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Abstract. We put forth a new mathematical framework called Isoge-
nous Pairing Groups (IPG) and new intractable assumptions in the
framework, the Isogenous DBDH (Isog-DBDH) assumption and its vari-
ants. Three operations, i.e., exponentiation, pairing and isogeny on el-
liptic curves are treated under a unified notion of trapdoor homomor-
phisms, and combinations of the operations have potential new crypto-
graphic applications, in which the compatibility of pairing and isogeny
is a main ingredient in IPG. As an example, we present constructions
of (small and large universe) key-policy attribute-based encryption (KP-
ABE) schemes secure against pre-challenge quantum adversaries in the
quantum random oracle model (QROM). Note that our small universe
KP-ABE has asymptotically the same efficiency as Goyal et al.’s small
universe KP-ABE, which has only classical security. As a by-product, we
also propose practical (hierarchical) identity-based encryption ((H)IBE)
schemes secure against pre-challenge quantum adversaries in the QROM
from isogenies, which are based on the Boneh-Franklin IBE and the
Gentry-Silverberg HIBE, respectively.
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1 Introduction

1.1 Backgrounds

Since the seminal work of Boneh-Franklin, pairings on elliptic curves have many
applications, i.e., identity-based encryption, short (group) signatures, attribute-
based encryption, efficient anonymous credential systems, etc. Elliptic curves
have another interesting operation called isogeny, which has been used for quantum-
resistant cryptosystems [22, 33, 19]. This paper establishes a unified framework
for these operations, namely, a notion of isogenous pairing groups (IPG). Using
this framework, we can raise pairing cryptosystems to quantum resistant ones in
a weak sense. As an example, we construct secure (H)IBE and ABE in a weak
form of post-quantum security model.

(Key-policy) attribute-based encryption (KP-ABE) is a powerful and useful
generalization of identity-based encryption (IBE). In a KP-ABE system, cipher-
texts are associated with sets of attributes and user secret keys distributed by
an authority are associated with formulas over attributes. A user should be able



to decrypt a ciphertext if and only if the secret key formula is satisfied by the ci-
phertext attributes. Hence, there exists a hierarchical structure in keys, namely,
master secret keys and user-level keys, where the master secret key can generate
a user key for any formula. Therefore, leakage of the master secret key is more
serious than the leakage of each user key.

All pairing-based ABE proposals (e.g., [29, 35]) would be totally broken by
the emergence of quantum computers [38], in particular, the master secret key
would be revealed. In the post-quantum era, it is important to confirm whether
classical cryptographic techniques are still secure against quantum adversary.
Recently, strong security notions and constructions against quantum computers
have been intensively studied [9, 49, 48, 13, 14, 21, 20, 4]. All existing quantum-
resistant IBE and ABE schemes have been constructed only from lattices [26,
2, 28, 11]. However, it is important to propose IBE/ABE schemes with quantum
resistance from another mathematical foundation since, for example, a very re-
cent NIST report [16, Sec. 2] (draft) mentions that “.., it has proven difficult
to give precise estimates of the security of lattice schemes against even known
cryptanalysis techniques.”

Here, we demonstrate a power of isogenies on elliptic curves for the issue and
open a new research avenue (or let pairing-based IBE/ABE (partially) survive in
the quantum world). In [15], Charles et al. constructed a hash function based on
the intractability of computing a (large degree) isogeny between two supersin-
gular elliptic curves given only the two curves. Hence, the isogeny one-way func-
tion is another quantum-resistant mathematical tool, and several post-quantum
cryptosystems have been proposed by using isogenies [22, 33, 19, 25]. But, these
proposals achieve just limited functionalities and security from several reasons.
First, the previous isogeny cryptosystems use only isogenies. Here, we also em-
ploy pairing operations since supersingular curves are suitable for deploying pair-
ing crypto as well. Second, there exist only limited foundational isogeny-related
computational assumptions for security, i.e., isogeny computation hardness [15,
22] and supersingular isogeny DH (SIDH) hardness assumptions [22, 19]. Both
assumptions are basic, but have limited applications. For enjoying various advan-
tages of pairing assumptions in isogeny crypto, we establish a new mathematical
framework, i.e., isogenous pairing groups (IPG).

Admittedly, we cannot achieve a full quantum security when using bilin-
ear pairings. Therefore, we first formalize a weak form of quantum security
against pre-challenge quantum adversaries. Roughly speaking, the adversary in
the model can attempt quantum attack before the challenge phase, but can ex-
ecute only classical attacks after the challenge. Although this notion is weaker
than full quantum security, we can present efficient KP-ABE constructions with
pre-challenge quantum security. For example, our small-universe KP-ABE scheme
has asymptotically the same efficiency as Goyal et al.’s simple classically secure
KP-ABE. The security notion also has practical merits: In particular, we can
protect a critical master secret key (as described above) by using a pre-challenge
quantum secure IBE/ABE. This is because if an adversary obtains the master
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secret, then it can attack any challenge ciphertext just by executing classical
decryption algorithm by using the master secret.

1.2 Our Results

We put forth a new mathematical framework called Isogenous Pairing Groups
(IPG) and new intractable assumptions in the framework, the Isogenous DBDH
(Isog-DBDH) assumption and its variants. As an application of IPG, we propose
an ABE scheme secure against pre-challenge quantum adversaries, whose secu-
rity is reduced from a newly established intractability assumption, i.e., a variant
of Isog-DBDH assumption. We achieve the result step-by-step as described be-
low. (For mathematical backgrounds on IPG, refer to Section A.)

– We establish a mathematical framework for enjoying both merits of pairings
and isogenies, called Isogenous Pairing Groups (IPG). Moreover, we define
new assumptions in the framework for proving the above security for our
IBE and ABE schemes: the Isog-DBDH assumption and its variants. The
assumptions seem to have more applications in future, and it is of indepen-
dent interest. For the details, see Section 2.

– We formulate a new security definition against pre-challenge quantum ad-
versaries (Section 3), which is based on the framework given in [49]. In the
security game, an adversary consists of two parts, quantum and classical ma-
chines, i.e., A := (A1,A2). The task of the first quantum machine A1 is to
analyze the public key and pre-challenge information, and his/her result is
passed to the second classical machine A2, whose task is the same as usual,
i.e., to distinguish the challenge bit with asking auxiliary key queries.

– We present an anonymous IBE construction secure against pre-challenge
quantum adversaries in the quantum random oracle model (QROM) in Sec-
tion 4. Our IBE scheme is based on the Boneh-Franklin IBE (BF-IBE), and
has an efficiency (practicality) comparable to the BF-IBE. One of the main
differences is that a public master key has two elliptic curve parameters for
using isogeny in the cryptographic construction. Since BF-IBE was adopted
as an international standard [32], our IBE is quite practical with respect
to the data sizes, encryption and decryption times. We can also extend our
construction to HIBE based on the Gentry-Silverberg HIBE [27] (Appendix
C).

– We construct small and large universe KP-ABE schemes secure against pre-
challenge quantum adversaries, which are selective-attribute secure in the
QROM (Section 5). First, we construct a small universe KP-ABE secure
against pre-challenge quantum adversaries in the QROM, and then obtain
the large universe construction by hierarchically combining two instantia-
tions of the small universe ABE. The proposed KP-ABE schemes are based
on the GPSW06 KP-ABE [29]. We note that all sizes of public parameters,
secret keys and ciphertxts of our small universe KP-ABE is asymptotically
the same as GPSW06 small universe KP-ABE.
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1.3 Key Techniques

New Mathematical Framework of Isogenous Pairing Groups (IPG) We
first observe a similarity of scalar multiplications and isogenies on elliptic curves.
We unify the two homomorphic operations as a notion of Trapdoor Homomor-
phism (TH), which is defined in Section 2.1. Informally, a randomly chosen TH
cannot be computed efficiently (without a trapdoor), but, once having a trap-
door, the homomorphic computation turns out to be easy.

For most pairing cryptosystems, the bilinear property e(g0, ĝα0 ) = e(g0, ĝ0)α

is a key point, which is considered as a compatibility condition on pairing with
(public key) ĝα0 and scalar multiplication with (secret key) α. Based on the above
similarity, for our IBE and ABE, a compatibility of pairing and isogeny, e.g.,
e0(g0, ĝ0) = e1(φ(g0), ĝ1), is required. Note that since we use multiple elliptic
curves, pairings e0 and e1 are defined on different E0 and E1 := φ(E0), respec-
tively. Based on the compatibility, we formulate a notion of Isogenous Pairing
Groups, an extension of that of pairing groups. In the system, multiple pairing
groups of the same prime order are employed, where efficient homomorphisms
between them are hidden from adversaries. It is schematically presented in Fig. 1
in Section 2.2.

(H)IBE and ABE on IPG By using the above similarity, we replace a part of
master key pair of BF-IBE, (pk := (ĝ0, ĝα0 ), sk := α) for a group element ĝ0 ∈ Ĝ0

and a random scalar α, by (pk := (ĝ0, φ(ĝ0)), sk := φ)) for a randomly chosen
isogeny φ. The important difference of scalar multiplications and isogenies is
that the former security is assured only against classical adversaries but the latter
security is assured even against quantum adversaries (at the present knowledge).
The difference leads to security against pre-challenge quantum adversaries.

Moreover, for achieving the security, we should not include two (or more) dif-
ferent elements in one same group in the public key. Otherwise, the quantum ad-
versary reveals the secret exponent (discrete log) relating the two elements. The
public key condition restricts our ciphertext construction. For example, our small
universe KP-ABE has a simple ciphertext as cttag, Γ := ({ĝζt }t∈Γ , e0(H(tag), ĝ0)ζ)

with a uniformly random ζ
U← Fq (and hash H) for tag tag and attributes Γ .

With this strong restriction, we obtain provably secure small and large universe
KP-ABE schemes against pre-challenge quantum adversaries.

New Assumptions on IPG: Isog-DBDH and Variants We formulate new
assumptions for our proposals, namely, Isog-DBDH assumption and its exten-
sion, d-qIsog-DBDH. The usual DBDH instance consists of (g, gα, gβ , gγ , hT ) for
distinguishing whether hT is gαβγT or random where gT := e(g, g). An instance
for the Isog-DBDH problem consists of (g, gα, φ(g), φ(g)β , hT ) for distinguishing
whether hT is gαβT or random, where g ∈ E0 and φ(g) ∈ E1 are encoded on dif-
ferent (isogenous) elliptic curves E0 and E1, respectively. Therefore, informally,
an adversary without knowing φ cannot obtain a meaningful pairing value gαβT
from gα and φ(g)β . Our IBE (resp., small, large universe ABE) scheme is secure
under the 1-qIsog-DBDH (resp., d-qIsog-DBDH, 2dn-qIsog-DBDH) assumption,
where d is small universe size and n is bitlength of an attribute.
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1.4 Related Works

Previous IBEs have been constructed by three types of mathematical problems:
pairing, factoring, and lattice (See Table 1). While lattice-based IBE is con-
sidered to be quantum-secure, factoring-based IBEs are never converted to be
quantum-secure. Our proposal is placed in the middle of the two situations. By
using isogenies, we can achieve security against pre-challenge quantum adver-
saries. For the comparison, see Table 1.

