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Abstract. A Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows users to specify the access
policies without having to know the identities of users. In this paper, we contribute by proposing an ABE
scheme which enables revoking corrupted users. Given a key-like blackbox, our system can identify at least
one of the users whose key must have been used to construct the blackbox and can revoke the key from
the system. This paper extends the work of Liu and Wong to achieve traitor revocability. We construct
an Augmented Revocable CP-ABE (AugR-CP-ABE) scheme, and describe its security by message-hiding
and index-hiding games. Then we prove that an AugR-CP-ABE scheme with message-hiding and index-
hiding properties can be transferred to a secure Revocable CP-ABE with fully collusion-resistant blackbox
traceability. In the proof for index-hiding, we divide the adversary’s behaviors in two ways and build direct
reductions that use adversary to solve the D3DH problem. Our scheme achieves the sub-linear overhead
of O(\/N), where N is the number of users in the system. This scheme is highly expressive and can take
any monotonic access structures as ciphertext policies.

Keywords: Traitor Tracing, Revocation, Ciphertext-policy Attribute Based Encryption, Prime Order
Groups

1 Introduction

Attribute-Based Encryption (ABE) system is first introduced by Sahai and Waters [22], which is based on users’
roles and does not have to know their identities in the system. In an Attribute-Based Encryption (CP-ABE)
system, each user possesses a set of attributes and a private key generated based on his/her attributes. The
encrypting party will define an access policy over role-based/descriptive attributes to encrypt a message without
having to know the identities of the targeted receivers. As a result, only the user who owns the appropriate
attributes which satisfy the access policy are able to decrypt the ciphertext. Intuitively, Alice, for example, is to
encrypt a message under “(Development Department AND (Manager OR Engineer))”, which is an access policy
defined over descriptive attributes, so that only those receivers who have their decryption keys associated with
the attributes which satisfy this policy can decrypt it correctly.

Among the CP-ABE schemes recently proposed, [3J4J723ITOITIIRITTI20], progress has been made with regard
to the schemes’ security, access policy expressivity, and efficiency. While the schemes with practical security
and expressivity (i.e. full security against adaptive adversaries in the standard model and high expressivity of
supporting any monotone access structures) have been proposed in [TOJI9ITI], the traceability of traitors which
intentionally expose their decryption keys has been becoming an important concern related to the applicability
of CP-ABE. Assume in a communication system, the sender wants to assure that only those users who have paid
for the service can access the content. This concern can be solved by encrypting the content and only receivers
who own the legitimate keys can decrypt the content correctly. If we build such a system with ABE, however,
due to the nature of CP-ABE, the attributes (and the corresponding decryption privilege) are generally shared
by multiple users. As a result, a malicious user, with his attributes shared with multiple other users, might have
an intention to leak the corresponding decryption key or some decryption privilege in the form of a decryption
blackbox/device in which the decryption key is embedded, for example, for financial gain or for some other
incentives, as he only has little risk of getting caught.

Recently a handful of traceable CP-ABE schemes have been proposed in [T4JT3l/5]. In the whitebox traceable
CP-ABE schemes, given a well-formed decryption key as input, a tracing algorithm can find out the malicious
user who leaked or sold well-formed decryption keys. Liu et al. [I4] proposed such a whitebox traceable CP-
ABE scheme that can deter users from these malicious behaviors. As malicious users invent a decryption
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! Let I be the size of an access policy, |S| the size of the attribute set of a private key, || the size of the attribute universe,
and |I| the number of attributes in a decryption key that satisfies a ciphertext’s access policy.

Table 1. Features and Efficiency Comparison

blackbox/device which keeps the embedded decrypt keys and algorithms hidden, Liu et al.[I3] proved that the
blackbox traceable CP-ABE scheme supports fully collusion-resistant blackbox traceable in the standard model,
where fully collusion-resistant blackbox traceability means that the number of colluding users in constructing
a decryption blackbox/device is not limited and can be arbitrary. This scheme is fully secure in the standard
model and highly expressive (i.e. supporting any monotonic access structures).

It should be observed that a tracing system is not designed to protect the encrypted content. It is used
to distinguish the compromised users from other legitimate users, which means the corrupted user/key is still
remained in the system and an effective blackbox is likely to be produced with these corrupted keys in the wild
market. The exposed compromised users need to leave or be removed from the system to avoid incurring more
losses. When any of these happens, the corresponding user keys should be revoked. We added the revocability in
the scheme so that we can remove the compromised keys as needed. We focus on achieving direct revocation in
traceable CP-ABE system. In a direct revocation mechanism, it does not need any periodic key updates and it
does not affect any non-revoked users either. A system-wide revocation list could be made public and revocation
could be taken into effect promptly as the revocation list could be updated immediately once a key is revoked.
Specifically, we generate @, which is a part of ciphertext, with a non-revoked index list R. When decrypting,
we first recover K; ; which has a common item h[]; g hj with Q] if they share a consistent revocation list
R. Then K i,; is used in the following decryption process. To avoid a further loss, the revocation list should
be updated timely once corrupted users are found. For the security proof for message-hiding, we re-construct
the Semi-functional Keys by replacing h with hh;, which can realize revocability, and adding the random item
K; 4.5+ accordingly. As a contrast, the random items for Semi-functional Ciphertexts remain the same, which is
irrelevant to the revocability. For the security proof for index-hiding, we have two ways for adversary to take
and add more sub-cases in Case IT which make the security proof a non-trivial work. In this paper, We continue
our work on prime order groups as an extension for [16].

1.1 Our results

It has been shown (e.g. in [6l9]) that the constructions on composite order groups will result in significant
loss of efficiency and the security will rely on some non-standard assumptions (e.g. the Subgroup Decision
Assumptions) and an additional assumption that the group order is hard to factor. The previous work in [16]
achieves better security than the scheme in [I3], which is constructed on composite order groups. In this paper,
we add the revocability in [16] and prove it highly expressive and fully secure in the standard model. On the
efficiency aspect, this new scheme achieves the same efficient level as in [I6], i.e. the overhead for the fully
collusion-resistant blackbox traceability is in O(\/N ), where N is the number of users in a system.

Table [1| compares this new scheme with the previous work on blackbox traceable CP-ABE [I3] and the
traceable CP-ABE on prime order group but without revocability [I6]. We only change the size of keypair as we
need add revocation items in the key. Both the ciphertext and the pairing computation in decryption are kept
unchanged. This implies both this new scheme and [I6] have better security than the scheme in [13], although
all of them are fully secure in the standard model and have overhead in O(v/N).

Related Work. In the literature, several revocation mechanisms have been proposed in the context of CP-ABE.
In [21], Sahai et al. proposed an indirect revocation mechanism, which requires an authority to periodically
broadcast a key update information so that only the non-revoked users can update their keys and continue
to decrypt messages. In [I], Attrapadung and Imai proposed a direct revocation mechanism, which allows a
revocation list to be specified directly during encryption so that the resulting ciphertext cannot be decrypted
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by any decryption key which is in the revocation list even though the associated attribute set of the key satisfies
the ciphertext policy. For ABE scheme, in [I3] Liu et al. defined a ‘functional’ CP-ABE that has the same
functionality as the conventional CP-ABE (i.e. having all the appealing properties of the conventional CP-
ABE), except that each user is assigned and identified by a unique index, which will enable the traceability
of traitors. Liu et al. also defined the security and the fully collusion-resistant blackbox traceability for such
a ‘functional’ CP-ABE. Furthermore, Liu et al. defined a new primitive called Augmented CP-ABE (AugCP-
ABE) and formalized its security using message-hiding and index-hiding games. Then Liu et al. proved that
an AugCP-ABE scheme with message-hiding and index-hiding properties can be directly transferred to a secure
CP-ABE with fully collusion-resistant blackbox traceability. With such a framework, Liu et al. obtained a fully
secure and fully collusion-resistant blackbox traceable CP-ABE scheme by constructing an AugCP-ABE scheme
with message-hiding and index-hiding properties. In [16], Liu et al. obtain a prime order construction and it will
be tempting to bring the revocation into [I6] as a practical enhancement and implementation. In this paper, we
leverage the revocation idea from [I5].

Outline. In this paper, we follow the same framework in [I6]. In particular, in Section we propose a definition
for CP-ABE supporting key-like blackbox traceability and direct revocation. the definition is ‘functional’, namely
each decryption key is uniquely indexed by k € {1,..., N} and given a key-like decryption blackbox, the tracing
algorithm 7race can return the index k of a decryption key which has been used for building the decryption
blackbox. In our direct revocation definition, the Encrypt algorithm takes a revocation list R C {1,..., N} as
an additional input so that a message encrypted under the (revocation list, access policy) pair (R, A) would
only allow users whose (index, attribute set) pair (k, .S) satisfies (k € [N]\ R) AND (S satisfies A) to decrypt. In
Section [3] we revisit the definitions and security models of Augmented Revocable CP-ABE (AugR-CP-ABE for
short) from [15]. We refer to the ‘functional’ CP-ABE in Section[2|as Revocable CP-ABE (R-CP-ABE for short),
then extend the R-CP-ABE to AugR-CP-ABE, which will lastly be transformed to a key-like blackbox traceable
R-CP-ABE. More specifically, we define the encryption algorithm of AugR-CP-ABE as Encrypt, (PP, M, R, A, k)
which takes one more parameter k € {1,..., N + 1} than the original one in R-CP-ABE. This also changes
the decryption criteria in AugR-CP-ABE in such a way that an encrypted message can be recovered using a
decryption key SKj g, which is identified by index &k € {1,...,N} and associated with an attribute set S,
only if (k € [N]\ R) A (S satisfies A) A (k > k). In Section [4| we propose our AugR-CP-ABE construction on
prime order groups and prove that our AugR-CP-ABE construction is message-hiding and index-hiding in the
standard model. As a result, we obtain a fully secure and fully collusion-resistant blackbox traceable R-CP-ABE
scheme on prime order groups.

To construct the AugR-CP-ABE, we continue our work in [I6] and leverage the revocation idea from [I5]. In
particular, besides achieving the important features for practicality, such as revocation, high expressivity and
efficiency, the construction is proved secure and traceable in the standard model.

2 Revocable CP-ABE and Blackbox Traceability

We follow the definition in [I5]. Given a positive integer n, our Revocable Ciphertext-Policy Attribute-Based
Encryption (R-CP-ABE) system consists of four algorithms:

Setup(\,U, N) — (PP,MSK). The algorithm takes as input a security parameter A, the attribute universe
U, and the number of users N in the system, then runs in polynomial time in A, and outputs the public

parameter PP and a master secret key MSK.

KeyGen(PP,MSK, S) — SKj s. The algorithm takes as input the public parameter PP, the master secret key
MSK, and an attribute set S, and outputs a private decryption key SKj g, which is assigned and identified
by a unique index k € [N].

Encrypt(PP, M, R,A) — CTg . The algorithm takes as input the public parameter PP, a message M, a
revocation list R C [N], and an access policy A over U, and outputs a ciphertext CTg a such that only
users whose indices are not revoked by R and attributes satisfy A can recover M. R and A are implicitly
included in C'Tg 4.

Decrypt(PP,CTg a,SKg,s) — M or L. The algorithm takes as input the public parameter PP, a ciphertext
CTRr,a, and a private key SKy g. If (k € [N]\ R) AND (S satisfies A), the algorithm outputs a message M,
otherwise it outputs | indicating the failure of decryption.
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Correctness. For any attribute set S C U, index k € [N], revocation list R C [N], access policy A over U, and
message M, suppose (PP, MSK) < Setup(\,U, N), SKy, s < KeyGen(PP,MSK, S), CTg s < Encrypt(PP, M, R, A).
If (k € [N]\ R) A (S satisfies A), then Decrypt(PP,CTg a,SKg,s) = M.

Security. Now we define the security of a R-CP-ABE system using a message-hiding game.
Gamepy. The Message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, U, N) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, attribute set) pair (k;, Sk,), and the challenger

responds with SKy, g, .
Challenge. A submits two equal-length messages My, M7 and a (revocation list, access policy) pair (R*, A*).

The challenger flips a random coin b € 10, 1}, and sends CTg- 4~ < Encrypt(PP, M,, R*, A*) to A.
Phase 2. For i = Q1 +1 to ), A adaptively submits (k;, Sk, ), and the challenger responds with SKy; g, .
Guess. A outputs a guess b € {0,1} for b. '

A wins the game if & = b under the restriction that none of the queried {(k;,Sk,)}, can satisfy (k; €
[N]\ R*) AND (S, satisfies A*). The advantage of A is defined as MH*Adv 4 = | Pr[b/ = b] — 1.

Definition 1. An N-user R-CP-ABE system is secure if for all polynomial-time adversaries A the advantage
MHAdv 4 is negligible in .

The message-hiding game is a typical semantic security game and is based on that for conventional CP-ABE
[TO/1T], where the revocation list R is always empty. It is clear that such a CP-ABE system [I0/TI] has the
following properties: fully collusion-resistant security, meaning that several users should not be able to decrypt
a message that none of them are individually granted to access, fine-grained access control on encrypted data,
and efficient one-to-many encryption.

It is worth noticing that, as pointed in [I3], in the definition of the game: (1) the adversary is allowed to
specify the index of the private key when it makes key queries for the attribute sets of its choice, i.e., for t =1
to @, the adversary submits (index, attribute set) pair (k¢, Sk,) to query a private key for attribute set S,,
where Q@ < N, k; € [N], and k; # kv V1 <t #t' < Q (this is to guarantee that each user/key can be uniquely
identified by an index); and (2) for k; # ky we do not require Sy, # Sk,,, i.e., different users/keys may have the
same attribute set. We remark that these two points apply to the rest of the paper.

2.1 Blackbox Traceability

Now we define the traceability against key-like decryption blackbox. A key-like decryption blackbox D can be
viewed as a probabilistic circuit that takes as input a ciphertext CTr 4 and outputs a message M or L, and
such a decryption blackbox does not need to be perfect, namely, we only require it to be able to decrypt with
non-negligible success probability. In particular, a key-like decryption blackbox D is described by a (revocation
list, attribute set) pair (Rp, Sp) and a non-negligible probability value € (i.e. 0 < e < 1 is polynomially related
to A), and advertised that for any ciphertext generated under the (revocation list, access policy) pair (R, A), if
((Sp satisfies A) AND ([N]\ R)N([N]\ Rp) # 0) can be satisfied by Sp and Rp, this blackbox D can decrypt
the corresponding ciphertext with probability at least e. Specifically, once a blackbox is found being able to
decrypt ciphertext, we can regard it as a key-like decryption blackbox with the corresponding (revocation list,
attribute set) pair (Rp,Sp), and the ciphertext is related to the pair (R, A) which satisfies ((Sp satisfies A)
AND ([N]J\R)N([N]\Rp) # 0). If we set the revocation list R and Rp as empty, we can get the same definition
for key-like decryption blackbox as shown in [13].

TraceD(PP, Rp, Sp,e) = Ky C [N]. This is an oracle algorithm that interacts with a key-like decryption blackbox
D. Given the public parameter PP, a revocation list Rp, a non-empty attribute set Sp, and a probability value
(lower-bound) €, the algorithm runs in time polynomial in X and 1/¢, and outputs an index set Ky C [N] which
identifies the set of malicious users. Note that € has to be polynomially related to .

The following Tracing Game captures the notion of fully collusion-resistant traceability. In the game,
the adversary targets to build a decryption blackbox D that functions as a private decryption key with the
pair (Rp, Sp) (as the name of key-like decryption blackbox implies) which can decrypt ciphertexts under some
(revocation list, access policy) pairs (R, A). The tracing algorithm, on the other side, is designed to extract the
index of at least one of the malicious users whose decryption keys have been used for constructing D.

Gamerg. The Tracing Game is defined between a challenger and an adversary A as follows:
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Setup. The challenger runs Setup(\, U, N) and gives the public parameter PP to A.

Key Query. For i =1 to Q, A adaptively submits (k;, Sk,), and the challenger responds with SKki,Ski~

(Key-like) Decryption Blackbox Generation. .4 outputs a decryption blackbox D associated with a
(revocation list, attribute set) pair (Rp,Sp), Sp C U, Rp C [N] and a non-negligible probability (lower-
bound) value e.

Tracing. The challenger runs TraceD(PP, Rp, Sp,€) to obtain an index set Ky C [N].

Let Kp = {k;|1 <i < Q} be the index set of keys corrupted by the adversary. We say that the adversary A
wins the game if the following conditions hold:

1. For any (revocation list, access policy) pair (R, A) which satisfied ((Sp satisfies A) AND ([N]\ R) N ([N]\
Rp) # (), we have
Pr[D(Encrypt(PP, M, R,A)) = M] > ¢,

where the probability is taken over the random choices of message M and the random coins of D. A
decryption blackbox satisfying this condition is said to be a useful key-like decryption blackboz.

2. Kr = @, or Kr g KD, or ((kt S RD) OR (SD Z Sk’t) Vk, € KT).
We denote by TRAdv 4 the probability that adversary A wins this game.

Definition 2. An N-user Blackbox Traceable CP-ABE system is traceable if for all polynomial-time adversaries
A the advantage TRAdv 4 is negligible in .

3 Augmented R-CP-ABE Definitions

3.1 Definitions and Security Models
An Augmented R-CP-ABE (AugR-CP-ABE) system consists of the following four algorithms:

Setupp (A, U, N) — (PP,MSK). The algorithm takes as input a security parameter A, the attribute universe
U, and the number of users N in the system, then runs in polynomial time in A, and outputs the public
parameter PP and a master secret key MSK.

KeyGen, (PP, MSK, S) — SKj g. The algorithm takes as input PP, MSK, and an attribute set .S, and outputs
a private key SKy g, which is assigned and identified by a unique index k € [N].

Encrypta (PP, M, R, A, k) — CTg . The algorithm takes as input PP, a message M, a revocation list R C [N],
an access policy A over U, and an index k € [N + 1], and outputs a ciphertext CTra. A is included in
CTgr,a, but the value of k is not.

Decryptp (PP, CTg a,SKk,s) — M or L. The algorithm takes as input PP, a ciphertext CTg a, and a private
key SKg,s. If (k € [N]\ R) AND (S satisfies A), the algorithm outputs a message M, otherwise it outputs
1 indicating the failure of decryption.

Correctness. For any attribute set S C U, index k € [N], revocation list R C [N], access policy A over U, en-

cryption index k € [N+1], and message M, suppose (PP, MSK) < Setup (A, U, N), SK. s + KeyGen, (PP, MSK, S),

CTra < Encrypta (PP, M, R, A k). If (k € [N]\ R)A(S satisfies A)A(k > k) then Decrypta (PP,CTg 4, SKy.s) =
M.

