
Attacks against search Poly-LWE

Momonari Kudo∗

December 15, 2016

Abstract

The Ring-LWE (RLWE) problem is expected to be a computationally-hard problem even
with quantum algorithms. The Poly-LWE (PLWE) problem is closely related to the RLWE
problem, and in practice a security base for various recently-proposed cryptosystems. In 2014,
Eisentraeger et al. proposed attacks against the decision-variant of the PLWE problem (and in
2015, Elias et al. precisely described and extended their attacks to be applied for that of the
RLWE problem). Their attacks against the decision-PLWE problem succeed with sufficiently
high probability in polynomial time under certain assumptions, one of which is that the defining
polynomial of the PLWE instance splits completely over the ground field.

In this paper, we present polynomial-time attacks against the search-variant of the PLWE
problem. Our attacks are viewed as search-case variants of the previous attacks, but can deal
with more general cases where the defining polynomial of the PLWE problem does not split
completely over the ground field.

Key words— Ring-LWE, Poly-LWE, finite field

1 Introduction

Lattice-based cryptography now plays a central role in quantum-resistant cryptography. In lat-
tice theory, there are many computational problems considered to be hard even with quantum
algorithms, and they are bases for the security of recently-proposed encryption schemes. The Ring-
LWE (RLWE) problem is well-known to be such a problem, and it is concerned with many hard
problems in lattice theory, see e.g., [3], [10], [11] and [12].

The Poly-LWE (PLWE) problem was introduced in [4], and it is known to be the polynomial
version of the RLWE problem. Consider a PLWE instance (n, f, q, ℓ, χ), where n and ℓ are positive
integers, f a monic irreducible polynomial in Z[x] of degree n, q a rational prime, and χ an error
distribution on Z. Let P := Z[x]/fZ[x], Pq := P/qP , and h ∈ Pq denote its equivalence class
for h ∈ P . For a fixed secret element s ∈ Pq with s ∈ P , the PLWE problem setting involves ℓ
PLWE samples (ai, ais+ ei) ∈ Pq × Pq for 1 ≤ i ≤ ℓ, where ai is uniformly chosen from Pq at
random and ei sampled from χ for every i. Here two questions are asked in the PLWE problem;
the decision-variant of PLWE is to distinguish whether a tuple (b1, . . . , bℓ) is obtained from PLWE
samples with bi = ais+ ei for 1 ≤ i ≤ ℓ, or uniformly at random from P ℓ

q . The search-variant of
PLWE is to recover the secret element s from PLWE samples.

∗1 Graduate School of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 19-0373,
Japan. m-kudo [atmark] math.kyushu-u.ac.jp, *2 Fujitsu Laboratories of America, Inc., 1240 E. Arques Ave., Sunny-
vale, CA 94085, USA.

1

The PLWE problem is viewed as a special case of the RLWE problem, but in practice a security
base for various cryptosystems, e.g., [2], [4], and [9]. The hardness of the PLWE problem is reduced
to that of the RLWE problem. Specifically the PLWE problem is known to be as hard as the RLWE
problem for 2-power cyclotomic number fields, see [5] and [10].

1.1 Existing Attacks against PLWE and Their Analysis

In recent years, Eisentraeger et al. proposed in [6] attacks for the decision-variant of the PLWE
problem under certain assumptions (cf. in [7], extended versions of their attacks for RLWE are
proposed). They also gave a sequence of reductions between the search and decision variants of the
RLWE and the PLWE problems. For number fields satisfying their assumptions, their attacks on
decision-PLWE efficiently work by determining the value of the secret polynomial evaluated at a
root of f modulo q. Their analysis characterized insecure classes of number fields used in the RLWE
and the PLWE problems. Specifically, using polynomials splitting completely over the ground field
Fq as f was proved to be vulnerable for large q. For such a polynomial f with some conditions on
its roots, they showed that one of their attack is successful with high probability, and terminates in
time Õ(ℓq + nq). (As we will show in this paper, even using polynomials with at most one root in
Fq is no longer secure for the decision case.)

1.2 Our Contributions

Using search-decision reductions in [6], [7], one can attack to the search-PLWE with their decision-
case attacks. In this paper, we consider solving directly the search-PLWE problem, where the word
directly means not using any reduction. As pointed out in [7], their method of determining the
value of the secret polynomial provides one piece of information about the secret: g = s(α) for some
α ∈ Fq. From this, we first construct a search-case attack as a variant of their decision-case attacks
under the same assumption as in [6] and [7]. In our first attack, we combine their method with linear
algebra techniques. We also show that the assumption may not be reasonable for the search-case
attack; for a given f , the number of q that satisfy the assumption is not many in the sense of density
of such primes. From this, we give a generalized attack, which can deal with cases where f does not
necessarily split completely. Our generalization method is based on the theory of finite field, and
our extended attack terminates in polynomial time when f has only low degree-irreducible factors
in Fq[x] (e.g., degree 2 or 3).

Our method in the generalized attack is applicable for the decision-variant, which implies that
our attack framework is also viewed as a generalization of the previous decision-case attacks in [6]
and [7]. With our attack framework, new insecure classes of defining polynomials f and parameters
q in the PLWE problem are characterized, which shall be a valuable information to desire more
secure cryptosytems.

Organization of This Paper The rest of this paper is organized as follows: In Section 2, we
give a brief review on the definition of the PLWE problem and existing attacks against its decision-
variant. Section 3 gives search-case variants of the decision-case attacks. In Section 4, we extend
the attacks so as to deal with more general cases. In Section 5, we conclude this work.

Notation Given elements f1, . . . , ft in a commutative ring R, we denote by ⟨f1, . . . , ft⟩R (or simply
⟨f1, . . . , ft⟩) the ideal in R generated by f1, . . . , ft. Specifically for one element f , the ideal ⟨f⟩ is

2

denoted by fR. Let Z and Q denote the ring of rational integers and the field of rational numbers,
respectively. For a power of a prime q, let Fq denote the field of q elements. Throughout this paper,
we take a representative of an element in the prime field Fq = Z/qZ as an integer in (−q/2, q/2].
For an integer α and a prime q, we denote by [α] ∈ Fq its equivalence class modulo q.

2 Preliminaries

2.1 Definition(s) of the Poly-LWE problem

Let f be a monic polynomial in Z[x] of degree n ≥ 1. Suppose that f is irreducible over Z, and
put P := Z[x]/⟨f⟩. Let q be a rational prime and Pq := P/qP . The quotient ring Pq is isomorphic
to Fq[x]/⟨f (q)⟩, where f (q) denotes the polynomial in Fq[x] given by the reduction modulo q for f .
Indeed, we have

Pq := P/qP = (Z[x]/⟨f⟩)/(⟨q, f⟩/⟨f⟩) ∼= (Z[x]/⟨q⟩)/(⟨q, f⟩/⟨q⟩) ∼= Fq[x]/⟨f (q)⟩.

In what follows, we identify Pq with Fq[x]/⟨f (q)⟩. For h ∈ Fq[x], we denote by h = h + ⟨f (q)⟩ its
equivalence class. Each element in Pq is uniquely written of the form

cn−1x
n−1 + · · ·+ c1x+ c0 (2.1.1)

for ci ∈ Fq. Note that for c ∈ Fq, we can identify c with c ∈ Pq via the canonical injection
Fq ↪→ Fq[x]/⟨f (q)⟩. With this fact, we give an element in Pq as an element in Fq[x]/⟨f (q)⟩ of the
form (2.1.1).

Remark 2.1.1. As mentioned above, Pq is an Fq-vector space of dimension n. Specifically, if f (q)

has no double root and splits completely in Fq[x], say f (q)(x) = Πn
i=1(x − [αi]) for some distinct

elements [αi] ∈ Fq with αi ∈ (−q/2, q/2] ∩ Z, then we have

Fq[x]/⟨f (q)⟩ ∼= Fq[x]/⟨x− [α1]⟩ ⊕ · · · ⊕ Fq[x]/⟨x− [αn]⟩ ∼= Fq ⊕ · · · ⊕ Fq︸ ︷︷ ︸
n

∼= Fn
q .

If f (q) is factorized in Fq[x] as f
(q) = P1 · · ·Pt for co-prime irreducible factors Pi with deg(Pi) = di,

then we have

Fq[x]/⟨f (q)⟩ ∼= Fq[x]/⟨P1⟩ ⊕ · · · ⊕ Fq[x]/⟨Pt⟩ ∼= Fqd1 ⊕ · · · ⊕ Fqdt .

Each field Fqdi is a di-dimensional Fq-vector space. The dimension of Pq is d1 + · · ·+ dt = n.

With notation as above, we here give formal definitions of the Poly-LWE problems.

Definition 2.1.2 (decision-PLWE). Let n ∈ Z>0, q a prime, f ∈ Z[x] a monic irreducible polyno-
mial of degree n, and χ an error distribution over (−q/2, q/2] ∩ Z. Let s ∈ Pq

∼= Fq[x]/⟨f (q)⟩ be a
fixed secret element with s(x) =

∑n−1
i=0 six

i ∈ Fq[x] and each coefficient si ∈ Fq chosen uniformly at
random. We define the two samplers Os and Ou as follows: The Os outputs samples of the form
(a, as+ e) ∈ Pq × Pq, where each coefficient of a =

∑n−1
j=0 ajx

j ∈ Fq[x] is uniformly chosen and that

of e =
∑n−1

j=0 ejx
j ∈ Fq[x] is sampled from χ. The Ou outputs samples uniformly chosen at random

from Pq × Pq. Then the decision Poly-LWE (PLWE) problem, denoted “decision-PLWEn,f,q,χ”, is
to distinguish, with non-negligible advantage, between the same number of independent samples in
two distributions on Pq×Pq. The first consists of samples from Os, and the second consists of those
from Ou.

