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Abstract. QARMA is a recently published lightweight tweakable block cipher, which has been

used by the ARMv8 architecture to support a software protection feature. In this paper, using the

method of MITM, we give the first distinguisher of QARMA block cipher. It is made up of the

Pseudo-Reflector construction with two forward rounds and three backward rounds. By adding two

rounds on the top and three rounds on the bottom of the distinguisher, together with the idea

of the differential enumeration technique and the key-dependent sieve skill, we achieve a 10-round

(of 16-round) key recovery attack with memory complexity of 2116 192-bit space, data complexity

of 253 chosen plaintexts and time complexity of 270.1 encryption units. Furthermore, we use the

same distinguisher to attack QARMA-128 which also includes 10 (of 24) round functions and the

Pseudo-Refector construction. The memory complexity is 2232 384-bit space, the data complexity is

2105 chosen plaintexts and the time complexity is 2141.7 encryption units. These are the first attacks

on QARMA and do not threaten the security of full round QARMA.
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1 Introduction

Symmetric cryptography, usually including block cipher, stream cipher and hash function, is the earliest

known method to provide confidentiality and integrity of susceptible data. Hash functions are utilized

widely in various applications, such as digital signatures, to guarantee integrity. In 2005, the breakthrough

works by Xiaoyun Wang, Hongbo Yu [5,6,7,8] on several international hash standards, including MD5 [3],

SHA-1 [4] et al, make the cryptanalysis and design of hash algorithm a hot spot. As another symmetric

cipher, block ciphers guarantee the confidentiality of data. The most widely known two algorithms are

Data Encryption Standard(DES) [22] and Advanced Encryption Standard(AES) [14]. In the early 1970s,

DES was proposed at IBM and submitted to the National Bureau of Standards. Finally in 1977, it was

published as an official FIPS for the United States. But unfortunately, DES is not considered to be secure

as its 56-bit key size could not satisfy the security requirements for many applications. So in January

1997, the US National Institute of Standards and Technology(NIST) announced the start of an initiative

to develop a new encryption standard: the AES. This standard would become a new FIPS, taking the

place of the old Data Encryption Standard(DES) and triple-DES. Finally in October 2000, NIST officially

declared that Rijndael to be the AES. Till now, AES is widely used and attracting many researchers.

Recently, a security concern when using a block cipher attracts the attention of researchers: when

using the same key to encrypt the same message in different cases, one get the same ciphertext, which

means that the attacker knows that the messages are the same when getting the same ciphertexts. So if

the attacker get the message in one case, he can detect messages in other cases. To solve this problem, in

2002, the concept of tweakable block cipher were proposed by Moses Liskov, Ronald L. Rivest and David

Wagner [9]. The encrypt process of tweakable block cipher can be expressed as: C = Ekey(P, Tweak)

while that of the traditional is: C = Ekey(P ). Addition to the plaintext and the key, a “tweak” T is

needed to yield a ciphertext. The “tweak” should be easily changed, and even public.

QARMA[10] is a lightweight tweakable block cipher proposed by Roberto Avanzi designed for usage

in special hardware cases, such as memory encryption, generation of very short tags by truncation. It

has two versions: QARMA-64 uses a 64-bit state with a 128-bit key, the other one: QARMA-128 uses

a 128-bit state with a 256-bit key. In 2016[11], the QARMA block cipher has been introduced by the

ARMv8-A architecture to be used in a software protection called Pointer Authentication Code(PAC).



Meet-in-the-Middle(MITM) attack was first proposed by Diffle and Hellman[12]. The basic process is

as follows: a block cipher is firstly divided into two parts: EK = EK1
◦ EK2

. Given a plaintext and its

ciphertext (P,C), an adversary guesses the value of (K1,K2) and checks whether E1
K1

(P ) = (E2
K2

)−1(C).