Security. The security of AugR-CP-ABE is defined by the following three games, where the first two are for
message-hiding, and the third one is for the index-hiding property.

In the first two message-hiding games between a challenger and an adversary A, k = 1 (the first game,
Game’,\AﬂHl) or k=N +1 (the second game, Gameﬁ\AHNH).

Setup. The challenger runs Setup, (A, U, N) and gives the public parameter PP to A.

Phase 1. For t = 1 to @1, A adaptively submits (index, attribute set) pair (k:, Sk,), and the challenger
responds with SKy, s, , which corresponds to attribute set S, and is assigned index k;.

Challenge. A submits two equal-length messages My, M; and a (revocation list, access policy) pair (R*, A*).
The challenger flips a random coin b € {0, 1}, and sends CTr~ o« < Encrypta (PP, M, R*, A* k) to A.
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Phase 2. For t = Q1 + 1 to @, A adaptively submits (index, attribute set) pair (k¢, Sk, ), and the challenger
responds with SKy, s, , which corresponds to attribute set S, and is assigned index k;.
Guess. A outputs a guess b’ € {0,1} for b.

GameﬁAHl. In the Challenge phase the challenger sends CTg~ 4= < Encrypta (PP, M, R*,A* 1) to A. A wins the
game if &’ = b under the restriction that none of the queried {(k;, Skt)}?zl can satisfy (k € [N]\ R*) AND (S,
satisfies A*). The advantage of A is defined as MH}Adv 4 = | Pr[b/ = b] — 1.

GameﬁAHNH. In the Challenge phase the challenger sends CTg- o+ < Encrypta (PP, My, R*,A*, N +1) to A. A
wins the game if & = b. The advantage of A is defined as MH,;Adv.4 = | Pr[t = b] — 1].

Definition 3. A N-user Augmented R-CP-ABE system is message-hiding if for all probabilistic polynomial
time (PPT) adversaries A the advantages I\/IH/fAdvA and MH?\,_HAdvA are negligible in \.

Gamem. In the third game, index-hiding game, for any non-empty attribute set S* C U, we define the
strictest access policy as Ag- = A .g. 7, and require that an adversary cannot distinguish between an
encryption using (Ag«, R*, k) and (Ag-, R*,k + 1) without a private decryption key SK%,s, such that (k €
[N]\ R*) A (S;, 2 S*). The game takes as input a parameter k € [N] which is given to both the challenger and
the adversary A. The game proceeds as follows:

Setup. The challenger runs Setup, (A, U, N) and gives the public parameter PP to A.

Key Query. For t = 1 to @, A adaptively submits (index, attribute set) pair (k, Sk,), and the challenger
responds with SKy, s, , which corresponds to attribute set S, and is assigned index k;.

Challenge. A submits a message M and a (revocation list, access policy) pair (R*, A*). The challenger flips
a random coin b € {0,1}, and sends CTg« o+ < Encrypta (PP, M, R*, A* k + b) to A.

Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if &' = b under the restriction that none of the queried pairs {(kt,Skt)}?zl can satisfy
(ki = k) A (ky € [N]\ R*) A (S, satisfies Ag-), i.e. (k= k) A (ke € [N]\ R*) A (Sk, 2 ). The advantage of A
is defined as IH*Adv 4[k] = | Pr[t/ = b] — 1.

Definition 4. A N-user Augmented R-CP-ABE system is indez-hiding if for all PPT adversaries A the ad-
vantages IHAAdv 4[k] for k =1,..., N are negligible in ).

3.2 The Reduction of Traceable R-CP-ABE to Augmented R-CP-ABE

We now show that an AugR-CP-ABE with message-hiding and index-hiding implies a secure and traceable
R-CP-ABE. Let Xa = (Setupp, KeyGeny, Encrypty, Decrypty) be an AugR-CP-ABE with message-hiding and
index-hiding, define Encrypt(PP, M, A) = Encrypt, (PP, M, A 1), then X' = (Setup,, KeyGen,, Encrypt, Decrypt, )
is a R-CP-ABE derived from Y. In the following, we show that if X'a is message-hiding and index-hiding, then
X is secure. Furthermore, we propose a tracing algorithm Trace for X' and show that if X's is message-hiding
and index-hiding, then X' (equipped with Trace) is traceable.

3.2.1 R-CP-ABE Security

Theorem 1. If Ya is an AugR-CP-ABE with message-hiding and indez-hiding properties, then X is a secure
and traceable R-CP-ABE.

Proof. Note that X is a special case of Yo where the encryption algorithm always sets k = 1. Hence, Gamemy
for X is identical to Gamefé,”J,1 for Xa, which implies that MHAdv 4 for X in Gamepy is equal to MH}Adv 4 for

XA in Game@,Hl, i.e., if Yo is message-hiding (in Gamef‘,,Hl), then X' is secure.
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3.2.2 R-CP-ABE Traceability

Now we show that if Xa is message-hiding (in Gameﬁ\AHNH) and index-hiding, X' is traceable. As shown in [I3],
with the following Trace algorithm [13], X achieves fully collusion-resistant blackbox traceability against key-like
decryption blackbox.

TraceD(PP,RD,SD,e) — K¢ C [N]: Given a key-like decryption blackbox D associated with a non-empty
attribute set Sp and probability € > 0, the tracing algorithm works as follows:

1. For k =1to N + 1, do the following:
(a) The algorithm repeats the following 8A\(N/€)? times:
i. Sample M from the message space at random.
ii. Let CTras, < Encrypta(PP, M, R, Ag,, k), where Ag,, is the strictest access policy of Sp.
iii. Query oracle D on input CTR,Asbv and compare the output of D with M.
(b) Let p; be the fraction of times that D decrypted the ciphertexts correctly.
2. Let Kz be the set of all k € [N] for which p — pr, > €/(4N). Then output Ky as the index set of the
private keys of malicious users.

Theorem 2. If Xa is message-hiding and indez-hiding, then X is traceable using the Trace algorithm against
key-like decryption blackbozx.

Proof. In the proof sketch below, we show that if the key-like decryption blackbox output by the adversary is a
useful one then the traced Ky will satisfy (Kz # 0) A (Kr € Kp) A (3k, € Ky s.t.( ki, € [N]\Rp)A(Sp C Si,))
with overwhelming probability, which implies that the adversary can win the game Gametg only with negligible
probability, i.e., TRAdv 4 is negligible.

Let D be the key-like decryption blackbox output by the adversary, and (Rp, Sp) be the (revocation list,
attribute set) pair which can be used to describe D. Define

pi = Pr[D(Encrypta (PP, M, R, Ag,, k)) = M],

where the probability is taken over the random choice of message M and the random coins of D. We have that
p1 > € and py41 is negligible. The former follows the fact that D is a useful key-like decryption blackbox, and
the later follows that Xa is message-hiding (in GamefAHNH). Then there must exist some k& € [N] such that
Pi — Pry1 = €/(2N). By the Chernoff bound it follows that with overwhelming probability, pr — pr,, > €/(4N).
Hence, we have Kr # 0.

For any k; € Kr (i.e., pr, — Pr,+1 > %) we know, by Chernoff, that with overwhelming probability
Dk, — Pk, +1 > €/(8N). Clearly (k; € Kp) A (k: € [N]\ Rp) A (Sp C Si,) since otherwise, D can be directly used
to win the index-hiding game for X4. Hence, we have (Kr C Kp) A ((k; € [N]\ Rp) A (Sp C Sk,) Vk: € Kr).

4 An Augmented R-CP-ABE Construction on Prime Order Groups

Now we construct an AugR-CP-ABE scheme on prime order groups, and prove that this AugR-CP-ABE scheme
is message-hiding and index-hiding in the standard model. Combined with the results in Section we obtain
a R-CP-ABE scheme that is fully collusion-resistant blackbox traceable in the standard model, fully secure in
the standard model, and on prime order groups.

4.1 Preliminaries

Before proposing our AugR-CP-ABE construction , we first review some preliminaries.

Bilinear Groups. Let G be a group generator, which takes a security parameter A and outputs (p, G,Gr,e)
where p is a prime, G and Gr are cyclic groups of order p, and e : G X G — Gr is a map such that: (1) (Bilinear)
Vg,h € G,a,b € Z,,e(g*, h®) = e(g,h)®, (2) (Non-Degenerate) 3g € G such that e(g, g) has order p in Gr. We
refer to G as the source group and Gr as the target group. We assume that group operations in G and Gr as
well as the bilinear map e are efficiently computable, and the description of G and Gr includes a generator of
G and Gr respectively.
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Complexity Assumptions. We will base the message-hiding property of our AugR-CP-ABE scheme on the
Decisional Linear Assumption (DLIN), the Decisional 3-Party Diffie-Hellman Assumption (D3DH) and the
Source Group ¢-Parallel BDHE Assumption, and will base the index-hiding property of our AugR-CP-ABE
scheme on the DLIN assumption and the D3DH assumption. Note that the DLIN assumption and the D3DH
assumption are standard and generally accepted assumptions, and the Source Group ¢-Parallel BDHE Assump-
tion is introduced and proved by Lewko and Waters in [I2]. Please refer to Appendix [A| for the details of the
three assumptions.

Dual Pairing Vector Spaces. Our construction will use dual pairing vector spaces, a tool introduced by
Okamoto and Takashima [I7JI8/T9] and developed by Lewko [9] and Lewko and Waters [12]. Let v = (vy,...,v,)
be a vector over Z,, the notation g” denotes a tuple of group elements as g* := (¢"*, ..., ¢""). Furthermore, for
any a € Zp and v = (v1,...,v,),w = (w1, ...,wy) € Zy, define

<gv)a = gav — (gam’. . 7gavn), g'ugw = gv+'w — <gv1+w1’ o 7gvn+wn),

n

and define a bilinear map e,, on n-tuples of G as e, (g%, g%) = H e(g’, g") = e(g,9) ™), where the dot /inner
i=1

product v - w is computed modulo p.

For a fixed (constant) dimension n, we say two bases B := (by,...,b,) and B* := (b7,...,b},) of Z} are
“dual orthonormal” when
b;-b; =0(modp) V1 <i#j<mn, b; b =1(modp) V1l <i<n,
where 9 is a non-zero element of Z,. (This is a slight abuse of the terminology “orthonormal”, since 1 is not

constrained to be 1.) For a generator g € G, we note that e, (g%, gb; ) = 1 whenever ¢ # j, where 1 here denotes
the identity element in Gp. Let Dual(Zj, 1) denote the set of pairs of dual orthonormal bases of dimension n

with dot products b; - b} =1, and (B, B*) £ Dual(Zy;,v) denote choosing a random pair of bases from this
set. As our AugR-CP-ABE construction will use dual pairing vector spaces, the security proof will use a lemma
and a Subspace Assumption, which are introduced and proved by Lewko and Waters [12], in the setting of dual
pairing vector spaces. Please refer to Appendix for the details of this lemma and the Subspace Assumption.
Here we would like to stress that the Subspace Assumption is implied by DLIN assumption.

To construct our AugR-CP-ABE scheme, we further define a new notation. In particular, for any v =
(V1. 00) € Zy, v = (v],...,0,,) € Zzl, we define

s Yn’

(6°)7 = ((g°)F, o (g7)") = (97571, g7, g™t gre) € G,

Note that for any v, w € Zy, v w' e Zgl, we have

3

n

n/
e(g", 9" = [T([T eto”s g)) 55
j=1

enn’((gv>v’v (gw)w’) = H

’
j=11

1

—_

<

’ ’

:(en(gvvgw))(v -w’) _ (e(g,g)(vw))(v -w’) _ e(g’g)(v.w)(v/.wf) _ enn,((gv )v, (gw )w)

Linear Secret-Sharing Schemes (LSSS). As in previous work, we use linear secret-sharing schemes (LSSS)
to express the access policies. An LSSS is a share-generating matrix A whose rows are labeled by attributes via
a function p. An attribute set S satisfies the LSSS access matrix (A4, p) if the rows labeled by the attributes in
S have the linear reconstruction property, namely, there exist constants {w;|p(i) € S} such that, for any valid
shares {\;} of a secret s, we have }° ; cqwiAi = s. The formal definitions of access structures and LSSS can
be found in Appendix [C]

Notations. Suppose the number of users N in the system equals n? for some n EI, so we use [n,n| instead
of [N] in the following content. We arrange the users in a n X n matrix and uniquely assign a tuple (¢, j)
where 1 < i,j < n, to each user. A user at position (,7) of the matrix has index k¥ = (i — 1) *x n + j. For

i

1 If the number of users is not a square, we add some “dummy” users to pad to the next square.
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simplicity, we directly use (4,j) as the index where (i,j) > (4,7) means that ((i > )V (i =i Aj > j)). The
use of pairwise notation (¢,7) is purely a notational convenience, as k = (i — 1) * n 4+ j defines a bijection
between {(i,7)|1 < 4,5 <n}and {1,..., N}. We conflate the notation and consider the attribute universe to be
U] ={1,2...,U}, so U serves both as a description of the attribute universe and as a count of the total number
of attributes. Given a bilinear group order p, one can randomly choose r, 7y, 7, € Z,, and set x1 = (r;,0,7,),
x2 = (0,7y,72), X3 = X1 X X2 = (—TyTs, —TaTs, TzTy). Let span{x1, x2} be the subspace spanned by x1 and x2,
ie. span{xi,x2} = {vix1 +vaxza|vi,vs € Zy}. We can see that x3 is orthogonal to the subspace span{x1, x2}
and that Zf, = span{x1, X2, X3} = {vix1 + vax2 + vsxs|v1,ve,vs € Z,}. For any v € span{x1, xz2}, we have
(x3 - v) =0, and for random v € Zf’,a (x3 - v) # 0 happens with overwhelming probability.

4.2 AugR-CP-ABE Construction

Setupp (A, U, N = n?) — (PP, MSK). The algorithm chooses a bilinear group G of order p and two generators
g,h € G. It randomly chooses {h; € Zy};cin), (B, B*), (Bo,Bj) € Dual(Z3,¢) and (By,B}),. .., (By,Bj) €
Dual(Z8,1). We let b;, b%(1 < j < 3) denote the basis vectors belonging to (B, B*), by ;, b5 ;(1 < j < 3)
denote the basis vectors belonging to (Bo, Bf), and b, j, b% (1 < j < 6) denote the basis vectors belonging

.
to (B,,BZ) for each x € [U]. The algorithm also chooses random exponents

ar, g € Ly, {riyzi, @i1,Qi2 € Lplicm)s 11,2, Yjshj € Zpljcin)-

The public parameter PP and the master secret key MSK are set to

PP = ((pa G7 GTa 6), 9, h, gbl ; gbza {hj}jG[n]a hbl ) hb27 {h‘?la h?2}j€[n]7
hbo,l7 hbo,2, {hbw,l , hbm,Z, hbz,B’ hbm’4}x€[1/{]7
Fy=e(g,h)"™, Fy=e(g,h)"*, {Fi;=e(g,h;)"", Fa; = e(g,h;)"**}jein),
{Eix =e(g,9)"™", Eia=e(g,9)"*"}icin);
(G = gitrtb2) | 7. = gzi(b1+b2)}z_€[n]7 {(H; = goinbiteizbs Y, = ij.f}je[n]).

MSK = (bfvb;’ bg,labS,Za {b;,lab;,Q’b;,Bvb;,4}x6[u]valva2a {rivzi; ai,17ai,2}i€[n]v {Cj,lvcjﬂ}je[nO'

In addition, a counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, S) — SK(; j),s. The algorithm first sets ctr = ctr + 1 and computes the corresponding
index in the form of (i,j) where 1 < 4,57 < m and (¢ — 1) x n + j = ctr. Then it randomly chooses
0ij1,04,5.2,0i51,0i 2 € Zyp, and outputs a private key

SK(i,j),s = ( (i,4), 5, K;; = gleintrici)bit(aiatrics2)b; (hhj)(O'i,j,l+5i,j,1)bT+(0i,j,2+5i,j,2)b§’

1 (a140i 1405 5,1)b] +(ae+0i j 2405 5,2)b5 "o /1 Nz
Ki,j 79( s 5,1)bT +( ¥ 5.2) 2 Ki,j = (K'Lj) ,
% _ 3 (0i5,1+8i,5,1)b1 +(04,5,2+05,5,2) b3
{Kijj =hy Firemh\ s
_ 0ij.1b} 0 5.2b5 — 01,1 (b] 1 b7 ) +0i52(b] 5+b]
Ki,j,O =g ,3:1090,1 7,2 0.2, {Kz',j,gc =g i ( z,1 2) 4,2 ( z,3 "4)}3668 >

Encrypta (PP, M, R, A = (A, p),(i,7)) = CTgr,a,p- R C [n,n] is a revocation list. A is an I x m LSSS matrix
and p maps each row Aj of A to an attribute p(k) € [U]. The encryption is for recipients whose (index,
attributes set) pair ((i, ), S,j)) satisfy ((i,5) € [n,n] \ R) A (S5 satisfies (A,p)) A ((i,5) > (i,7)). Let

R = [n,n]\ R and for i € [n], R; = {j'|(i,7’) € R}, that is, R is the non-revoked index list, and R; is the set
of non-revoked column index on the i-th row. The algorithm first chooses random

3
Ry Ty S1yeves8ny t1yeenyln € Lp, Vey Wi,..., Wy € Ly,
51,1’61,27 ce 7€l,la§l,2 € Zp7 U, U € ZZL
It also chooses random 74,7y,7, € Z,, and sets x1 = (rz,0,7:),x2 = (0,7y,72), X3 = X1 X X2 =

(=ryTs, =TT, rx7y). Then it randomly chooses

v; € Z?, fori=1,...,i, w;€span{xi,Xx2} fori=i+1,...,n.
Let 1 and 7o be the first entries of u; and usg respectively. The algorithm creates a ciphertext (R, (A4, p), (R;,
R}, Q:,Q;,Q!,T;)}, (C;,C})_y, (Py)k_o) as follows:

79 7
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1. For each row i € [n]:
— if ¢ < i: choose random §; € Z,, then set

R, = (gbﬁbz)vi, R, = R;,
Q: = L(bl+b2 h H h L(bl+b2 thhﬂ'ller‘ﬂ'zbz le — gti(b1+b2), T, = e(g,g)éi
7 '€R;
—ifi>7: set
R, = (G))*"", R,= R},
Q= g‘I'S7‘,(vi'vc)(bl-i-bz)7 Q = (h H hj/)Tsi(vi'vc)(bl+b2)Zf_ihﬂ'lbl'i‘ﬂ?bz7 Q;l — gti(b1+b2)’

(2
j'€R;
(Ei)lEi)Q)TSi(vi"Uc)

(FE)s v FFy

T, =M

where F\' = Iy H Fy ;s and B =F H F, ;o respectively.
j'ERi j'ERi

2. For each column j € [n]:

- 1f] < i choose random f1; € Z,, then set C; = (H ;)7(VetHiXs) (Y ;)5wi, C) = (Y;)vi.