3

Definition 2.1.3 (search-PLWE). Let n ∈ Z>0, q a prime, f ∈ Z[x] a monic irreducible polynomial
of degree n, and χ an error distribution over (−q/2, q/2] ∩ Z. Let s ∈ Pq

∼= Fq[x]/⟨f (q)⟩ be a fixed
secret element with s(x) =

∑n−1
i=0 six

i ∈ Fq[x] and each coefficient si ∈ Fq chosen uniformly at
random. The search-PLWE problem, denoted “search-PLWEn,f,q,χ”, i is to find s given access to
arbitrary many independent samples from Os.

Note that P ∼= Zn as additive groups since f is a monic polynomial of degree n. With this
fact, the error distribution χ is taken in practice as the discrete Gaussian distribution on Z with
standard deviation σ > 0, denoted by Gσ. Throughout the rest of this paper, assume χ = Gσ. As
in [7], we also assume that χ = Gσ is truncated at width 2σ.

2.2 Known attacks for decision-PLWE

This subsection gives a brief review on previously-proposed attacks, given in [6] and [7], against the
decision-PLWE problem. First, we state an assumption in [6] and [7]:

Assumption 2.2.1. The polynomial f (q)(x) ∈ Fq[x] splits completely in Fq[x], and has no double
root in Fq.

One can check that it is enough for the success of their attacks to assume the following (with
some conditions on a root of f (q)).

Assumption 2.2.2. The polynomial f (q)(x) ∈ Fq[x] has at least one root in Fq.

Throughout the rest of this subsection, we do not suppose Assumption 2.2.1, but suppose
Assumption 2.2.2.

Attack based on a small set of error values The concept of this attack is to guess the value
of s(x) at a root of f (q) in Fq. Let [α] ∈ Fq with α ∈ (−q/2, q/2] ∩ Z be a solution of (small) order
r to f (q) = 0. As in [7], we assume for simplicity that n is divisible by r, say n = n′r for n′ ∈ Z≥1.
Let (a, b) be a PLWE sample. Note that b([α]) − a([α])s([α]) = e([α]) since f([α]) = 0 in Fq. We
determine possible values that e([α]) ∈ Fq takes. Writing e(x) =

∑n−1
i=0 [ei]x

i for ei ∈ [−2σ, 2σ] ∩ Z,
we have

n−1∑
i=0

eiα
i = (e0 + e1α+ · · ·+ er−1α

r−1) + (er + er+1α+ · · ·+ e2r−1α
r−1)

+ · · ·+ (e(n′−1)r + e(n′−1)r+1α+ · · ·+ en′r−1α
r−1)

=

r−1∑
j=0

ejα
j +

r−1∑
j=0

er+jα
j + · · ·+

r−1∑
j=0

e(n′−1)r+jα
j

=

n′−1∑
k=0

r−1∑
j=0

ekr+jα
j =

r−1∑
j=0

(
n′−1∑
k=0

ekr+j

)
αj

in Z and hence

e([α]) =
r−1∑
j=0

[
n′−1∑
k=0

ekr+j

]
[α]j

4

in Fq. Since ∣∣∣∣∣
n′−1∑
k=0

ekr+j

∣∣∣∣∣ ≤
n′−1∑
k=0

|ekr+j | ≤ 2σn′,

e([α]) is included in the set

Sα :=


r−1∑
j=0

[ℓj][α]
j : ℓj ∈ [−2σn′, 2σn′] ∩ Z

 ,

the cardinality of which is bounded by (4σn/r)r. Assume (4σn/r)r < q for the success of the attack.
With notation as above, we conduct the following procedures to guess s([α]) ∈ Fq:

(0) Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq × Pq with
a([α]) ̸= 0.

(1) Compute the set Sα defined above.

(2) Collect g ∈ Fq such that b([α])− ga([α]) ∈ Sα for all ℓ samples (a, b). Let G be the set of all
values g collected as above.

(3) If G consists of just one element g, then we have s([α]) = g.

In Algorithm 2.2.1, we give a pseudocode to proceed with the above four steps.

Proposition 2.2.3 ([7], Proposition 1). Assume (4σn/r)r < q. Algorithm 2.2.1 runs in Õ(ℓq+nq).
If the algorithm outputs NOT PLWE, then the samples are not chosen from the PLWE distribution.
Otherwise the samples are PLWE samples with probability 1− (#Sα

q)ℓ.

Attack based on the size of the error values As in the previous paragraph, let [α] with
α ∈ (−q/2, q/2] ∩ Z be a solution of (small) order r in Fq to f (q) = 0. Let Ei denote the event
that the representative of bi([α])−gai([α]) is in the interval (−q/4, q/4) for some sample (ai, bi) and
guess g ∈ Fq for s([α]). Let D denote the distribution from which ei is sampled. The concept of
this attack is to compare the two probabilities P (Ei | D = U) and P (Ei | D = Gσ). If D = U , then
one has P (Ei | D = U) = 1/2. Assuming D = Gσ, we have bi([α]) − ai([α])s([α]) = ei([α]) since
f([α]) = 0 in Fq. We write ei(x) =

∑n−1
j=0 [ei,j]x

j for ei,j ∈ [−2σ, 2σ] ∩ Z. According to Section 3.2

in [7], we give a bound of e
(α)
i :=

∑n−1
j=0 ei,jα

j ∈ Z.

Case of α = ±1. In this case, the integer e
(α)
i is sampled from the discrete Gaussian distribution

of mean 0 and variance
∑n−1

k=0 σ
2 = nσ2, and hence

|e(α)i | ≤ 2σ
√
n. (2.2.1)

Assuming 2σ
√
n < q/4, we have P (Ei | D = Gσ) = 1 for g = s([α]).

Case of α ̸= ±1. For simplicity, assume n is divisible by r, say n = n′r for n′ ∈ Z≥1. As in the
previous paragraph, we have the equality

e
(α)
i =

r−1∑
j=0

(
n′−1∑
k=0

ei,kr+j

)
αj .

5

Algorithm 2.2.1 Small set of error values (Algorithm 1 of [7])

Input: a solution [α] with α ∈ (−q/2, q/2] ∩ Z of order r to f (q) = 0, and an integer ℓ
Output: s([α]) ∈ Fq or NOT PLWE or INSUFFICIENT SAMPLES
1: /* Construct a set Sα of error values */
2: Sα ← {[ℓ0] + [ℓ1][α] + · · ·+ [ℓr−1][α]

r−1 : ℓi ∈ [−2σn/r, 2σn/r] ∩ Z for 0 ≤ i ≤ r − 1}
3: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq×Pq with a([α]) ̸= 0
4: G ← ∅
5: for g = 0 to q − 1 do
6: appendflag ← 1
7: for (a, b) in the collection of samples do
8: Compute b([α])− ga([α])
9: if b([α])− ga([α]) /∈ Sα then

10: appendflag ← 0
11: break (a, b)
12: end if
13: end for
14: if appendflag = 1 then
15: G ← G ∪ {g}
16: end if
17: if #G ≥ 2 then
18: return INSUFFICIENT SAMPLES
19: end if
20: end for
21: if G = ∅ then
22: return NOT PLWE
23: else if G = {g} then
24: return g
25: end if

Recall that each ei,j is sampled from Gσ. Thus the integer
∑n′−1

k=0 ei,kr+j is sampled from Gσ′ ,

where (σ′)2 =
∑n′−1

k=0 σ2 = n′σ2. Consequently, e
(α)
i is sampled from the discrete Gaussian

distribution of mean 0 and variance

r−1∑
j=0

n′σ2α2j = n′α
2r − 1

α2 − 1
σ2.

Thus we have ∣∣∣e(α)i

∣∣∣ ≤ 2σ
√
n′ ·
√
α2r − 1√
α2 − 1

. (2.2.2)

Assuming

2σ
√
n′ ·
√
α2r − 1√
α2 − 1

<
q

4
,

we have P (Ei | D = Gσ) = 1 for g = s([α]).

6

We set the right hand sides of (2.2.1) and (2.2.2) as B(α). Note that each B(α) does not depend
on any sample (ai, bi). With notation as above, we conduct the following procedures to guess
s([α]) ∈ Fq:

(0) Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq × Pq with
a([α]) ̸= 0.

(1) Collect g ∈ Fq such that the absolute value of the representative of b([α])−ga([α]) is bounded
by B(α) for all ℓ samples (a, b). Let G be the set of all values g collected as above.

(2) If G consists of just one element g, then we have s([α]) = g.

In Algorithm 2.2.2, we give a pseudocode to proceed with the above three steps.

Algorithm 2.2.2 Small error values (Algorithm 2 of [7])

Input: a solution [α] with α ∈ (−q/2, q/2] ∩ Z of order r to f (q) = 0, and an integer ℓ
Output: s([α]) ∈ Fq or NOT PLWE or INSUFFICIENT SAMPLES
1: if α = 1 or α = −1 then
2: B(α) ← 2σ

√
n

3: else
4: B(α) ← 2σ

√
n
r ·

√
α2r−1√
α2−1

5: end if
6: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq×Pq with a([α]) ̸= 0
7: G ← ∅
8: for g = 0 to q − 1 do
9: appendflag ← 1

10: for (a, b) in the collection of samples do
11: Compute b([α])− ga([α])
12: if the representative of b([α])− ga([α]) does not lies in [−B(α), B(α)] then
13: appendflag ← 0
14: break (a, b)
15: end if
16: end for
17: if appendflag = 1 then
18: G ← G ∪ {g}
19: end if
20: if #G ≥ 2 then
21: return INSUFFICIENT SAMPLES
22: end if
23: end for
24: if G = ∅ then
25: return NOT PLWE
26: else if G = {g} then
27: return g
28: end if

Proposition 2.2.4 ([7], Proposition 2). With notation as above, assume

7

(1) α = ±1 and 8σ
√
n < q, or

(2) α has order r ≥ 3 modulo q and

8σ

√
n

r
·
√
α2r − 1√
α2 − 1

< q.