If the equality holds, the guessed key might be the right key; otherwise, it must be a wrong key. Demirci

et al.[13] in 2008 reformed the standard MITM attack to AES[14]. They treated the block cipher E as

EK = E2
K2
◦ Em ◦ E1

K1
. In this strategy, the adversary needs to build a distinguisher to describe the

cryptographic property of Em associated with the so-called δ-set: a set including 28 states, where a byte

traverses all values and the other bytes are constants. If one considers encryptions expressed as a function

of a δ-set: (X0, · · ·, X255) for the input of Em, then the output value: (Em(X0), · · ·, Em(X255)) can be

expressed as a function of some intermediate variables of Xi and partial subkeys involved in Em. Similarly

as in [15], we symbol the sequence (Em(X0), · · ·, Em(X255)) as S, and all intermediate variables along

with the key information as V . If the total number of bits of S is small enough, then the distinguisher will

work, and the adversary pre-compute all values of S and stores them in a table H. Then at ASIACRYPT

2010[16], Dunkleman, Keller and Shamir develop new ideas to reduce the memory complexity. One of

these ideas used in this paper is the differential enumeration technique which uses a special property on a

truncated differential trail to reduce the number of parameters in V . They also set up a correlation in V

and a truncated differential characteristic D with average probability. That means if a pair conforms to

D, where they assume one pair of message belongs to the δ-set:(X0, · · ·, X255), then the possible values

of V will be restricted to a small subset of the value space. At FSE 2014, Li et al.[17] introduced the

key-dependent sieve technique, which filters wrong states based on the key schedule to further reduce

the complexity in the precomputation phase. In ASIACRYPT 2014[18], Jian Guo studied the security of

Generic Feistel Constructions against meet-in-the-middle attack and gave insights on lower bounds on

the number of rounds a secure Feistel should have.

Our Contribution. QARMA block cipher has a sophisticated central construction which includes two

complete round functions and a “Pseudo-Reflector” construction that involves half of the master key. We

present a distinguisher on QARMA including 5 round functions and the Pseudo-Reflector construction.

Based on this distinguisher, we mount an MITM attack on 10-round QARMA-64 with complexities of

2116 192-bit space, 253 chosen plaintexts and 270.1 encryption units. Then we use the same distinguisher

to attack QARMA-128: a 10-round attack with memory complexity of 2232 384-bit space, data complexity

of 2105 chosen plaintexts, time complexity of 2141.7 encryption units.

Outline. The rest of this paper is organized as follows. We start with a brief introduction of QARMA

block cipher and some definitions and properties in Section 2. In Section 3, we give our distinguisher and

the specific process of the attack on QARMA-64 and QARMA-128. In Section 4, we conclude this paper.

2 Preliminaries

In this section we represent a brief introduction of QARMA and then give the definitions and propositions

used throughout this paper.

2.1 Brief Description of QARMA

w0 w1 w0 w1

P F C F C

k0 T k1 k0 + α T

Fig. 1. The Overall Scheme
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QARMA[10] is a three-round Even-Mansour construction (Figure 1) where the permutations are

parameterized by a core key, and all round keys are derived from the a whitening key. The first and third

permutations are functionally the inverse of each other. Different rounds are further parameterized by a

tweak. A more detailed introduction is depicted in Figure 2. In this paper, a bar over an operation or a

function (e.g. F̄) denotes its inverse.
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Fig. 2. The Structure of QARMA

Following we will only focus on the 64-bit version of QARMA as the difference of the two versions of

QARMA do not influence the attack process. For more details, we refer to [10].

The 128 bit master key K is firstly split into two parts, w0‖k0, where w0 and k0, the whitening and

core keys respectively are both 64 bits. For encryption, the keys are specialised as:w1 = o(w0) = (w0≫
1) + (w0 � (63)) and k1 = k0.

QARMA-64 is a bricklayer SPN with 14 rounds and the central construction(two round functions

and a Pseudo-Reflector construction). The encryption process can be seen as a sequence of operations

on the 64-bit internal state together with a tweak and the key. Internal state size of QARMA-64 can

be represented as sixteen 4-bit cells, which are indexed in big endian order, while the bits in a cell are

ordered in little endian order, e.g., a plaintext P can be expressed as:

P = p0‖p1‖p2‖ · · · ‖p15 =

 p0 p1 p2 p3
p4 p5 p6 p7
p8 p9 p10 p11
p12 p13 p14 p15


The forward round function F includes the following 4 operations:

KeyAddition(K): The ith 64-bit round key Ki is XORed to the state S with the round tweak t and

round constant ci.