—ifj>giset C;=(H;)™(Y;)"™, C;=(Y;)".
3. PO = h71'1bo,1+71'2bo,27 {Pk = h(Ak'“1+§k=1)bp(k>‘1751‘%1bp(k)12+(A’c'u2+6’“‘2)b"(k)'Sigk’2bp(k)’4}ke[l]'

Decryptp (PP, CTg (a,p),SK(i,j),s) — M or L. The algorithm parses CTg (4, and _SK(i,j),S to (R, (4, p),

(Ri, R}, Q;,Q;, QY Th)i—,, (Cj,C%)1_y, (Pr)i—o) and ( (i, 4), S, Kij, K} ;, K i, {Kijj}jremnis} Kijos

70 2,77 7,5

{K; jz}uecs ) respectwely If (i,5) € R or S does not satisfy (A, p), the algorithm outputs L, otherwise it
1. Computes constants {wy € Zy|p(k) € S} such that Zp(k)es wrpAr = (1,0,...,0), then computes

Dp =e3(K; 0, Po) H e6 (K j pk)s Pr)*.
p(k)es

2. Since (i,j) € R(= [n,n] \ R) implies j € R;, the algorithm can compute

Ki;=Ki;-( [[ Ki
J'eR\{j}
_ g(ai,l"l""icj,l)b;+(ai,2+7"icj,2)b; (hhj)(U'i,j.1+6i,j,1)b;+(U'i,j,2+6'i,j.2)b;
(04,5,1404,5,1)b7 +(0i,5,2+0:,5,2)b3
. ( H hj’ s ,3,1)b1 s s 2)
J'€R:\{5}
_g(ai,1+T’7‘,Cj,1)bI+(ai,2+?“q‘,Cj,2)b;(h H hj,)(qu,j,1+5q‘,,j,1)bf+(0i,j,2+57‘,,j,2)b;.
J'ER;

Note that if (i,j) € R (implying j ¢ R;), the algorithm cannot produce such a K ;. The algorithm
then computes

e3(Kij, Qi) - e3(KY;,QY) - eo(R;, C})
e3(K ;, Qp) - eo(R;, Cj) '

Dy =

3. Computes M = T;/(Dp - Dy) as the output message. Assume the ciphertext is generated from message
M’ and index (4, j), it can be verified that only when (i > i) or (i =i Aj > j), M = M’ will hold. This
follows from the facts that for i > i, we have (v; - x3) = 0 (since v; € span{x1, x2}), and for i =i, we
have that (v; - x3) # 0 happens with overwhelming probability (since v; is randomly chosen from Zf,).
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Correctness. Assume the ciphertext is generated from revocation list R, message M’ and index (i, j). For
3 > 1 we have
e3(Kij, Qi) - es(K7;, Q)
es(K7 5, Q)
e(g,g)w(ai,l+ri0j,1+ai,2+ricj,2)75i("-’i"’-’c)e(h H h].,vg)w(ai,j,l+5i,]‘,1+0'i,j,2+5i,j,2)7'5i(vi"Uc)

_ j'ER
e(g’ h H hjl)w(a1+0i.j,1+6i,j,1+(¥2+0'i,j.2+5i.j,2)7—3'i('Ui"Uc)e(g7 h)(Oél+Ui,j,1+57'.j,1)71'11/J+(02+Ui,j,2+5i.j,2)7f21/1

Jj'€R
e(g’ g)w(ai.l+7‘iCj,1+ai,2+7“icj.2)7'5i(vi'vc)

e(g’ h H hj,)¢(a1+042)7'5i('vr'vu)e(g’ h)w(ﬂél+Ui,j,1+5i,j,1)71'1+¢(a2+0i,]‘,2+5z‘.1,2)ﬂ'2

J'eR
(Bu B0 0) - o(g, g esratoco
(F{FQ/)TSi('Di"Dc)F{Tl F;—Q . e(g, h)d)(fn‘,j,l+51,j,1)771-0-111(01:,_7‘,2-0-57‘,,_7“2)#2 ’

where F{' = I} H Fy 4 and B =F, H Fy ;o respectively.
J'ER:i j'ER;

Ifi > 1A j > j: we have

eo(R;,CY) eg((G)™*vi, (Y ;)*9) 1 _ 1

eg(Ri, Cj)  eo((Gy)*vi, (H ;)™ (Y ;)"7) N e3(Gi, H ;) s1(vive) — ¢(g, g)¥ricantes2)msi(vive)”

If i >4 Aj < j: note that for i > 4, we have (v; - x3) = 0 (since v; € span{x1,X2}), then we have

eo(R;, C}) _ e((Ga)™, (Y ;)™) _ !
eo(Ri,Cj)  eo((Gy)*v, (H )T wetrixa) (Y )rws)  e3(Gy, H j)Tsi(vive)trsim(vixs)
1

" elg, g)Prileite )Tsi(wive)

If i =i Aj < j: note that for i = 4, we have that (v; - x3) # 0 happens with overwhelming probability (since
v; is randomly chosen from Zf)), then we have

eo(R;, C)) eg((Ga)™v, (Y)*) _ 1
eo(Ri, Cj)  eo((Gy)sivi, (Hj)Termaxa) (Y ;)5ws) — e3(Gy, Hj)msi(vivel+msiny (vixs)
1

B e(g, g)d’”(Cj,1+cj,2)7'8i(vi~vc) . €<g, g)Wi(Cj,lJer,z)TSi#j(vz"Xs) '

Note that

Dp =e3(K; j o0, Po) H e6 (K jp(k), Pr)*
p(k)ES
:es(Ki,j,O,PO) H (e(go'i,j,l’hAk-’u.1)e(gO'i,j,2, hAk.uz))wwk
p(k)eS
:e(g’ h)¢(5i,j,1ﬂl+5z,]‘,2ﬂ2)e(g’ h)¢(0i,j,17r1+01,,],27r2).

Thus from the values of T;, Dp and Dy, for M = T;/(Dp - Dr) we have that: (1) if (i > i)V (i=iAj > j),
then M = M'; (2) ifi =i Aj < j, then M = M’ - e(g, g)¥ri(ciates2)msini(vixs). (3) if j < 4, then M has no
relation with M.
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4.3 Security of The AugR-CP-ABE Construction

The following Theorem [3| and Theorem [4] show that our AugR-CP-ABE construction is message-hiding, and
Theorem [5| shows that our AugR-CP-ABE construction is index-hiding.

Theorem 3. Suppose the DLIN assumption, the D3DH assumption, and the source group q-parallel BDHE
assumption hold. Then no PPT adversary can win Game’,é,,H1 with non-negligible advantage.

Proof. We begin by defining our various types of semi-functional keys and ciphertexts. The semi-functional space
in the exponent will correspond to the span of bs, b3, the span of b 3, b 5 and the span of each b, 5, by 6, b}, 5, b} 6.

Semi-functional Keys. To produce a semi-functional key for an attribute set .S, one first calls the normal key
generation algorithm to produce a normal key consisting of K j, K ;, K7 ;, { K j j' }jrenp\ {5} Kij,0, {EKijatzes
with index (4, 7). One then chooses random value «y. The semi-functional key is

* * B _ b
K j(hh)%, K g"%, K[ ;977% {K; b0 Y yemn gy Kigor {Kijatees.

Semi-functional Ciphertexts. To produce a semi-functional ciphertext for an LSSS matrix (A, p) of size [ xm,
one first calls the normal encryption algorithm to produce a normal ciphertext consisting of (R, (4, p), (R, R., Qi,
Q1T (Cj,CY)jy, (Py)L_o)- One then chooses random values 73, & 3(1 < k <) € Z,, and a random

vector ug € Z," with first entry equal to m3. The semi-functional ciphertext is:

(R,(A,p), (R, R, Q, Q;hﬂ’?,b?.’ Q. T, (Cy, C_/j)?:h Pohmsbos, (th(Ak'u3+£k,3)b0(1€),57Ek‘3bp(k)y6)2:1>.

Our proof is obtained via a hybrid argument over a sequence of games:

Game,.cq;: The real message-hiding game (i.e. Gamef‘AHl) as defined in the Section

Game; (0 <t < @Q): Let @ denote the total number of key queries that the attacker makes. For each ¢ from 0
to @, we define Game; as follows: In Gamey, the ciphertext given to the attacker is semi-functional, as are
the first ¢ keys. The remaining keys are normal.

Gameyinq: In this game, all of the keys given to the attacker are semi-functional, and the ciphertext given to
the attacker is a semi-functional encryption of a random message.

The outer structure of our hybrid argument will progress as shown in Fig. [I} First, we transition from
Game;cq; to Gameg, then to Game;, next to Gamey, and so on. We ultimately arrive at Gameg, where the
ciphertext and all of the keys given to the attacker are semi-functional. We then transition to Gamey;yq;, which
is defined to be like Gameg, except that the ciphertext given to the attacker is a semi-functional encryption of
a random message. This will complete our proof, since any attacker has a zero advantage in this final game.

The transitions from Game,., to Gamey and from Gameg to Gamey;n, are relatively easy, and can be
accomplished directly via computational assumptions. The transitions from Game;_; to Game; require more
intricate arguments. For these steps, we will need to treat Phase 1 key requests (before the challenge ciphertext)
and Phase 2 key requests (after the challenge ciphertext) differently. We will also need to define two additional
types of semi-functional keys:

Nominal Semi-functional Keys. To produce a nominal semi-functional key for an attribute set S, one
ﬁrft calls the normal key generation algorithm to produce a normal key consisting of K, ;, K; ;, K7,
{Kjj}iremniy K50y {Kijz}ees with index (4,7). One then chooses random values 0; j 3,0; 3 € Zp.
The nominal semi-functional key is: K j(hh;)(@issF01.3.3)05 K;Jg("'%jv?’”ivjﬁ)b;, Kgfjgzi(”iv%?’”%?’)b;7
{K,;jhj (04.5,3+91.5,2)3 Yirem\{i}s K jog®i2%s, (K j,g730est8e6)) o We note that a nominal semi-
functional key still correctly decrypts a semi-functional ciphertext.

Temporary Semi-functional Keys. A temporary semi-functional key is similar to a nominal semi-functional
key, except that the semi-functional component attached to K ; ; will now be randomized (this will prevent
correct decryption of a semi-functional ciphertext) and K; j, K7 ; and {Ki ;i }jemn iy} change accordingly.
More formally, to produce a temporary semi-functional key for an attribute set S, one first calls the normal
key generation algorithm to produce a normal key consisting of K j, K ;, K7, {Ki j j }ircin (5} 8,00

{K jz}ees with index (7,7). One then chooses random values o; j;3,0; 3,7 € Zp. The temporary semi-

functional key is formed as:

b / b 1" ziybi o b3 5i.5.8b5 . aij.3(b% s+b
K j(hhj)7%s, K ;977 K7 ;9777 {K 50 bempn gy, K097, {Kijag aalbostbie)l .
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For each t from 1 to @, we define the following additional games:

Ga meiv : This is like Game,, except that the ¢! key given to the attacker is a nominal semi-functional key. The
first ¢ — 1 keys are still semi-functional in the original sense, while the remaining keys are normal.

Game?: This is like Game;, except that the t** key given to the attacker is a temporary semi-functional key.
The first ¢t — 1 keys are still semi-functional in the original sense, while the remaining keys are normal.

In order to transfer from Game;_; to Game, in our hybrid argument, we will transition first from Game;_;
to Game, then to Game! , and finally to Game,. The transition from Gamel' to Game! will require different
computational assumptions for Phase 1 and Phase 2 queries (As shown in Fig. |1} we use two lemmas based on
different assumptions to obtain the transition).

As shown in Fig. [I] we use a series of lemmas, i.e. Lemmas [, [5] [0} [7} Bl and [0] to prove the transitions. The
details of these lemmas and their proofs can be found in Appendix [B1]

|Gan:e0 |--->| I--- Gamet_ll- -------------------- ->| Gair:et |--->| ...... |—-—>|GameQ|

Lemma 5 Lemma 8
Lemma 4 DLIN DLIN temma 9
DLIN
DLIN ¥ 1 Phase 1: Lemma 6 D3DH —
| Gamef' | > Game{ ¥
Phase 2: Lemma 7 g-pBDHE

| Gamegeg) |

Fig. 1. Lemmas and@rely on the subspace assumption (w.r.t. Deﬁnition7 which is implied by DLIN assumption,
Lemma [f] relies on the D3DH assumption, and Lemma [7] relies on the source group g-parallel BDHE assumption.

Theorem 4. No PPT adversary can win Game{\k,”_IN+1 with non-negligible advantage.

Proof. The argument for security of Gameﬁ,”_, Nap 18 Very straightforward since an encryption to index N + 1 =
(n 4+ 1,1) contains no information about the message. The simulator simply runs actual Setup, and KeyGeny
algorithms and encrypts the message M, by the challenge access policy A and index (n + 1,1). Since for all
i = 1 to n, the values of T; contain no information about the message, the bit b is perfectly hidden and
MHA 1 Adv 4 = 0.

Theorem 5. Suppose that the D3DH assumption and the DLIN assumption hold. Then no PPT adversary can
win GamefH with non-negligible advantage.

Proof. Theorem [5] follows Lemma [I] and Lemma [2] below.

Lemma 1. Suppose that the D3DH assumption holds. Then for 5 < n no PPT adversary can distinguish
between an encryption to (i,7) and (i,j + 1) in Gamely, with non-negligible advantage.

Proof. In Gameﬁ_,, the adversary A will eventually behave in one of two different ways:

Case I: In Key Query phase, A will not submit ((Z,j),S(;J)) for some attribute set S(;;) to query the
corresponding private key. In Challenge phase, A submits a message M and a non-empty attribute set S*.
There is not any restriction on S*.

Case II: In Key Query phase, A will submit ((7,7), S(,5)) for some attribute set S ;) to query the corre-
sponding private key. In Challenge phase, A submits a message M and a non-empty attribute set S* with
the restriction that the corresponding strictest access policy Ag« is not satisfied by S(;,j). Case II has the
following sub-cases:

L. (i,J) ¢ [n,n] \ R*, S ) satisfies A*.
2. (i,7) ¢ [n,n] \ R*, S35 does not satisfy A*.
3. (i,7) € [n,n] \ R*, S(7 ;) does not satisfy A*.
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We flip a random coin ¢ € {0,1} as our guess on which case that A is in. In particular, if ¢ = 0, we guess
that A is in Case I, Case II.1 or Case II.2. In this case, it follows the restriction in the index-hiding game
for Augmented Broadcast Encryption (AugBE) in [6], where the adversay does not query the key with index
(i,4) or (i,7) is not in the receiver list [n,n] \ R*. If ¢ = 1, we guess that A is in Case I, Case II.2 or Case
I1.3, which means that the adversary does not query the key with index (7, j) or the attributes set S ;) does
not satisfy A*. As of the fully secure CP-ABE schemes in [IOITOTTIT2IT3], we assume that the size of attribute
universe (i.e. [{|) is polynomial in the security parameter A, so that a degradation of O(1/|U]) in the security
reduction is acceptable. The proof details of Lemma [I] can be found in Appendix

Lemma 2. Suppose the DSDH assumption and the DLIN assumption hold. Then for any 1 < i <n no PPT
adversary can distinguish between an encryption to (i,n) and (i+1,1) in Gamem with non-negligible advantage.

Proof. The proof of this lemma follows from a series of lemmas that establish the indistinguishability of the
following games, where “less-than row” implies the corresponding wv; is randomly chosen from Zf’) and T; is a
random element (i.e. T; = e(g, g)%), “target row” implies the corresponding v; is randomly chosen from Zf’) and
T; is well-formed, and “greater-than row” implies the corresponding v; is randomly chosen from span{x1, X2}

and T; is well-formed.

— Hy: Encrypt to column n, row i is the target row, row i + 1 is the greater-than row.

— Hy: Encrypt to column n + 1, row 7 is the target row, row 4 4 1 is the greater-than row.

— Hj: Encrypt to column n + 1, row i is the less-than row, row i + 1 is the greater-than row (no target row).
— Hy: Encrypt to column 1, row i is the less-than row, row i + 1 is the greater-than row (no target row).

— Hs: Encrypt to column 1, row ¢ is the less-than row, row i + 1 is the target row.

It can be observed that game H; corresponds to the encryption being done to (i,n) and game Hj corresponds
to encryption to (i + 1,1). As shown in Fig. 2] we use a series of lemmas, i.e. Lemmas and to
prove the indistinguishability of the games H; and Hjs. The details of these lemmas and their proofs can be
found in Appendix [B-3]

Lemma 10\ Lemma 11\ Lemma 12\ Lemma 13\
H, D3DH ° H, D3DH ° Hy D3DH 7 H, DLIN 7] Hs

Fig. 2. Lemmas and |12| rely on the D3DH assumption, and Lemma [13| relies on the DLIN assumption.

5 Conclusion

In this paper, we proposed a new Augmented R-CP-ABE construction on prime order groups, and proved its
message-hiding and index-hiding properties in the standard model. This CP-ABE achieves full security in the
standard model on prime order groups. Our contributions are (1)adding the revocation list, and (2)proving
its full security with revocability. We follow the proof method in [16] for message-hiding, and build two direct
reductions for the proof for index-hiding. The scheme is a fully collusion-resistant blackbox traceable R-CP-ABE
scheme. It achieves the most efficient level to date, with the overhead in O(v/N) only.
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Assumptions

The Decisional Linear Assumption (DLIN) Given a group generator G, define the following distribution:

(p,G,GT,e)ﬁg, g,f,v&@, 61,02<in,
D := ((p’G7GT>e)?gaf7vafCI7vcz)a

Ty = g%, Ty - G.

We define the advantage of an algorithm A in breaking this assumption to be:

Advg'y = | Pr[A(D, Ty) = 1] — Pr[A(D, Ty)] = 1].

We say that G satisfies the DLIN Assumption if Advg f4 is a negligible function of the security parameter A for
any PPT algorithm A.
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The Decisional 3-Party Diffie-Hellman Assumption (D3DH) Given a group generator G, define the
following distribution:

(p,G,Gr,e) £ G, g L G, z,y,z £ Ly,
D= ((p,G,Gr,e),9.9",9",9%),
Ty = ¢"*, T1 < G.
We define the advantage of an algorithm A in breaking this assumption to be:
Advd3P = |Pr[A(D, To) = 1] — Pr[A(D, Ty)] = 1.