Algorithm 2.2.2 runs in Õ(ℓq). If the algorithm outputs NOT PLWE, then the samples are not
chosen from the PLWE distribution. Otherwise the samples are PLWE samples with probability
1− (12)

ℓ.

Example 2.2.5. Consider an example given in Section 5 of [7]. Let n be a positive integer, q a
prime, f(x) = xn + q − 1 and σ = 8/

√
2π ≈ 3.192. Note that f(x) is irreducible in Z[x] and always

has a root 1 modulo q. For primes q satisfying q > (4σn/r)r = 4σn, Algorithm 3.1.1 succeeds with
probability 1− (#Sα/q)

ℓ for ℓ samples. For n = 10, this lower bound becomes 4 · 3.192 · 10 ≈ 27.

2.3 Some properties of finite fields and complexity assumptions

In this subsection, we collect some properties of finite fields and our complexity assumptions, which
we shall use in the main section (Section 4) of this paper.

Some properties

Lemma 2.3.1. Let P ∈ Fq[x] be an irreducible polynomial of degree d and e an integer with e ≥ 1.
Let K be a splitting field of P e over Fq. Then we have K ∼= Fq[x]/⟨P ⟩ ∼= Fqd as fields.

Proof. It suffices to prove that P splits completely in Fq[x]/⟨P ⟩ ∼= Fqd . Put α := x + ⟨P ⟩, a root
of P in Fq[x]/⟨P ⟩ such that Fq[x]/⟨P ⟩ = Fq(α). Since the characteristic is q, one has that for

each 0 ≤ k ≤ d − 1, αqk is a root of P . We claim that αqk ’s are pairwise distinct. Assume for a
contradiction that αqk = αqℓ for some 0 ≤ k < ℓ ≤ d − 1, then one has αqm = α for some integer
1 ≤ m ≤ d − 1 since αqd = α. One also has βqm = β for all β ∈ Fq(α) ∼= Fqd . This contradicts

#(F×
qd
) = qd − 1. □

Corollary 2.3.2. Let P ∈ Fq[x] be an irreducible polynomial of degree d and e an integer with
e ≥ 1. Let K be a splitting field of P e over Fq, and α one root in K of P . Then all the roots of f

are α, αq, . . . , αqd−1 ∈ K.

Lemma 2.3.3. Let P1, . . . , Pt ∈ Fq[x] be irreducible polynomials, and put di := deg(Pi) for 1 ≤
i ≤ t. Let e1, . . . , et be integers with ei ≥ 1 for 1 ≤ i ≤ t. Let K be a minimal splitting field of
P e1
1 · · ·P

et
t , and d the least common multiple of d1, . . . , dt. Then we have K ∼= Fqd as fields.

Proof. A splitting field of each Pi over Fq is given as KPi := Fq[x]/⟨Pi⟩ ∼= Fqdi . The field KPi is

embedded into K as the subfield K(α
(i)
1 , . . . , α

(i)
di
), where α

(i)
j ’s are roots in K of Pi. Hence we have

[K : Fq] = [K : KPi] · [KPi : Fq] = [K : KPi] · di,

which means that di divides [K : Fq]. Thus d divides [K : Fq], so that Fqd is embedded into K.
Also, it follows from di|d that Fqd ⊃ Fqdi

∼= KPi . Since Pi completely splits over KPi , the product
P1 · · ·Pt completely splits over Fqd . From the minimality of K, we have K ∼= Fqd . □

8

Lemma 2.3.4. Let P ∈ Fq be an irreducible polynomial of degree d over Fq. Let m be a positive

integer with d|m, F any field of qm elements, and K = {a ∈ F : aq
d
= a}. (Note that K is a field

isomorphic to the field of qd elements.) For a root β ∈ K of P , the homomorphism

φ : Fq[x]/⟨P ⟩ −→ K ; α := x+ ⟨P ⟩ 7→ β

is bijective, and roots of P in Fq[x]/⟨P ⟩ correspond those in K by αqk ↔ βqk via φ. Hence P splits
completely over K.

Complexity assumptions Throughout the rest of this paper, assume for our complexity analysis
that we do the computation in finite field by school methods, whose complexities are estimated as
follows (see e.g., Sections 2.5 and 2.11 in[8]).

Lemma 2.3.5. For a, b ∈ Fq,

(1) Computing a± b can be done in O(log(q)) bit operations.

(2) Computing a · b can be done in O(log2(q)) bit operations.

(3) Computing a−1 can be done in O(log2(q)) bit operations.

Lemma 2.3.6. With a given polynomial basis of Fqm,

(1) Addition and subtraction requires O(m) arithmetic operations over Fq.

(2) Computing a · b can be done in O(m2) arithmetic operations over Fq.

(3) Computing a−1 can be done in O(m2) arithmetic operations over Fq.

3 Attacks against search-PLWE

In this section, we give attacks against the search-variant of the PLWE problem. While [6] and [7]
give attacks against the decision-variant of the PLWE, we present attacks against the search-variant
of the PLWE (but the main idea is essentially the same as that of [6], [7]).

3.1 Search-case variants of the previous attacks

With notation as in the previous section, we give an attack against the search-PLWE problem.
This attack is based on the idea of the attacks [6] and [7], reviewed in Section 2, against the
decision-version of the PLWE problem. Throughout this section, we suppose Assumption 2.2.1, say

f (q)(x) = Πn
i=1(x− [αi]) (3.1.1)

for some distinct [αi] ∈ Fq with αi ∈ (−q/2, q/2] ∩ Z of (small) order ri. Unlike the decision-case,
this assumption is needed for the success of the attack against the search-case.

9

Attack based on a small set of error values (search-case) As we reviewed in the previous
section, it is assumed in [6] and [7] for simplicity that the order of a root of f (q) is divisible by n.
Here we do not assume it and write down a general-case condition under which their attack works
well. Let [α] ∈ Fq with α ∈ (−q/2, q/2] ∩ Z be a solution of order r to f (q) = 0, i.e., α = αi and
r = ri for some 1 ≤ i ≤ n. We write n = n′r+ r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r− 1. In a similar way
to the previous section, we determine possible values that e([α]) takes. Writing e(x) =

∑n−1
i=0 [ei]x

i

for ei ∈ [−2σ, 2σ] ∩ Z, we have

n−1∑
i=0

eiα
i =

r−1∑
j=0

ejα
j +

r−1∑
j=0

er+jα
j + · · ·+

r−1∑
j=0

e(n′−1)r+jα
j +

r′−1∑
j=0

en′r+jα
j

=
n′−1∑
k=0

r−1∑
j=0

ekr+jα
j +

r′−1∑
j=0

en′r+jα
j =

r−1∑
j=0

(
n′−1∑
k=0

ekr+j

)
αj +

r′−1∑
j=0

en′r+jα
j

=

r′−1∑
j=0

(
n′∑
k=0

ekr+j

)
αj +

r−1∑
j=r′

(
n′−1∑
k=0

ekr+j

)
αj

in Z and hence

e([α]) =
r′−1∑
j=0

[
n′∑
k=0

ekr+j

]
[α]j +

r−1∑
j=r′

[
n′−1∑
k=0

ekr+j

]
[α]j

in Fq. It follows from ∣∣∣∣∣
n′∑
k=0

ekr+j

∣∣∣∣∣ ≤ 2σ(n′ + 1)

together with ∣∣∣∣∣
n′−1∑
k=0

ekr+j

∣∣∣∣∣ ≤
n′−1∑
k=0

|ekr+j | ≤ 2σn′

that e([α]) is included in the set Sα of elements of the form

[ℓ0] + [ℓ1][α] + · · ·+ [ℓr′−1][α]
r′−1 + [ℓr′][α]

r′ + · · ·+ [ℓr−1][α
r−1], (3.1.2)

where ℓi ∈ [−2σ(n′+1), 2σ(n′+1)]∩Z for 0 ≤ i ≤ r′−1 and ℓi′ ∈ [−2σn′, 2σn′]∩Z for r′ ≤ i′ ≤ r−1.
The cardinality #Sα is bounded by

(4σ(n′ + 1))r
′ · (4σn′)r−r′

for r ≤ n, and by (4σ)n for r > n. With notation as above, we conduct the following procedures to
find s([α]) ∈ Fq:

(0) Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq × Pq with
a([α]) ̸= 0.

(1) Compute the set Sα of elements of the form (3.1.2).

(2) Collect g ∈ Fq such that b([α])− ga([α]) ∈ Sα for all ℓ samples (a, b). Let G be the set of all
values g collected as above.