ShuffleCell(τ): This operation is the same as the cell permutation of MIDORI[21], i.e.

τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

MixColumn(M): Each column of the cipher internal state array is multiplied by the matrix M , i.e.,

S = M · S. The matrix M is as follows:  0 ρ ρ2 ρ

ρ 0 ρ ρ2

ρ2 ρ 0 ρ

ρ ρ2 ρ 0


Moreover, the matrix M is involutory, i.e. M2 = I. The multiplication of an element of the array with ρi

is just a simple left circular rotation of the element by i bits.
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Table 1. Sbox of QARMA-64

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 14 2 10 9 15 8 11 6 4 3 7 13 12 1 5

SubCell(S): Apply the non-linear 4× 4 S-box in parallel on each nibble of the state.

The backward round function is the inverse of the forward round function.

A short version of the forward round function exists in the first forward round and the last backward

round which omits the ShuffleCell and Mixcolumn operation.

The central construction is made up of one forward round, one backward round and a Pseudo-Reflector

constructions. Key bits involved in these two rounds are deduced by the whitening key instead of the core

key. The Pseudo-Reflector construction includes four parts which is essentially a ShuffleCell-MixColumn-

KeyAddition-Inverse ShuffleCell operation. In addition, the matrix Q used here in the MixColumn oper-

ation is the same as M .

2.2 Definitions and Propositions

In[15], Li et al. extended the definition of δ-set[14] to T active cells and got T-δ-set. Here we give its

definition:

Definition 1 (T-δ-set). A T-δ-set includes 2T×4 values which traverses all values of T active nibbles

while keeps the values of the other nibbles constants (the inactive nibbles).

Super S-box was first used in [19] to analysis AES, similarly, the Super S-box for QARMA-64 is as

follows:

Definition 2 (Super S-box). For each value of the the key bits involved, a QARMA-64 Super S-box

maps one column of M0 to one column of M4 as shown in Figure 3. It consists of one SubCell, one

KeyAddition, one MixColumn and one Inverse SubCell. Note that we swap the order of the KeyAddition

operation and the MixColumn operation and k1 = M · ruk1.

M4M3M2M1M0 ruk1

S Q S

Fig. 3. Super S-box for QARMA-64

Proposition 1 (Differential Property of S-box,[20]). Given the input and output differences of a

S-box, there exists only one pair of actual values on average to satisfy these two differences.

This proposition is easy to know and also applies to the inverse of S-box and Super S-box.

Proposition 2 (Differential Property of Super S-box). Given ∆M0 and ∆M4 two non-zero differences

in F216 , once the difference characteristic through the Super S-box is possible, the equation of super S-box:

Super − S(x)
⊕

Super − S(x
⊕

∆M0) = ∆M4,

has two equivalent solutions in average for each involved key value, regardless of the specific location of

the active nibbles.

Proof: Without loss of generality, we set M0[0, 3] and M4[0, 1, 2, 3] the active nibbles and the in-

volved key nibble to be ruk1[0, 3], then the difference characteristic will be shown as in Figure 3. Given

∆M4[0, 1, 2, 3] and for each M4[0, 1, 2, 3], one can get M3[0, 1, 2, 3] and ∆M3[0, 1, 2, 3]. After a inverse of

the MixColumn operation, the number of pairs that satisfy ∆M2[1, 2] = 0 is about 28. Since ruk1[0, 3] is
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known, one can get M1[0, 3]. Therefore, for each value of ∆M0[0, 3] and ∆M4[0, 1, 2, 3], the average num-

ber of pairs satisfying the difference characteristic of Super S-box is 216−8−4×2 = 1 for each corresponding

subkey. �
Proposition 4 (Property of the Mixcolumn Operation[10]). For QARMA-64, the matrix used in the

MixColumn operation has 67 column-to-column state transitions.

All possible transitions is shown in Figure 4.

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→

Fig. 4. The Column-wise Active State Transitions for the Matrice in QARMA-64

2.3 The MITM Attack Scheme

In this section, we give a unified description of meet-in-the-middle attack. The integrated attack on

QARMA is presented in Section 3.