We say that G satisfies the D3DH Assumption if Advg ‘:’4D H is a negligible function of the security parameter \
for any PPT algorithm A.

The Source Group ¢-Parallel BDHE Assumption [12] Given a group generator G and a positive integer
q, define the following distribution:

(p7GuGT7e)<ig7 9&67 c7d7f7b17"‘7bq<izp7
. 2 a+2 2
D:((paG7GT7e)7 g7gf7gdf7 gc7gc u'~'7gcqa ,gcq w”agcqu

g vie{1,....2¢}\{g+1},5€{1,...,q},
g¥ vje{l,....q},
gTebi i i e {1, q}, 5,5 € {1,....q) st j # ),

Ty = g™ Ty & G.
We define the advantage of an algorithm A in breaking this assumption to be:

AdvdY = |Pr[A(D, Tp) = 1] — Pr[A(D, Ty)] = 1].

We say that G satisfies the Source Group ¢-Parallel BDHE Assumption if Advgif is a negligible function of the
security parameter A\ for any PPT algorithm A.

A.1 Assumptions for Dual Pairing Vector Spaces

Let (B,B*) denote a pair of dual orthonormal bases over Z;, A € Z;"*™ be an invertible matrix for some m < n,
and S;, C {1,...,n} be a subset of size m. Then new dual orthonormal bases (B4, B? ) are defined as follows.
Let B,, denote the n x m matrix over Z, whose columns are the vectors b; € B such that ¢ € S,,. Then B,, A
is also an n x m matrix. B4 is formed by retaining all of the vectors b; € B for i ¢ S,, and exchanging the b;
for i € S,, with the columns of B,, A. To define B, similarly let B}, denote the n x m matrix over Z, whose
columns are the vectors by € B* such that i € S,,. Then B (A71)! is also an n x m matrix, where (A71)?
denotes the transpose of A~1. B* is formed by retaining all of the vectors b} € B* for i ¢ S,,, and exchanging
the b} for i € S, with the columns of B*,(A~1)!. We have

Lemma 3. [9] For any fized positive integers m < n, any fized invertible A € Z;**™ and set Sy, C {1,...,n}

of size m, if (B,B*) £ Dual(Zy,v), then (Ba,B%) is also distributed as a random sample from Dual(Zy, ).
In particular, the distribution of (Ba,B%) is independent of A.

The “Subspace Assumption” is introduced by Lewko [9], and is generalized by Lewko and Waters [12]. In
particular, let the parameter m denote the number of bases, and each basis pair has its own dimension n; and
its own parameter k; where k; is a positive integer such that k; < %-. The following statement of the subspace
assumption is implied by DLIN assumption, and is proved by Lewko and Waters [12] Appendix A]. Note that
this reduction (i.e., the Subspace Assumption is implied by DLIN assumption) holds for any valid choices of the
parameters m,n;, k;. We refer to [I2] for more details of the following statement of the subspace assumption.

The m dual orthonormal bases pairs will be denoted by (B, B7),..., (B, B,). For each ¢ from 1 to m, the

basis vectors comprising (B;,B}) will be denoted by b; 1, ..., b;n, and b;q,..., b}, respectively.
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Definition 5. (The Subspace Assumption [12]) Given a group generator G, define the following distribution:

R R R
(p7GaGT7e) < g7 g < G» ¢7777577'1a7'2,7'3,/i1>/127/ﬁ3 < Zp>
R R
(B1,BY) <— Dual(Z,*,v), ..., Bm,B;,) <— Dual(Zy™ 1),
Vie{l,...,m}:

b; bi k. b; oK. . b; bi k. b; ok,
Ui,l = gul At m2bi g, 1 +ps ,2k1+1,UZ_’2 = gul 2+ m2bi g, 2+ps 2hi+2
U = gﬂlbi,ki+ﬂ2bi,2ki+M3bi,3ki,
Vi,l — ngT]b:.1+T2Bb:,ki+1, Vig:i= g7'117bfY2+T2,8b:-‘,ki+2,

b* b*
Vz' k. 1= ngn 1’ki+7—2’8 1,21%-7
Wi = ng'r]b:a1+T2ﬂb:,ki+1+7'3b:,2ki+l W,o:= ng'r]b:,2+T2ﬁb:,ki+2+7—3b:,2ki+2
s ? I ’
Wik = g’rlnb:,ki+7—2Bb;2ki+7—3bz,3ki,
R b; b; b; ok, b; 3k, bin.
D = ((p7G7GT7e)ag’ {g Yl?g ’27"'79 1'2]‘7” g l’3k7/+17"'7g T

* * * *
ﬁbi,ki+1 - ’gﬂbi,Qki7 gbq‘,,2ki+1 Ve 7gb1‘,,ni,

Uin,Uig, ..., Ui, }iZy, p3).

b} b} L.
gn l,1’_._7g77 l‘k“ g

We assume that for any PPT adversary A (with output in {0,1}),
Advg 4 = |Pr[ADA{V1,....Vik tiy) =1 = PrlAD,{W;1,..., Wi }itq) =1]]

15 negligible in the security parameter .

B Proofs

B.1 Proof of Theorem [3

Lemma 4. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference in advan-
tage between Game,.,; and Gamey.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Game,..,; and Gamey,
we will create a PPT algorithm B to break the subspace assumption. We will employ the subspace assumption
with parameters m = U + 2, n; = 3,k; = 1 for two values of ¢, and n; = 6,k; = 2 for the rest of the
values of 7. In order to reconcile the notation of the assumption with the notation of our construction as
conveniently as possible, we will denote the bases involved in the assumption by (D, D*), (Do, D§) € Dual(ZS, )
and (Dy,D}),..., (Dy,Dfy) € Dual(Z5,1)). B is given (we will ignore the U terms and 3 because they will not
be needed):

Gapag7 gd1’gd2’ gdo,ljgdo,z’ {gdw)l?gdmjagdmygagd1'4}z€[7/{]7

d; ds  d; d; d; dj . d; d; d’ . d; dr . d .
gn 1795 2,93, 977 0’17gﬁ 02,973, {gn J’lvgn J’Qagﬁ m'dagB mP/’47g 2,9 “'f’}ze[u]7
Ty, Toy, {Ten,Teptacnn-

The exponents of the unknown terms T'1, T, are distributed either as mindj + 720d5 and mindj | + T28dg 5
respectively, or as Tind] + 724d3 + 73d3 and Tindg | + T28dj 5 + T3d; 5 respectively. Similarly, the exponents of
the unknown terms T'; 1, T 2 are distributed either as mind; | + m24d; 3 and Tind; 5 + 24d} 4 respectively, or
as Tind; | + 12Bd; 5+ 13d} 5 and Tind} 5 + T2 fd} 4 + T3d; ¢ respectively. It is B’s task to determine if these 73
contributions are present or not. l

Setup. B implicitly sets the bases for the construction as:

by =ndj, by=p3d;, bz=d3, t=n"'dy, by=p"'dy, bj=ds,
bo,y =ndj 1, boa = Bdj 5, bos = dfs 5, b5 =n""do1, b5 =B do 2, bf 5 = dos,
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b, 77dx 1 b de 2, basz= Bd;,& by = /Bd;Av bs = d3, be = dg Vx € [U],
b*1 =n" da: 17b*2*77 ld, 2, ws =07 "dy 3, by = 7 dy 4, b = ds, b = dg YV € [U].

We note that these are properly distributed because (ID,D*), (Do, Df), etc. are randomly chosen (up to
sharing the same v value).
B chooses random exponents

! / / / ! /
0, o,y € Zy, {ri, 2z, QG 15 QG 9 EZp}ie[n]7 {C‘,ucj,Qa Yj, Uj 6Zp}je[n]-

Then B gives to A the following public parameter:

( g,h=49", {h;}jerm, 9% g% 1% = (g*)%, hP2 = (™",
{h5 = ("), 12 = (") }jeqm, h*r = (%)% nPo = (g%02)",
{hot = (g% )7, WO = (g% ) Yaeu, Fi = es(g™, g"")7, Fy = eg(g®, g7%)"%,
{Fij = es(g™, g"4)"5, By j = e3(g%, ")} e,
(G = gttt |z, — gibrdbe) B — eg(gB g1 B = 63(gd27gﬁd;)a;’2}i€[n]v
{H = (%)% (™), Y5 = (H)" }yeqm ).

Note that B implicitly sets

o1 =nay, ag = Bay, {aign =naj,, dia =B otiem), {1 =1¢1, 2 = BCa}iem

Phase 1. To respond to a query for ((4,7), S j)), B produces a normal key as follows. It randomly chooses
0731, 01.4.2,0: 51107 jo € Lp, and outputs a private key SK(; jy 5., ,, = (4, 5), Stigy. Ky, K 5, K 3o {Kjjr Hirem\ (3

Km,oa{K 7J,w}w65<i,j)> as

K; i 79(061 1+7icj1)b] +(aq,2+ric; 2)b; (hh )(01 j1+6i,5,1)b7+(04,5,2+04,5,2)b3

9,5

:(gdl) Patrich  +(04v;) (o i,j,1+5i,j,1)(gd2) i,2+7‘icj12+(9+1}j)(o-i’jyz_"_éi,ja)7
K;j Z(le)ai-&-oé.m-&-ééj,l(gdg)a/z_,_g;yj,z_,’_&gdyz’ Kg’ _ (K/ )21
_ (0551 +01.5.1)b% 4 (04 42485 §.2)bS
{Kijjtiemngy = {hy oo DT i dm g cn gy,
— {gdwj/(JLLI—MLM)ngUﬂ(Ué’j‘z—i_é;d*?)}jle[n]\{j}.
K j0 =(g%)% (g%2) %2,
K :(gdz,l)g',i,j,l(gd:c,Z)U':;’]’,l(gdx’?’)o—;,jg (gd1,4)ff§,j,2 dre S
Note that B implicitly sets

Oij,1 = ﬂaé,j,l, 04,52 = 50§,j,2, 5i,j,1 = 775§,j,1, i,5,2 = 55/,1 2-
Challenge. A submits to B a revocation list R, an LSSS matrix (A, p) of size [ x m and two equal length
messages My, My, B produces the challenge ciphertext for index (i = 1,7 = 1) as follows.
B first chooses random
Ry, T, Sly--+y5n, tla”-atn EZ;IH
Ve EZ]?;, wi,..., W, € 23
51,175/1,2%"7&/,175[,,2 € ZP? u,17u/2 € va

where the first entries of u} and u5 are equal to 0. It also chooses a random vector uw € Z, with first entry
equal to 1, and chooses random exponents 5173, e ,51'73 € Zy. B implicitly sets

T = T1, T2 = Ta,
U = TIU + U, Uz = ToU + U,
€ = EpaTi + &1y Eh2 = EpaTo + & VE € [I].
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B chooses random 1y, 7y, 7, € Zp, and sets x1 = (rz,0,75), x2 = (0,7y,72), X3 = X1 XX2 = (—TyTz, =722, T2Ty),
then it chooses random vy € Z;’”vi € span{x1,xz2} fori=2,...,n.
B chooses a random b € {0, 1}, then creates a ciphertext (R, (4, p), (R, R}, Qi, Q;, Q7. Ti)i—y,(Cj, C})}—q,
(Py)t_,) as follows (note that i = 1,7 = 1):

1. For each i € [n]: it sets

R, = (G;)*"", R;= R},

Qi — g‘rs,;(1)1,~vc)(b1+b2)7 Q; — (I’L H hj’)751(vi.vc)(bl+b2)Z§iT§, Q;l — gt,;(b1+b2)’
J'ER;

(Ei’lEiQ)Tsi(vrvc)

T, = M, ,
b (FI/F2/)Tsi(vi~vC)63(gd1 , T1)9a163(gd2 , T1)9a2

where Fy' = Fy H Py = es(gh, gm0 H e3(g®, g4V and By = Fy H By

j'ER; j'E€R; J'eR:
= e3(g?2, gndr)0% H e3(g®, g1% )% respectively.
J'€R;
2. For each j € [n]: it sets C; = (H;)™(Y )", C} = (Y ;)*i.
3.
P :Tg,la

P =((T p, 1) 00 (T 1) 2) %0
(gnd:(k)wl)Ak'ull‘i’g,k_’l(gnd;(k)j)*g,k,l(gﬁd;(k),3>Ak'u’2+£l/c,2 (gﬁd;(k),zl)*f'fm)o vk € [I].

Phase 2. Same with Phase 1.

If the exponents of the T' terms do not include the 73 terms, then @} and Py are in their normal forms, and
the exponent vector of Py is

(Ap - miu+ Ay - u) + 718 5+ fllc,l)nd;(k),l + (—7m1& 5 — fl@,l)ﬂ‘ﬁ;(k)g
+ (Ap - mou+ A uh + 2 5+ &g o) By 5+ (— T2k 5 — €h2) By 4
=(Ar - w1 +&r1)bok),1 — Er1bpy2 + (A - w2 + & 2)bor),3 — Ek2bpi) 4

Thus we have a properly distributed normal ciphertext in this case.
If the exponents of the T terms do include the 73 terms, then Q) and Py are in their semi-functional forms
with 73 = 73, and the exponent vector of P}, is

(Ar w1 + &1)bory 1 — Sk1bpy2 + (Ak - w2 + &k2)bpiy 3 — Ek2bp(r) 4
+ (Ag - 73 + 7385, 3)bpr),5 — T3E5.3bp(k) 6

This is a properly distributed semi-functional ciphertext with uz = 73u and k3 = 73§}, 5. (Note that these
values are distributed randomly and independently from w, w2, &k 1, &k 2-)

Thus, when the 73 terms are absent, B properly simulates Game,..,;, and when the 75 terms are present, B
properly simulates Gamey. As a result, B can leverage A’s non-negligible difference in advantage between these
games to gain a non-negligible advantage against the subspace assumption.

Lemma 5. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference in advan-
tage between Game;_1 and Gameiv for any t from 1 to Q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Game;_; and Ga meév ,
we will create a PPT algorithm B to break the subspace assumption. We will employ the subspace assumption
with parameters m = U + 2, n; = 3,k; = 1 for two values of ¢, and n; = 6,k; = 2 for the rest of the
values of i. In order to reconcile the notation of the assumption with the notation of our construction as
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conveniently as possible, we will denote the bases involved in the assumption by (B, B*), (Bo,Bf) € Dual(Zg, )
and (B1,B7),. .., (By,B},) € Dual(Z],v). B is given (we will ignore u3 because it will not be needed):

Gapaga gblvg 5 gb01 O'2a {gbm’l7gbm’27gbm’37gbm’4}a:€[u]a

bs  mbi, BbL, b b* b , Bb . Bb%, b, b
292, gn 01, gnm02, 703, {gﬂ ”‘lvgn 22,973, g, g, g "G}we[u]a
U, = gH1b1+H2b2+M3b3’ UO,l _ gu1b0,1+uzbo,2+#3bo,3,

q" gﬂbz

be be be b, be.atisbe.
{Um,l = g”l AtH2ba,3tHs ’57 Um,2 - gﬂl 2 H#2De,a i3 6}3?6[1/[]3

Ty, Tox, {Ten,Te2tecu-

The exponents of the unknown terms T'1, T 1 are distributed either as T1nb] + m28b5 and T1nbg 1 + T28bg 5
respectively, or as 71nb} + 728b3 + 73b5 and Tinbf | + 728b( 5 + T3bj 5 respectively. Similarly, the exponents of
the unknown terms Ty 1, T 2 are distributed either as Tinb} | + m2b} 5 and T1nb} 5 + T28b] 4 respectively, or
as T1nby 1 + 1280} 5 + T3b} 5 and Tinb; 5 + T2 b} 4 + T3b] ¢ respectively. It is B’s task to determine if these 73
contributions are present or not.

Setup. B implicitly sets (B,B*), (Bo, Bg), {(B.,B%)} as the bases for the construction.
B chooses random exponents
0, o,y € Zy, {ri, zi, a;71,a;72 € Lp}icin)s {03,1,0972, Yi>Vj € Lp}icn]-

Then B gives to A the following public parameter:

( 9 h=9" {h;}jemp 9% g%, B = (g")7, n% = (™)’
{05 = (g")™ 057 = (g") " Yyen, D00 = (g°01)", b2 = (g™2)",
{hP=1 = (g% )%, nPt = (g% ) Yy, i = e3(g”, g™, Fy = e3(gb2, g7b2)002,
{Frj = es(g™,g™) ™, Fyj = es(g”, 9"2)"7*% } e,
(G = gni®rtbe) | Z, = g5 (Brtba) By = ey(ghr, g"01) 0, B o = e3(g”2, 97%2) 0 Yig ),

(H, = ()50 (6752, Y = () e )
Note that B implicitly sets
ar =nal, ap = Bag, {ain =na) ;. @ = Bagotiem), {61 =1¢, ¢j2 = B o} jem)-

Phase 1. To respond to a query for ((i, ), S, ;)), B acts as follows.