Most of lattice-based IBE and ABE schemes are believed to be quantum se-
cure, but recently, Biasse and Song [7] demonstrated an effective quantum attack
for some ideal based cryptosystems. While Ducas et al. [24] improved a lattice-
based IBE for practical use, lattice-based ABE schemes [28, 11] are inefficient far
from practical use. Some efficient pairing-based ABEs are implemented in the
publicly available software, e.g., Charm [3], and our isogeny-based technique can

Table 1. Comparison with existing IBE schemes, where LWE stands for Learning With
Errors and the right most column represents the type of the adversary A := (A1,A2)
in the security definition as is given in Def. 10, in which c (resp., q) means “classical
ppt (resp., quantum polynomial-time) machine”.

Math. Primitive Assumption Sec. Model Type of (A1,A2)

BF01 [10] pairing DBDH ROM ( c, c )

Wat09 [45] DLIN adaptive ( c, c )

Coc01 [18] factoring Quad. Residuosity ROM ( c, c )

BGH07 [12] ROM ( c, c )

GPV08 [26] lattice LWE ROM ( q, q )

ABB10 [2] selective ( q, q )

Proposed pairing & isogeny 1-qIsog-DBDH QROM ( q, c )

Table 2. Comparison with existing large universe KP-ABE schemes, where d, n are
size parameters of the large universe for our KP-ABE in Section 5.3 and the type of
(A1,A2) column represents the same as in Table 1.

Math. Primitive Assumption Sec. Model Type of (A1,A2)

GPSW06 [29] pairing DBDH selective ( c, c )

OT10 [35] DLIN adaptive ( c, c )

GVW13 [28] lattice LWE selective ( q, q )

BGG+14 [11] selective ( q, q )

Proposed pairing & isogeny 2dn-qIsog-DBDH
selective

in QROM
( q, c )
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be applied to the legacy IBE/ABE cryptosystems with comparable efficiency.
For the comparison of our ABE and previous ones, see Table 2.

For the security proofs based on the simulation, the rewinding techniques
have been commonly used. In the quantum setting, the naive usage of the rewind-
ing techniques does not work for the proofs. Watrous [46] devised a technique
to affirmatively resolve the rewinding problem. His technique has contributed
to provide security proof of classical cryptographic protocols against quantum
adversaries [4, 42, 30, 43]. Showing security proofs against quantum adversaries
that can invoke oracles is another important issue. Since quantum adversaries
can make quantum-superposition queries to the oracle, simulators (for security
proofs) have to respond with the corresponding quantum-superposition answers.
For this problem, Damg̊ard et al. [21] gave a positive solution in the case of secret
sharing. Especially, the quantum superposition attacks in the ROM is problem-
atic. Boneh et al. [9] first considered a ROM security definition against quantum
computers. Based on the definition, Zhandry proposed a construction of secure
identity-based encryption in the quantum random oracle model (QROM) [49],
then quantum random functions in the model [48]. Moreover, the authors pro-
posed quantum-safe MAC, signatures and CCA-secure encryption constructions
[13, 14]. For other cryptographic techniques, the security against quantum ad-
versaries has been discussed [20, 41].

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. We denote the finite field of order q by Fq.
Let [n] := {1, .., n} and [0, n] := {0} ∪ [n] := {0, .., n} for any n ∈ Z>0. For two
vectors �y = (yi)i∈[r] and �v = (vi)i∈[r], �y · �v denotes the inner-product

∑r
i=1 yivi.

2 Isogenous Pairing Groups

For mathematical backgrounds on IPG, refer to Section A.

2.1 Trapdoor Homomorphisms

Definition 1 (Trapdoor Homomorphism (TH)). A (randomly chosen) func-
tion φ := φξ : G0 → G1 with two (randomly chosen) cyclic groups G0, G1 of a
prime order q is called a trapdoor homomorphism if the following conditions
hold.

– (Homomorphism) φ is a non-trivial (e.g., non-zero for an additive group)
homomorphism.

– (TH-DH (TH-Diffie-Hellman) intractability assumption) Any probabilistic
polynomial-time (ppt) machine B computes φ(g) only with a negligible prob-
ability when given (g0, φ(g0), g) for randomly chosen φ and g0, g

U← G0.
– (Polynomial-size trapdoor) There exists a ppt machine B which computes
φ(g) for any g ∈ G0 given a polynomial-size trapdoor ξ for φ := φξ.
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Examples. By using elliptic curves, we have three examples of THs.

1. (Exponentiation) G0 := G1 := G is an elliptic curve cyclic group and φ := φξ
is an exponentiation on G (i.e., scalar multiplication on the curve), i.e.,
φξ : g �→ g ξ, where ξ is a scalar. TH-DH input and output are given as
(g0, φ(g0), g) = (g0, g

ξ
0, g) and φ(g) = g ξ, respectively, and then TH-DH

intractability is the same as the usual computational DH assumption.
2. (Pairing) G0 := G, G1 := GT is a pairing group and φ := φξ is a pairing

operation on G, i.e., φξ : g �→ e(g, ξ), where ξ is an element in G in the
symmetric pairing case (or Ĝ in the asymmetric pairing case). TH-DH input
and output are given as (g0, φ(g0), g) = (g0, e(g0, ξ), g) and φ(g) = e(g, ξ),
respectively, and then TH-DH intractability is reduced to the computational
BDH (CBDH) assumption (Lemma 1).

3. (Isogeny) G0 := G0, G1 := G1 are two different elliptic curve cyclic groups
obtained from two curves E,E′, respectively, and φ := φξ is an isogeny from
G0 to G1, i.e., φξ : E → E′ := E/C, where ξ := C is a (cyclic) subgroup
in E. For the details, see Section A.3, in particular, Algorithms 1 and 2.
The TH-DH intractability is another kind of natural extensions of the DH
assumption obtained by using isogenies other than that given in [22].

Remark 1 (Trapdoor Extraction Intractability). Trapdoor Extraction Intractabil-
ity assumption is formulated as follows: Any ppt machine B computes a trapdoor
ξ only with a negligible probability given a (g0, φ(g0)) for g0

U← G0. As is easily
seen, the trapdoor extraction is intractable if the TH-DH is intractable.

For the exponentiation case, it is the Discrete Logarithm Problem (DLP)
assumption, and for the pairing case, it is the Pairing Inversion (PI) assumption.
For the isogeny case, it is called the Isogeny assumption. (Refer to Def. 5.)

Lemma 1. The TH-DH assumption for pairing is reduced to the CBDH as-
sumption. That is, for any adversary B for TH-DH, there exists a probabilistic
machine C, whose running time is essentially the same as that of B, such that for
any security parameter λ, AdvTH-DH

B (λ) = AdvCBDH
C (λ), where AdvTH-DH

B (resp.,
AdvCBDH

C ) is an advantage of B for the TH-DH (resp., C for the CBDH) problem.

Proof. A ppt machine C is given a CBDH instance (g, gα, gβ , gγ) where α, β, γ U←
Fq. C sends (g, e(gα, gβ) = e(g, gαβ), gγ) to a TH-DH adversary B, where implic-
itly setting ξ := gαβ . If B outputs e(gγ , gαβ) = e(g, g)αβγ , then C outputs it. ��

By combining the TH-DH intractability assumptions for isogeny and pairing,
we have the following definition.

Definition 2 (Isog-CBDH). The Isog-CBDH assumption is as follows: For
two (randomly chosen) cyclic symmetric pairing groups G0,G1 (in two different
elliptic curves) and a (randomly chosen) isogeny φ : G0 → G1, any ppt ma-
chine B computes hT := e1(φ(g), φ(h)) only with a negligible probability given
(g0, φ(g0), g, φ(h)) for uniformly generated g0, g, h

U← G0.
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Lemma 2. The TH-DH assumption for isogeny is reduced to the Isog-CBDH as-
sumption. That is, for any adversary B for TH-DH, there exists a ppt machine C,
whose running time is essentially the same as that of B, such that for any security
param.λ, AdvTH-DH

B (λ) = AdvIsog-CBDH
C (λ), where AdvTH-DH

B (resp.,AdvIsog-CBDH
C )

is an advantage of B for the TH-DH (resp., C for the Isog-CBDH) problem.

Proof. A ppt machine C is given an Isog-BDH instance (g0, φ(g0), g, φ(h)) where
g0, g, h

U← G0. C sends (g0, φ(g0), g) to TH-DH adversary B. If B outputs φ(g),
then C outputs e1(φ(g), φ(h)). ��

The decisional version of the Isog-CBDH assumption is given below.

Definition 3 (Isog-DBDH). The Isog-DBDH assumption is as follows: For
two (randomly chosen) cyclic symmetric pairing groups G0,G1 (in two different
elliptic curves) and a (randomly chosen) isogeny φ : G0 → G1, any ppt machine
B guesses whether hT = e1(φ(g), φ(h)) or random in GT only with a negligible
probability given (g0, φ(g0), g, φ(h), hT ) for g0, g, h

U← G0 and hT ∈ GT .

2.2 Isogenous Pairing Groups (IPG)

Combining the three trapdoor homomorphic structures, we propose a useful
cryptographic framework called “Isogenous Pairing Groups (IPG)”. After estab-
lishing the framework, we define a natural and useful computational assumption
on IPG called “Isog-DBDH”, which is a generalization of that in Def. 3. When
applying IPG framework and Isog-DBDH to crypto constructions, “compatibil-
ity” of pairings on different groups (or elliptic curves) and isogenies is a main
ingredient. For the symmetric pairing groups G0,G1 in Def. 3, it is described as

e0(g, h) = e1(φ(g), φ(h)), (1)

where e0 (resp., e1) is an efficiently computable pairing on G0 (resp., G1), i.e.,
on the curve E0 (resp.,E1). For the correctness, see Prop. 2 in Section A.4. The
above property (1) is extended to among multiple curves {Et}t∈[0,d] or multiple
asymmetric pairing groups (Gt, Ĝt)t∈[0,d] as is given in Eq. (2) below.

Definition 4 (Isogenous Pairing Groups (IPG)). Isogenous Pairing Groups
(IPG) generator generates a random instance as follows:

GenIPG(1λ, d) R−→ ( pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ), skIPG := (φt)t∈[d] ),

where (Gt, Ĝt, et,GT ) are asymmetric pairing groups of a prime order q with
pairings et : Gt × Ĝt → GT , ĝt ∈ Ĝt, trapdoor homomorphisms φt : G0 → Gt

(given by isogenies between different elliptic curves), and gt = φt(g0) ∈ Gt. The
isogenous pairing groups satisfy

Compatibility : e0(g0, ĝ0) = et(gt, ĝt) = et(φt(g0), ĝt) for any t ∈ [d]. (2)
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Fig. 1. Compatibility of IPG

We denote the common non-trivial pairing value by gT , i.e., gT = e0(g0, ĝ0) 	= 1.
See Fig. 1. Moreover, we require that Gt 	= Ĝt. (Namely, points in Gt and Ĝt

generate the group of q-torsion points on the t-th elliptic curve.)
For simulation in security proof, the simulation algorithm SimGenIPG(G0, Ĝ0,

g0, ĝ0, e0) outputs a newly isogenous group (G, Ĝ, g, ĝ, e, φ) such that φ : G0 → G

is an efficiently computable group isomorphism, g = φ(g0), and the compatibility
holds, i.e., e0(g0, ĝ0) = e(φ(g0), ĝ) = e(g, ĝ).