10

Algorithm 3.1.1 Small set of error values (n is not necessarily divisible by r)

Input: a solution [α] ∈ Fq with α ∈ (−q/2, q/2] ∩ Z of order r to f (q) = 0, and an integer ℓ
Output: s([α]) ∈ Fq or INSUFFICIENT SAMPLES
1: Write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1.
2: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq×Pq with a([α]) ̸= 0
3: /* Construct a set Sα of error values */
4: Sα ← the set of elements of the form (3.1.2)
5: G ← ∅
6: for g = 0 to q − 1 do
7: appendflag ← 1
8: for (a, b) in the collection of samples do
9: Compute b([α])− ga([α])

10: if b([α])− ga([α]) /∈ Sα then
11: appendflag ← 0
12: break (a, b)
13: end if
14: end for
15: if appendflag = 1 then
16: G ← G ∪ {g}
17: end if
18: if #G ≥ 2 then
19: return INSUFFICIENT SAMPLES
20: end if
21: end for
22: return the element g of G

(3) If G consists of just one element g, then we have s([α]) = g.

In Algorithm 3.1.1, we give a pseudocode to proceed with the above four steps.

Proposition 3.1.1. With notation as above, assume #Sα < q. Algorithm 3.1.1 terminates in
O(qℓn+ qℓlog(q)) arithmetic operations over the ground field Fq, that is, O(qℓnlog2(q) + qℓlog3(q))
bit operations.

Proof. It requires O(r) multiplications over Fq to compute all [α]i for 0 ≤ i ≤ r − 1. Each element
in Sα is computed by combining O(r) multiplications and O(r) additions, so that it requires O(r)
arithmetic operations over Fq. By our assumption, Sα has at most q elements. Hence we compute
Sα in O(r + rq) = O(rq) arithmetic operations over Fq.

The main double loop has at most qℓ iterations. For each iteration, we compute h := b([α]) −
ga([α]) and decide whether h ∈ Sα or not. With [α]i computed as above, computing b([α]) =∑n−1

j=0 [bj][α]
j and a([α]) =

∑n−1
j=0 [aj][α]

j needs 2n+2n = O(n) arithmetic operations over Fq. Using
a binary search to decide whether h ∈ Sα or not, we do this in O(log(q)) operations. Summing
up, each iteration takes O(n+ log(q)) arithmetic operations over Fq, and thus O(qℓn+ qℓlog(q)) is
required in total.

As a consequence, one conducts all the procedures in O(rq+qℓn+qℓlog(q)) = O(qℓn+qℓlog(q))
arithmetic operations over Fq, i.e., O(qℓn(log(q))2 + qℓ(log(q))3) bit operations. □

11

We can give another version of Algorithm 3.1.1 as follows.

(0) Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq × Pq with
a([α]) ̸= 0.

(1) Compute the set Sα of elements of the form (3.1.2), and let G = Fq.

(2) Choose one sample (a, b). For each h(q) ∈ Sα, we compute g := a([α])−1(b([α]) − h(q)) ∈ Fq.
(Note that b([α])− a([α])g = h(q) in Fq.) Let G′ be the set of all values g computed as above.

(3) If G ∩ G′ consists of just one element g, then we have s([α]) = g. Otherwise replace G by
G ∩G′. Go back to (2), and then choose another sample.

In Algorithm 3.1.2, we give a pseudocode to proceed with the above four steps.

Algorithm 3.1.2 Another version of Small set of error values (n is not necessarily divisible by r)

Input: a solution [α] ∈ Fq with α ∈ (−q/2, q/2] ∩ Z of order r to f (q) = 0, and an integer ℓ
1: Write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1.
2: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq×Pq with a([α]) ̸= 0
3: /* Construct a set Sα of error values */
4: Sα ← the set of elements of the form (3.1.2)
5: G ← Fq

6: for (a, b) in the collection of samples do
7: Compute a([α]), a([α])−1 and b([α]) in Fq

8: /* Collect possible values for e([α]) ∈ Fq */
9: G′ ← ∅

10: for h(q) ∈ Sα do
11: g ← a([α])−1(b([α])− h(q)).
12: G′ ← G′ ∪ {g}
13: end for
14: G ← G ∩G′

15: if #G ≤ 1 then
16: break (a, b)
17: end if
18: end for
19: if G = {g} then
20: return g
21: else
22: return INSUFFICIENT SAMPLES
23: end if

Proposition 3.1.2. With notation as above, assume #Sα < q. Algorithm 3.1.2 terminates in
O(rq + ℓn+ ℓq) arithmetic operations over the ground field Fq, that is, O((rq + ℓn+ ℓq)log2(q)) bit
operations.

Proof. As in the proof of Proposition 3.1.1, it requires O(rq) arithmetic operations over Fq to
compute Sα together with [α]i for 0 ≤ i ≤ r − 1.

12

The main for-loop specified at the 6-th line has at most ℓ iterations. For each iteration, we
compute a([α]), a([α])−1 and b([α]) by substituting [α] to a(x) and b(x). With [α]i computed
as above, this requires O(n) arithmetic operations over Fq. The for-loop specified at the 10-
th line has #Sα = O(q) iterations by our assumption. For each iteration, one computes g =
a([α])−1(b([α]) − h(q)), where a([α])−1 and b([α]) have been computed at the 7th line. Thus, O(q)
arithmetic operations are required through the for-loop on h(q). After the loop on h(q), we compute
the set intersection G ∩ G′. Since the cardinalities of the two sets are bounded by #Sα < q, one
computes this intersection in O(q) arithmetic operations, see e.g., [1] for the computation of set
intersections. Summing up, it requires in total ℓ(n+ q + q) = O(ℓn+ ℓq) arithmetic operations to
conduct the main for-loop.

As a consequence, one conducts all the procedures in O(rq+ ℓn+ ℓq) arithmetic operations over
Fq, i.e., O((rq + ℓn+ ℓq)(log(q))2) bit operations. □

After conducting Algorithm 3.1.1 or 3.1.2 for all roots of f (q), we next try to recover the correct
s(x). Writing s(x) =

∑n−1
j=0 sjx

j with sj ∈ Fq and regarding
∑n

j=1 sn−j [αi]
n−j = s([αi]) as an

equation on sj ’s, we construct the following linear system:

[
[αi]

n−j
]
1≤i,j≤n

·

 sn−1
...
s0

 =

 s([α1])
...

s([αn])

 .

The coefficient matrix is an n × n matrix; in other words, the system has n equations with n
indeterminates. Since the coefficient matrix has full-rank, i.e., it is invertible over Fq, the secret
vector t[sn−1, . . . , s0] is uniquely determined.

Remark 3.1.3. Since f (q) has distinct roots, the above matrix [[αi]
n−j]i,j always has full-rank.

Indeed, Lagrange’s interpolation theorem says that given distinct points α′
1, . . . , α

′
n ∈ Fq and arbi-

trary points β1, . . . , βn ∈ Fq, there is a unique polynomial s′(x) ∈ Fq[x] of degree n − 1 such that
s′(α′

i) = βi for all 1 ≤ i ≤ n.

In Algorithm 3.1.3, we write down a pseudocode to compute the secret s(x).

Algorithm 3.1.3 Recover the secret polynomial (based on Small set of error values)

Input: a sequence of all solutions [αi] ∈ Fq with αi ∈ (−q/2, q/2] ∩ Z of order ri for 1 ≤ i ≤ n to
f (q) = 0, and (ℓi)

n
i=1

Output: s(x) ∈ Fq[x]
1: for i = 1 to n do
2: Compute s([αi]) ∈ Fq by Algorithm 3.1.1 or Algorithm 3.1.2 with inputs αi and ℓi.
3: end for
4: A ← ([αi]

n−j)i,j
5: Compute A−1

6: s ← A−1 · t[g1, . . . , gn]
7: Write ts = (s′n−1, . . . , s

′
0)

8: return s′(x) =
∑n−1

j=0 sjx
j

13

Proposition 3.1.4. With notation as above, assume #Sα < q for all roots [α] ∈ Fq with α ∈
(−q/2, q/2] ∩ Z of f (q). Let ℓ := max1≤i≤n ℓi. If one executes Algorithm 3.1.1 in the 4-th line of
Algorithm 3.1.3, Algorithm 3.1.3 performs in O(qℓn+ qℓlog(q)) arithmetic operations over Fq, that
is, O(qℓnlog2(q) + qℓlog3(q)) bit operations.

Proof. For each iteration of the first for-loop, one conducts Algorithm 3.1.1, which requires O(qℓn+
qℓlog(q)) arithmetic operations by Proposition 3.1.1. Computing [α]n−j

i ’s is negligible since [α]ki ’s
have been computed in Algorithm 3.1.1. Computing A−1 and A−1 · t[g1, · · · , gn] requires n3 + n2 =
O(n3) arithmetic operations.

Consequently, the arithmetic complexity of Algorithm 3.1.3 is bounded by

n(qℓn+ qℓlog(q)) + n3 = O(qℓn2 + nqℓlog(q) + n3).

Hence its bit complexity is bounded by O(qℓn2(log(q))2 + nqℓ(log(q))3 + n3(log(q))2). □

Attack based on the size of the error values (search-case) The concept of this attack is
same as the attack described in the previous paragraph. As in the previous paragraph, we do not
assume that the order of a root of f (q) is divisible by n. Let [α] with α ∈ (−q/2, q/2] ∩ Z be a
solution of order r in Fq to f (q) = 0, i.e., α = αi and r = ri for some 1 ≤ i ≤ n. We write n = n′r+r′

for n′, r′ ∈ Z with 0 ≤ r′ ≤ r− 1, and ei(x) =
∑n−1

j=0 [ei,j]x
j for ei,j ∈ [−2σ, 2σ]∩Z. In a similar way

to the previous section, we give a bound of e
(α)
i :=

∑n−1
j=0 ei,jα

j ∈ Z.

Case of α = ±1. Similarly to the previous section, we have

|e(α)i | ≤ 2σ
√
n. (3.1.3)

We set the right hand side of (3.1.3) as B(α).

