048320
choices respectively. So over GL(8,F2), the search space of Cir(I, I, A,B)
is 1048320×1048320.

For the matrix polynomial residue ring. If non-singular 8 × 8 T is
fixed, T + I non-singular and #(T ) = 1, then T has 282240 choices. And
there are only at most 4 elements with 1 or 2 XORs in F2[T ]. So, with
F2[T ], if we want to construct lightest results, then A and B have at most
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4 different choices respectively. So with F2[T ], the search space of H1 is
only 282240×4×4.

Remark 2. Because the matrix polynomial residue ring has obvious effi-
ciency, so we can use it to construct more general templates like S1, S2,
S3, S4 or S5 mentioned in Sec. 3.3. The following matrix is a matrix of
template S5.

S5 =


I I A1 A2

A3 I I A4

A5 A6 I I
I A7 A8 I

 .

In most previous papers, lightweight MDS matrices are constructed only
with templates like circulant matrix or Hadamard matrix, where non-
identity elements are re-used. The reason is that if all non-identity el-
ements are independent with each other, then the search space is too
huge to complete the construction within acceptable time. However, be-
cause of the efficiency of our method, lightweight MDS matrices as S1,
S2, S3, S4 or S5 can be constructed within acceptable time. For exam-
ple, with GL(8,F2), the non-identity element has 1048320 choices. So,
with GL(8,F2), the search space of S5 is (1048320)8. But with the ma-
trix polynomial residue ring, the search space is only 282240× (4)8. With
our method and S5, we use 14 hours to construct 1128960 results with
10 XORs. But with S1 and GL(8,F2), the time of construction will be
unacceptable.

6.2 Efficiency of Constructing Involutory MDS Matrices

In this subsection, we introduce reasons of efficiently constructing lightweight
involutory MDS matrices. Besides advantages as mentioned in Sec. 6.1,
for the lightweight involutory MDS matrix, our second method has some
theoretical optimizations for constructing involutory Hadamard MDS ma-
trices.

As mentioned at table 5, paper [19] only construct the involutory
Hadamard matrix as Had(I, A,A−1, A + A−1). In this matrix, only A
is changed. However, we construct the involutory Hadamard matrix as
Had(I, A,B,C). In our matrix, A, B and C are all changed. More impor-
tantly, they use 1 day to construct 80640 results with 40 XORs. However,
we only use 1 minute and 4 second to construct 40320 results with 20
XORs, which is much fewer than 40. Besides advantages as mentioned in
Sec. 6.1, we have some theoretical optimizations for constructing involu-
tory Hadamard MDS matrices as follow.
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According to Corollary 1, if Had(1, x, b(x), c(x) is involutory, then
(b(x) + c(x))2 = x2. As mentioned at Sec. 5.2, for each adaptive mini-
mum polynomial, there are only 16 solutions satisfying g(x)2 = x2. Let
these 16 solutions be g1(x), g2(x), ..., g16(x). When b(x) is fixed, then
it must be that c(x) = b(x) + gi(x). So if b(x) is fixed, c(x) has only 16
choices. In our construction, let non-singular A be adaptive to construct
involutory Hadamard MDS matrices, #(A) = 1, A+ I non-singular then
A has 282240 choices. For constructing lightweight 4× 4 involutory MDS
matrices, our search space is 120960×28 × 16.

In a word, by using theoretical optimizations, we largely reduce the
search space. So we use only very little time to construct satisfactory
results.

7 Propositions about the Parity of XOR Count

In this section, we prove properties about the parity of XORs.

Proposition 1. Let A, B, A+B ∈ GL(m,F2) , then

#(A+B) ≡ #(A) + #(B) +m (mod 2).

Proof. It is obviously that ω(A+B) ≡ ω(A) + ω(B) (mod 2).
Because #A = ω(A)−m,#B = ω(B)−m and #(A+B) = ω(A+B)−m.
Then #(A+B) ≡ #(A) + #(B) +m (mod 2). ut

Proposition 2. Let α = (a1, a2, ..., am)T and β = (b1, b2, ..., bm)T , where
ai, bi ∈ F2. Then

ω(αβT ) = ω(α)ω(β).