— If it is in the first ¢ — 1 key queries, B generates a semi-functional key as follow. B randomly chooses
i 1507 72,07 15 ”2,7 € Zy, and outputs a private key SK; = ((i,7),Sq,, Kij, K ;, Ki;

(4:9),5 (1.5 i, g0
{K 5,4 }J re[n\{s}> Ko, {K; ,J’w}zes(i,n ) as:

nbj

i 1+"’zC] 1H(0+v;) (o 2,_7’,1+5;,]‘,1)( Bbs)0‘;,2+Tic},2+(9+7}j)(Ui,j,2+5£,j,2)g(6+1’j)“/bg,

(g"1)" g
(g"01) ool (gfba)@atels a0l g0t KT = (K )™,
)Y

{I_{ i =(g v (0 ;1467 5, 1)( Bb; 2)Y (07 5,260 5, 2) (9+v /)vba} e\
K ( nby, 1) ”,1(gﬁbo,2) SER
K ( 77bz 1) 1],l(gnb:ﬂ)g;,]’,l(gﬁb:.ﬁ)gfi,jﬂ (gﬁb:A)U;,j,Q Y € S(i,j)-

Note that this is a properly distributed semi-functional key with implicitly setting

_ / L _ / o _ /
0i,5,1 =10 515 0ij2 = 5%,3‘,27 i1 = 7751‘,]‘,17 i,5,2 = 651] 2-
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— If it is the t** key query: B randomly chooses (5” 1,5”2,5”3 € Zp, and outputs a private key

SK(ig).syy = ( (59) Stigy, Ko K i K7 3 A K j o Yireimp g5} Koo { K ja baes,, ;) as:

gnb )e Patrich  +(04v5)8; 5, (g,@bg )a,/i’2+TriC;Y2+(9+Uj)6;’J12T:(19+’Uj)T§0+Uj)5;,.7,37

=(
(g™ +o, 1(9’%3)aéH;’j‘le(Tl)é’{*ﬂ‘B Ki; = (Kj;)",
{K i,5,5" —( )U 5% l(gﬁb )V 5% 2T T ! 3}] rem\{s}>
Ki;o :(gnbo’l)ég’j’l(gﬁbs’z)ég’“Tofij’s,
K;j,=T,1T,2 V2 € S(iyj).
Note that B implicitly sets
Oij1 =71, Gija =BT, Gij1=1(0; ;1 + 0 ;37), ijo = B0 0+ 0 3T2)

If the exponents of the T terms do not include the 73 terms, then this is a properly distributed normal
key. If they do include the 73 terms, then this is a properly distributed nominal semi-functional key
with 0; j 3 = 73 and §; j 3 = 0; ; 373. (Note that these values are distributed randomly and independently
from 04,5,1,04,5,25 6i,j717 6i,j,2-

— If it is in the {t + 1,...,Q} key queries: B generates a normal key as follows. B randomly chooses
01507 ;2,07 41,01 jo € Zp, and outputs a private key SK@ij).80., = ( (4,7), 8,5, Kij» Ki; K,

{KijjYiemngy Kijo {Kijztees,, ) as:

(gnb o +rich  H(0+v;) (0] 5 1+67 5, 1>( )a2,2+nc;,2+(0+vj)(a;,,,2+5;,,-,2>’

)
gyt (g0 et e KT = (KT ),
)

gﬁb v /(‘71 i 1165 A 1)( ) (Ui,j,2+6i,j,2)}j/e[n]\{j}7

{K i =(
(g nbg, 1) U,1(g/3bo,2) Qg
Kijz=(g"

21)7 i, 1(g"bz2)7 7]1(gﬁbfs) ”2(gﬁbm4) 152 Yz € S(i 4)-
Note that this is a properly distributed normal key with implicitly setting
Gij1 =N0; 1, Oij2 = B0 9, 0ij1=n0,1, dij2= B0,

Challenge. A submits to B a revocation list R, an LSSS matrix (A, p) of size [ x m and two equal length
messages My, M;, B produces a semi-functional ciphertext for index (i = 1,5 = 1) as follows.
B first chooses random

Ky Ty S1ye-vs8ns  Uiye.sty € Zyp,

3 3

ve €Z,, wWi,..., Wy €Z,,

/ / / / roal m
51,1751,2? e 76[7175172 € va Uy, Uy € Zp )

where the first entries of u} and wuj are equal to 0. It also chooses a random vector u € Z; with first entry
equal to 1, and chooses random exponents & 3, ..., 3 € Z,. B implicitly sets

T = M1, T2 = W2, T3 = W3,
UL =+ U, ux = pou + uh, Uz = [u,
§k1 = 51/9,1 + 51@,3#1’ Ek2 = 51/9,2 + 51;,3M2a §k3 = 51/9,3M3 Vk € [l]

B chooses random 1, 7y, 7, € Zy,, and sets x1 = (r5,0,75), x2 = (0,7y,72), X3 = X1 XX2 = (—Tyls, —TzT2, TaTy),
then it chooses random vy € Zg’,, span{x1,xz2} fori=2,...,n

B chooses a random b € {0, 1}, then creates a ciphertext (R, (4, p), (R;, R., Q;,
(Py)L_,) as follows (note that i = 1,7 = 1):

z’ )z 17(Cj7cl)J 1
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1. For each i € [n]: it sets

R; = (G)""', R;=Rf,

Qi = grsi(vi»vc)(b1+b2)7 Q. =(h H hj/)Tsi(vi~vu)(bl+b2)ziiUle’ Q= gti(b1+b2)7
JER;

(Ei,1Ei,2)TSi(vi'v“)

Ti - M * / * ’
b (Fl’FQ’)Tsi(vi'vC)E;),(Ul,gnbl)eo‘leg(Ul,g”b2)0a2

where F1/=F1 H Fl)j/ :63( bl nb Gal H 63 bl nb U,(yl and F2 = H ng

j/GRi 7 ER j GR,
= e3(g2, g"%2)0% H e3(g®?, g"2)¥" 2 respectively.
J'€R;
2. For each j € [n]: it sets C; = (H;)™(Y;)"i, C% = (Y ;)*9.
3.
Py :U8,17

P, :((gbp(k),l)Ak'ul1+£;ﬂ,l (gbp(k),2)7£2:,1

(g2 Mt (ghocn 1)~y ISy ) vk € )

Phase 2. Same with Phase 1.

Thus, when the 75 terms are absent, B properly simulates Game;_1, and when the 73 terms are present, B
properly simulates Gamet As a result, B can leverage A’s non-negligible difference in advantage between these
games to gain a non-negligible advantage against the subspace assumption.

Lemma 6. Under the DSDH assumption, no PPT attacker can achieve a non-negligible difference in advantage
between Game? and Game! for any t from 1 to Qy (recall these are all the Phase 1 queries).

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Ga meiv and Ga mef
from some ¢t between 1 and @)1, we will create a PPT algorithm B to break the D3DH assumption. B is given
g,9%,9Y,9%, T, where T is either ¢g*¥* or a random element of G. B will simulate either Gameiv or GametT with
A depending on the nature of 7.

Setup. B chooses random dual orthonormal bases (D, D*), (D, D) of dimension 3 and (D, D) of dimension
6, all with the same value of ¢. It then implicitly sets (B, B*) and (Bg,Bf) as follows:

by =di, by=dy, by=(xy)'ds, bi=di, bs=d;, b;=(vy)d;,
bo,1 = do,1, bo2 = do2, bos = (zy) " 'dos, b5 = d 1, b5, = df 5, b 5 = (zy)dj 3.

We note (B,B*) and (By, B;) are properly distributed.
B sets the normal portions of (By,B7),. .., (By,B;,) as follows:

bz,l = dz,la br,2 =d, 29 br,S =d, 39 br,4 = dm,4 Vo € [u]v
bl =d; 1, br,=d;, b3 =d; 3 b5, =d;, Vo e U]

The semi-functional portions of these bases will be set later (at which point we may verify that all of
(B1,B7), ..., (By,B;,) are properly distributed).
B chooses 9 L Q1, Qg T, O 1, 0 2, 2i(8 € (1)), €51, ¢52,Y5,05(J € [n]) € Z, randomly. We observe that B can
now produce the public parameter (with h = g%, {hj = 9" }jemm)), and also know the master secret key
(enabling it to create normal keys). It gives the public parameter to A.

Phase 1. To create the first t — 1 semi-functional keys in response to A’s key requests, B first creates a
normal key, then chooses a random exponent 7' € Zj,, and multiples K; ;, K ; and K, {I_{i7j7j/}j/e[n]\{j}
by g(““jwd; , g”ldg and gzw'dg,g”jwldé respectively. We are using here that B does not need to know ¢®3
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precisely in order to create well-distributed semi-functional keys — it suffices for B to know ¢°® for some
(non-zero) ¢ € Zy.

A requests the t'" key for some pair ((it, jt), S(;,,;,)) where S, ;,) € [U]. At this point, B implicitly defines
the semi-functional parts of the bases (B1,B7),..., (By,B;;) as follows (note that these have not been
involved in the game before this):

_ 1 _ _
bx,5 =T da:,57 bx,ﬁ = dxﬁv b 5 'rdac 59 ::,6 - d::,fi vz ¢ S(h:jt)’
bys=dy5,  bpe=dspg, bz,5 =d; 5 bye=d;s VT €Sy, .

We observe that all of (B, B*), (Bo,Bg), (B1,B7), ..., (By, B, are properly distributed, and their distribution
is independent of x,y, and S;, j,) (the involvement of x,y, and S;, ;) is only present in B’s view and is
information-theoretically hidden from A, see [I2, Lemma 11]).

To create the t'"* key, B chooses random exponents o ;1,04 5.2, 0 .1, 0i .2, 0; j 3 € Zp, then forms the key as

Ki,j :(gd )Ot1 1+7ric1+(04+v;5)(04,5,1+04,5, 1)( )OCL 2+7ics 2+ (0+v;) (045,240 5, 2)T(9+U1)d§g(9+vj)5l i3 3
K;j :<gd )a1+au 110454, 1(g 2)a2+0'1j’j’2+6i‘]‘12Td3g i3 3 K// _ (K/ )Zz
{Ki,j,j' :(gd )U /(01 7, 1463, J» 1)( d2)v ’(‘71 7 2+5;, s 2)TU ’dsgvﬂéz 7.3 d} E \{J}’
KLJ}O :( dg 1) 1.7,1(gd0,2)6"-;],296i,_i,3d0,3
K0 =(g%)7001 (g% ) 7001 (gTea) 002 (ghea) iz (g7 ) hestdos Vo € S, ).

If T = g*¥*, this is a properly distributed nominal semi-functional key with o; ;3 = 2,d; ;3 = (xy) "] ; 5.
Otherwise, this is a properly distributed temporary semi-functional key.

Challenge. At some later point, A submits B a revocation list R, an LSSS matrix (A, p) of size { x m and two
equal length messages My, M7, B produces a semi-functional ciphertext for index (i = 1,7 = 1) as follows.
Note that S, ;,) does not satisfy (A, p), B first computes a vector w € Z;" that has first entry equal to 1
and is orthogonal to all of the rows Ay, of A such that p(k) € S(;, ;,) (such a vector must exist since S(;, ;,)
fails to satisfy (A, p), and it is efficiently computable). B also chooses a random vector ujz € Z" subject to
the constraint that the first entry is zero. It implicitly sets w3 = zy and sets us = ryw + zuj. We note
that 73 is random because all of the dual orthonormal bases are distributed independently of z,y, and ug
is distributed as a random vector with first entry equal to m3. B also chooses random values & 3 € Z, for
all k such that p(k) € S(;, ;,) and random values & ; € Z,, for all k such that p(k) ¢ S, j,). For values of k
such that p(k) ¢ S(;, j,), it implicitly sets & 3 = xﬁfw. B can then produce the semi-functional components
of the ciphertext as it can compute:

g7l'3b3 — gdg7 g7T3b0,3 — gdo 3
glAs v+ 5= Ensbocirc — (gV)(Ax W g(An st €h)donrs () ~Ehadrs Vi st p(k) ¢ St ),

g(Ak~u3+€k,3)bp(k),5—ik,sbp(m,a _ (gw)(Ak‘u/g)dp(k)jg&k,?.dp(k),s—Ek,sdp(k),ﬁ Vk s.t. p(/{?) c S(itJt)

Here we have used the fact that A - w = 0 mod p to avoid needing to produce a multiple of g*¥® )5 for k
such that p(k) € S(, j,)-
Note that h = ¢’ and B knows the value of 6, B can produce the semi-functional components using the value
of 6 and the above values. Then it multiplies these semi-functional components by the normal components
to form the semi-functional ciphertext, which is given to A.

Phase 2. B can respond to A’s key queries by calling the normal key generation algorithm.

If T = ¢g®¥#, then B has properly simulated Ga met , and if T" is a random group element, then B has properly
simulated Gamet Thus, B can leverage A’s non-negligible difference in advantage between these games to gain
a non-negligible advantage against the D3DH assumption.

Lemma 7. Under the source group q-parallel BDHE assumption, no PPT attacker can achieve a non-negligible
difference in advantage between Gameiv and Gamef for at > Q1 using a revocation list R C [N], and an access
matriz (A, p) of size | x m where [;m < q.
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Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Ga meiv and Ga me?

for some ¢ such that 1 <t < @ using an access matrix with dimensions < ¢, we will create a PPT algorithm B
to break the source group g-parallel BDHE assumption. B is given: g, g%, g%, g¢ Vi € [2¢] \ {q+ 1},9° /% Vi €
29)\ {q +1},j € [q], g7 Vj € [q), g% /% Vi € [q], 4,5 € q],j # j', and T, where T is either equal to g?<"""
or is a random element of G. B will simulate either Game;' or Game] with A depending on the nature of 7.

Setup. B chooses random dual orthonormal bases (D, D*), (D, D§) of dimension 3 and (D,, D) of dimension
6, all with the same value of 9. It then implicitly sets (B, B*) and (Bo,Bf) as follows:

bi=di, by=ds, by=(cd)"'ds, bj=dj, bs=d; b;=(cd)ds,
bo,1 = do,1, bo2 = do2, bos = (¢) 'dos, by, = dj 1, b5 5 = dfs 5, b 3 = (c)d 5.

We note (B, B*) and (By, Bf;) are properly distributed.
B sets the normal portions of (B1,B7),. .., (By,B;,) as follows:

bw,l = dw,ly bw,2 = dw,2; bz,S = dw,?); bw,4 = dw,4 Vo € [u]a
* R T * . T * R T * R
z,1 — %z, 1 Y22 — Yz 2y Y2 3 — Yz, 3 Y4 — dw,4 Vz € [u]

The semi-functional portions of these bases will be set later (at which point we may verify that all of
(B1,B7), ..., (By,B;,) are properly distributed).

B chooses 6, a1, aa,1i, 25, 01, i 2(i € [n]),¢j1,¢52,y5,v;(§ € [n]) € Z, randomly. We observe that B can
now produce the public parameter (with h = g%, {hj = 9" }jemm)), and also know the master secret key
(enabling it to create normal keys). It gives the public parameter to A.

Phase 1. To create the first ()7 semi-functional keys in response to A’s key requests, B first creates a normal
key, then chooses a random exponent 7' € Z,, and multiples K ;, K ;, K7 ; and {Ki,j,j’}j/e[n]\{j} by
g(e‘“’j)"’/d; , gV/dg , gz”/dg and g“i”’/dg respectively. As in the proof of the previous lemma, we note here that
B does not need to know ¢% precisely in order to create well-distributed semi-functional keys.

Challenge. Before requesting the ¢ key, A will request the challenge ciphertext for some revocation list
R C [N] and access matrix (A, p) of size [ X m, where both I, m < ¢. For each attribute = € [U], we let J,
denote the set of indices k € [I] such that p(k) = z. For each attribute x € [U], B chooses a random value
.. € Z, and defines a value 7, by

Ne = 1, + Z cAp1/bp+ -+ " Ap o/ bg.
ke,

At this point, B implicitly sets the semi-functional portions of the bases (Bi,B}),..., (By,B;,) as follows
(note that these have played no role in the game before this point):

bx,5 = dz,57 bx,6 = ’r];ldx,ﬁa b;75 = d;,57 b;76 = T}:Cd;,ﬁ Vo € [u]

We observe that all of (B1,B}), ..., (By,B;;) are properly distributed.

B produces a semi-functional ciphertext for index (i = 1,j = 1) as follows.

To create the challenge ciphertext, B first creates a normal ciphertext using the normal encryption al-
gorithm. To create the semi-functional components, it implicitly sets w3 = cdf. It also chooses random
values b, ..., uy, € Z, and random values & 5 € Z, for each k € [I]. Tt implicitly sets uz = (cdf, dfc* +
wh, .. df ™ 4 ul). E| This is distributed as a random vector with first entry equal to 73. For each k € [I],
B implicitly sets {x 3 = —dfbrn ) + 51;,377p(k)- These are distributed as uniformly random elements because
each 5,’%3 is random and 7,y # 0 (with all but negligible probability). We observe:

Ay uz + &y =df (cApa + EApo + .o M Apn) + Aoy -+ Ap ol

—dfbk Oy + D CAr/brr -+ A /i) + € sNoh)-
k/GJp(k)

2 Note that this is assuming that m > 2. For the case of m = 1, we will set us = (cdf), 0ij3 = wic?, and &; ;3 =
f6715£!j!3, and it can be verified that the following proof follows as well.
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By definition, k € J,1), so we have some cancelation here:
Ap - uz + &3 =Ap2up + -+ Ap

_ dfbk(n:)(k) + Z CAk’,l/bk’ 4+ cmAk/,m/bk/) + 512,377p(k)-
kJ,er(k>\{k7}

We now see that B can compute g% #3+¢k.3 using the terms it is given in the assumption, enabling it to
produce g4 #s€k3)bo(k)5 = g(Arusters)dors We also see that

~E1,300(k).6 = €310 Dotk = (b — &k 3)dp(r) 6

so B can also produce g~¢#3% )6 In this way, B can produce the semi-functional component of P, for each
k € [I] with the proper distribution, as h = g’ and B knows the value of 6.
B also produces the semi-functional components of Q; and Py as it can compute:

g™t = (gf)%, gmebos = (g¥)dos,

It gives the resulting properly distributed semi-functional ciphertext to A.
Phase 2. To create the Q" ..., (t—1)"* semi-functional keys in response to A’s key requests, B first creates a

normal key, then chooses a random exponent ' € Z,, and multiples K; j, K ;, K ; and {K ;i }tiemnoy

by g(‘g"’“fwdg797/";,9“7/‘1; and g“]”yd; respectively. As in the proof of the previous lemma, we note here
that B does not need to know g% precisely in order to create well-distributed semi-functional keys.

A requests the ' key for some pair ((iy, j;), S(i,.j.)) Where S(;, j,y C [U]. B can create the normal parts of the
key using the normal key generation algorithm. To create the semi-functional parts, B proceeds as follows.
Since S, ;,) does not satisfy (A, p), B can (efficiently) compute a vector w = (wy, ..., w,,) € Z;" such that
its first entry is non-zero and w is orthogonal (modulo p) to all rows Ay, of A such that p(k) € S(;, j,). We
may assume the first entry of w is randomized. B implicitly sets o; ;3 = wic? + -+ + Wy, c? ™1 which
is properly distributed because w; is random (and ¢ is non-zero with all but negligible probability). B also
chooses a random value §; ; 5 and implicitly sets d; ;3 = —woct ™l — o — et fc’1(5§)j73. This is
properly distributed because J; ; 5 is random (and fc~t is non-zero with all but negligible probability).
We observe that

(04,53 + 0i,5,3)b5 = (widc®™ 4 df 6 ; 3)d5.

B forms the semi-functional part of K ; as: Twid3 (g4 )3550%5 TE T = g4 | this is equal to g(7e5:9+5.5.9)83
as required for a nominal semi-functional key. Otherwise, this exponent is distributed as a random multiple
of b3, as required for a temporary semi-functional key. B forms the semi-functional parts of K; j, K ;’ ; and
(R} ety 8 (115 (g0 000) | (Trdi (g8 )5t and (115 (g7)%5%)7" respectively.
We also have
6i7j,3b673 = (_w2cq . wmcq—nz+2 + f(sfg,j73)d8,37
enabling B to produce g‘;"’vjv3b3«3 using the terms given in the assumption.
Now, B can also produce g%+, and hence can compute g%33%.5 = 913395 for each = € Si,.j.- We observe

* *
0i,5,3bp6 = 0 j3Nedy 6, and

0ijale = (Wic? + -+ w0, + D cAg/br + -+ M A /br).
ke,

For each k € J;, we have p(k) = x. So for x € S;, j,), we have A -w = 0 modulo p for every k € J,. Thus,
all of the terms involving c?t! cancel, and we are left with terms that can be created in the exponent from
the group elements given in the assumption (note that m < ¢, so 2¢q is an upper bound on the powers of ¢
involved here). This shows that B can create g‘”*“b;G for all z € S(,,;,), and hence can produce properly
distributed semi-functional components for each K ;. of the t* key.