Remark 2. A concrete instantiation of IPG by supersingular elliptic curves is
given in Appendix B.1. The above compatibility is also assured by Prop. 2 in
Sec. A.4.

1. An isogeny φt above is calculated by using Algorithm 1 or 2 in Section A.3.
A trapdoor ξ for Algorithm 1 (resp., 2) is given by a torsion point R on the
elliptic curve (resp., a walk data ω ∈ {0, 1}κ). An isogeny φt in a secret key
skIPG is given by the above trapdoor ξt depending on Algorithm 1 or 2 for
efficient computing of φt.

2. We note that each isogeny φt is defined from the elliptic curve E0 to Et,
hence, φt is defined from the rank two torsion group G0 ⊕ Ĝ0 to Gt ⊕ Ĝt

such that Gt = φt(G0) and Ĝt = φt(Ĝ0). However, since φt is enough to be
defined only on G0 for our schemes in Sections 4 and 5, φt is defined only
on G0 in the present definition, Def. 4 for IPG.

Assumptions The most basic security requirement is given by the intractability
of the simple isogeny computation problem: calculate (trapdoors of) any non-
zero (φt)t∈[d] s.t.φt : G0 → Gt when given (Gt)t∈[0,d]. The most basic case is
given when d = 1: calculate φ1 when given G0 and G1. Based on the fundamental
assumption, we define useful assumptions on IPG for cryptographic use below.
The isogeny problem on IPG is similarly given such that a ppt machine should
answer the (master) secret key when given the (master) public key from GenIPG.
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Definition 5 (Isogeny Problem on IPG (for d = 1)).

Let (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), skIPG := φ1)
R← GenIPG(1λ, 1).

If a ppt adversary B outputs φ1 when given pkIPG, B wins.

While the problem instance has auxiliary inputs, points on groups, that is,
(gt ∈ Gt, ĝt ∈ Ĝt)t=0,1, it is believed to have no efficient quantum adversary at
present. We use the intractability for the pre-challenge quantum security.

In Def. 15 in Section A.3, De Feo et al.’s assumption, Computational Super-
singular Isogeny (CSSI) assumption (for smooth order pairing groups) by using
a prime p with p+ 1 = �κA

A �κB

B · f and isogeny generation Isogdjp

,κ (Algorithm 1)

with � := �A, κ := κA, is given as a special instantiation of the isogeny assump-
tion given in Def. 5. The CSSI problem is believed to have no efficient quantum
attack, which gives a reasonable justification for our isogeny assumption on IPG.

For provable security of our schemes, we define new problems, Isog-DBDH
problem on IPG. The adversary against the Isog-DBDH problem has two parts,
the first is quantum and the second is classical. We first formulate a classical
adversary form of our Isog-DBDH, for simplicity (for d = 1).

Definition 6 (Isog-DBDH Assumption (on IPG)). Let B be a classical ppt
machine adversary. For (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), skIPG := φ1)

R←
GenIPG(1λ, 1) and α, β, δ U← Fq, B receives Xb for b

U← {0, 1}, that is defined by

X0 := ( pkIPG, gα0 , ĝ
β
1 , g

αβ
T ) and X1 := ( pkIPG, gα0 , ĝ

β
1 , g

δ
T ), (3)

where gT := e0(g0, ĝ0). B outputs a guess bit b′. If b = b′, B wins. The Isog-
DBDH assumption is: For any ppt adversary B, the advantage of B for the
Isog-DBDH problem is negligible in λ.

In other words, X0 and X1 contain four group elements (g0, ĝ1, gα0 , ĝ
β
1 ) and

the problem asks whether the target GT element is gαβT or random. Here, we
note that two elements in G0 and Ĝ1 cannot be paired, in particular, B cannot
obtain the pairing value gαβT from gα0 and ĝβ1 = φ1(ĝ0)β (by Item 2 of Remark 2).
Compared with the usual DBDH instance, one scalar multiplication is replaced
by another trapdoor homomorphism φ1 in the Isog-DBDH instance.

Security of our schemes is based on the next assumptions, qIsog-DBDH and d-
qIsog-DBDH, where an adversary B is given by two machines (B1,B2), where B1

is modeled as a polynomial-time quantum adversary, B2 a classical ppt machine.

Definition 7 (qIsog-DBDH Assumption (on IPG)). Let B := (B1,B2) be
an adversary, where B1 is modeled as a polynomial-time quantum adversary,
B2 a classical ppt machine. For (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), skIPG :=

φ1)
R← GenIPG(1λ, 1), B1 outputs state

R← B1(pkIPG). Then, for α, β, δ U← Fq, B2

receives Xb for b
U← {0, 1}, that is defined by Eq. (3). B2 outputs a guess bit b′. If

b = b′, B := (B1,B2) wins. The qIsog-DBDH assumption is defined in a similar
manner as in Def. 6.
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For a general positive integer d > 0, d-qIsog-DBDH problem is given as follows:

Definition 8 (d-qIsog-DBDH Assumption (on IPG)). Let B := (B1,B2)
be an adversary, where B1 is modeled as a polynomial-time quantum adversary,
B2 a classical ppt machine. For (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ), skIPG :=

(φt)t∈[d])
R← GenIPG(1λ, d), B1 outputs state

R← B1(pkIPG). Then, for α, β, δ U← Fq,

B2 receives Xb for b
U← {0, 1}, that is defined by

X0 := ( state, gα0 , (ĝβt )t∈[d], g
αβ
T ) and X1 := ( state, gα0 , (ĝβt )t∈[d], g

δ
T ),

where gT := e0(g0, ĝ0). B2 outputs a guess bit b′. If b = b′, B := (B1,B2) wins.
The advantage of adversary B in the experiment is defined as Advd-qIsog-DBDH

B (λ) :=
Pr[B wins]− 1/2 for any security parameter λ. The d-qIsog-DBDH assumption
is: For any ppt B, the advantage of B, Advd-qIsog-DBDH

B (λ), is negligible in λ.

A concrete instantiation of the d-qIsog-DBDH assumption by supersingular
elliptic curves is given in Appendix B.2.

3 Definitions of IBE and ABE Secure Against
Pre-challenge Quantum Adversaries

3.1 Intuition

As is described in Section 1.4, there already exist several security models against
quantum adversary. For achieving efficient (or practical) quantum-secure IBE
and ABE, we define a new, intermediate notion between classical and (full-
)quantum security ones, i.e., security against pre-challenge quantum adversary.
In the definitions (of IBE and ABE), an adversary A consists of two machines
(A1,A2), the first A1 is modeled by a quantum machine for the pre-challenge
phase and the second A2 a classical machine for the post-challenge phase. (That
is, A1 is stronger than A2, which is analogous to the concept of non-adaptive
chosen ciphertext attack (CCA1) security [6] in literatures.) In the IBE security
game, A1 is given a target master public key pk, makes random oracle and key
generation queries (with some restrictions) and outputs some state information
denoted by state. After obtaining state, A2 makes a challenge encryption query,
obtains a challenge ciphertext and then makes ID-secret key queries (with other
restrictions than the pre-challenge phase) and A2’s task is guessing the random
bit b (encoded on the ciphertext) as usual. As is easily seen, if both (A1,A2) are
classical (resp. quantum), the notion is classical (resp. quantum). Therefore, our
security notion is an intermediate one of the two notions.

One example scenario is as follows: Emergence of quantum computers leads
to security breaches. However, in the initial phase of development of quantum
computers, like classical computer emergence, the speed of deployment must be
relatively slow. At least, handy quantum computers are not so spreading and
the machine cost is expensive. IBE (resp. KP-ABE) have a two-level hierarchi-
cal structure in secret keys, i.e., master secret keys and ID (resp. policy) secret
keys. If the master secret key is revealed, the adversary can generate any ID
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(resp. policy) secret key by using a real key generation algorithm, which is a clas-
sical ppt algorithm. Therefore, the adversary first targets the master secret key
for an effective attack. On the other hand, if the master secret key is protected,
the attacker should break each ciphertext one-by-one. A quantum adversary can
attack each ciphertext, but, if he/she can attack the master secret key at the first
stage of the attack, the strategy is considered to be effective. From this point,
the defense of the master key from a quantum adversary is important and our
security notion called PH-PQ (Payload-Hiding against Pre-challenge Quantum
adversaries) in Definitions 10 and 14 is motivated by this observation.

3.2 Quantum Computation

A quantum algorithm is an algorithm executed on a quantum computer that
produces a classical output. Quantum algorithms can keep and operate quantum
states in the registers, where the quantum states can be represented as a linear
combination of distinct states. A classical output that a quantum algorithm
produces is one of the distinct states that represent the final quantum state.
Refer the reader to [34] for a more thorough discussion.

Here we remind a few basic facts about quantum computation necessary for
understanding our results in a manner similar to [49].

Fact 1 Any classical computation can be implemented on a quantum computer.

Fact 2 Any function that has an efficient classical algorithm computing it can
be implemented efficiently as a quantum-accessible oracle.

Fact 3 Given a quantum algorithm A with oracle access to an oracle O, each
oracle O defines a probability distribution of the outputs of A. Hence, any prob-
ability amplitude D of oracles leads to a probability distribution of outputs of
A, and if two probability amplitudes D1 and D2 are identical, the probability
distributions of the outputs of A under these amplitudes are also identical.

3.3 Identity-Based Encryption (IBE)

Definition 9 (Identity-Based Encryption: IBE). An identity-based encryp-
tion scheme consists of probabilistic polynomial-time algorithms Setup,KeyGen,
Enc and Dec. They are given as follows:

Setup takes as input a security parameter 1λ. It outputs public parameters pk
and master secret key sk.

KeyGen takes as input public parameters pk, a master secret key sk, and an
identity ID. It outputs a corresponding secret key skID.

Enc takes as input public parameters pk, a message m in some associated mes-
sage space msg, and an identity ID. It outputs a ciphertext ctID.

Dec takes as input public parameters pk, a secret key skID for an identity ID,
and a ciphertext ctID′ that was encrypted under an identity ID′. It outputs
either m′ ∈ msg or the distinguished symbol ⊥.
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An IBE scheme should have the following correctness property: for all (pk, sk) R←
Setup(1λ), all identities ID, all secret keys skID

R← KeyGen(pk, sk, ID), all messages
m, all identities ID′, all ciphertexts ctID′

R← Enc(pk,m, ID′), it holds that m =
Dec(pk, skID, ctID′) if ID = ID′. Otherwise, it holds with negligible probability.

We define the security notion of Payload-Hiding against Pre-challenge Quan-
tum adversary (PH-PQ) for IBE.