Proof. Because α = (a1, a2, ..., am)T , β = (b1, b2, ..., bm)T , then

ω(αβT ) = ω


a1b1 a1b2 · · · a1bm
a2b1 a2b2 · · · a2bm

...
...

. . .
...

amb1 amb2 · · · ambm

 =

m∑
i=1

m∑
j=1

aibj

=

m∑
i=1

ai

m∑
i=1

bj = ω(α)ω(β).

ut
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Proposition 3. Let A,B ∈ GL(m,F2) and A = (α1, α2, ..., αm) and
B = (β1, β2, ..., βm)T . Then

#(AB) ≡
m∑
i=1

ω(αi)ω(βi) (mod 2).

Proof. Because A = (α1, α2, ..., αm) and B = (β1, β2, ..., βm)T , so AB =∑m
i=1 αiβ

T
i . According to proposition 2,

ω(AB) ≡
m∑
i=1

ω(αiβ
T
i ) ≡

m∑
i=1

ω(αi)ω(βTi ) (mod 2).

Because #(AB) = ω(AB)−m, so

#(AB) ≡
m∑
i=1

ω(αi)ω(βTi ) +m (mod 2).

ut

Proposition 4. Let L1, L2, L1 + L2 ∈M(n,m). Then

#(L1 + L2) ≡ #(L1) + #(L2) + nm (mod 2).

Proof. It is obviously that ω(L1 + L2) ≡ ω(L1) + ω(L2) (mod 2).
Because

#(L1 + L2) = ω(L1)− n2m,#(L1) = ω(L1)− n2m,

#(L2) = ω(L2)− n2m,

so

#(L1 + L2) ≡ #(L1) + #(L1) + n2m ≡ #(L1) + #(L1) + nm (mod 2)

. ut

Proposition 5. Let Ai, Bi ∈ GL(m,F2) and i = 1, 2, ..., n. Then

ω

(A1 A2 · · · An

)

B1

B2
...
Bn


 ≡ ω(

n∑
i=1

Ai

n∑
j=1

Bj) (mod 2).
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Proof.

ω

(A1 A2 · · · An

)

B1

B2
...
Bn


 = ω


A1B1 A1B2 · · · A1Bn

A2B1 A2B2 · · · A2Bn
...

...
. . .

...
AnB1 AnB2 · · · AnBn


≡ ω(

n∑
i,j=1

AiBj) ≡ ω(
n∑

i=1

Ai

n∑
j=1

Bj) (mod 2).

ut

Proposition 6. Let L1, L2, L1L2 ∈M(n,m) and

L1 =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann

 , L2 =


B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
. . .

...
Bn1 Bn2 · · · Bnn

 .

Then

#(L1L2) ≡
n∑

k=1

ω(
n∑

i=1

Aik

n∑
j=1

Bkj) + nm (mod 2).

Proof.

ω(L1L2) ≡ ω
n∑

k=1



A1k

A2k
...

Ank

(Bk1 Bk2 · · · Bkn

)


≡
n∑

k=1

ω



A1k

A2k
...

Ank

(Bk1 Bk2 · · · Bkn

)
 (mod 2).

According to proposition 5, then

ω(L1L2) ≡
n∑

k=1

ω(
n∑

i=1

Aik

n∑
j=1

Bkj) (mod 2).

Because #(L1L2) = ω(L1L2)− n2m, so

#(L1L2) ≡
n∑

k=1

ω(

n∑
i=1

Aik

n∑
j=1

Bkj) + n2m
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≡
n∑

k=1

ω(

n∑
i=1

Aik

n∑
j=1

Bkj) + nm (mod 2).

ut

8 Conclusions

In the present paper, we mainly investigate constructions of 4×4 lightweight
MDS matrices over the matrix polynomial residue ring, where m=4, 8 or
16. According to distributions of the minimum polynomial and distribu-
tions of XOR count, we propose an efficient algorithm to construct the
lightest MDS matrices. Besides, we prove that some special MDS matrices
can not be involutory. According to the quadratic congruence, we propose
another efficient algorithm to construct lightweight Hadamard involutory
MDS matrices, which are much lighter than previous papers. We discuss
reasons about why our methods work very efficiently. Finally, we prove a
series of properties about the parity of XOR count.
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