For the meet-in-the-middle attack, the encryption algorithm can be divided into three consecutive

parts: EK = E2
K2
◦Em ◦E1

K1
and there must be a specific property for the middle part Em, which is used

as the distinguisher to get the correct value of (K1,K2).

The general attack scheme is made up of two phases: precomputation phase and online phase. During

the precomputation phase, we concentrate on building a table T containing all possible output sequences

from the input sequences satisfying the differential property of the distinguisher. In the online phase, we

encrypt chosen plaintexts and partially decrypt the corresponding ciphertexts to get pairs that satisfy the

differential property of the distinguisher by guessing the involved key bits. Finally, we partially decrypt

the associated T -δ-set through the third part of EK to check whether it belongs to T . If so, then the

guessed value of the key is right; otherwise, it’s wrong.

3 MITM Attacks on Reduced-Round QARMA-64/128

In Section 3.1, we first propose a distinguisher of QARMA-64 that includes the Pseudo-Reflector con-

struction together with two forward rounds and three backward rounds. In Section 3.2, we extend the

distinguisher to attack 10-round QARMA-64 by extending two rounds on the top and three rounds on the

bottom. After that in Section 3.3, we use a similar distinguisher as in Section 3.1 to attack QARMA-128.
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3.1 The 5-Round with Pseudo-Reflector Distinguisher for QARMA-64

X2

Y3 Z3 W3 X3K3
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ruk1
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Y4 Z4 W4 X4

M3

Y5

M2

Z5
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W5
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X8

M S

 M
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
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S

S

M

M

M





Fig. 5. Distinguisher of 5-Round with Pseudo-Reflector on QARMA-64

Using the methodology of meet-in-the-middle, we find a property that covers 5 round functions and

the Pseudo-Reflector construction as shown in Figure 5. Note that in order to construct the Super S-box

structure, we interchange the orders of the second SubCell operation and the third ShuffleCell operation

and the orders of the first Inverse SubCell and the first Inverse ShuffleCell in the Pseudo-Reflector

construction.

There, and throughout the paper, for internal state nibbles, the colored boxes in a figure represent

active nibbles, white boxes represent inactive nibbles; for key nibbles, colored boxed means that the key

nibbles are involved in the differential trail.

Property: If there exists a pair (Xi
2,X̃2) which satisfies the following two conditions: (a) ∆X2[2]

is equal to ∆X2[7], and (b) the active nibbles of the pair satisfies the truncated difference characteristic

as shown in Figure 5, then after a 5-round and the Pseudo-Reflector encryption, the sequence (X0
8 [4], · ·

·X47
8 [4]) will only take about 2116 values out of 248×4=192 theoretical values.
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Proof: We consider the computation of X l
8[4] for 0 6 l 6 47 and l 6= i. Actually, X l

8[4] is determined

by the 41-nibble parameters:

X2[2, 7]||W3[7, 15]||W4[0, 4, 8, 3, 11, 15]||M3||

K5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15]||K6[4, 8, 12]||K7[4].

Since X2[2, 7] is known and ∆X2[2] = ∆X2[7], we can get ∆Y3[7, 15] and use it to deduce ∆W3[7, 15]

as ∆Y3[7] = ∆Y3[15]. Since W3[7, 15] is known, we can get X3[7, 15]. Similarly, since ShuffleCell and

MixColumn are both linear operations, we can get the value of ∆W4[0, 4, 8, 3, 11, 15]. And also as

W4[0, 4, 8, 3, 11, 15] is known, we can get X4[0, 12, 1, 13, 10, 11] and use it to deduce M1[0, 12, 1, 13, 10, 11].

After another two linear operations, we get ∆M3. From the known value of M3, we can deduce the value of

X5 and use it to deduce Y5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] through the inverse of a ShuffleCell-MixColumn-

ShuffleCell opertion. By the knowledge ofK5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15], we getX6[1, 5, 9, 13, 2, 6, 10, 14, 3,

7, 15]. Then after the inverse of another ShuffleCell-MixColumn-ShuffleCell operation, we get Y6[4, 8, 12].

Since K6[4, 8, 12] is also known, we get the value of X7[4, 8, 12] and Y7[4]. Finally, by adding the value of

K7[4], we get X8[4] .