Definition 10 (PH-PQ for IBE). Let (Setup,KeyGen,Enc,Dec) be an IBE
scheme and let A = (A1,A2) be a stateful adversary, where A1 is modeled as
a polynomial-time quantum adversary. Consider the experiment Expibe,ph-pq

A [λ]
below:

Expibe,ph-pq
A [λ] : (sk, pk) R← Setup(1λ), state

R← ARO(·),KeyGen(sk,·)
1 (pk),

/ ∗ ID∗ is not queried to RO in the pre-challenge phase by A1,

and not queried to KeyGen in any phase ∗ /
(ID∗,m0,m1)

R← ARO(·),KeyGen(sk,·)
2 (state), b U← {0, 1}, ct∗ R← Enc(pk,mb, ID

∗),

b′ R← ARO(·),KeyGen(sk,·)
2 (ct∗), output b′.

Here, RO is quantum-accessible (i.e., with quantum superposed inputs and out-
puts) and KeyGen is classical-accessible. If b = b′, A := (A1,A2) wins. The
advantage of adversary A in the experiment is defined as Advibe,ph-pq

A (λ) :=
Pr[A wins] − 1/2 for any security parameter λ. An IBE scheme is payload-
hiding against pre-challenge quantum adversary (PH-PQ) if all adversaries A =
(A1,A2), where A1 be a polynomial-time quantum machine and A2 a classical
ppt machine, achieve at most a negligible advantage in the above security game
(or experiment).

The security notion of anonymous-ID secure against pre-challenge quantum
adversary for IBE in Definition 17 in Appendix D.

3.4 Key-Policy Attribute-Based Encryption (KP-ABE)

For a polynomial d = d(λ), a sub-universe Ut (⊂ {0, 1}∗) is assigned for t ∈ [d].
Each attribute is expressed by a pair of sub-universe id and value of attribute,
i.e., (t, v), where t ∈ [d] and v ∈ Ut. Let Ut := {1} for the small universe case
and Ut := {0, 1}n for the large universe case with a polynomial n := n(λ). Thus,
the small universe [d]× {1} is identified with [d] and the large universe is given
by [d]× {0, 1}n.

Span Programs and (Monotone) Access Structures

Definition 11 (Span Programs [5]). A span program over Fq is a labeled
matrix S := (M,ρ) where M is an (l × r) matrix over Fq and ρ is a labeling of
the rows of M by an attribute from {(t, v), (t′, v′), . . .} (every row is labeled by
one attribute), i.e., ρ : {1, . . . , l} → {(t, v), (t′, v′), . . .}. A span program accepts
or rejects an input by the following criterion. Let Γ be a set of attributes, i.e.,
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Γ := {(tj , xj)}1≤j≤d′ (xj ∈ Utj ). The span program S accepts Γ , denoted by
R(S, Γ ) = 1, if and only if �1 ∈ span〈(Mi)ρ(i)∈Γ 〉, i.e., some linear combination
of the rows (Mi)ρ(i)∈Γ gives the all one vector �1.

No row Mi (for i ∈ [l]) of the matrix M is zero.

Definition 12. A secret-sharing scheme for span program S := (M,ρ) is:

1. Let M be an l×r matrix and a column vector �f := (f1, . . . , fr)
U← F

r
q . Then,

s0 := �1 · �f =
∑r
k=1 fk is the secret to be shared, and �s := (s1, . . . , sl)T :=

M · �fT is the l shares of the secret s0 and the share si belongs to ρ(i).
2. If span program S := (M,ρ) accepts Γ , i.e., �1 ∈ span〈(Mi)ρ(i)∈Γ 〉, there

exist constants {σi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ [l] | ρ(i) ∈ Γ} and∑
i∈I σisi = s0. Furthermore, these constants {σi} can be computed in time

polynomial in the size of the matrix M .

KP-ABE In KP-ABE, encryption (resp. a secret key) is associated with at-
tributes Γ (resp. access structure S). In fact, our KP-ABEs are tagged schemes,
and the relationR+ for the tagged KP-ABE is defined asR+((tag,S), (tag′, Γ )) :=
Eq(tag, tag′) ∧ R(S, Γ ) for a key parameter (tag,S) and ciphertext parameter
(tag′, Γ ), where R(S, Γ ) = 1 iff S accepts Γ and Eq(tag, tag′) = 1 iff tag = tag′.

Definition 13 (Key-Policy Attribute-Based Encryption: KP-ABE). A
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup,KeyGen,Enc and Dec. They are given as follows:

Setup takes as input a security parameter 1λ. It outputs public parameters pk
and master secret key sk.

KeyGen takes as input a public parameters pk, a master secret key sk, a tag tag,
and an access structure S := (M,ρ). It outputs a corresponding secret key
sktag,S.

Enc takes as input a public parameters pk, a message m in some associated
message space msg, a tag tag′, and a set of attributes, Γ := {(tj , xj)}1≤j≤d′ .
It outputs a ciphertext cttag′,Γ .

Dec takes as input a public parameters pk, a secret key sktag,S for access struc-
ture S and tag tag, and a ciphertext cttag′,Γ that was encrypted under a set
of attributes Γ and tag tag′. It outputs either m′ ∈ msg or the symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all
(pk, sk) R← Setup(1λ), all tags tag, all access structures S, all secret keys sktag,S

R←
KeyGen(pk, sk, tag,S), all messagesm, all tags tag′, all attribute sets Γ , all cipher-
texts cttag′,Γ

R← Enc(pk,m, tag′, Γ ), it holds that m = Dec(pk, sktag,S, cttag′,Γ ) if
tag = tag′ and S accepts Γ . Otherwise, it holds with negligible probability.

Definition 14 (PH-PQ for KP-ABE). Let (Setup,KeyGen,Enc,Dec) be a
tagged key-policy attribute based encryption scheme and let A = (A1,A2) be a
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stateful adversary, where A1 is modeled as a polynomial-time quantum adversary.
Consider the experiment Expabe,ph-pq

A [λ] below:

Expabe,ph-pq
A [λ] : Γ ∗ R← A1(1λ), (sk, pk) R← Setup(1λ),

(state, tag∗) R← ARO(·),KeyGen(sk,·)
1 (pk),

/ ∗ tag∗ is not queried to RO nor KeyGen in the pre-challenge phase by A1 ∗ /
(m0,m1)

R← ARO(·),KeyGen(sk,·)
2 (state), b U← {0, 1}, ct∗ R← Enc(pk,mb, tag

∗, Γ ∗),

b′ R← ARO(·),KeyGen(sk,·)
2 (ct∗), output b′.

/ ∗ if (tag∗,S) is queried to KeyGen in the post-challenge phase by A2,

S does not accept Γ ∗ ∗ /

Here, RO is quantum-accessible (i.e., with quantum superposed inputs and out-
puts) and KeyGen is classical-accessible. If b = b′, A := (A1,A2) wins. The
advantage of adversary A in the experiment is defined as Advabe,ph-pq

A (λ) :=
Pr[A wins] − 1/2 for any security parameter λ. A tagged KP-ABE scheme is
(selective-attribute) payload-hiding against pre-challenge quantum adversaries
(PH-PQ) if all adversaries A = (A1,A2), where A1 be a polynomial-time quan-
tum machine and A2 a classical ppt machine, achieve at most a negligible ad-
vantage in the above security game (or experiment).

4 Proposed Anonymous IBE against Pre-challenge
Quantum Adversaries

4.1 Construction

The proposed IBE scheme is a Boneh-Franklin type IBE. A master secret key
sk is given by an isogeny from G0 to G1. A hash function H : Fq → G0 maps an
arbitrary ID ∈ Fq to a point of G0. Note that the size of Fq is exponential in λ.

Setup(1λ) : ( pkIPG := ((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), skIPG := φ1 ) R← GenIPG(1λ, 1),
generate a random hash H : Fq → G0 with the identity space Fq,

return pk := ((Gt, Ĝt, ĝt, et)t=0,1,GT , H), sk := φ1.

KeyGen(pk, sk, ID) : h0 := H(ID) ∈ G0, h1 := φ1(h0), return skID := h1.

Enc(pk,m, ID) : h0 := H(ID), ζ
U← F

×
q , c := ĝζ1 , z := e0(h0, ĝ0)ζ , cT := z ·m,

return ctID := (c, cT ).
Dec(pk, skID = h1, ctID′ = (c, cT )) : if ID = ID′, z′ := e1(h1, c),

m′ := cT · (z′)−1, return m′, otherwise, return ⊥.

Dec correctly decrypts since z′ = e1(h1, c) = e1(φ1(h0), ĝ
ζ
1) = e1(φ1(h0), ĝ1)ζ =

e0(h0, ĝ0)ζ = z if ID = ID′. Here, we use the compatibility e1(φ1(h0), ĝ1) =
e0(h0, ĝ0) in Definition 4.
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Note that a secret key skID (resp., ciphertext ctID) consists of one element
of G0 (resp., one Ĝ1 element and one GT element), which are almost the same
as those in the original BF-IBE. However, size of public parameters is double
of that in BF-IBE, i.e., two elliptic curve parameters. This shows that our IBE
is quite practical. A concrete instantiation of our IBE by supersingular elliptic
curves is given in Appendix B.3.

4.2 Security

The following proposition assures the correctness of a simulation strategy of
the random oracle H by using a random degree 2ν1 polynomial for a quantum
adversary which makes quantum random oracle queries at most ν1 times. Cf. Fact
3 in Section 3.2.

Proposition 1. [49] Let H be an oracle drawn from a 2ν1-wise independent
distribution. Then, the behavior of any quantum algorithm making at most ν1
quantum queries to H is identical to the behavior of the quantum algorithm
making at most ν1 quantum queries to a truly random function.

Remark 3 (Lemma 6.4 in [13]). Furthermore, we can show that for an oracle
H drawn from a (2ν1 + ν2)-wise independent distribution, the behavior of any
quantum algorithm making at most ν1 quantum and ν2 classical queries to H is
identical to the behavior of the quantum algorithm making at most ν1 quantum
and ν2 classical queries to a truly random function.

Theorem 1. The proposed IBE scheme is PH-PQ secure under the 1-qIsog-
DBDH assumption in the quantum random oracle model.

For any adversary A := (A1,A2), there exists an adversary B := (B1,B2)
for the 1-qIsog-DBDH problem, where B1 is a polynomial-time quantum machine
and B2 is a classical ppt machine, such that for any security parameter λ,
Advibe,ph-pq

A (λ) ≤ ν2 ·Adv1-qIsog-DBDH
B (λ), where ν2 is the maximum number of the

random oracle queries of A2.

Our IBE can be shown to be anonymous ID secure against pre-challenge quantum
adversaries. (The security notion is defined in Appendix D.)

Theorem 2. The proposed IBE scheme is anonymous ID secure against pre-
challenge quantum adversaries under the 1-qIsog-DBDH assumption in the quan-
tum random oracle model.

Theorem 2 is proven in a manner similar to Lemma 4.3 in [1] (given in Ap-
pendix D). Anonymous IBE has an application to searchable encryption as is
well known. In the application, if the master secret key is revealed by a quantum
attacker, all the trapdoor keys for encrypted search can be generated by a clas-
sical attacker. Our pre-challenge quantum security prevents such a devastating
attack scenario (see Section 3.1).