B can respond to the rest of A’s key requests by producing normal keys via the normal key generation

algorithm.



26 X. Li, K. Liang, Z. Liu and D. S. Wong

Iftr= gdcq+1, then B has properly simulated Gamefv , and if T" is distributed randomly, then B has properly
simulated GametT. Thus, B can leverage A’s non-negligible difference in advantage between these games to
achieve a non-negligible advantage against the source group g¢-parallel BDHE assumption.

Lemma 8. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference in advan-
tage between Game? and Game; for any t from 1 to Q.

Proof. This proof is almost identical to the proof of Lemma [5 except that B adds an additional terms of
g(0+vibs  grbs gzivbs and gV 185 to K, j, K; ;, K ; and {Ki,mx}j/e[n]\{j} respectively for the ' key (where
it chooses v € Z,, randomly). This ensures that when the 73 terms are not present, the t*" key will be a properly
distributed semi-functional key.

Lemma 9. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference in advan-
tage between Gameg and Gamefinq,.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Gameg and Game ¢;pq1,
we will create a PPT algorithm B to break the subspace assumption. We will employ the subspace assumption
with parameters m = U + 2, n; = 3,k; = 1 for two values of i, and n; = 6,k; = 2 for the rest of the values
of 4. To coincide with our notation for the construction, we will denote the bases involved in the assumption
by (B,B*), (Bo, Bf) € Dual(Z3,v) and (By,B5), ..., (By,B},) € Dual(Z5,v). B is given (we will ignore p3 and
To,1,{T%,1,Ts2}zeci because they do not be needed):

G,p,g, 9", g%, ", g%2, {g® ", g% 2, g%, g% Y,

by by  b; b b bg b b b b b b
g™, g7, g%, gt gPba b {gPen gTPa2, gPbss gPbaa gbus gbre)
U, = g/t1b1+/tzbz+usb3 Uy, = g/L1bo‘1+lt2bo,2+u3b0,3
1) N )
— by, 14p2bs 3+u3bs s — be,2+p2by atp3bs
{Ux,l _9#1 1T H202, 3 T30, , U‘I,2 _gﬂl 2T 202, 4T3 ,6}$€[u]7
T,.

The exponent of the unknown term T'; is distributed either as Tinb; + mb3, or as Tinb; + 728b5 + 13b3. It is
B’s task to determine if this 75 contribution is present or not.

Setup. B sets (B,B*), (Bo, B), {(B.,B)} as the bases for the construction.
B chooses random exponents

/ / / / / /
0,01,y € Zy, {ri, 2z, QG 1, Qo eZp}iE[n]7 {Cj,pcj,zayjavj EZp}je[n]~

Then B gives to A the following public parameter:

( gah = 997 {hj}je[n]’ gblang’hbl = (gbl)evth = (gb2)07
(R0 = (), 1 = () Yy, W0 = (g0, W0 = (g’
{hbm,l — (gbam)e7 e hbz,4 — (gbz,4)9}z€[u], F = es(gb17T1)0’ Fy = 63(gb2,T1)9,
{Frj =es(g”, 1), Faj = es(g”, T1)"" } e
{Gz — gri(lerbz)’ Zz _ gzi(b1+b2)

E1= eg(gbl»Tf)eg(gbl»gnbr)a;'l»Em = 63(9b27T19)63(9b27Q’Bb;)a;’z}ie[n],
{Hj = (") (g75) 52, Y = (H))" }jem ).

Note that B implicitly sets

ay = N7, = [T,

{Oéi,l = 7]((9 + ’Uj)’rl + a;,l)v Q2 = ﬂ((@ + ’Uj)TQ + 01272) }i,je[n]a {Cj11 = 776;4)1, Cjo2 = 60;-12}]'6["].
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Phase 1. To respond to a query for ((4,7),5(; ;)), B generates a semi-functional key as follow. B randomly

chooses d; ; 1,0} ;9,07 ;1,01 j 2,7 € Zp, and outputs a private key SK(ij).56., = ((4,7), Sy, Kij, K j, K7,

{Ki,j,j’ }j/e[n]\{j}, Ko, {Ki,j,x}mes(i,j) ) as:

/

Ki j :ng"'“j) (gnb’f )0‘;,1+”C;,1+(9+Uj)(‘7§,j,1+5§,j,1) (gﬂb;)a;,2+ric;,2+(9+vj)(o'i,j,2+62,j,2)g(0+vj)'Y/bg ,
Ky =Ty (g7 s (g0 0sag v K = (K )7,

7 vt by (o) . & b} (0! A bk

{Ki,j,j’ =T (g"1)" (o517 1,,],1)(95 3)vs (0],5,07F w,g)gvj v 3}j’€[n]\{j}7
Kijo =(g"01) 1 (g7%02) 02,
K ja =(g70%) 0t (g7052) 700 (¢702) 2 (¢7%00) 0o W € 545
Note that this is a properly distributed semi-functional key with implicitly setting
Tij1 = N0 ;15 Oij2 = B0} 0, 0ij1=n0;;1, 0ij2= B0 ;5.

We note that the multiple of b3 appearing in the exponent of K7 (K, ;, K7, {Ki;j}icmnijy resp.) is
either equal to v ( v/, z;7/, 7/, resp.) or v + 73 (v + 73, z:;(v' +73), 7' + 73, resp.), depending on the nature
of T';. Either way, this is a properly distributed semi-functional key (whose distribution is independent of
T3 even if it is present).

Challenge. A submits B a revocation list R, an LSSS matrix (A4, p) of size [ x m and two equal length messages
My, M. To create the semi-functional ciphertext B can use the same procedure employed in the proof of
Lemma [5] to use the U terms to provide the semi-functional components. We repeat the description of this
procedure below for the reader’s convenience. The only difference here comes in computing the blinding
factor for T';.

B produces a semi-functional ciphertext for index (i
B first chooses random

1,5 = 1) as follows.

Ky Ty S1ye-vs8ny  Uiy..ytn € Zyp,

3 3

Ve EZp, Wi, ..., Wy, GZp,

/ / / / roa m
61,1751,2? tee a§l717£l,2 € va Uy, Uy € Zp ’

where the first entries of u} and w5 are equal to 0. It also chooses a random vector u € Z" with first entry
equal to 1, and chooses random exponents ] 5, ... ,5{73 € Zy. B implicitly sets

Tl = M1, T2 = M2, T3 = U3,
/ /
Ul = U+ U, Uz = [oU + Uy, U3 = [3U,

€t = Epatin + &y Ek2 = Erbia + s Erz = & aus Yk € [I].

B chooses random 74, 1y, 7 € Zp, and sets x1 = (r5,0,7.), X2 = (0,7y,72), X3 = X1 XX2 = (=TyT2, =72V, 'zTy),
then it chooses random v, € Zf,,'vi € span{xi1,x2} fori=2,...,n.

BB chooses a random b € {0, 1}, then creates a ciphertext (R, (4, p), (R, R}, Q:, Q}, Q7. Ti)i—y,(Cj, C})%_y,
(Py)!_,) as follows (note that ¢ = 1,5 = 1):

1. For each i € [n]: set

R, = (Gi)Sivia R; = Rf’
Qi — g'rsi(vi~vc)(b1+b2)7 Ql _ (h H hj/)'rsi(vi-vc)(b1+b2)z?U?, Q;l _ gti(b1+b2)’

7

J'ER;
(Ei,lEi,Q)Tsi(m'v“)

T, = M, :
b(F{Fé)Tsi(vi‘vc)eg(Ul,Tl)a

where Fl/ = F1 H Fl,j’ = 63(gb17T1)9a/1 H eg(gbl,Tl)vj/all and FQ/ = F2 H FQJ'/
J'ER; J'ER; J'ER;
= e3(g®, T)" H e5(g??, Ty)"7" 2 respectively.
J'eR;
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2. For each j € [n]: set C; = (H;)™=(Y;)"i, C' = (Y ;).
3. Set

0
PO :UO,la

! ’ Y ! / Y A-+§', 76’ 2]
Py :((gbpw),l)Ak Wk (ge2) "Eka L (gPet) 8 ) AR ot Lo (gbp(k 4) fk,ZUp(I;C;jl krgUp(k")é) VE € [i].

If the exponent of T is equal to T1nbj + 70b% then we have
e3(U1,T1)" = e(g, ")V (Tt m2P1) — (g, p)v(camteams) — g pe,

and hence we have a properly distributed semi-functional encryption of M, as required in Gameg. If instead
the exponent of Tj is equal to 71nb} + 75b5 + T3b%, then we have

a(Us, T)! = e(g,g") T mois) — (g pyV(eambesmstnais) — BT Fe(g, )™,

Since 73 is random (and independent of the semi-functional keys and the rest of the ciphertext), this blinding
factor is distributed as a freshly random group element of G7. Therefore the ciphertext is distributed as a
semi-functional encryption of a random message, as required in Game;yq;-

Phase 2. Same with Phase 1.

Thus, B can leverage A’s non-negligible difference in advantage between these games to achieve a non-
negligible advantage against the subspace assumption.

B.2 Proof of Lemma[d]

Proof. Suppose there exists a PPT adversary A that breaks the Index Hiding Game with advantage e. We build
a simulator B to solve a D3DH problem instance. B flips a random coin € {0,1}, if ¢ = 0, B interacts with A
in Case A as guessing “A is not in Case I1.3”, otherwise B interacts with 4 in Case B as guessing “A is not
in Case II.17.

Case A: B receives the D3DH challenge from the challenger as ((p, G, Gr,e),g9, A = g%, B = ¢*,C = ¢¢,T),
and it is expected to guess if T is g@°¢ or if it is random. In this case, the simulator guess the challenge value ¢
and generates the public parameters correctly. In case the value of the ¢ does not match the value later provided
by the adversary then the simulation aborts. Since the simulator will successfully guess the right value of ¢ with
probability at least %, the simulation will work with probability at least %

Setup. Firstly, B randomly chooses a value for ¢ to guess that ¢ = 0 (regardless of whether .4 behaves in Case
I or Caes II.1) and é = 1 if A behaves in Case II.1 or Case II.2.
B chooses random dual orthonormal bases (D, D*), (Dg, D) of dimension 3 and (D, D}) of dimension 6, all
with the same value of . It then implicitly sets (B,B*), (Bo,Bf) and {(B,,B%)} as follows:

bl :d17 b2:d25 b3:d37 bT:dT7 b32d37 bz;,:d;,a
bo,1 = (¢)"'do,1, bo2 = (¢)"'do 2, bos = dos, by, = (c)d 1, bh 5 = (c)d 5, bS5 = df 5.

bot =dyty oy bog=dog, bhy =diy, ..., blhg = dig Vo € [U].

We note (B,B*), (Bo,B§) and {(B,,B})} are properly distributed.
B chooses random exponents

0,01, 03 € Ly, {ai1, 052, 2 € Zp}ticin), {mi € Zp}ie[n]\{%}v {cjn,cj2. yj,v5 € Zp}je[n]\{i}7

/ / / / /
’I";, ijl, Ci,l’ yj,’Uj S Zp.
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B gives A the following public parameter PP:

( g, h = 997 gd1>gd2? {hj = gU; }ze[n]\{Z}v hfj = gUE/ 5 hbl = gadlvhb2 = gean
(R = (P, B = () gy 1B = (€)1, BB = (),

’
hbo,l _ 99d0,17hb0,2 _ gedo,z’ {hbm,l _ ggdm,17 » -’hbm,él _ 99 dm,4}m€ s

= e(g,h)wal, F, = e(g, h)¥oz, {F1; =e(g,h; ) L =e(g,h )w 2}iemls
{Ei1=e(g.9)"""", Ei2=e(9,9)"""*}iepm
{Gi =g )} gy, Gi= Bt d) (7, = gnldtdly,

{Hj _ g(/‘j:ldf-'rc‘j‘zd;’ Yj _ H?] }]E[n]\{3}7 Hj _ CC%,ldI+C§,2d;7 Y3 _ (gcgﬁldﬁ*cé,zd;)y% )
Note that B implicitly chooses r;, ¢; 1, ¢; o, U§ and y; € Zp such that

brl = r; mod p, cck

/ . /I / o
. = ¢; ; mod p, CC5 o =G mod p, v = vj mod p, y;/c = y; mod p.

7,1 — 77,
Key Query. To respond to a query for ((7,7), S¢ ;).
— if (i,5) # (5,5)_ B randomly chooses 0 j.1, 74 j2,0i 5,1, 05,2 € Zyp, then creates a private key ( (4,7), S ;), K, j,
K} K AKijj}jyemniy Kijo {Kijalaes, ) where

ginditaiad; griciaditricsad; (hhj)(Gi,j,1+5i,j,1)df+(0i,j,2+5i,j,2)d§, g 7& j#7
K,;= goinditaizd; gricjaditricjzd; (hhj)(Umnl+5m‘,1)df+(0i,j.2+5i,j,2)d§7 i=1,j %]
% * ’ * ’ * * " _ _
goéi,1d1+06i,2d2 CTiCj,1d1+TiCj,2d2 (hh ,)(Ui,j,1+5i,j,1)d1 +(Ui,j‘2+6i,j,2)d2’ i 75 ihj=7
K{ — g(Oél-i-Uz j1+0i,1)d] +(az+0oi j2+0; 5, Q)d
1
Ki, = (K ;)™

> (01 14+65,5,1)dT+ (04, 5,2+0i,5,2)d5 LT =
{KLJ',J h ” v ” ” 2}]6 N> CLFE L F ]
K',j 0= C‘ngldo,l"“sz,a,zdo,z,

K. jo= gtfi,j,l(d:,1+d:,2)+0i,j,2(d;,3+d;,4)'

— if (4,4) = (4,7): it means that A behaves in Case II.1 or Case IIL.2. B chooses random ¢} ; 1,0} ; 2 € Zp
and sets the value of 0; ;1,0 ;2 by implicitly setting o} ;, — bric},/(0' + v;) = 0; 1 mod p, o} ; 5 —
bric} 5/(0'+vj) = 0 j2 mod p. In addition B randomly chooses d; ;1,6 5,2 € Z B creates a private key

( (4,9), S5, K i K K 5, {Kijj}tiemni K;joAKijataes,,, >Where
K, ; = gtinditoiads (pp (004000040 5 0 H0i5.2)ds
K|, = glaa+ol jatbi )i+ tol ; ot 8is,2)d5 (Bef i dite] i) —ri/(6'+v)) K/, = (K.,)",
(K0 = h(“’ s+, di+(0) 5 0+6i5,2)d3
Kijo= C61,3,1d0,1+5i,j,2d312
K, = g7hin(@atdie) 4ol a(dh atds o) (Bri/ (O 4v))eja (ot )4l o (4 st di0) Wy e S .

*Hiremnt

Challenge. A submits a revocation list R*, a message M and an attribute set S*, B sets R* = [n,n]\ R* and
constructs the LSSS matrix (A p) for Ag-. Let [ x m be the size of A.

|
—.
—
—

— if (5 j) ¢ R*NE = O. B sets ¢ = 1 and generates the private key ( (i,7), S, Kij, Ki j, K7},
{Kijj}iremniy Kijos {Kijz}tzes, , )- Then B continues the following interaction.
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B chooses random

/ !/
T 81,y 871555 8741 -5 Syttt b, tn € 2y,
. / 3
'wl,...,wj_l,w wJH,...,wn € Z,,
m
§1.1:61,2, - 81,82 €2y, T, T2 €Zp, wi,u2 €7,

where the first entries of u}, u/, are equal to zero.
B chooses random 1, 7y, 7, € Zp, and sets x1 = (rz,0,75), x2 = (0,7y,72), X3 = X1 XX2 = (—Tryrz, =722, T2Ty),
then it chooses random
v; €Z3 fori=1,....1i,
v; € span{x1,Xxz2} fori=i+1,...,n
B chooses random (V¢ 1, Ve 2, Ve,3) € Zg. Let v2 = ve 1x1+Vc,2X2 and v = 1, 3X3, in the following simulation,
B will implicitly set

v, =a tvP + vl

BB creates a ciphertext (R*, (A, p), (Ri, R}, Qi,Q;,Q7,Ti)},, (C;,C%)}
1. For each i € [n]:
— if ¢ < i it chooses random 3; € Zj, and sets

oy (Py)._,) as follows:

Ri = (o), Ry = (B,
Q; = gsi(b1+b2) Q{ — Q(0/+Zj/eﬁ* ”J')Z?i(lerbz)hmbl-&-Trzbz
) 7 7 7 )

Ql‘/ — gti (b1 erg)
7 )
T

— ifi =1 it sets

( d1+d2)r1szv1) R; _ (Bdl-‘rdg)’f'%sé’vz)

Q g'r s% (v vf)(lerdg)A'r’s%(vi-vg)(lerdg)7

(9 +32, e R* vj) t; (b1+b2) b +ma2b

Q _Ql J ZZ hﬂ'l 1TT2 2’
Q t i(d1+d2)
)

T, = es(Q' griditeizds)
- P -
3(gd1+d2, (h H hj/)a1d1+o¢2d )T stz 63(Ad1+d2, (h H hj/)a1d1+oz2d )T stvg ’UCFTI'IF
j'eR* j'eER*

M

—if 4 > i: it sets
R, = (gd1+d2)7‘isivi R/- _ (Bdl-‘rdz)?“qzsiv::
Q;,=B" "si(vi-vl)(d1+d2) Q Q (O'+3 5 e e UJ)Z (b1+b2)h7r1b1+7f2b2

K2

Q(/ — gt1 (d1+d2)
? Y

eg(Qi’gai,ldI+ai,2d;)
63(Bd1+d27 (h H hj/)aldf+a2d2 )'r s;v;vb F7r1 F7T2 '
j’eé*

Ii=M

2. For each j € [n]:

— if j < j: it chooses random uj € Z, and implicitly sets the value of p; such that (—g} —Dves =
p; mod p, then sets

Cj _ (BCj,lbf+Cj,2b; )-r"vfc’(ng,1b;+Cj,2b;)-r’u,;.vZ (Bcj,lb;+6j,2b;)ij]" C; —_ (Y])wj
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—ifj=7y:

Cj _ (Tcé,lbr"'c%,zb;)'r/”g (BC;,lbIJFC;‘,zb;)y%w;", C; — (Yi)wg (CC§,1bI+C§,2b;)*T’”f.
—if j > 7

C; = (Bijle+ij2b§)T/vg(BCj,lbI"!_ij‘Zb;)ij?]v’ C; _ (Yj)wg (ch,lb{—&-cj,gb;)—yvg.