Case of α ̸= ±1. As in the previous paragraph, we have the equality

e
(α)
i =

r′−1∑
j=0

(
n′∑
k=0

ekr+j

)
αj +

r−1∑
j=r′

(
n′−1∑
k=0

ekr+j

)
αj .

Recall that each ei is sampled from Gσ. Thus the integers
∑n′

k=0 ekr+j and
∑n′−1

k=0 ekr+j are
sampled from Gσ1 and Gσ2 , where

σ2
1 =

n′∑
k=0

σ2 = (n′ + 1)σ2

and

σ2
2 =

n′−1∑
k=0

σ2 = n′σ2.

Consequently, e
(α)
i is sampled from the discrete Gaussian distribution of mean 0 and variance

r′−1∑
j=0

(n′ + 1)σ2α2j +

r−1∑
j=r′

n′σ2α2j = (n′ + 1)σ2α
2r′ − 1

α2 − 1
+ n′σ2α

2(r−r′) − 1

α2 − 1
α2r′

=
n′α2r + α2r′ − n′ − 1

α2 − 1
σ2.

14

Thus we have ∣∣∣e(α)i

∣∣∣ ≤ 2σ

√
n′α2r + α2r′ − n′ − 1√

α2 − 1
. (3.1.4)

We set the right hand side of (3.1.4) as B(α).

Note that B(α) does not depend on any sample (ai, bi). With notation as above, we conduct the
following procedures to find s([α]) ∈ Fq:

(0) Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq × Pq with
a([α]) ̸= 0.

(1) Collect g ∈ Fq such that the absolute value of the representative of b(α) − ga(α) is bounded
by B(α) for all ℓ samples (a, b). Let G be the set of all values g collected as above.

(2) If G consists of just one element g, then we have s([α]) = g.

In Algorithm 3.1.4, we give a pseudocode to proceed with the above three steps.
It is straightforward to estimate an upper-bound of the complexity of Algorithm 3.1.4.

Proposition 3.1.5. With notation as above, assume

(1) α = ±1 and 4σ
√
n ≤ q, or

(2) α has order r ≥ 3 modulo q and

4σ

√
n′α2r + α2r′ − n′ − 1√

α2 − 1
≤ q.

Algorithm 3.1.4 terminates in O(ℓqn) arithmetic operations over Fq, that is, O(ℓqnlog2(q)) bit
operations.

We can give another version of Algorithm 3.1.4 as follows.

(0) Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq × Pq with
a([α]) ̸= 0.

(1) Compute the bound B(α), ad let G = Fq.

(2) Choose one sample (a, b). For each h in [−B(α), B(α)]∩Z, we compute g := a([α])−1(b([α])−
h(q)) ∈ Fq, where h(q) ∈ Fq denotes the reduction of h. (Note that b([α]) − a([α])g = h(q) in
Fq.) Let G′ be the set of all values g computed as above.

(3) If G ∩ G′ consists of just one element g, then we have s([α]) = g. Otherwise replace G by
G ∩G′. Go back to (2), and then choose another sample.

In Algorithm 3.1.5, we give a pseudocode to proceed with the above four steps.
It is straightforward to estimate an upper-bound of the complexity of Algorithm 3.1.5.

Proposition 3.1.6. With notation as above, assume

(1) α = ±1 and 4σ
√
n ≤ q, or

15

Algorithm 3.1.4 Small error values (n is not necessarily divisible by r)

Input: a solution [α] ∈ Fq with α ∈ (−q/2, q/2] ∩ Z of order r to f (q) = 0, and an integer ℓ
Output: s([α]) ∈ Fq or INSUFFICIENT SAMPLES
1: Write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1.
2: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq×Pq with a([α]) ̸= 0
3: if α = 1 or α = −1 then
4: B(α) ← 2σ

√
n

5: else

6: B(α) ← 2σ

√
n′α2r+α2r′−n′−1√

α2−1
7: end if
8: G ← ∅
9: for g = 0 to q − 1 do

10: appendflag ← 1
11: for (a, b) in the collection of samples do
12: Compute b([α])− ga([α])
13: if b([α])− ga([α]) /∈ [−B(α), B(α)] ∩ Z then
14: appendflag ← 0
15: break (a, b)
16: end if
17: end for
18: if appendflag = 1 then
19: G ← G ∪ {g}
20: end if
21: if #G ≥ 2 then
22: return INSUFFICIENT SAMPLES
23: end if
24: end for
25: return the element g of G

(2) α has order r ≥ 3 modulo q and

4σ

√
n′α2r + α2r′ − n′ − 1√

α2 − 1
≤ q.

Algorithm 3.1.5 terminates in O(ℓn+ ℓq) arithmetic operations over Fq, that is, O((ℓn+ ℓq)log2(q))
bit operations.

Remark 3.1.7. Each constructed set G contains just 2⌊B(α)⌋ + 1 elements of Fq. Indeed, the
affine map Fq → Fq ; h′ 7→ −a([α])−1h′ + a([α])−1b([α]) is bijective since a([α]) ̸= 0.

In a similar way to the previous paragraph, we can recover s(x) from s([αi])’s. In Algorithm
3.1.6, we write down a pseudocode to compute the secret s(x).

As in the proof of Proposition 3.1.4, one can prove the following proposition.

Proposition 3.1.8. With notation as above, assume

(1) 4σ
√
n ≤ q if αi = ±1, and

16

Algorithm 3.1.5 Another version of Small error values (n is not necessarily divisible by r)

Input: a solution [α] ∈ Fq with α ∈ (−q/2, q/2] ∩ Z of order r to f (q) = 0, and an integer ℓ
Output: s([α]) ∈ Fq

1: Write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1
2: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq×Pq with a([α]) ̸= 0
3: if α = 1 or α = −1 then
4: B(α) ← 2σ

√
n

5: else

6: B(α) ← 2σ

√
n′α2r+α2r′−n′−1√

α2−1
7: end if
8: G ← Fq

9: for (a, b) in the collection of samples do
10: Compute a([α]), a([α])−1 and b([α]) in Fq

11: /* Collect possible values for e(α) ∈ Fq */
12: G′ ← ∅
13: for h ∈ [−B(α), B(α)] ∩ Z do
14: h(q) ← the reduction in Fq of h
15: g ← a([α])−1(b([α])− h(q)).
16: G′ ← G′ ∪ {g}
17: end for
18: G ← G ∩G′

19: if #G ≤ 1 then
20: break (a, b)
21: end if
22: end for
23: if G = {g} then
24: return g
25: else
26: return INSUFFICIENT SAMPLES
27: end if

(2)

4σ

√
n′α2r

i + α2r′
i − n′ − 1√

α2
i − 1

≤ q

if αi ̸= ±1,

for all 1 ≤ i ≤ n. Let ℓ := max1≤i≤nℓi. If one executes Algorithm 3.1.4 in the 4-th line of
Algorithm 3.1.6, Algorithm 3.1.6 performs in O(qℓn2 + n3) arithmetic operations over Fq, that is,
O(qℓn2log2(q) + n3log2(q)) bit operations.

Remark 3.1.9. While f is assumed to have at least one root in Fq in the decision-case (Assumption
2.2.2), we need to suppose a stronger assumption (Assumption 2.2.1) for constructing successful
attacks in the search-case. As we will see in Section 3.3, for a fixed f of large degree, the number
of primes satisfying Assumption 2.2.1 is small in the sense of density.

17

Algorithm 3.1.6 Recover the secret polynomial (based on Small error values)

Input: a sequence of all solutions [αi] ∈ Fq with αi ∈ (−q/2, q/2] ∩ Z of order ri for 1 ≤ i ≤ n to
f (q) = 0, and (ℓi)

n
i=1

Output: s(x) ∈ Fq[x]
1: for i = 1 to n do
2: Compute s([αi]) ∈ Fq by Algorithm 3.1.4 or Algorithm 3.1.5 with inputs αi and ℓi.
3: end for
4: A ← ([αi]

n−j)i,j
5: Compute A−1

6: s ← A−1 · t[g1, . . . , gn]
7: Write ts = (s′n−1, . . . , s

′
0)

8: return s′(x) =
∑n−1

j=0 sjx
j

3.2 Vulnerable polynomials by the search-case attacks

We use the same notation as in the previous subsection. In this subsection, we characterize defining
polynomials for which the search-PLWE problem is solvable by the search-case attacks. Let us focus
on Algorithm 3.1.3. Let n ∈ Z≥1, σ ∈ R>0 and q a prime. As showed in the previous subsection,
the PLWE instances defined by monic polynomials f ∈ Z[x] of degree n satisfying the following
conditions can be vulnerable by Algorithm 3.1.3:

V1 f (q) splits completely in Fq[x],

V2 #Sα < q for all roots α ∈ Fq of f (q),

where each Sα is determined by n, σ, α and q. Hence for an integer n, σ ∈ R>0, a prime q, and

f ∈ Fn,σ,q := {f ∈ Z[x] : f is monic with deg(f) = n and f satisfies V1 and V2},

the search-PLWE problem is solvable with sufficiently high probability in practical time by Algo-
rithm 3.1.3.

3.3 Density of vulnerable primes

Without Assumption 2.2.1, one may avoid the search-case attacks (Algorithms 3.1.3 and 3.1.6)
by choosing an irreducible polynomial f ∈ Z[x] such that its Galois group becomes huge; By the
Frobenius density theorem (more generally, the Chebotarev density theorem), the density

lim
x→∞

#{q ≤ x : q is a prime, and (f mod q) has n roots in Fq}/#{q ≤ x : q is a prime}

is equal to 1/#Gf , where Gf denotes the Galois group Gal(Kf/Q) for the smallest splitting field
Kf of f over Q (note that the smallest splitting filed of a polynomial is unique up to isomorphism).
With this fact on the density, we see that when Gf is large enough, the number of primes q such
that f (q) has n roots in Fq is much less than the other cases. In other words, for such an f , the
proposed search-case attacks fail for many prime q.