Proof of Theorem 1. We will employ two different simulation strategies for two
phases, the pre-challenge phase for the quantum A1 and the post-challenge phase
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for the classical A2. Note that the target ID∗ is never queried to the random ora-
cle nor key generation queries in the pre-challenge phase. Hence, the simulation
in the phase is simpler than that given in [49]. Let ν1 (resp., ν2) the maximum
number of random oracle queries in the pre-challenge phase (resp., in the post-
challenge phase), and ν := 2ν1 + ν2. We can simulate the random oracle (and
then key generation) by using a random degree ν polynomial F (X) since a ν-
wise independent function is enough for oracle simulation for A1 and A2, which
is obtained from Remark 3.

We will simulate the environment of the second part of the adversary, A2,
in a similar manner to the indistinguishability proof of the Boneh-Franklin IBE
[10].

In order to prove Theorem 1, we construct a probabilistic machine B :=
(B1,B2) against the 1-qIsog-DBDH Problem using an adversary A := (A1,A2)
in a security game as a black box as follows:

1. Pre-challenge phase simulation for the quantum machine A1:
B1 is given a public parameter for the 1-qIsog-DBDH problem, pkIPG :=
((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), then, B1 provides the quantum adversary A1

the public key pk := ((Gt, Ĝt, ĝt, et)t=0,1,GT ) and answers to quantum ran-
dom oracle access for H and classical key queries. Let F (X) be a random
degree ν polynomial, i.e., F (X) U← ⊕νi=0FqX

i with ν := 2ν1+ν2. A quantum
superposition random oracle query RO (for H) is answered by the superpo-
sition of gτID

0 using g0 in pkIPG and τID := F (ID). A classical (not super-
posed) key generation query for ID is answered by gτID

1 using g1 in pkIPG and
τID := F (ID).

2. When A1 outputs state
R← A1(pk) and sends state to A2, B1 obtains state

and outputs state′ := (state, F (X)) (and then gives state′ to B2).

3. Post-challenge phase simulation for the classical ppt machine A2:
B2 is given Xb := ( state′, gα0 , ĝ

β
1 , g

θ
T ), where θ = αβ if b = 0 and θ

U← Fq

if b = 1 and state′ := (state, F (X)). B2 plays a role of the challenger in the
security game against adversary A2, and B2 sends state to A2. B2 chooses
a random ν0 (1 ≤ ν0 ≤ ν2) for embedding the problem instance to classical
random oracle answers, where ν2 is the maximum number of random oracle
queries of classical A2.

4. When the ι-th random oracle query is issued for an identity ID,
(a) if ι 	= ν0, B2 generates τID := F (ID) and calculates hID := gτID

0 , then
returns the value hID to A2.

(b) if ι = ν0, B2 obtains the hash value hIDν0
:= h0 := gα0 from Xb, i.e., set

τIDν0
:= α implicitly, then returns the value hIDν0

to A2.
5. When a key query is issued for identity ID, B2 generates τID := F (ID) and

calculates skID := gτID
1 , then returns the value skID to A2.

6. When B2 receives an encryption query with challenge identity ID∗ and plain-
texts (m(0),m(1)) from A2, if the current number ν∗ of the RO queries in
the the post-challenge phase is greater than or equal to ν0, first B2 checks
whether ID∗ = IDν0 or not, where IDν0 is the ν0-th queried identity to the
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RO. If it does not hold, B2 aborts the game. If ν∗ < ν0 or (ν∗ ≥ ν0 and
ID∗ = IDν0), B2 selects (challenge) bit b U← {0, 1}. B2 generates the challenge
ciphertext ctID∗ := (c, cT ) such that c := ĝβ1 is obtained from the input Xb

(which implicitly sets ζ := β) and cT := g θT ·mb where g θT is also obtained
from the input Xb. B2 returns ctID∗ to A2.

7. When the ι-th random oracle query for identity ID is issued by A2 after
the encryption query, B2 executes the same procedure as that of step 4a if
ι 	= ν0. When ι = ν0, if ID = ID∗, B2 executes the same procedure as that of
step 4b, otherwise, B2 aborts the game.
When a key query is issued for identity ID, B2 generates and returns skID to
A2 as in the same way as in step 5.

8. A2 finally outputs bit b′. If b = b′, B2 outputs b′ := 0. Otherwise, B2 outputs
b′ := 1.

When b = 0 (resp. b = 1), the view of A := (A1,A2) is equivalent to that in the
real game (resp., the random ciphertext game). Moreover, the advantage of A in
the latter is equal to zero since the value of b is independent from the adversary’s
view in the game. We obtain the inequality in Theorem 1, and this completes
the proof of Theorem 1. ��

5 Proposed PH-PQ Secure KP-ABE

5.1 Small Universe Construction

The proposed KP-ABE scheme is based on the GPSW06 KP-ABE [29]. By
identifying (t, 1) ∈ [d] × {1} = [d] × U with t ∈ [d], an attribute is considered
as an element of the polynomial-size universe [d], i.e., attribute set Γ ⊂ [d]. The
IPG with (d+ 1) pairing groups is used.

Key Idea in Constructing the Proposed KP-ABE In GPSW06 KP-ABE,
the public parameters (resp., master secret key) are given as pk := ((Ĝ, ĝt :=
ĝαt)t∈[d],GT , g

y
T ) (resp., sk := ((αt)t∈[d], y)), where ĝt := ĝαt are group elements

in the same group Ĝ and αt, y
U← Fq. The exponentiation-based pk is vulnerable

to quantum attack. Instead, we encode these group elements on different groups
(i.e., different elliptic curves) such as (ĝt ∈ Ĝt)t∈[d], where ĝt ∈ Ĝt are defined
as ĝt = φt(ĝ0) ∈ Ĝt = φt(Ĝ0) using master secret isogenies φt. Informally,
the public parameters are invulnerable to quantum attack from the quantum
hardness of the isogeny problem (Def. 5). (The security of the proposed scheme
is formally proved under the d-qIsog-DBDH assumption in Theorem 3.) From
the compatibility of IPG (Eq. (2)), we decrypt ciphertexts correctly.

For achieving pre-challenge quantum security, we should not include two (or
more) different elements in one same group in the public parameters. Otherwise,
the quantum adversary reveals the secret exponent (discrete log) relating the two
elements. It restricts our ciphertext construction. For example, our small universe
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KP-ABE has a simple ciphertext as cttag, Γ := ({ĝζt }t∈Γ , e0(H(tag), ĝ0)ζ) with a

uniformly random ζ
U← Fq (and hash H).

Note that pk includes d+1 pairing groups (Gt, Ĝt)t∈[0,d] as well as d elements
(ĝt)t∈[d] and components of secret key sktag, S and ciphertext cttag, Γ have similar
structures as the original GPSW06 KP-ABE. Therefore, all sizes of public pa-
rameters, secret keys and ciphertxts of our KP-ABE are asymptotically the same
as GPSW06 KP-ABE. A concrete instantiation of our KP-ABE by supersingular
elliptic curves is given in Appendix B.4.

Construction

Setup(1λ) :

(pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ), skIPG := (φt)t∈[d])
R← GenIPG(1λ, d),

generate a random hash H : Fq → G0 with the tag space Fq,

return pk := ((Gt, Ĝt, ĝt, et)t∈[0,d],GT , H), sk := (φt)t∈[d].

KeyGen(pk, sk, tag, S := (M,ρ)) : h0 := H(tag) ∈ G0,

choose random �u such that �1 · �u = 1,
for i ∈ [l], si := Mi · �u, t := ρ(i), ki := φt(h0)si ,

return sktag, S := {ki}i∈[l].

Enc(pk, m, tag, Γ ) : h0 := H(tag) ∈ G0, ζ
U← Fq, for t ∈ Γ, ct := ĝζt ,

z := e0(h0, ĝ0)ζ , cT := z ·m, return cttag, Γ := ({ct}t∈Γ , cT ).
Dec(pk, sktag, S := {ki}i∈[l], cttag′, Γ := ({ct}t∈Γ , cT )) :

if tag = tag′ and S := (M,ρ) accepts Γ := {t}, then compute {σi}ρ(i)∈Γ
such that �1 =

∑
ρ(i)∈Γ

σiMi, where Mi is the i-th row of M,

z′ :=
∏

t:=ρ(i)∈Γ
et(ki, ct)σi , return m′ := c/z′, otherwise, return ⊥.

[Correctness]: If tag = tag′ and S accepts Γ ,

z′ =
∏
t:=ρ(i)∈Γ et(ki, ct)

σi =
∏
t:=ρ(i)∈Γ et

(
φt(h0)si , ĝζt

)σi

=
∏
t:=ρ(i)∈Γ et (φt(h0), ĝt)

ζσisi =
∏
ρ(i)∈Γ e0(h0, ĝ0)ζσisi = e(h0, ĝ0)ζ = z.

5.2 Security of Our Small Universe KP-ABE

Theorem 3. The proposed KP-ABE scheme is (selective-attribute) PH-PQ se-
cure under the d-qIsog-DBDH assumption in the quantum random oracle model.

For any adversary A := (A1,A2), there exists an adversary B := (B1,B2)
for the d-qIsog-DBDH problem, where B1 is a polynomial-time quantum ma-
chine and B2 is a classical ppt machine, such that for any security parameter λ,
Advabe,ph-pq

A (λ) ≤ Advd-qIsog-DBDH
B (λ).
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Remark 4. We will employ two different simulation strategies for two phases,
the pre-challenge phase for the quantum A1 and the post-challenge phase for the
classical A2, in a similar manner to the case of the proposed IBE. In particular,
we note that we can simulate the random oracle (and then key generation) by
using a random degree ν polynomial F (X) since a ν-wise independent function
is enough for oracle simulation for A1, which is obtained from Remark 3, where
ν1 (resp., ν2) is the maximum number of random oracle queries in the pre-
challenge phase (resp., in the post-challenge phase) and ν := 2ν1 + ν2. We make
two remarks on why challenge Γ ∗ and tag∗ should be declared beforehand.

– Our simulated public parameters given in Eq. (4) below have two parts de-
pending on whether t ∈ Γ ∗ or not. Therefore, challenge attributes Γ ∗ should
be declared at the beginning of the game.

– Our access relation is given by the conjunctive combination of span program
and tag matching, i.e., R+((tag,S), (tag∗, Γ )) := Eq(tag, tag∗) ∧R(S, Γ ). We
cannot determine which part of the condition does not hold for a key query
with a parameter (tag,S) before knowing the challenge tag tag∗. Therefore,
challenge tag tag∗ should be declared before the post-challenge phase simu-
lation by B2.

Proof. In order to prove Theorem 3, we construct a probabilistic machine B :=
(B1,B2) against the d-qIsog-DBDH Problem using an adversary A in a security
game as a black box as follows:

1. Pre-challenge phase simulation for the quantum machine A1:
B1 is given a public parameter for the d-qIsog-DBDH problem, pkIPG :=
((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ), and B1 plays a role of the challenger in the
security game against adversary A1.

2. A1 declares the challenge attributes Γ ∗, then, B1 provides the quantum ad-
versary A1 the public key pk which are generated as: Generate (G′

t, Ĝ
′
t, g

′
t, ĝ

′
t,

e′t, φ
′
t)← SimGenIPG(G0, Ĝ0, g0, ĝ0, e0) for t 	∈ Γ ∗ (and t ∈ [d]). Then, B1 pro-

vides the adversary A1

pk := ((Gt, Ĝt, ĝt, et)t∈{0}∪Γ∗ , (G′
t, Ĝ

′
t, ĝ

′
t, e

′
t)t�∈Γ∗ , GT ), (4)

where (Gt, Ĝt, ĝt, et)t∈{0}∪Γ∗ are obtained from pkIPG of the d-qIsog-DBDH
instance, and sends it to A1.