3. Py = 90(7T1bo,1+7f2b0,2)7 {Pk _ (ge>(Ak'ul+Ek‘l)bp(k),l7£k,1bp(k),2+(Ak'u2+§k72)bp(k)v37§k,2bp(k),4}ke[l].
Note that B implicitly chooses ,7, s7, t;(i € [n]\ {1}), m1,m2 € Z, and w; € Z3(j < j < n) such that

b= xmodp, abr’ =7 mod p,
s:/b = s; mod p,

wh — ch?/yé = w; mod p,

’
J
’

w’; —at'vl/y; =w;modp Vje {j+1,...,n}.

If T = g%, then the ciphertext is a well-formed encryption to the index (i, 7). If T is randomly chosen,
say T = ¢" for some random r € Z,, the ciphertext is a well-formed encryption to the index (4, j + 1) with
implicitly setting p; such that (-7— — 1)v. 3 = p; mod p.

Guess. A outputs a guess b’ € {0, 1} to B, then B outputs this &’ to the challenger as its answer to the D3DH
game.
When B does not abort, B’s advantage in the index-hiding game for our AugR-CP-ABE scheme is e- Pr [A
is not in Case I1.3 A(c =0)] = e Pr [AIL3 A (¢ =0)].
Case B: B receives the D3DH challenge from the challenger as ((p, G, Gr,e),g9, A = g%, B = ¢*,C = ¢¢,T),

and it is expected to guess if T is g2 or if it is random.

Setup. Firstly, B randomly chooses an attribute Z € [U] to guess that Z will be in the challenge attribute set
S* (regardless of whether A behaves in Case I or Caes II) and will not be in S(; 7 if A behaves in Case
I1.2 or Case II.3.

B chooses random dual orthonormal bases (D, D*), (Dg, D) of dimension 3 and (D, D%) of dimension 6, all
with the same value of . It then implicitly sets (B, B*), (Bo,Bg) and {(B,,BX)} as follows:

by = d, by = do, b3 =ds, by =dj, by =d;, b; = dg,
bo = (¢)~'do1, bo = (¢)'do2, bos = do, bjy = ()di 1, b5 = (c)dj o, b 5 = di 5.
by =d; 1, ooy bys =dgg, by,=d;,, ....bis=d;sVeed\{z}
bz1=(c) 'dzp, ..., bae =c 'dsg, b;1=(0)d;q, ..., b= (c)d; ;.
We note (B,B*), (Bo,B§) and {(B,,B})} are properly distributed.

B chooses random exponents

0' a1, a0 € Ly, {in, i € Lyptieim)s 7o 2 € Lplicmpgiys 1616525 Yi € Lp}jem\ (5}

/ /
= &

ro / /
ri 25, C i1 Ui {Uj}je[n] € Zyp.

7 7,17

B gives A the following public parameter PP:
(9:n=C" g™ g% (h; = O} sepy i = 7% b2 = 072,

[h = (O™, B3 = (C7) 5 hjeguy, B0 = g ot oz = g7,

{hbgm _ Ce/d“ o pbea — Celd1'4}ze[u]\{i}v {hbz.l _ ge’dm,1 s pbza — ge/dm,z;}m:j,

Fy=e(g,h)"™, Fy = e(g,h)"*2, {Fi; =e(g,h;)¥™", Foj = e(9,h;)"** } e,

{Ein =e(9,9)""", Eiz=e(g,9)"""*}iemnl,

{Gi — gTi(d1+d2)’ Z, = Czé(d1+d2)’ }ZE[H]\{;]W Gg — B'r’é(lerdg), Z; — gz;(d1+d2)’

_ cjidi+cjady o Yj _ vl di el dE ok di ek di\ys
{Hj—ngl Jz?,Yj—Hj }je[n]\{j}7 Hj—CJJl 7.2 Q,Yj—(gj‘ll 7.2 2)1 .
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Note that B implicitly chooses 3, ¢j 1, ¢j 2, Y5 € Zp and {z; € Zp};cpy)\ (73 Such that

I —
bri = r; mod p, cch

/o — / — o
G1=Cj1 mod p, iy =Cjo mod p, y;/c-yj mod p,

cz; =z mod p Vi € [n] \ {i}.

Key Query. To respond to a query for ((7,7), S¢ ;).
— if (¢,7) # (4,4): B randomly chooses o; j 1,04,4,2,0i4,1,0: 5,2 € Zp, then creates a private key ( (4,7), S ),

Kij, K K {Kijj Y yemngy Kijo {Kijatees,,, ) where

gai,ld’{+ai,2d§gricj,ld’{+ricj,2dz(hhj)(Ui,j,l+5z‘,j,1)df+(0i,j,2+5i,j,2)d§, g 7£ j#7
K,;= g@inditaizd; gricjaditricjzd; (hhj)(<7i,j,1'i‘5i,j,1)Glf-i-(Ui,j.z-iﬂsi,j,z)ﬂlﬁ7 =1,j#7
* * ’ * ’ * * " — _
goéz:,1d1+(li,,2d2 CTiCj,1d1+T'iCj,2d2 (hhj)(gi,j,1+5iﬂj,1)d1 +(‘7iyj‘2+5i,172)d2’ ) 7& ,j=7
[ a1+0;, 5,140, 5,1)d] +(aa+0i j 2406 5,2)d5
K. —g( 140351400 5,0+ 40,52 40i5,2)d;
(C(a1+o'i,j,1+6'i,j,1)d;+((¥2+o'i,j,2+6i,j,2)d;)Zé7 75 i 7&3
" ! ~ _ = =~
K ;= q (K™, —”7’5]
(C(al+Ui,j,1+6i,j,1)dI+(0¢2+U7’,,_7’,2+61‘,,j,2)d;)Z;7 7&% j= j
7 g (04,5,1406i,j,1)dT+ (05,2405 5,2)d5 LT =
{Kijj =h YirelmN\gy, i FE LT FE]
Ki,j,O — 057’,.7,1‘10‘14'51,],2‘10,2,
gaw',l(d;,1+d;,2)+0i,j,2(d;,a+d;,4). x AT
K;i,= . . N .
I E Cg’i,]“l(dac,l+dm,2)+giv.j>2(dw,3+dm,4)' =7

—if (i,4) = (i,J): it means that A behaves in Case IL.2 or Case IL.3. if T € S(”) then B aborts
and outputs a random b" € {0,1} to the challenger. Otherwise B chooses random o7 ; 1,07 ;5 € Z,
and sets the value of 7; ;1,05 ;2 by implicitly setting o} ;; — bric} /(0" + v}) = 041 mod p, o] ;5 —

bric} 5/(0"+vj) = 0; j2 mod p. In addition B randomly chooses d; ;1,652 € Z B creates a private key
((,5), 56i,4)» K,mKé]vKi’g» {Kijjtiemniy Kiio {Kijatees, >Where

K’,j — gai,ldT*‘O‘iﬂdz (hhj>(Ué,j,l+6iwjy1)dI+(‘77/2,j,2+5i‘j»2)d;7

K|, = g1t 5100 51)di (e toy 5401 ,2)ds (BC§,1dT+C§,2d3)—Tﬁ/(9'+v,’-), K/, = (K )7,

{K ) h(”zg1+6731)d*+(‘7172+5792)d

0.5,
K’,j 0= C‘S'L,],ld()'l"’_éi,j,QdéYQ’

et

K. ja = g”'/i,j‘l(d:‘l+d;,2)+‘71/1,j,2(d;,3+d;,4)(B_T‘%/(QIJ"U;))C;,l(d;,l+d;,2)+c;,2(d;,3+d;,4) Vo € S(z i)

Challenge. A submits a revocation list R*, a message M and an attribute set S*. If Z ¢ S* then B aborts
and outputs a random b' € {0, 1} to the challenger. Otherwise, B constructs the LSSS matrix (A4, p) for Ag-.
Let I x m be the size of A.

Note that S* \ {Z} does not satisfy (A, p), B first computes a vector w € Z;" that has first entry equal to
1 and is orthogonal to all of the rows Ay of A such that p(k) € S*\ {Z} (such a vector must exist since
S*\ {Z} fails to satisfy (A4, p), and it is efficiently computable).

B chooses random

/ / / / / /
T Slyee s Sim1y SiSigls - 0 Sns 1o s b bt sty € Ly,
. ’ ’ 3
Wi, W), W, W, € Zy,,
/ m
§i61,2 581,82 €2y, ™, €Ly, uj,uy €7,

where the first entries of u}, u/, are equal to zero.
B chooses random 74, 1y, 75 € Zp, and sets x1 = (r5,0,7.), X2 = (0,7y,72), X3 = X1 XX2 = (=TT, =72V, zTy),
then it chooses random

'viEZ]?; fori=1,...,1,

v; € span{x1,Xxz2} fori=i+1,...,n
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B chooses random (v¢,1, Ve,2, Ve 3) € Zf,. Let v = v 1x1+Ve,2Xx2 and v = v, 3X3, in the following simulation,
B will implicitly set

ve=a 'vP + vl

B creates a ciphertext (R*, (4, p), (R, R}, Q:,Q}, QY ,Ti)i—,, (C;,C})1—y, (Pr)i_o) as follows:
1. For each i € [n]:
— if ¢ < : it chooses random §; € Z,, and sets

R, = (gl71-i-b2)'vi7 R; — (Bbﬁ-bz)m’
;= gsi(b1+b2), Q; _ (h H hj/)si(b1+b2)Cz;t;(b1+bz)hﬂ'ib1+7réb2,
jIER*

Q
Q// _ (gt;A(9l+ZJ’€R* vj/)‘r’s%(v;vg)/z;)(b1+b2)7

T, = €(g, g)§L

it sets

.

—ifi=
R, = (gd1+d2)r§s§vg’ R; _ (Bd1+d2)r§s§vg7
Qi _ gT/S,lfi('Ui"US)(d1+d2)AT/S%(’Ui"Ug)(d1+d2)7
Q.= (h H hj,)T’sé(vi~v£’)(d1+d2)Zfzhwgdﬁw;dz,
J'eR*
Q) = gilditd),
eg(Qi,gai,ld’{Jrai,zd;)

Ti=M T N ! xl
(F{Eg)7 O F R

where Fy' = Iy H Fy 4 and B =F H Fy ;o respectively.
~ §'€ R J'€ Ry
— if i > i: it sets
R, = (gd1+d2)7'isi"-’i’ R; — (Bd1+d2)7'isi"-’i’
/e, P 14! ’ ’
Qi — B si(vi vc)(d1+d2)’ Q'IL — C«zlifz(dlqtdg)h7r1d1+7r2dg7
Q! = (gtéB*(G'Jij/ER* 07 si(viv?) /2 A0+ 51 ¢ e vj’)TlS%(v?vz)/zé)(d1+d2)7
5(Qi, g+t
o dtfasdl\ T T di+d ard +asdi\— T si(vivd)
es(Qi, (b [ hyyditeet) I F2eg (A%t (b [ hy)rditoeds)
j'eR* j’ER*

T, =M

2. For each j € [n]:
— if j < j: it chooses random u; € Z, and implicitly sets the value of p; such that (% — D =
p; mod p, then sets

C, = (Bcj,lbﬁc“b;)r’vg(gcj,1b7+cj,2b;)T’H;vg (Bcj,lb;+cj,2b;)ijj7 C; = (V).
—if j =j:

C, = (Tc%lbf—i-c%zb;)-r/‘ug(Bcg-,lbf—i-c;-,zb;)y%w%’ C;- _ (Y;)w§ (Cc§7lbf+c§y2b§)—7/v§'
—if j > 7

Cj _ (BCj,lbeer,zb; )-r’vfc’(Bz:j,lbif+cjvy2l>§)ij;7 C; _ (Yj)w; (ch,1b1‘+cj,2b§)77—/vg.
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P, :gel(Wido,l+W£d0,2)A—((9’+ZyeR* Uj’)/0/)7—IS%('U§"UZ)(d0,1+d0,2)7
P, :(ggl)(Ak'(ﬂ1w+u/1)+§k,l)dp(ks),l7Ek,1dp(k:),2+(Ak'(ﬂéw+u/2)+£k,2)d9(k),37‘5k,2dp(k),4
A_((al-l-z:j/eﬁ* Uj/)/9/)7—/3%(v;‘vg)(Ak~w)(dp(k),1+dp(k),3) Yk € [l] s.t. p(k‘) =z,

P, :(09/)(Ak'u'1+5k,1)dp(k),1*Ek,ldp(k),er(Ak~u'2+§k,2)dp(k),3*§k,2dp(k),4 Yk € [l] St p(k) £ Z.
Note that B implicitly chooses k, T, s, t;(i € [n]\ {i}), m1,7m2 € Z, and w; € Zg(j < j < n) such that

b=rxmodp, abr’ =7 mod p,

s3/b = s; mod p,
t;+a(f + Z vj )T st (v; - vd) /2, = t; mod p Vi € {1,...,i— 1},

j/GR*
t—b(0 + Z v )78 (v - VP) /2 + a0 + Z v )T sk (v vd) /2 =t; mod p Vi€ {i+1,...,n},
jIGR* j'eR*

! /.0 A _
w; — T vc/yj = wj mod p,

w) —ar'vl/y; =w;modp Vj e {j+1,...,n},

T —ar' (0 + Y vy)sh(v; - vE)/0' = m mod p,
j’eé*

y—ar' (0 + Y vp)s(v; - v8)/8' = m mod p,
j'eR*

and implicitly sets

uy =(m1 — a7'si(vi - v))w + uy,

uy =(my — a7's5(v; - vI))w + us.

If T = g%, then the ciphertext is a well-formed encryption to the index (4, ;). If T is randomly chosen,
say T = g" for some random r € Z,, the ciphertext is a well-formed encryption to the index (i,j + 1) with
implicitly setting p; such that (o;— — 1)v. 3 = p; mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this & to the challenger as its answer to the D3DH
game.

Note that when B does not abort, the distributions of the public parameter, private keys and challenge
ciphertext are same as the real scheme. As S* # () and when A doesn’t behave in Case II.1 the attribute
set S ;) must satisfy S* \ S(;;) # 0, the event that B does not abort will happen at least 1/[U/|. Thus, B’s
advantage in the D3DH game will be at least e Pr [A is not in Case IL.1 A(S*\ S5 # 0)] = e Pr

[ATIL3 A (S*\ Si75) # 0)]. As of the fully secure CP-ABE schemes in [TOI9ITTIT2/T3], the size of attribute
universe (i.e. |4|) in our scheme is also polynomial in the security parameter A. Thus,

€ - PrlAIL3 A (¢ = 0)] + ¢ - Pr[AIL3 A (5™ \ S;5) # 0)]

= ¢ Pr[AIL3] - Prlc = 0] + ¢ - Pr[ATIL3] - Pr[S* \ S(;5) # 0]
= ¢ (1 - Pr[AIL3])-Prlc= 0] + ¢ (1 — Pr[AIL3]) - Pr[S*\ S ;) # 0]

L e (1= PrAILY) - —

¢ (1 — Pr[AIL3])- ]

[\]

Vv
N

- €,

Since Pr [A.IL.3]+ Pr [AIL.1] < Pr [AI] + Pr [AIL1] + Pr [AIL2] + Pr [AIL3] and || > 2.
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B.3 Proof of Lemma [2]

Lemma 10. If the D3DH assumption holds, then no PPT adversary can distinguish between games Hy and Hy
with non-negligible probability.

Proof. This lemma can be proved by applying the result of Lemma

Lemma 11. If the D3DH assumption holds, then no PPT adversary can distinguish between games Ho and Hj
with non-negligible probability.

Proof. Consider an adversary A that can distinguish between Hy; and Hjz with a probability greater than
€. We build an algorithm B that uses 4 to solve the D3DH problem. B receives the D3DH challenge as
((p,G,Gr,e),9,A = g°,B = g*,C = ¢, T), and it is expected to guess if T is g?*° or if it is random. B
interacts with A in the Gameyy as follows:

Setup. B randomly chooses two pairs of dual orthonormal bases (B, B*), (Bo, Bj) of dimension 3 and U pairs
of dual orthonormal bases (B1,B7),. .., (By,B;;) of dimension 6, subject to the constraint that all of these
share the same value of 9.

B also randomly chooses

0, a1,00 € Ly, {ri, @i1,0i2 € Lplicin\G}> %15 %2 € Lp, {2i € Lpticings €51, ¢ 2, Yinvi € Lyl jcm)-

B sets the public parameters to

(g,h =9°, 9%, 9% {hiYiemp B™ = (g")° W% = (%)%, {h* = (g")"7, B3> = (¢%*) " }jeim);
pbor = (gbo1)0 pboz — (gbo2)?  [pbes -,hb”"‘}ze[u],
Fi = e(g,h)¥™ , Fy = e(g,h)"**, {F1; = e3(g®, ¢" )™ Faj = e3(9", 9"2)"** }elm)s
{Gi=g" ™) B =e(g,9)"*"  Ein = 6(979)1#%’2}1‘6[71]\{2},
G = B By = e(A, B)Ve(g, 9)" 1, By p = (A, B)Ve(g, g)""2
(Z, = g=® o2y 0 (H = gehabi+e b5 4= (b7 +b3) Y, = H" }iep )

Note that B implicitly sets

! ! / /
=0, ;1 =ab+a;q, azo=ab+a;,, {¢j1 = i1 —a, Cja=Cjq— aljcin]-

Key Query. To respond to a query for ((i,7), S, ;)), B randomly chooses o ;1,0 52,0 ,1,0i 42 € Zp, then
creates a private key as

. el * . o * — . * * P P * P P * . -
B {g(o‘%l+”Cj,1)b1+(0‘1=2+7"lcj,2)b2A Tz(b1+b2)(hhj)(‘71‘.7,1""57,,.7-,1)51+(Ut,.7,2+51,.7,2)b2’ R
) T

ga%,lb;‘_‘—agﬂbgB(C_/j,lbi“rcégb;)(hhj)(O'i,j,l+5i,j,l)bI+(Ui,j,2+6i,j,2)b;7 =1
1 (a1+0i,5,1+6i,5,1)b]+(aa+0i, 5,246, 5,2)b5 "o I \zi
Ki,j — g( 1 i,7,1 L,J,l) 1 ( 2 i,7,2 1,1,2) 2’ KZ’J — (Kz]) 17

% _ 3 (0i5,1408i,5,1)b] +(04, 5,2+ 5,2)b3
{Kijj =hy HEONOE
Kijo= géi,y‘,lbé,l-i'&i,j,zbé,z,

Ki,j,m = g"i,j»l(bm,l+bw,2)+‘7i,j,2(bm,3+bm,4) Vr € S(i,j)-

Challenge. A submits a message M, a revocation list R and an attribute set S*. B constructs the LSSS
matrix (A, p) for Ag«. Let [ x m be the size of A.
B chooses random
KyTy,  S1s-v-38n, bty € Zy,
wi,..., W, € Zi,

51,1751,23“'7&,17&,2 GZpa U, Uz € Z;n’
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where the first entries of w1 and us are equal to m; and 7o respectively.
B chooses random 1, 7y, 7, € Zp, and sets x1 = (rz,0,75), x2 = (0,7y,72), X3 = X1 XX2 = (—TyTs, =722, TaTy),
then it chooses random
vi €L, fori=1,...,1,
v; € span{x1,xz2} fori=i+1,...,n.