18

4 General-case attacks

We extend the search-case attacks (Algorithms 3.1.3 and 3.1.6) so as to deal with cases where f (q)

does not split completely in Fq[x], i.e., f
(q) has a non-linear irreducible factor in Fq[x]. Our main

idea of this extension is to reduce the problem into a problem over the smallest splitting field of
each irreducible factor of f (q).

4.1 Our extended attack against PLWE

We use the same notation as in Definition 2.1.3 with χ = Gσ, where σ ∈ R>0. Different from the
previous sections, we assume neither Assumptions 2.2.1 nor 2.2.2, but assume the following.

Assumption 4.1.1. The polynomial f (q)(x) ∈ Fq[x] is a square-free polynomial over Fq, the alge-
braic closure of Fq.

Then f (q) has the following factorization:

f (q)(x) = P1(x) · · ·Pt(x),

where each Pi is an irreducible polynomial in Fq[x] of degree di ≤ n with Pi ̸= Pj for i ̸= j, and∑t
i=1 di = n. For the efficiency of our attack, assume that each di is small enough, e.g., di = 2 or

3. Choose Pi, and put KPi := Fq[x]/⟨Pi⟩ ∼= Fqdi . By Lemma 2.3.1, each KPi is a smallest splitting
field of Pi over Fq. Let αi be a root of Pi of order ri in KPi . It follows from Corollary 2.3.2 that

αi, α
q
i , . . . , α

qdi−1

i are all the solutions to Pi in KPi .
Here we try to compute s(αi) in KPi . To simplify the notation, we take i = 1, P = P1, d = d1,

KP = KP1 and α = α1. We write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1. As in the
previous section, we determine possible values that e(α) takes. Writing e(x) =

∑n−1
j=0 [ej]x

j with
ej ∈ [−2σ, 2σ] ∩ Z, one has

e(α) =

r′−1∑
j=0

[
n′∑
k=0

ekr+j

]
αj +

r−1∑
j=r′

[
n′−1∑
k=0

ekr+j

]
αj .

Hence b(α)− a(α)s(α) = e(α) is included in the set Sα ⊂ KP of elements of the form

[ℓ0] + [ℓ1]α+ · · ·+ [ℓr′−1]α
r′−1 + [ℓr′]α

r′ + · · ·+ [ℓr−1]α
r−1, (4.1.1)

where ℓi ∈ [−2σ(n′+1), 2σ(n′+1)]∩Z for 0 ≤ i ≤ r′−1 and ℓi′ ∈ [−2σn′, 2σn′]∩Z for r′ ≤ i′ ≤ r−1.
The cardinality #Sα is bounded by

(4σ(n′ + 1))r
′ · (4σn′)r−r′

for r ≤ n, and by (4σ)n for r > n. With notation as above, we conduct the following procedures to
find s(α).

(0) Access to the PLWE oracle to get ℓ PLWE samples (a, b = as+ e) ∈ Pq × Pq satisfying
a(α) ̸= 0.

(1) Compute the set Sα of elements of the form (4.1.2). Note that each element of Sα is represented
by the basis {1, γ, . . . , γd−1} with Fq-coefficients, where γ := x + ⟨P ⟩ (this basis is called a
polynomial basis). Let G := ∅.

19

(2) For each g ∈ KP , we conduct the following sub-procedures:

(2-1) Choose one sample (a, b). Compute a(α), b(α), and b(α) − a(α)g in KP
∼= Fqd via the

polynomial basis {1, γ, . . . , γd−1}.
(2-2) If b(α)− a(α)g ∈ Sα, go back to (2-1), and choose another sample.

If b(α)− a(α)g ∈ Sα for all (a, b), replace G by G ∪ {g}.

(3) If G consists of just one element g, then we have g = s(α).

In Algorithm 4.1.1, we give a pseudocode to conduct the above procedures.

Algorithm 4.1.1 General-case Attack to find s(α)

Input: an irreducible polynomial P ∈ Fq[x] of degree d, a solution α of order r to P in KP :=
Fq[x]/⟨P ⟩ ∼= Fqd , and an integer ℓ ≥ 2

Output: s(α) ∈ KP = Fq[x]/⟨P ⟩ ∼= Fqd

1: Write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1
2: Sα ← the set of elements of the form (4.1.2)
3: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq ×Pq with a(α) ̸= 0
4: G ← ∅
5: for g ∈ KP do
6: appendflag ← 1
7: for (a, b) in the collection of samples do
8: Compute a(α), b(α) and b(α)− a(α)g in KP

9: if b(α)− a(α)g /∈ Sα then
10: appedflag ← 0
11: break (a, b)
12: end if
13: end for
14: if appendflag = 1 then
15: G ← G ∪ {g}
16: end if
17: if #G ≥ 2 then
18: return INSUFFICIENT SAMPLES
19: end if
20: end for
21: return the element g of G

We can give another version of Algorithm 4.1.1 as follows:

(0) Access to the PLWE oracle to get ℓ PLWE samples (a, b = as+ e) ∈ Pq × Pq satisfying
a(α) ̸= 0.

(1) Compute the set Sα of elements of the form (4.1.2). Note that each element of Sα is represented
by the polynomial basis {1, γ, . . . , γd−1} with Fq-coefficients, where γ := x+ ⟨P ⟩. Let G := ∅.

(2) Choose one sample (a, b), we conduct the following sub-procedures:

20

(2-1) Compute a(α), b(α) and a(α)−1 in KP via the polynomial basis {1, γ, . . . , γd−1}.
(2-2) For each h ∈ Sα, compute g := a(α)−1(b(α)− h) in KP

∼= Fqd . Let G′ be the set of all
values g computed as above.

(2-3) If G ∩ G′ consists of just one element g, then we have s(α) = g. Otherwise replace G
by G ∩G′. Go back to the beginning of (2), and then choose another sample.

In Algorithm 4.1.2, we give a pseudocode to conduct the above procedures.

Algorithm 4.1.2 Another version of General-case Attack to find s(α)

Input: an irreducible polynomial P ∈ Fq[x] of degree d, a solution α of order r to P in KP :=
Fq[x]/⟨P ⟩ ∼= Fqd , and an integer ℓ ≥ 2

Output: s(α) ∈ KP = Fq[x]/⟨P ⟩ ∼= Fqd

1: Write n = n′r + r′ for n′, r′ ∈ Z with 0 ≤ r′ ≤ r − 1
2: Sα ← the set of elements of the form (4.1.2)
3: Access to the PLWE oracle to obtain ℓ PLWE samples (a, b := as+ e) ∈ Pq ×Pq with a(α) ̸= 0
4: G ← KP

5: for (a, b) in the collection of samples do
6: Compute a(α), a(α)−1 and b(α) in KP

7: G′ ← ∅
8: for h ∈ Sα do
9: g ← a(α)−1(b(α)− h)

10: G′ ← G′ ∪ {g}
11: end for
12: G ← G ∩G′

13: if #G ≤ 1 then
14: break (a, b)
15: end if
16: end for
17: if G = {g} then
18: return g
19: else
20: return INSUFFICIENT SAMPLES
21: end if

Once one gets s(α) ∈ KP , one can also compute s(αqk) for 1 ≤ k ≤ d1 − 1 as follows: Writing
s(x) =

∑n−1
j=0 sjx

j for sj ∈ Fq, we have

s(αqk) =

n−1∑
j=0

sj(α
j)q

k
=

n−1∑
j=0

sq
k

j (αj)q
k
=

n−1∑
j=0

sjα
j

qk

= s(α)q
k

since the characteristic is q.
Next choose P2, put KP2 := Fq[x]/⟨P2⟩ ∼= Fqd2 and let α2 ∈ KP2 be a root of P2. In the same

way as s(α) = s(α1), one can compute s(αqk

2) = s(α2)
qk in KP2 for 0 ≤ k ≤ d2 − 1. Similarly we

can compute s(αqk

i) = s(αi)
qk for 3 ≤ i ≤ t and 0 ≤ k ≤ di− 1, where KPi := Fq[x]/⟨Pi⟩ ∼= Fqdi and

αi ∈ KPi is a root of Pi.

21

With s(αqk

i) = s(αi)
qk ∈ KPi as above, we recover s(x) ∈ Fq[x]. Let d′ be the least common

multiple of d1, . . . , dt. Choose an irreducible polynomial Q ∈ Fq[x] of degree d′, and put Kf (q) :=

Fq[x]/⟨Q⟩ ∼= Fqd
′ , which is a smallest splitting field of f (q) over Fq. For each 1 ≤ i ≤ t, let βi be a

root of Pi in Kf (q) , Ki := {c ∈ Kf (q) : cq
di = c} ∼= Fqdi and define the field homomorphism

φi : Fq[x]/⟨Pi⟩ → Ki ⊂ Kf (q) ; γi := x+ ⟨Pi⟩ 7→ βi.

Note that γq
k

i ’s are roots of Pi, and thus φi sends the set of all roots of Pi in KPi to that in Ki. In
particular, φi(αi) ∈ Ki is a root of Pi. Each Fq[x]/⟨Pi⟩ is embedded into Kf (q) via φi.

Fq

sshhhhh
hhhhh

hhhhh
hhhhh

hhhh

yyrrr
rrr

rrr
rr

...