3. B1 simulates quantum random oracle access for H in the pre-challenge phase.
Let F (X) be a random degree ν polynomial, i.e., F (X) U← ⊕νi=0FqX

i with
ν := 2ν1 + ν2. A quantum superposition random oracle query RO (for H) is
answered by the superposition of gτtag

0 using g0 in pkIPG and τtag := F (tag).
A classical (not superposed) key generation query is answered as follows:
B1 chooses random �u ∈ F

r
q such that �1 · �u = 1, and for i ∈ [l], sets si :=

Mi · �u, then returns (ki := g
τtag·si

ρ(i) )i∈[l] to A1. Here, l (resp., r) is the row
(resp., column) number of the access structure matrix M .

4. When A1 outputs (state, tag∗) R← A1(pk) and sends state to A2, B1 obtains
state and outputs state′ := (state, tag∗, F (X)) (and then gives state′ to B2).
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5. Post-challenge phase simulation for the classical ppt machine A2:
B2 is given Xb := ( state′, gα0 , (ĝβt )t∈[d], g

θ
T ), where θ = αβ if b = 0 and

θ
U← Fq if b = 1 and state′ := (state, tag∗, F (X)). B2 plays a role of the

challenger in the security game against adversary A2, and B2 sends state to
A2.

6. When a random oracle query is issued for a tag tag,
(a) if tag 	= tag∗, B2 generates τtag := F (tag) and calculates htag := h0 :=

g
τtag

0 , then returns the value htag to A2.
(b) if tag = tag∗, B2 obtains the hash value htag∗ := h0 := gα0 from Xb, set

τtag∗ := α implicitly, then returns the value htag∗ to A2.
7. When a key query is issued for a tag tag and access structure S := (M,ρ),

first B2 checks whether tag = tag∗ or not, where tag∗ is the challenge tag
declared by A1.
(a) If it does not hold, B2 executes the same procedure of KeyGen as that of

step 3.
(b) If it holds, B2 generates a vector �v U← F

r
q. Pick �w

U← {�w ∈ F
r
q | �w ·Mi =

0 if ρ(i) ∈ Γ ∗, μ := �w · �1 	= 0}. Finally, define the vector �u ′ := �v +
χ�w, where χ := α−�v·�1

μ , and α is defined in the instance Xb, then
�u ′ · �1 = α. Thus, let �u := �u ′/α and si := Mi · �u, then �u · �1 = 1 and
Mi · �u ′ = αsi. For i ∈ [l], B2 calculates

ki :=
{
g
η1,i

t if ρ(i) ∈ Γ ∗,
φ′t
(
(gα0 )η2,i · gη3,i

0

)
if ρ(i) 	∈ Γ ∗.

where η1,i := Mi · �v, η2,i := Mi·�w
μ , η3,i := Mi · �v − (Mi·�w)·(�v·�1)

μ . The {ki}
is a legitimate key since
if ρ(i) ∈ Γ ∗, Mi · �u ′ = Mi · (�v + χ�w) = Mi · �v = η1,i, then ki = g

η1,i

t =
gMi·�u ′
t = gαsi

t = φt(htag∗)si , and
if ρ(i) 	∈ Γ ∗, Mi · �u ′ = Mi · (�v + χ�w) = Mi · �v + α−�v·�1

μ (Mi · �w) =

αMi·�w
μ +Mi ·�v− (Mi·�w)·(�v·�1)

μ = αη2,i+η3,i, then ki = φ′t
(
(gα0 )η2,i · gη3,i

0

)
=

φ′t
(
g
αη2,i+η3,i

0

)
= (g′t)

αη2,i+η3,i = (g′t)
Mi·�u ′

= (g′t)
αsi = φ′t(htag∗)si .

Then B2 returns the value sktag∗,S := {ki}i∈[l] to A2.
8. When B2 receives an encryption query with plaintexts (m(0),m(1)) (and

challenge the tag tag∗, attributes Γ ∗) from A2, first B2 selects (challenge) bit
b

U← {0, 1}. B2 generates the challenge ciphertext cttag∗,Γ∗ := ((ct)t∈Γ∗ , cT )
such that (ct := ĝβt )t∈Γ∗ are obtained from the input Xb and cT := g θT ·mb

where g θT is also obtained from the input Xb. B2 returns cttag∗,Γ∗ to A2.
9. When a random oracle (resp. key) query is issued by A2 after the encryption

query, B2 executes the same procedure as that of step 6 (resp. step 7).
10. A2 finally outputs bit b′. If b = b′, B2 outputs b′ := 0. Otherwise, B2 outputs

b′ := 1.

When b = 0 (resp. b = 1), the view of A := (A1,A2) is equivalent to that in
in the real game (resp., the random ciphertext game). Moreover, the advantage
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of A in the latter is equal to zero since the value of b is independent from the
adversary’s view in the game. This completes the proof of Theorem 3. ��

5.3 Large Universe Construction

An attribute xt := (xt,j)j∈[n] for any sub-universe id t is an element in U :=
{0, 1}n, and our construction has a hierarchical structure for t ∈ [d] and j ∈ [n]
with two instantiations of the small universe ABE. In the low level instantia-
tion, a special form of n-out-of-2n secret sharing predicate is used for identity-
matching for the length-n binary identities xt. The IPG with (2dn+ 1) pairing
groups is used.

Goyal et al. [29] also present a large universe KP-ABE scheme (with no quan-
tum security). The scheme encodes each attribute using a degree-d polynomial.
For that, several base group elements are included in public parameters. Ap-
parently, the polynomial evaluations in exponents during encryption need mul-
tiplication of the base elements. Therefore, the base group elements cannot be
encoded on different groups if the polynomial encoding is employed. Then we
should avoid the polynomial encoding for achieving quantum resistance. Instead,
for n-bit attribute, we include n groups (elliptic curves) in public parameters and
encode the j-th bit using the j-th group for j ∈ [n]. Therefore, sizes of public
parameters, secret keys and ciphertexts of our scheme are n times of those of
the original GPSW large universe KP-ABE scheme.

Setup(1λ) :(
pkIPG := ((G0, Ĝ0, g0, ĝ0, e0), (Gt,j,ι, Ĝt,j,ι, gt,j,ι, ĝt,j,ι, et,j,ι)

t∈[d],j∈[n]
ι∈[0,1] ,GT ),

skIPG := (φt,j,ι)
t∈[d],j∈[n]
ι∈[0,1]

)
R← GenIPG(1λ, 2dn),

generate a random hash H : Fq → G0 with the tag space Fq,

pk := (((G0, Ĝ0, ĝ0, e0), (Gt,j,ι, Ĝt,j,ι, ĝt,j,ι, et,j,ι)
t∈[d],j∈[n]
ι∈[0,1] ,GT , H),

return pk, sk := skIPG.

KeyGen(pk, sk, tag, S := (M,ρ)) : h0 := H(tag) ∈ G0,

choose random �u such that �1 · �u = 1,
for i ∈ [l], si := Mi · �u, choose random �τi := (τi,j) such that si =

∑n
j=1 τi,j ,

if ρ(i) = (t, vi := (vi,j) ∈ {0, 1}n), ki,j := φt,j,vi,j
(h0)τi,j ,

return sktag,S := {ki,j}i∈[l],j∈[n].

Enc(pk, m, tag, Γ ) : h0 := H(tag) ∈ G0, ζ
U← Fq,

for (t, xt := (xt,j) ∈ {0, 1}n) ∈ Γ, ct,j := ĝζt,j,xt,j
,

z := e0(h0, ĝ0)ζ , cT := z ·m, return cttag,Γ := ({ct,j}(t,·)∈Γ,j∈[n], cT ).
Dec(pk, sktag,S := {ki,j}i∈[l],j∈[n], cttag′,Γ := ({ct,j}(t,·)∈Γ,j∈[n], cT )) :

if tag = tag′ and S := (M,ρ) accepts Γ := {(t, xt)}, then compute {σi}ρ(i)∈Γ
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such that �1 =
∑
ρ(i)∈Γ

σiMi, where Mi is the i-th row of M,

z′ :=
∏

ρ(i)=(t,(vi,j))∈Γ

⎛⎝ n∏
j=1

et,j,vi,j
(ki,j , ct,j)

⎞⎠σi

, return m′ := c/z′.

otherwise, return ⊥.
[Correctness]: If tag = tag′ and S accepts Γ ,

z′ =
∏
ρ(i)=(t,(vi,j))∈Γ

(∏n
j=1 et,j,vi,j

(ki,j , ct,j)
)σi

=
∏
ρ(i)=(t,(vi,j))∈Γ

(∏n
j=1 et,j,vi,j

(φt,j,vi,j
(h0)τi,j , ĝζt,j,vi,j

)
)σi

=
∏
ρ(i)=(t,·)∈Γ

(∏n
j=1 e0(h0, ĝ0)ζτi,j

)σi

=
∏
ρ(i)=(t,·)∈Γ

(
e0(h0, ĝ0)ζsi

)σi = z

Theorem 4. The proposed KP-ABE scheme is (selective-attribute) PH-PQ se-
cure under the 2dn-qIsog-DBDH assumption in the quantum random oracle
model.

For any adversary A := (A1,A2), there exists an adversary B := (B1,B2)
for the 2dn-qIsog-DBDH problem, where B1 is a polynomial-time quantum ma-
chine and B2 is a classical ppt machine, such that for any security parameter λ,
Advabe,ph-pq

A (λ) ≤ Adv2dn-qIsog-DBDH
B (λ).

Theorem 4 is proven in a similar manner to Theorem 3. The proof is given
in the full version of this paper.

6 Concluding Remarks

We have several open problems arising in the IPG framework. First, can we
construct a pre-challenge quantum secure ciphertext-policy (CP)-ABE scheme
on IPG ? In KP-ABE, ciphertexts are associated with attributes, but a policy
(or access structure) in CP-ABE, which has a more complicated structure than
an attribute set. Hence, it seems difficult to encode such a complicated object
with restricted public parameters as described in Section 1.3.