Following we show that when we find a pair of messages conforming to the truncated differential trail

outlined in Figure 5, the above 41 nibble-parameters are only determined by the following 31- nibble

parameters:

K3[2, 7]||Y3[2, 7, 8, 13]||∆Y5[0, 4, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15]||

∆Y6[4, 8, 12, 1, 9]||∆Y7[4]||ruk1[12, 1, 13, 10, 11]

Firstly, X2[2, 7] can be directly deduced by Y3[2, 7] and K3[2, 7].

Since the value of Y3[2, 7, 8, 13] can be used to deduce Z3[3, 7, 11, 15] and thus W3[7, 15] can be known,

the knowledge of Y3[2, 7, 8, 13] is sufficient to deduce ∆Y4[7, 15]. Using the knowledge of ∆Y4[7, 15], we

also get the value of ∆W4[0, 4, 8, 3, 11, 15].

Combining ∆Y5[0, 4, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] and ∆Y6[4, 8, 12, 1, 9], we can deduce ∆X5, X6[1,

5, 9, 13, 2, 6, 10, 14, 3, 7, 15], and Y6[4, 8, 12, 1, 9].

Combining ∆Y6[4, 8, 12] and Y7[4], we get X7[4, 8, 12] and Y7[4].

As X7[4, 8, 12] and Y6[4, 8, 12] are both known, we can get the value of K6[4, 8, 12]. According to the

key schedule that k0 is equal to k1, ruk1[0] can be deduced by K6[4, 8, 12] as K6 is only dominated by

k0 and some known values.

For the Super S-box, till now we get the value of the input difference ∆X4[0, 12, 1, 13, 10, 11] and the

output difference ∆X5, with the key value ruk1[12, 1, 13, 10, 11], we can get the value of X4[0, 12, 1, 13, 10,

11] and X5 according to its property.

W4[0, 4, 8, 3, 11, 15] can be known from X4[0, 12, 1, 13, 10, 11] and thus we can deduce the value of

Y4[7, 15]; from the value ofX3[7, 15] and Y4[7, 15], we can getK4[7, 15].M3 and Y5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7,

15] can be known from X5.

Since Y5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] and X6[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] are both known, we get the

value of K5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15].

And also, K7[4] can be deduced by K6[4] as they are both dominated by k0, so the 41 nibbles can be

absolutely decided by the above 31 nibbles.

Whatsmore, when considering the key-dependent sieve skill, K4[7, 15] can be completely deduced by

K5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] as w1 = w0≫ 1 + w0 � 63.

So actually the sequence has only 231×4−8 = 2116 values. �

3.2 The 10-Round with Pseudo-Refector Attack on QARMA-64

By applying the distinguisher in Section 3.1, we mount an key recovery attack on 10-round QARMA-64

by adding two rounds on the top and three rounds on the bottom. The extended difference characteristic

is shown in Figure 6 and its characteristic probability is 2−76.
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The MITM attack process is detailed as follows:

Precomputation Phase:

We need to construct a table containing all possible sequences described in the Property.

1. For each pair (Y3[2, 7, 8, 13], Y
′

3 [2, 7, 8, 13]) that satisfies ∆Y3[2] = ∆Y3[7] and ∆Y3[8, 13] = 0, deduce

X3[7, 15] and ∆Y4[7, 15]. Store the value of (Y3[2, 7], X3[7, 15]) with the index of ∆Y4[7, 15] in table

T1.

2. Construct table T2 that lists all values of (ruk1[0, 12, 1, 13, 10, 11], ∆Y4[7, 15], ∆Y5[0, 4, 12, 1, 5, 9, 13,

2, 6, 10, 14, 3, 7, 15]) and the values of the active nibbles in the corresponding pairs (Y4, Y5, Y
′

4 , Y
′

5 )

deduced from (X4, X5, X
′

4, X
′

5) that satisfies the difference characteristic inside the Super S-box.

3. For all possible values of ∆Y5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] and ∆Y6[4, 8, 12, 1, 9], deduce (Y6[4, 8, 12],

X6[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15]). Store the value of (∆Y6[4, 8, 12], Y6[4, 8, 12], X6[1, 5, 9, 13, 2, 6, 10, 14,

3, 7, 15]) in table T3 with the index of ∆Y5[1, 5, 9, 13, 2, 6, 14, 3, 7, 15].