B chooses random (V¢ 1, Ve 2, Ve,3) € Zf,. Let v = v 1x1+Ve,2Xx2 and v = v, 3X3, in the following simulation,
B will implicitly set

v, = vP + (c)vd.

B creates a ciphertext (R, (4, p), (R, R}, Q;,Q;, Q7 ,T;)i—, (C;,C%)j_y, (Py)L_,) as follows:
1. For each i € [n]:
— if ¢ < i: it chooses random §; € Z,, and sets
R, = (gb1+b2>'vi’ R; _ Rf7
Qi — gSi(b1+b2)’ Q; — hSi(b1+b2)Z§i h7r1b1+71'2b2’ Q’IL/ — gti(b1+b2)

T; = e(gag)éi‘

)

— if i =1 it sets
R, = (Bbl‘*‘bz)SWz’ R, = (Bb1+b2)ns;vg’
Q; = gTsi(’U'i"Ug)(bl-‘rbz)CTsz'(v¢~vZ)(b1+b2)’ Q. = Q£6+zj/em vj,)ZEihmlembz’ Q- gti(b1+b2)’
e(A, B)2¢Tsi(viv) (g, T)Q’éb‘rsi(vi'vg)e(g7g)w(a;J+O£;‘2)Tsi(vi.vg)6(g, C’)'/’(aiz,1+a§:,2)78i(vt~v2)
(F|F})rsi(vi-vd) (e(a h)H eRie(C’ hj/))w(oq-&-az)rsi(1;i~v;’)Fl,T1F27r2

j/

T, =M

)

where F\' = I H Fy ;o and F =F H Fy ;s respectively.
_ J'ER; ieR,s
— if 4 > 4: it sets
Ri = (9b1+b2)ms,~vi R/ — (gd1+d2)'<’7"isi’vi
) 3 ,
Q= gTsi(v,:.v’c')(b1+b2), Q; = QE‘9+Z]‘/ER* Uj')Z;?z‘ hTrlbl-i-Trzbz7 Q;/ _ gti(b1+b2),
e(g, g)w(ai,1+ai,2)rsi(vi.v€)
(F{Fj)rs:vv ) FFy>

T, =M

where Fll = Fl H Fle and F2/ = FQ H F27j/ respectively.
J'ER; JER;
2. For each j € [n]: Since j < n + 1, B chooses random ,u; € Z, and implicitly sets the value of u; such
that p; = pj — cve 3, then sets

C; = (H ) Wetioxs)(y =i C) = (Y ;)™

3. Py = hmb(m-',—772170,27 {Pk _ h(Ak'u1+£k,1)bp(k),1_gk,lbp(k),Z"F(Ak¢u2+§k,2)bp(k),3_£k,2b;}(7€),4}ke[l]_

If T corresponds to g2, then the encryption corresponds to game Hy; and if T is randomly chosen, then
the encryption corresponds to game Hs.
Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The advantage of B is exactly equal to the advantage of the adversary A.

Lemma 12. If the D3DH assumption holds, then no PPT adversary can distinguish between games Hs and Hy
with non-negligible probability.
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Proof. Hs to H, can be expressed as a series of games Hs 41, H3p,...,H31. In the game H33. all column
ciphertexts (Cj,C';) are well-formed for all j such that j < j < n. It can be seen that Hs ; is the same as
Hy, and Hj3 ;41 is the same as H3. We prove the indistinguishability of games HB,i and H373.+1 for all j where

1< j < n. The proof for this is similar to that of Lemma
Consider an adversary A that solves the index hiding game with a probability greater than e¢. The adversary
is considered successful if it can distinguish between games H, p and H, G- We build an algorithm B that uses

A to solve the D3DH problem. B receives the D3DH challenge as ((p,G,Gr,e),9,A = g%, B = ¢*,C = ¢¢,T),
and it is expected to guess if T' is ¢®*° or if it is random. B interacts with A in the Gamey as follows:

Setup. B randomly chooses two pairs of dual orthonormal bases (B, B*), (Bo, Bj;) of dimension 3 and U pairs
of dual orthonormal bases (B1,B7),. .., (By,B;,) of dimension 6, subject to the constraint that all of these
share the same value of .

B also randomly chooses
0, ar, 0 € Ly, {riy i, qi1,0652 € Lplicn,
{Cj’l,cj"Q, Yjs c ZP}JE[n]\{§}7 Cg',l’c;,Q’yé' S Zp, {’Uj c Zp}je[n]-

B sets the public parameter to

(g.h=9" " 9" (hi}sepu, B = (™)' % = (™)',
(A5 = ("), b5 = (%)} jepys WOt hP02, {Rb=1, WP}y,
Py =e(g,h)"* Fy = e(g, )Y, {F1; = e(g,h;)¥™*, Faj = e(9, 7)Y} jepns
{Gi=gn®t), Z; = g5 110 By = e(g,9)"", Bip = e(g,9)"* Yiepul,

_ cjibi+cj b o Yj _ ~ch by el bl _ yi(ch  bi+ch U bY)
{Hj*ngl 3202 Yj*Hj }je[n]\{j’}v Hﬁfcj’ll 3,272, Yj*gj JaT 2T .

Note that B implicitly sets

Ga

/ / /
=CC s G =05, Y= y;/c.
Key Query. To respond to a query for ((7,7),Sq,;)), B randomly chooses o5 ;1,0 j,2,6; j,1,0i 2 € Zp, then

creates a private key as

o {g(ai,l+mc]',1)bf+(ai,2+ncguz)b5 (hhj)(Ui,j,l+5i,j,1)bi+(0i,j,2+5'i,j.2)b§’ i 753
i, A

gamb]‘-‘r(xi,zb;Cri(C;,lbIJFC;',zb;)(hhj)(‘”73'*1+5"'j’1)b’{+(”"\j=2+6i~j’2)b;, cj=3
K1, = glertoatiunbi e onatbnnbi | K = (K )%,
= (0i,5,146i 5,1)bT + (04 j,248i j,2)bs
{Ki,j,j/ — hj/ 7,1 3,1)01 3,2 3,2 2}j’€[n]\{j}’
Kijo= PREALIRRAIREL S
Ki.,= g"fuj,l(b;,l+b;,2)+0i,j,2(bi,3+b;,4) o= S(i)j).
Challenge. A submits a revocation list R, a message M and an attribute set S*. B constructs the LSSS
matrix (A, p) for Ag«. Let I x m be the size of A.
B chooses random

/

T, S1y-ey8n, bty € Zy,
/ / 3

Wiy, Wi, Wy, W, € Zy,,

51,1751,2a"'7§l717£l,2 Eva Ui, U2 EZZL,

where the first entries of w1 and us are equal to m; and 75 respectively.
B chooses random 74, 1y, 7, € Zp, and sets x1 = (r5,0,7.), X2 = (0,7y,72), X3 = X1 XX2 = (=772, =72V, 2Ty),
then it chooses random

'viEZ]?; fori=1,...,1,

v; € span{x1,xz2} fori=i+1,...,n.
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B chooses random (v¢,1, Ve,2, Ve 3) € Zf,. Let v = v 1x1+Ve,2Xx2 and v = v, 3X3, in the following simulation,
B will implicitly set
v, =a tvP + vl

B creates a ciphertext (R, (4, p), (Ri, R}, Q;,Q;, Q' Ti)iy, (C},C%)}_y, (Pr)L_,) as follows:
1. For each i € [n]:
— if ¢ <4: it chooses random 3; € Z,, and sets

R, = (gb1+b2)vi R = (Bbl+b2)vi
3 i )
Qi _ gsi(b1+b2), Q; _ hsi(lerbz)ZEi hﬂ'1b1+ﬂ'2b2’ Q;/ _ gti(b1+b2)7
T = e(g,9)™
— if i > it sets
R, = <gb1+b2)7"118i‘v1: R = (Bb1+b2>7"1:$1:‘vz:
3 i 3
Q; = Bﬂsi(vimf;)(bl-i-bg), Q; _ QE&HZ_]-/ER* vy)ZEihmbﬁme’ Qg’ _ gt,;(b1+b2)’
e(B, g)¢(ai,1+a7:,z)f’s7:(v7:'v‘§)

(e(B,h) TT elg.hy))” 2D p by
j/ERx

T,=M

2. For each j € [n]:
—if j < j it chooses random M;- € Z, and implicitly sets the value of p; such that (Z—f) —Dves =
15 mod p, then sets

Cj _ (Bcjv,1bf+0j,2b§)7—’vfg (gcj-,1b1‘+c]-,2b;)ug.7—’vg (Bcg-,lb{-&-cjv,zb;)ijj’ C; — (Yj)wj'

—ifj=7:

C; = (T P12y 70l (pejabiteiby)viw; & = (Yj.)“’é (O 1+¢5 202 =0l

—ifj >
C,= (Bc.v’,lbf‘i'cj,zb;)f"’f (Bcj,lb’{‘*'cmbé)ij;’ C; = (YJ)“’; (ACj,lb’{‘*'Cme)—"/”g_

3. Py = hﬂ'lbo‘]-l—ﬂ'zbo‘z’ {Pk _ h(Ak-u1+§k,1)bp(k),1_gk,lbp(k),2+(Ak"Ul2+fk,2)bp(k),3_£k,2b;>(k),4}ke[l]_
Note that B implicitly chooses x,T € Z, and w; € Zf;(j' < j <n) such that

b= rmodp, abr’ =7 mod p,

/ 1oD Jod — o
wh — cT vc/yj = w; mod p,

w', —at'v?/y; = w;modp Vj € {j+1,...,n}.

J

/

J
If T = g, then the encryption corresponds to the game Hg 5 and if T is randomly chosen, say T = g" for
some random r € Zj, then the encryption corresponds the game H, 541 with implicitly setting I such that
(a5 — Dve,3 = pj mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The advantage of B is exactly equal to the advantage of the adversary A.

Lemma 13. If the DLIN assumption holds, then no PPT adversary can distinguish between games Hy and Hsg
with non-negligible probability.

Proof. Consider an adversary A that can distinguish between H, and Hs with a probability greater than
€. We build an algorithm B that uses A to solve the DLIN problem. B receives the DLIN challenge as
(G,g,9% g% g% g*,g*,T), and it is expected to guess if T is g°**¥) or if it is random. Then B interacts
with A in the Gamey as follows:
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Setup. B randomly chooses two pairs of dual orthonormal bases (B, B*), (Bo, Bj;) of dimension 3 and U pairs
of dual orthonormal bases (B1,B7),..., (By,B;;) of dimension 6, subject to the constraint that all of these
share the same value of .

B also randomly chooses
97 g, € Z;Da {Ti7 Ziy O 1,042 S Zp}ie[n]a {cj,lacj,27 Yj,Uj S Zp}je[n]

B sets the public parameter to

(g,h =% g". 9%, {hi}jem ™ = () 0% = (g")°, {h3 = ("), h3* = (9°)" Yjemm,
pbor = (gbo1)0 pboz — (gboz)  fpbea -ahbm"‘}ze[u],
Py = e(g,h)"™, By = e(g,h)"2, {F1j = e(g,hy)"™", Faj = e(g,h;)"**} jepm),
(G =gt 7, = g=i(r¥82) By = (g, g)V " By = 6(979)wai’2}ie[n],
{H; = goPiteebe Y, = HP }ep )
Key Query. To respond to a query for ((7,7),Sq, ), B randomly chooses 05 ;1,0 j,2,0: .1, 0ij2 € Zp, then
creates a private key as
K= g(ai,1+Ticj,1)b1‘+(ai,2+n6j,z)b§(hhj)(ffm‘,l+5z‘,j,1)bi‘+(0i,j,2+5i,j,2)b§’
K;] _ g(a1+oi,j,1+6i,j,1)b{+(a2+ai,3,2+6i,j,2)b;’ K:J _ (ng)z"',

7 04,5,1+8:,5,1)b1 +(04,5,2+8:,5,2)b3
{K:hgl 3,1 Jl) 1 ( 7,2 32) 2}j’€[n]\{j}7

Kijo= g%i5180,1 1052802
Kij = g”i,j,l(b:,l+b:,2)+gi,j,2(b:,3+b;,4) Yz € 5(7 )
Challenge. A submits a revocation list R, a message M and an attribute set S*. B constructs the LSSS

matrix (A, p) for Ag«. Let I x m be the size of A.
B chooses random

KyTy  S1y-v-38ny  tiyeoosty € Zyp,

)
ZS

Ve, Wi,..., Wy € L,

m

51,1751,23"'7£l,1a£l,2 Gva Ui, U2 eva

where the first entries of w; and us are equal to m; and 75 respectively.

B implicitly sets x1 = (a,0,¢),x2 = (0,b,¢),x3 = X1 X X2 = (—be, —ac, ab). Note that a valid DLIN tuple
will lie in the subspace formed by vectors x; and x2. In the following, a DLIN problem tuple will be used
for setting row ciphertext for row 7 + 1. A valid tuple leads to encryption as in game Hy, and a random
tuple will cause the encryption to be as in game Hs.

Blcrl?ates ahciphe[rtfxt (R, (A, p), (R, R},Q;,Q;,Q},T;)iy, (Cj,C%)}_y, (Py)._,) as follows:
. or each 1 € [n|:
— if ¢ <4: it chooses random v; € Zf) and 5; € Zy,. Then it sets
R, = (gb1+b2)via R; = Rfa
Q; = gsi(b1+b2) Q. = B 5i(b14b2) tipmibi+mabs Q' = gti(bl+b2)
I 7 7 I 7 I
T, = e(g,9)""
— if i =i+ 1: B implicitly chooses v; € Z2 such the g = (g°*, g, T). Since B knows the values of
by, by, and v,, it can compute the value of (g?1+2)%: and g(¥i"?¢). Then it sets
R, = (gb1+b2)51vi, R; _ (gb1+52)f€57:v7:’
Q, = gl (bitba) - gr QZ(_(’*ZJ'/E;?* Uj/)ZzZ;i priditmads QU _ gti(ditds),
e(g(vi'vc)7g)w(ai,1+ai,2)73i
(6(g(”i'”6), h) H e(g(vrvc)’ hj/))¢(a1+a2)TSiF{r1F;2
j/ ER*

T, =M
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—if 4 > i+ 1: it chooses random v; € span{x1, X2}, i.e., chooses random v; 1,v;2 € Z, and sets
v; = V;1X1 + Vi2X2. B cannot compute the value of v;, but it can compute the value of g%, i.e.,
gYi = ((ga)”“, (gb)viz, (gc)”ivl“‘”iv"‘). Also, since B knows the values of by, b, and v, it can compute
the value of (gP*+?2)¥ and ¢(¥i"v<). Then it sets

R, = (gb1+b2)7’i5i'l’i R = (gbl+b2)ﬂmsi’vi
) 7 )
Q, = gTSi(vrvc)(h-‘rbz) Q. = Q@Jrzj’eﬁ.* Uj’)Zl§i priditmads Q= gtj(d]+d2)
? (2 (3 k3 I (3 )
e(g('vi"vc)7g)w(ai,1+ai,2)73i

o v; Ve YP(o1402)TSi o
(e(gwoed, h) T elg® o), )"+ Fp Fp
j/GR*

T, =M

2. For each j € [n]: since j > 1, B sets
Cj = (H;) ™ (Y )™, C=(Y;)".

3. Py = hmboatmabos, (P, = h(Ak-u1+§k,1)bp(k'),1_£k,1bp(k),2+(Ak‘u2+fk,2)bp(k),3_£k‘,2bp(k),4}ke[l]_

If T corresponds to ¢“*+%) then the encryption corresponds to game Hy; and if T' is randomly chosen, then
it corresponds to game Hs.
Guess. A outputs a guess b’ € {0,1} to B, then B outputs this &’ to the challenger.

The advantage of B is exactly equal to the advantage of the adversary A.

C Access Structure and Linear Secret-Sharing Schemes

Definition 6. (Access Structure) [23] Let P be a set of attributes. A collection A C 2% is monotone if VB,C
:BeA and B C C imply C € A. An access structure (resp., monotone access structure) is a collection (resp.,
monotone collection) A of non-empty subsets of P, i.e., A C 2P\ {D}. The sets in A are called authorized sets,
and the sets not in A are called unauthorized sets. Also, for an attribute set S C P, if S € A then we say S
satisfies the access structure A, otherwise we say S does not satisfy A.

As shown in [2], any monotonic access structure can be realized by a linear secret sharing scheme.

Definition 7. (Linear Secret-Sharing Schemes (LSSS)) [23] A secret sharing scheme IT over a set of
attributes P is called linear (over Z,) if

1. The shares for each attribute form a vector over Z,.

2. There exists a matriz A called the share-generating matriz for IT. The matriz A has | rows and n columns.
For i = 1,...,1, the i'" row A; of A is labeled by an attribute p(i) (p is a function from {1,... 1} to
P). When we consider the column vector v = (s,ra,...,7y), where s € Zy, is the secret to be shared and
r9,...,Tn € Zy are randomly chosen, then Av is the vector of | shares of the secret s according to II. The
share \; = (Av);, i.e., the inner product A; - v, belongs to attribute p(i).

Also shown in [2], every LSSS as defined above enjoys the linear reconstruction property, which is defined as
follows: Suppose that IT is an LSSS for access structure A. Let S € A be an authorized set, and I C {1,...,[}
be defined as I = {i : p(i) € S}. There exist constants {w; € Zy}ies such that >, ;w;A; = (1,0,...,0), so
that if {\;} are valid shares of a secret s according to II, ), ; wiA\; = s. Furthermore, these constants {w;} can
be found in time polynomial in the size of the share-generating matrix A. For any unauthorized set, no such
constants exist.
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