Second, although we can formulate isogeny-related DLIN (Isog-DLIN) and q-
type assumptions on IPG in a manner similar to the Isog-DBDH assumptions (in
Section 2.2), we have not yet a new, interesting cryptosystem (for the first time)
from such assumptions on IPG. Can we present some interesting application
from the new assumptions ? For example, since there exist no adaptively secure
(KP-)ABE for expressive access structures against quantum adversaries in the
standard model (even from lattices !), can we construct an adaptively secure,
(pre-challenge) quantum secure (KP-)ABE scheme on IPG for span program
access structures in the standard model ?
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9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: ASIACRYPT 2011. pp. 41–69 (2011)

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
CRYPTO 2001. pp. 213–229 (2001)

11. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: EUROCRYPT 2014. pp. 533–556
(2014)

12. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS 2007. pp. 647–657 (2007)

13. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: EU-
ROCRYPT 2013. pp. 592–608 (2013)

14. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: CRYPTO 2013, Part II. pp. 361–379 (2013)

15. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander
graphs. J. Crypt. 22(1), 93–113 (2009), preliminary version: IACR Cryptology
eprint Archiv, 2006:021, 2006

16. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on Post-Quantum Cryptography. NISTIR 8105 (Draft) (2016)

17. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Crypt. 8(1), 1–29 (2014)

18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Cryptography and Coding, 8th IMA International Conference. pp. 360–363 (2001)

19. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: CRYPTO 2016, Part I. pp. 572–601 (2016)
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A Mathematical Backgrounds on IPG

Here, we show mathematical backgrounds for IPG constructions. Section A.1
introduces several basic facts on elliptic curves, and gives Vélu’s formulas for
isogeny as fundamental operations. Section A.2 gives a basic one-way function
from isogeny computation as is explained in [15, 22]. Section A.3 gives two ex-
plicit constructions of trapdoor homomorphisms from isogenies, Algorithms 1
and 2. A trapdoor of Algorithm 1 (resp. 2) is given by a point generating the
kernel of the isogeny (resp. a walk data indicating the kernel). Section A.4 gives
a proposition for compatibility between the Weil pairing and isogeny.

A.1 Isogenies between Elliptic Curves

We summarize facts about elliptic curves. For details, see [39], for example.
Let p be a prime greater than 3 and Fp be the finite field with p elements. In

this paper, we consider only primes p with q | p + 1, where q is the prime order
of a large cyclic group. Let Fp be its algebraic closure. An elliptic curve E over
Fp is given by the Weierstrass normal form

E : y2 = x3 +Ax+B (5)

for A and B ∈ Fp where the discriminant of the RHS of (5) is non-zero. We
denote the point at infinity on E by OE . Elliptic curves are endowed with a
unique algebraic group structure, with OE as neutral element. The j-invariant
of E is j(A,B) = 1728 4A3

4A3+27B2 . Conversely, for j 	= 0, 1728 ∈ Fp, set A =
A(j) = 3j

1728−j , B = B(j) = 2j
1728−j . Then, the obtained E in (5) has j-

invariant j. Two elliptic curves over Fp are isomorphic if and only if they have
the same j-invariant. For a positive integer n, the set of n-torsion points of E is
E[n] = {P ∈ E(Fp) |nP = OE}.

Given two elliptic curves E and E′ over Fp, a homomorphism φ : E → E′ is a
morphism of algebraic curves that sends OE to OE′ . A non-zero homomorphism
is called an isogeny, and a separable isogeny with the cardinality � of the kernel
is called �-isogeny. We consider only separable isogenies in this paper, i.e., any
isogeny is separable here.

An elliptic curve E over Fp is called supersingular if there are no points of
order p, i.e., E[p] = {OE}. The j-invariants of supersingular elliptic curves lie in
Fp2 (see [39, Chap. V, Th. 3.1]), and E[q] ⊂ E(Fp2).

Vélu’s Formulas We compute the �-isogeny by using Vélu’s formulas for a
small prime � = 2, 3, . . .. Vélu gave in [44] the explicit formulas of the isogeny
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ψ : E → E′ and the equation of the form (6) of E′ when E is given by (5) and
C = kerψ is explicitly given. Then there exists a unique isogeny ψ : E → E′

s.t.C = kerψ, and we denote E′ by E/C.
For an elliptic curve E and a cyclic group C of order �, Vélu’s formula

[44] gives an isogenous curve E/C and the associated isogeny E � (x, y) �→
(X,Y ) ∈ E/C. For computing it, for E : y2 = x3 + Ax + B and point Q =
(xQ, yQ) 	= OE ∈ C, we define gxQ = 3x2

Q + a, gyQ = −2yQ, and tQ = 2gxQ if
Q ∈ E[2], tQ = gxQ if Q 	∈ E[2], uQ = (gyQ)2. For S = (C − {OE})/ ± 1, let
t =

∑
Q∈S tQ, w =

∑
Q∈S(uQ + xQtQ), A′ = A− 5t, B′ = B − 7w, then,

E/C : Y 2 = X3 +A′X +B′, X = x+
∑
Q∈S

(
tQ

x− xQ +
uQ

(x− xQ)2

)
,

Y = y −
∑
Q∈S

(
2uQy
x− xQ +

tQ(y − yQ)− gxQgyQ
(x− xQ)2

)
(6)

gives the curve and isogeny.
In particular, the � = 2 case is given compactly as indicated below. For a

subgroup C = 〈(ϑ, 0)〉 ⊂ E[2] of order 2, the elliptic curve E/C is given by the
equation

Y 2 = X3 − (4A+ 15ϑ2)X + (8B − 14ϑ3). (7)

Therefore, E/C is also defined over Fp2 when E is supersingular. Moreover, the
isogeny ψ := ψϑ: E → E/C is given by

ψ : (x, y) �→ (X,Y ) :=
(
x+

(3ϑ2 +A)
x− ϑ , y − (3ϑ2 +A)y

(x− ϑ)2

)
, (8)

ψ(OE) = OE/C and ψ((ϑ, 0)) = OE/C . Clearly, ψ is also defined over Fp2 for
supersingular E.

A.2 Basic One-way Function from Isogeny Computation

We consider a graph consisting of �-isogenies between supersingular elliptic
curves. The graph has an expanding property (expander graph), and is called a
Pizer graph [36, 15] or an isogeny graph [40].

Expander Graph Let G = (V, E) be a (directed) graph with vertex set V and
edge set E . A graph G is an expander graph with expansion constant c > 0 if, for
any subset U ⊂ V s.t. |U| ≤ |V|

2 , then |Γ (U)| ≥ c |U| where Γ (U) is the boundary
of U (which is all neighbors of U minus all elements of U). Any expander graph is
connected. A random walk on an expander graph has rapidly mixing property.
After O(log(|V|)) steps, the last point of the random walk approximates the
uniform distribution on V.
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Such a property is useful for cryptography. Therefore, there exist several
cryptographic constructions using an expander graph ([15, 37] etc.). For details
of expander graphs, see [31].

Pizer Graph The Pizer graph G = (V, E) with a small prime � consists of
isomorphism classes of supersingular elliptic curves over Fp as vertex set V, and
(informally) their �-isogenies as edge set E . Precisely, the vertex set V is the set
of supersingular j-invariants and edges (j, j ′) ∈ F

2
p2 present with multiplicity

k whenever j ′ is a root of Φ
(j, Y ) with multiplicity k, where Φ
(X,Y ) is the
classical modular polynomial (see Definition 1 in [40]). Equivalently, �+ 1 edges
are coming from any vertex in V, and when the vertex is represented by an
elliptic curve E, they are associated with � + 1 �-torsion cyclic subgroups on
E. For each edge from E, the other vertex is the quotient curve E/C where C
represents the corresponding subgroup of order �.

The graph is directed, in which the direction of the edge associated with
(j, j ′) (resp. (E,C)) is defined to be from j to j ′ (resp. from E to E ′ = E/C).
The in-degree and out-degree of any vertex are � + 1, and it has a multi-edge
(j, j ′) when Φ
(j, Y ) has a multiple root Y = j ′ with multiplicity ≥ 2. Moreover,
it has a self-loop (j, j) when Φ2(X,X) has a root X = j.
G is known to have a rapidly mixing property. In particular, this is called a

Ramanujan graph, a special type of expander graph. For details, see [36, 15], for
example.

One-wayness of Isogeny Computation against Quantum Computers In
summary, we have a one-way function (9) from isogeny (sequence) computation

Isogeny (E,C)
easy

−−−−−→←−−−−−
hard

(E,E/C), (9)

where E is a supersingular elliptic curve (EC) and C ⊂ E[�κ] is an order-�κ

cyclic torsion subgroup where p = Θ(2λ), κ = Θ(log p) = Θ(λ) for the security
parameter λ. First, from the expanding property (or rapidly mixing property)
explained above, by walking just κ = Θ(log p)-times iteratively, our ending point
E has almost uniform distribution in the isogeny graph. This improves efficiency
of the forward direction function evaluation in Eq. (9).

Childs et al. [17] proposed a subexponential time quantum algorithm for the
inverse direction function given in Eq. (9), i.e., for the isogeny problem between
ordinary elliptic curves. However, there exists no subexponential time quantum
algorithm for the isogeny problem between supersingular elliptic curves while
Biasse et al. [23, 8] made a progress on the exponential time algorithm based on
a Grover-type quantum search. Therefore, our isogeny function given in Eq. (9)
is considered as one-way even against quantum adversaries at present.

A.3 Trapdoor Homomorphisms from Isogeny Sequence Algorithms

At present, there exist two types of algorithms for computing isogeny sequences,
one by Charles et al. [15] and another by De Feo et al. [22]. The first is given
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in a mathematically clear manner according to Eq. (9) and the second has an
advantage of no additional restriction for the system parameter p. Therefore,
for our purpose, it would be better to use the second algorithm, Algorithm 2,
denoted by Isogclg


,κ.

Isogeny Sequence Algorithm by De Feo et al. [22] Let � be a small prime,
for example, � = 2, 3, . . ., and a large prime p satisfies �κ | p+ 1. Then, a super-
singular EC has a rational subgroup (Z/�κZ)2 ⊆ E(Fp2) � (Z/(p + 1)Z)2. In
other words, all the �κ-torsion points are defined over Fp2 . For using a point R
in E[�κ], we can compute an isogeny φ : E → E/〈R〉 by iteratively using Vélu’s
formula for �-isogenies. (In [22], the algorithm is used for establishing a DH type
key exchange.)

In our parameter selection, first generate a random point R in E[�κ], then
set E0 := E,R0 := R and, for 0 ≤ i < κ, let

Ei+1 := Ei/〈�κ−i−1Ri〉, ψi : Ei → Ei+1, Ri+1 := ψi(Ri),

where Ri ∈ Ei[�κ−i], �κ−i−1Ri is in Ei[�] and then ψi is an �-isogeny. The
composition gives the desired

φ := ψκ−1 · · ·ψ0 : E = E0 → Eκ = E/〈R〉.
We describe the algorithm in Algorithm 1 and call it Isogdjp


,κ after De Feo, Jao,
and Plût. A trapdoor ξ of trapdoor homomorphisms indicated in Def. 1 is given
by the kernel generating point R.

Algorithm 1 Isogdjp

,κ : Generate a random supersingular EC which is �κ-

isogenous to E0 (given in [22])
Input : An initial elliptic curve E0.
Output : An isogenous E and a kernel generator R in E0[�

κ], that is,
a trapdoor ξ for computing the isogeny φ := φξ : E0 → E.

1: generate a random point R in E0[�
κ], then set R0 := R

2: for 0 ≤ i < κ do
3: compute Ei+1 := Ei/〈�κ−i−1Ri〉, ψi : Ei → Ei+1, and Ri+1 := ψi(Ri) by Vélu’s

formula, where Ri ∈ Ei[�
κ−i], �κ−i−1Ri is in Ei[�] and then ψi is an �-isogeny.