&&MM
MMM

MMM
MMM

M

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
W

Fq[x]/⟨P1⟩

φ1

**VVVV
VVVV

VVVV
VVVV

VVVV
VV

Fq[x]/⟨P2⟩
φ2

%%KK
KKK

KKK
KK

.

...

Fq[x]/⟨Pt−1⟩
φt−1

xxqqq
qqq

qqq
qq

Fq[x]/⟨Pt⟩

φt

sshhhhh
hhhhh

hhhhh
hhhhh

hhhh

Kf (q)

With this embedding, one can obtain s(φi(αi)
qk) as follows: Writing

s(αqk

i) = s
(i)
k,di−1γ

di−1
i + · · ·+ s

(i)
k,1γi + s

(i)
k,0

for s
(i)
k,j ∈ Fq, we have

φi(s(α
qk

i)) = s
(i)
k,di−1β

di−1
i + · · ·+ s

(i)
k,1βi + s

(i)
k,0.

We also have

s(φi(αi)
qk) =

n−1∑
j=0

sjφi(α
qk

i)j = φi

n−1∑
j=0

sj(α
qk

i)j

 = φi

(
s(αqk

i)
)
.

Since φi(αi)
qk ’s are all the roots of Pi in Ki, we get s(β) ∈ Kf (q) for all roots β of f (q) in Kf (q) . As

a consequence, one can determine s(x) ∈ Fq[x] in a similar way to cases where f (q) splits completely
in Fq[x]. With notation as above, we conduct the following procedures to find s(x).

(1) Factorize f (q) into
f (q)(x) = P1(x) · · ·Pt(x),

where each Pi is an irreducible polynomial in Fq[x] of degree di ≤ n with Pi ̸= Pj for i ̸= j,
and

∑t
i=1 di = n.

(2) Choose an irreducible polynomial Q ∈ Fq[x] of degree d′ := lcm(d1, . . . , dt). Put Kf (q) :=
Fq[x]/⟨Q⟩ ∼= Fqd′ .

(3) For each 1 ≤ i ≤ t, choose ℓi ∈ Z≥1 and conduct the following five steps:

(3-1) Let KPi := Fq[x]/⟨Pi⟩ ∼= Fqdi , and compute a root α ∈ KPi of Pi and its order ri. Note
that KPi is a smallest splitting field of Pi over Fq.

22

(3-2) By Algorithm 4.1.1 (or Algorithm 4.1.2) with the inputs Pi, αi and ℓi, compute s(αi) ∈
KPi .

(3-3) For each 0 ≤ k ≤ di − 1, compute s
(i)
k,j with 0 ≤ j ≤ di − 1 such that

s(αqk

i) =

di−1∑
j=0

s
(i)
k,jγ

j
i ,

where γi := x+ ⟨Pi⟩.

(3-4) Compute a root βi of Pi in Ki := {c ∈ Kf (q) : cq
di = c} ⊂ Kf (q) .

(3-5) For each 0 ≤ k ≤ di − 1, compute

s(φi(αi)
qk) =

di−1∑
j=0

s
(i)
k,jβ

j
i .

(4) With s(φi(αi)
qk) computed in the previous step, construct a linear system on sj ’s, and solve

it. Return
∑n−1

j=0 sjx
j .

Remark 4.1.2. One has ord(γi) ≥ di. Indeed, if ord(γi) = r ≤ di − 1, then {1, γi, . . . , γr−1
i } forms

an Fq-basis of KPi , and hence dimFqKPi = r < di. This is a contradiction.

Remark 4.1.3. One can construct the decision-variant of our extended attack, not assuming any
property on f (q) (cf. for the attack in [7], one assumes that f has at least one root in Fq).

Case of αi = γi When αi = γi := x+ ⟨Pi⟩, one can compute s(αi) not using the order of αi. To
simplify the notation, we take i = 1, P = P1, d = d1, KP = KP1 and α = α1. Since {1, α, . . . , αd−1}
is an Fq-basis of KP = Fq[x]/⟨P ⟩, there exist [αi,j] ∈ Fq with αi,j ∈ (−q/2, q/2]∩Z for d ≤ i ≤ n−1
and 0 ≤ j ≤ d− 1 such that

αi = [αi,d−1]α
d−1 + · · ·+ [αi,1]α+ [αi,0]

in Fq[x]/⟨P ⟩ ∼= Fqd . Writing e(x) =
∑n−1

j=0 [ej]x
j with ej ∈ [−2σ, 2σ] ∩ Z, one has

e(α) =

d−1∑
j=0

[
ej +

n−1∑
i=d

αi,jei

]
αj .

Write b(α)− a(α)s(α) =
∑n−1

j=0 [yj]x
j with yj ∈ (−q/2, q/2] ∩ Z. It follows from

b(α)− a(α)s(α) = e(α) ∈ Fq[x]/⟨P ⟩ ∼= Fqd

that the equalities

[yj] =

[
ej +

n−1∑
i=d

αi,jei

]
for 0 ≤ j ≤ d− 1

23

Algorithm 4.1.3 General Attack

Input: an irreducible polynomial f ∈ Z[x] of degree n
Output: s(x) ∈ Fq[x]
1: Factorize f (q) to a product of irreducible factors f (q) = P1 · · ·Pt with di = deg(Pi)
2: d′ ← lcm(d1, . . . , dt)
3: Choose an irreducible polynomial Q ∈ Fq[x] of degree d′

4: Kf (q) ← Fq[x]/⟨Q⟩
5: for i = 1 to t do
6: Choose a root αi ∈ KPi := Fq[x]/⟨Pi⟩ of Pi with order ri
7: Compute g′i,0 := s(αi) ∈ KPi by Algorithm 4.1.1 (or Algorithm 4.1.2)

8: Compute g′i,k := s(αqk

i) = s(αi)
qk , and write g′i,k =

∑di−1
j=0 s

(i)
k,jγ

j
i for 1 ≤ k ≤ di − 1

9: Compute a root βi of Pi in Ki := {c ∈ Kf (q) : cq
di = c} ⊂ Kf (q)

10: Compute gi,k := s(φi(αi)
qk) =

∑di−1
j=0 s

(i)
k,jβ

j
i

11: end for
12: for i = 1 to t do
13: for k = 0 to di − 1 do
14: for j = 1 to n do

15: ai+k,j ← (φi(αi)
qk)n−j

16: end for
17: end for
18: end for
19: A ← (ai,j)i,j
20: s ← A−1 · t[g1,0, . . . , g1,d1−1, . . . , gt,0, . . . , gt,dt−1]
21: s′(x) ← 0
22: Write ts = (s′n−1, . . . , s

′
0)

23: return s′(x) =
∑n−1

j=0 sjx
j

hold over Fq. Recall that each ei is sampled from Gσ. Thus ej +
∑n−1

i=d αi,jei is sampled from Gσ′ ,
where

(σ′)2 = σ2 +

n−1∑
i=d

α2
i,jσ

2.

Thus one has

|yj | ≤ B(α)j := 2σ

√√√√1 +

n−1∑
i=d

α2
i,j .

Thus, b(α)− a(α)s(α) = e(α) is included in the set Sα of elements of the form

[ℓ0] + [ℓ1]α+ · · ·+ [ℓd−1]α
d−1, (4.1.2)

where ℓj ∈ [−B(α)j , B(α)j]∩Z for 0 ≤ j ≤ d− 1. The cardinality #Sα is bounded by Πd−1
j=02B(α)j .

With notation as above, we take the following procedures to find s(α) ∈ KP . Let ℓ be the number
of samples.

(0) Construct KP := Fq[x]/⟨P ⟩ ∼= Fqd . Note that KP is a minimal splitting field of P over Fq.
Let α := x+ ⟨P ⟩.

24

(1) Compute [αi,j] ∈ Fq with αi,j ∈ (−q/2, q/2]∩Z for d ≤ i ≤ n− 1 and 0 ≤ j ≤ d− 1 such that

αi =
d−1∑
j=0

[αi,j]α
j

in KP = Fq[x]/⟨P ⟩ ∼= Fqd .

(2) Access to the PLWE oracle to get ℓ PLWE samples (a, b = as+ e) ∈ Pq × Pq satisfying
a(α) ̸= 0. Let G := ∅.

(3) For each g ∈ KP , we conduct the following sub-procedures:

(3-1) Choose one sample (a, b). Compute a(α) and b(α) via the polynomial basis {1, α, . . . , αd−1}.
(3-2) Compute yj ∈ (−q/2, q/2] ∩ Z for 0 ≤ j ≤ d− 1 such that

b(α)− a(α)g =

d−1∑
j=0

[yj]α
j

in KP
∼= Fqd .

(3-3) If b(α)− a(α)g ∈ Sα, i.e.,

|yj | ≤ B(α)j := 2σ

√√√√1 +

n−1∑
i=d

α2
i,j

for all 0 ≤ j ≤ d− 1, go back to (3-1), and choose another sample.

If b(α)− a(α)g ∈ Sα for all (a, b), replace G by G ∪ {g}.

(4) If G consists of just one element g, then we have g = s(α).

4.2 Complexity Analysis of Our Extended Attacks

In this subsection, we investigate the complexity of our extended attack proposed in the previous
subsection (Section 4.1). Assume di ≪ n, and we do not count the computation of the order of
an element in a group. We also assume #Sαi < qdi for all αi ∈ KPi . First, we determine the
complexities of Algorithms 4.1.1 and 4.1.2. Note that the computation in KPi is done with the
polynomial basis {1, γi, . . . , γdi−1

i }.