4. For all possible values of ∆Y6[4, 8, 12] and ∆Y7[4], deduce the value of Y7[4] and X7[4, 8, 12]. Store

the values of (∆Y7[4], Y7[4], X7[4, 8, 12]) in table T4 with index of ∆Y6[4, 8, 12].

5. For each possible value of difference ∆Y6[4, 8, 12], perform the following operations:
(a) Query table T4 to get the corresponding value of Y7[4] and X7[4, 8, 12].

(b) Query table T3 to get the value of (Y6[4, 8, 12], X6[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15]) and all possible

values of ∆Y5[0, 4, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15].

By now we can also deduce value of K6[4, 8, 12]. According to the key schedule, we also get K7[4]

and ruk1[0].

(c) For each possible value of ruk1[12, 1, 13, 10, 11], query table T2 with ∆Y5[0, 4, 12, 1, 5, 9, 13, 2, 6, 10,

14, 3, 7, 15] to get ∆Y4[7, 15]. Meanwhile, we also get the value of Y5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15].

Combining Y5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15] and X6[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15], we deduce the

value of K5[1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 15].

(d) Query table T1 with the value of ∆Y4[7, 15] to get Y3[2, 7] and X3[7, 15].

The value of K4[7, 15] can be deduced from X3[7, 15] and Y4[7, 15].

(e) Make sure that the deduced and guessed key value do not contradict with the key schedule.

Guess K3[2, 7], we get X2[2, 7] and thus all needed 116-bit information.

(f) On the basis of the 116-bit information, we construct a 2-δ-set, compute the corresponding value

of sequence (X0
8 [4], X1

8 [4], · · ·, X47
8 [4]) and store it in a table T .

Till now, we finish the precomputation phase.

Online Phase:

During the online phase, we first look for at least one pair which satisfies the extended truncated

differential trail in Figure 6, and then retrieve the master key by guessing some key bits and exhaustively

search the other bits.

1. Encrypt 229 structures of 224 plaintexts. The plaintexts of a structure traverses nibbles P[8,12,9,13,2,3]

while the other nibbles are constants. For each structure, store the ciphertexts in a table indexed by

nibbles C[0,1,2,3], the pairs indexed by the same value are the right pairs.

After this step, about 247−4×4 = 231 pairs leave in each structure and 260 pairs in total.

2. (a) Guess K1[3, 9, 12].

For all remaining pairs, compute W1[3, 9, 12] to deduce X1[3, 9, 12]. According to the key schedule,

the value of K2[3, 9, 12] can be easily derived by K1[3, 9, 12], so we can compute the value of

Y2[3, 9, 12]. After a ShuffleCell operation, we get the value of Z2[6, 10, 14] , then use it to compute

∆W2[2] as ∆Z2[2] = 0 and delete the pairs which do not satisfy ∆W2[6, 10, 14] = 0.

Guess K1[6], as the value of K9[6, 9, 12] and K10[6, 9, 12] can be easily derived from K1[6, 9, 12].

Partially decrypt the corresponding ciphertexts and get W9[6, 9, 12]. Delete pairs which do not

satisfy ∆W9[2, 6, 14] = 0.

This step performs a 16-bit filter, the expected number of remaining pairs is about 260−16 = 244.
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Fig. 6. The Online Phase

(b) Guess K1[2, 8, 13] and deduce the value of K2[2, 8, 13]. Use the known key information to partially

encrypt the remaining pairs to get W2[7] and remain the pairs that satisfy ∆W2[3, 11, 15] = 0

and ∆W2[2] = ∆W2[7].

As same as the operation in step(a), guess K1[7], we can use K1[7, 8, 13] to deduce K9[7, 8, 13]

and K10[7, 8, 13]. Partially decrypt the remaining pairs to get W9[15] and delete the pairs that

do not satisfy ∆W9[3, 7, 11] = 0.

After this step, about 224 pairs leave.

(c) Guess K10[5, 10, 15] and deduce K9[5, 10, 15], and then, we decrypt the remaining pairs to compute

W9[0]. Delete pairs that do not satisfy ∆W9[4, 8, 12] = 0.