Complexities of Algorithms 4.1.1 and 4.1.2 Let us first estimate the complexity of Algorithm
4.1.1. It requires O(r) multiplications over KP

∼= Fqd to compute all αi for 0 ≤ i ≤ r − 1. Each
element in Sα is computed by combining O(r) multiplications and O(r) additions, so that it requires
O(r) arithmetic operations over KP

∼= Fqd . By our assumption, Sα has at most qd elements. Hence

we compute Sα in O(r + rqd) = O(rqd) arithmetic operations over KP
∼= Fqd .

The main double loop has at most qdℓ iterations. For each iteration, we compute h := b(α) −
ga(α) and decide whether h ∈ Sα or not. With αi computed as above, computing b(α) and a(α)
needs 2n+2n = O(n) arithmetic operations overKP

∼= Fqd . Using a binary search to decide whether

25

h ∈ Sα or not, we do this in O(log(qd)) = O(dlog(q)) operations. Summing up, each iteration takes
O(n+ dlog(q)) arithmetic operations over KP

∼= Fqd , and thus O(qdℓn+ qdℓdlog(q)) is required in
total.

As a consequence, Algorithm 4.1.1 performs in O(rqd+qdℓn+qdℓdlog(q)) = O(qdℓn+qdℓdlog(q))
arithmetic operations over KP

∼= Fqd , i.e.,

O
(
nqdℓd2log2(q) + qdℓd3log3(q)

)
bit operations

Similarly, it follows that Algorithm 4.1.2 terminates in

O
(
(n− d)d2(log(q))2 + ℓ(d(n− d) + qdd2)(log(q))2

)
bit operations.

Complexity of Algorithm 4.1.3 Let d = max1≤i≤tdi. First one factorizes f (q) of degree n over
Fq, which requires

O(nlog3(n)log3(q))

bit operations, see Exercise 2.12.12 of [8].
Second we construct Fqd

′ with a polynomial basis by generating an irreducible polynomial Q ∈
Fq[x] of degree d′. According to Section 2.14.1 of [8], this can be done in

O((d′)4log3(q))

bit operations, using naive arithmetic.
For each 1 ≤ i ≤ t, we choose one root αi ∈ KPi of Pi. Note that γi := x + ⟨Pi⟩ is a root

of Pi in KPi , and hence the other roots are given by γq
k

i for 1 ≤ k ≤ di − 1. Computing γq
k

i for
1 ≤ k ≤ di − 1 can be done in O(diq) multiplications in KPi , i.e.,

O(d3i qlog
2(q)) = O(d3qlog2(q))

bit operations.
For a root αi ∈ KPi , we next compute s(αi). With the complexity estimated in the previous

paragraph, one can estimate that this can be done in

O
(
nqdℓd2log2(q) + qdℓd3log3(q)

)
bit operations, where ℓ := max1≤i≤tℓi.

With s(αi) computed as above, one computes s(αqk

i) = s(αi)
qk for 1 ≤ k ≤ di − 1 in

O(diqd
2
i log

2(q)) = O(d3qlog2(q))

bit operations.
Finding one root βi ∈ Ki ⊂ Kf (i)

∼= Fqd′ of Pi with deg(Pi) = di can be done in

O
(
log(qd

′
)log(di)d

2
i (d

′)2log2(q)
)
= O

(
(d′)3d2log(d)log3(q)

)
26

bit operations, see Exercise 2.12.5 in [8].
Computing βk

i for 1 ≤ k ≤ di − 1 can be done in O(di) multiplications in Kf (q)
∼= Fqd

′ , i.e.,

O(di(d
′)2log2(q)) = O(d(d′)2log2(q))

bit operations. We next compute s(φi(α)
qk) for 0 ≤ k ≤ di− 1. For each 0 ≤ k ≤ di− 1, it requires

O(di) multiplications and O(di) additions to compute s(φi(α)
qk). Hence computing s(φi(α)

qk) for
0 ≤ k ≤ di − 1 requires

O(d2i (d
′)2log2(q)) = O(d2(d′)2log2(q))

bit operations.
Considering t iterations, the for-loop indicated at the 5-th line terminates in

O
(
tnqdℓd2log2(q) + tqdℓd3log3(q) + td2(d′)3log(d)log3(q) + td2(d′)2log2(q)

)
bit operations.

It requires
O(n3(d′)2log2(q) + tqd(d′)2log2(q))

bit operations to compute A−1 and φi(αi)
qk ’s.

Putting all the steps together, we can determine the binary complexity of our attack, that is,

O
(
nlog3(n)log3(q) + (d′)4log3(q) + tnqdℓd2log2(q) + tqdℓd3log3(q) + td2(d′)3log(d)log3(q) + tqd2(d′)2log2(q) + n3(d′)2(log(q))2

)
.

Consequently, if d is small enough, our attack terminates in polynomial time with respect to all
the parameters n, q, d′, t and ℓ.

4.3 Vulnerable polynomials by our general-case attack

We use the same notation as in the previous subsections (Sections 4.1 and 4.2). In this subsection,
we characterize defining polynomials for which the search-PLWE problem is solvable by our general-
case attack. Let n ∈ Z≥1, σ ∈ R>0 and q a prime. As showed in the previous subsections, the PLWE
instances defined by monic polynomials f ∈ Z[x] of degree n satisfying the following conditions can
be vulnerable by Algorithm 4.1.3:

V1’ f (q)(x) ∈ Fq[x] is a square-free polynomial over Fq, the algebraic closure of Fq,

V2’ For each 1 ≤ i ≤ t, there exists αi ∈ KPi such that #Sαi < qd.

where each Sαi is determined by n, σ, αi and q. Hence for an integer n, σ ∈ R>0, a prime q, and

f ∈ F ′
n,σ,q := {f ∈ Z[x] : f is monic with deg(f) = n and f satisfies V1’ and V2’},

the search-PLWE problem is solvable with sufficiently high probability by Algorithm 4.1.3.

27

5 Conclusion and Future works

In this paper, we first gave a search-case variant of Eisentraeger et al.’s attacks against the decision
Poly-LWE problem, and showed that the search-case variant of their attacks do not seem to work
well for cases where the defining polynomial f of the PLWE instances does not split completely
over the ground field Fq. Based on the theory of finite fields, we proposed a new attack, which
is viewed as an generalization of the variant to deal with more general cases where f does not
necessarily split completely in Fq[x]. We also proved that when f has a square-free factorization of
low degree-factors with certain conditions, this attack terminates in polynomial time with respect
to the degree of f and q. With our attack, we have new insecure classes of defining polynomials f
and parameters q in the PLWE problem, which shall be a useful information to design more secure
cryptosystms, furthermore quantum-resistant cryptosystems.

However, our extended attack takes much time if f has high degree-factors, and thus using such
an f as the defining polynomial might be still secure in the PLWE problem. Our future work is to
investigate the security of PLWE instances adopting such polynomials, which is an important task
to develop PLWE-based cryptosystems.

Acknowledgments

The author deeply thanks Hart Montgomery for many helpful comments and discussions on this
study. The author also thanks Arnab Roy, Avradip Mandal and his supervisor Masaya Yasuda for
helpful comments on this study. This work was supported by Fujitsu Laboratories of America, Inc..

References

[1] V. Boža, Experimental Comparison of Set Intersection Algorithms for Inverted Indexing, ITAT
2013 Proceedings, CEUR Workshop Proceeding, Vol. 1003, pp. 58–64, 2013.

[2] Z. Brakerski, C. Gentry and V. Vaikuntanathan, Fully homomorphic encryption without boot-
strapping, ACM Trans. Comput. Theory 6 (2014), no. 3, Art. 13, 36 pages.

[3] Z. Brakerski, A. Langlois, C. Peikert, O. Regev and D. Stehlé, Classical Hardness of Learning
with Errors, In: Proceedings of the 2013 ACM Symposium on Theory of Computing (STOC’13),
pp. 575–584, ACM, New York, 2013.

[4] Z. Brakerski and V. Vaikuntanathan, Fully homomorphic encryption from Ring-LWE and secu-
rity for key dependent messages, In: Proceedings of CRYPTO 2011, Lecture Notes in Computer
Science, Volume 6841, pp. 505–524. Springer, 2011.

[5] L. Ducas and A. Durmus, Ring-LWE in Polynomial Ring, In: Proceedings of PKC 2012,
Lecture Notes in Computer Science, Volume 7293, pp. 34–51, 2012.

[6] K. Eisentraeger, S. Hallgren and K. Lauter, Weak Instances of PLWE, IACR Cryptology ePrint
archive 2014/784.

[7] Y. Elias, K. E. Lauter, E. Ozman and K. E. Stange, Provably weak instances of Ring-LWE,
IACR Cryptology ePrint archive 2015/106.

28

[8] S. D. Galbraith, Mathematics of Public Key Cryptography, Cambridge University Press, 2012.

[9] C. Gentry, S. Halevi and N. P. Smart, Fully homomorphic encryption with polylog overhead,
In: Advances in Cryptology-EUROCRYPT 2012, Lecture Notes in Computer Science, Volume
7237, pp. 465–482, Springer, Heidelberg.

[10] V. Lyubashevsky, C. Peikert and O. Regev, On ideal lattices and learning with errors over
rings, In: Advances in Cryptology-EUROCRYPT 2010, Lecture Notes in Computer Science,
Volume 6110, pp. 1–23, Springer, Berlin, 2010.

[11] D. Micciancio and O. Regev, Lattice-based cryptography, In: Proceedings of Post Quantum
Cryptography, pp. 147–191, Springer, 2009.

[12] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM,
56 (6), pp. 1–40, 2009.

29