Here we get another 8-bit filter, so there are about 216 remaining.

(d) Guess K10[4, 11, 14] and deduce K9[4, 11, 14], then decrypt the pairs to compute W9[5] and delete

pairs that do not satisfy ∆W9[1, 9, 13] = 0.

After this step, about 28 pairs leave.

(e) Using K10[5, 10, 15] to deduce the value of K8[5, 10, 15], guess K8[0] and partially decrypt the

pairs and only choose that ∆W8[8, 12] = 0.

This is a 8-bit filter, so after this, there will be only one pair remaining.

3. Finally we get one pair satisfying the truncated differential trail for every 60-bit key guess. Select

one message of the pair and compute the value X2[2, 7], then deduce the first 48 messages of the

corresponding plaintexts for the 2-δ-set:(X0
2 , X

1
2 , · · ·, X47

2 ).

Encrypt the plaintexts to get the corresponding ciphertexts and then, partially decrypt the ciphertexts

to get the sequence (X0
8 [4], X1

8 [4], ···, X47
8 [4]) and check whether the sequence (X0

8 [4], X1
8 [4], ···, X47

8 [4])

lies in the table T , if not, go back to step 1 for the next subkey guess; Otherwise, we exhaustively

search for the other 68-bit key bits and recover the master key.
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Complexity analysis: During the precomputation phase, the memory complexity is obviously dom-

inated by table T . It contains 2116 192-bit sequences, so the memory complexity is 2116 192-bit space.

The time complexity is about 2124 simple computations. In the online phase, we use 229 structures to

construct 276 pairs, the data complexity is 229 × 224 = 253 plaintexts. The detail of the time complexity

is depicted in Table 2. Here we consider the Pseudo-Reflector construction denoted by P as one complete

round function. The 10-round with Pseudo-Reflector can be seen as a 11-round function in terms of the

expense of computation. In total, the time complexity is about 273.6R ≈ 270.1 encryptions of a 10-round

function with the Pseudo-Reflector construction.

Table 2. Time Complexity of Online Phase

Step Time Complexity
1 229 · 224(10R + P ) ≈ 256.5R

2(a) 3/16 × 2 × (260 × 212 + 252 × 216)(R + ADK + S) ≈ 271.6R
2(b) 3/16 × 2 × 216 × (244 × 212 + 232 × 216)(R + ADK + S) ≈ 271.6R
2(c) 3/16 × 2 × 232 × 224 × 212(R + ADK + S) ≈ 265.6R
2(d) 3/16 × 2 × 244 × 216 × 212(R + ADK + S) ≈ 271.6

2(e) 4/16 × 2 × 256 × 28 × 24R ≈ 267R
3 260 × 48 × (10R + P + 2R + 3R) + 268(10R + P ) ≈ 271.5R

SUM (256.5 + 3 × 271.6 + 265.6 + 267 + 271.5) ≈ 273.6R

3.3 Attack on QARMA-128

In QARMA-128,M = circ(0, ρ, ρ2, ρ5)(which admits inverse M̄ = circ(0, ρ5, ρ6, ρ)) withQ = circ(0, ρ, ρ4, ρ).

Although the matrix is different from that in QARMA-64, they share the same transition property as

shown in Figure 4.

As a result, we can use a same distinguisher used to cryptanalysis QARMA-64 to attack QARMA-128,

and the difference characteristic of the attack is totally the same as in QARMA-64 as both version have

the same structure and key schedule.

During the precomputation phase, we need to use 2248 simple computations to construct the table T

that occupies a space of 2232 384-bit sequence. The data complexity of the online phase is 2105 chosen

plaintexts while the time complexity is 2141.7 encryption units.

4 Conclusion

In this paper, we explore the security of QARMA-64 and QARMA-128 against truncated differential

attack using the MITM methodology. By using the differential enumeration and key-dependent sieve

technique, we propose a MITM distinguisher on QARMA-64. After that, we extend the distinguisher to

achieve a 10-round attack on both two versions of QARMA. To the best of our knowledge, this is the

first result that analysis the security of QARMA against MITM attack.

Moreover, there are many further works to do: other attacks on QARMA or the way to get better

attack complexity with MITM method. We will welcome all possible cooperation to improve this paper.
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