4: end for
5: we set the composition φ := ψκ−1 · · ·ψ0 : E0 → Eκ = E0/〈R〉.

return E := Eκ (or j(Eκ)) and ξ := R.

Isogeny Sequence Algorithm by Charles et al. [15] When � = 2, we can
use a base prime p without the restriction (for Algorithm 1) that p + 1 = f · �κ
with κ = Θ(log p). From the cryptographic perspective, it would be better to use
a general prime p from security and efficiency reasons. Since 2 | p+1 for any odd
prime p, a supersingular EC defined over Fp2 with E(Fp2) � (Z/(p + 1)Z)2 ⊇
E[2] � (Z/2Z)2. In other words, all the 2-torsion points are always defined over
Fp2 . Therefore, by iteratively choosing 2-isogenies in a random manner, we can
obtain a random �κ-isogeny from any supersingular E.
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We consider computing a 2-isogeny sequence

E0
ψ0−→ E1

ψ1−→ · · · ψκ−2−→ Eκ−1
ψκ−1−→ Eκ (10)

where Ei are supersingular without backtracking, i.e., ψi 	= ψ̂i+1 for i = 0, . . . , κ−
2 and all ψi are given by Vélu’s formulas (7). The isogeny sequence starting from
E0 is determined by a bit sequence. As is explained before, a supersingular el-
liptic curve E0 and the 2-torsion points on E0 are defined over Fp2 .

As the out-degree of any vertex is three and the walk we consider has no
backtracking, we have 2 possibilities to proceed to the next vertex in V at i ≥
1. For i = 0, we fix 2 possibilities (ψ0,0, ψ0,1) from E0 at the beginning. For
each i = 0, . . . , κ − 1, a next step is determined by a lexicographical order in
Fp2 for choosing a next j-invariant. That is, we associate a walk data ω =
ω0ω1 · · ·ωκ−1 ∈ {0, 1}κ with a sequence (10) where ψ0 = ψ0,0 or ψ0,1. Our goal
is to compute the j-invariant jκ = j(Eκ) from j0 = j(E0) and a walk data
ω ∈ {0, 1}κ that determines the next vertices. For the details, see [15, 47].

We describe the algorithm in Algorithm 2 and call it Isogclg

,κ after Charles,

Lauter, and Goren. A trapdoor ξ of trapdoor homomorphisms indicated in Def. 1
is given by the walk data ω.

Algorithm 2 Isogclg

,κ : Generate a random supersingular EC which is �κ-

isogenous to E0 (given in [15, 47]) when � = 2
Input : An initial elliptic curve E0.
Output : An isogenous E and all the selector bits ω := {ωi}0≤i<κ, that is,

a trapdoor ξ for computing the isogeny φ := φξ : E0 → E.
1: for 0 ≤ i < κ do
2: generate a random bit ωi ∈ {0, 1} for selecting a next kernel point Ri,

which is either of two points in Ki := Ei[�] \ ψi−1(Ei−1[�]) if i �= 0
(resp., in Ki := { some fixed two points in Ei[�] \ {OEi}} if i = 0) since � = 2.

3: compute Ei/〈Ri〉 and the j-invariants j(Ei/〈Ri〉) by Vélu’s formula for two can-
didates Ri ∈ Ki.

4: j(Ei/〈Ri〉) i.e., Ri, is determined from ωi by a lexicographic order in Fp2 .
5: we set ψi : Ei → Ei+1 := Ei/〈Ri〉 for the selected Ri.
6: end for
7: we set the composition φ := ψκ−1 · · ·ψ0 : E0 → Eκ.

return E := Eκ (or j(Eκ)) and all the selector bits ξ := ω := {ωi}0≤i<κ.

CSSI Problem by IPG notation Using a prime p with p + 1 = �κA

A �κB

B · f
and Isogdjp


,κ with � := �A, κ := κA, De Feo et al.’s assumption, Computational
Supersingular Isogeny (CSSI) assumption is given as a special instance of our
isogeny assump. in Def. 5. We give the CSSI problem [22] by using our IPG
notation. It has been believed to have no efficient quantum attack for it since
the first publication of [22] in 2011 on IACR ePrint.

Definition 15 (CSSI Problem [22] by IPG notation).
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Let (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), skIPG := φ1)
R← GenIPG(1λ, 1), where

1. a prime p with p+ 1 = �κA

A �κB

B · f is used
2. Isogdjp


,κ with � := �A, κ := κA is used
3. Gt, Ĝt and ĜT have order �κB

B , not prime but a smooth prime power.

If adversary B outputs φ1 (or a point RA ∈ E0[�κA

A ] s.t. kerφ1 = 〈RA〉) when
given pkIPG, B wins.

A.4 Compatibility between Pairing and Isogeny for IPG

The Weil Pairing under Isogeny The Weil pairing is compatible with iso-
genies as in the following proposition. It is a key fact for our construction of
Isogeneous Pairing Groups (IPG).

Proposition 2. [39, Chap. III, Thm. 6.1 & Prop. 8.2] For any P,Q ∈ E0[q]
and any (non-constant) isogeny φ : E0 → E, it holds eweil(φ(P ), φ(Q)) =
eweil,0(P,Q)deg φ, where eweil,0 (resp. eweil) is the Weil pairing on E0 (resp.E).

B Instantiations of Our Constructions by Elliptic Curves

B.1 Instantiation of IPG from Supersingular Elliptic Curves

We instantiate an IPG from compatibly generated supersingular elliptic curves,
where isogeny generator Isog
,κ = Isogdjp


,κ or Isogclg

,κ is defined by Algorithm 1 or

2, respectively.

GenIPG(1λ, d) : Generate a random supersingular elliptic curve E0/Fp2

with a sufficiently large, odd prime p, generate a suitable (�, κ),

(G0, Ĝ0,GT ; e0) : a system of asymmetric pairing groups of order r from

subgroups of E0, where e0 is defined by e0(h0, ĥ0) := eweil,0(h0, ĥ0)l
κ

for any h0 ∈ G0, ĥ0 ∈ Ĝ0, from the Weil pairing eweil,0 on E0

g0
U← G0, ĝ0

U← Ĝ0,

for t ∈ [d], (Et, ξt)
R← Isog
,κ(E0), φt := φξt

, Gt := φt(G0), Ĝt := φt(Ĝ0),

gt := φt(g0), ĝt := φt(ĝ0), et(ht, ĥt) := eweil,t(ht, ĥt) for any ht ∈ Gt, ĥt ∈ Ĝt,

where eweil,t is the Weil pairing on Et,

return pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ), skIPG := (ξt)t∈[d] for (φt)t∈[d].

SimGenIPG(G0, Ĝ0, g0, ĝ0, e0) :

(E, ξ) R← Isogl,κ(E0), where E0 is the elliptic curve including G0, Ĝ0,

φ := φξ, g := φ(g0), ĝ := φ(ĝ0), G := φ(G0), Ĝ := φ(Ĝ0),

e(h, ĥ) := eweil(h, ĥ) for any h ∈ G, ĥ ∈ Ĝ, where eweil is the Weil pairing on E,

return (G, Ĝ, g, ĝ, e, ξ for φ).
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B.2 Instantiation of d-qIsog-DBDH Assumption

Definition 16 (d-qIsog-DBDH Problem). Let B := (B1,B2) be an adver-
sary, where B1 is modeled as a quantum adversary, B2 a classical ppt machine.

Generate a random supersingular elliptic curve E0/Fp2 with a sufficiently
large, odd prime p, and generate a suitable (�, κ).

Generate (G0, Ĝ0,GT ; e0) : a system of asymmetric pairing groups of order
q from subgroups of E0, where e0 is defined by e0(h0, ĥ0) := eweil,0(h0, ĥ0)


κ

for

any h0 ∈ G0, ĥ0 ∈ Ĝ0, from the Weil pairing eweil,0 on E0, g0
U← G0, ĝ0

U← Ĝ0.

For t ∈ [d], (Et, ξt)
R← Isog
,κ(E0), φt := φξt

, Gt := φt(G0), Ĝt := φt(Ĝ0),
gt := φt(g0), ĝt := φt(ĝ0), et(ht, ĥt) := eweil,t(ht, ĥt) for any ht ∈ Gt, ĥt ∈ Ĝt,
where eweil,t is the Weil pairing on Et.

Set pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ) (and skIPG := (φt)t∈[d]), and B1

outputs state
R← B1(pkIPG). For α, β, δ U← Fq, B2 receives Xb for b

U← {0, 1}, that
is defined by

X0 := ( state, α·g0, (β ·gt)t∈[d], g
αβ
T ) and X1 := ( state, α·g0, (β ·gt)t∈[d], g

δ
T ),

where gT := e0(g0, ĝ0). B2 outputs a guess bit b′. If b = b′, B := (B1,B2) wins.

B.3 Instantiation of IBE in Section 4

We give an elliptic curve based description of our IBE scheme in Section 4. A
master secret key sk is given by an isogeny from E0 to E1. Exponentiations on
(Gt, Ĝt)t=0,1 in Section 4 are given by scalar multiplications on elliptic curves.

Setup(1λ) : Generate a random supersingular elliptic curve E0/Fp2

with a sufficiently large, odd prime p, generate a suitable (�, κ),

(G0, Ĝ0,GT ; e0) : a system of asymmetric pairing groups of order q from

subgroups of E0, where e0 is defined by e0(h0, ĥ0) := eweil,0(h0, ĥ0)

κ

for any h0 ∈ G0, ĥ0 ∈ Ĝ0, from the Weil pairing eweil,0 on E0

(E1, ξ1)
R← Isog
,κ(E0), φ1 := φξ1 , G1 := φ1(G0), Ĝ1 := φ1(Ĝ0),

et(h1, ĥ1) := eweil,1(h1, ĥ1) for any h1 ∈ G1, ĥ1 ∈ Ĝ1, where eweil,1

is the Weil pairing on E1, ĝ0
U← Ĝ0, ĝ1 := φ1(ĝ0),

generate a random hash H : Fq → G0 with the identity space Fq,

return pk := ((Gt, Ĝt, ĝt, et)t=0,1,GT , H), sk := ξ1 for φ1.

KeyGen(pk, sk, ID) : h0 := H(ID) ∈ G0, h1 := φ1(h0), return skID := h1.

Enc(pk,m, ID) : h0 := H(ID), ζ
U← F

×
q , c := ζ · ĝ1, z := e0(h0, ĝ0)ζ·


κ

,

cT := z ·m, return ctID := (c, cT ).
Dec(skID, ctID′) : if ID = ID′, z′ := e1(h1, c),

m′ := cT · (z′)−1, return m′, otherwise, return ⊥.
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Dec correctly decrypts since z′ = e1(h1, c) = eweil,1(h1, c) = eweil,1(φ1(h0), ζ ·
ĝ1) = eweil,1(φ1(h0), φ1(ĝ0))ζ = eweil,0(h0, ĝ0)


κζ = e0(h0, ĝ0)ζ = z if ID = ID′.
Here, we use Prop. 2 and deg(φ1) = �κ.

B.4 Instantiation of Small Universe KP-ABE in Section 5.1

An attribute set Γ is a subset of [d]. (d+ 1) isogenous ECs (Et)t∈[0,d] are used.

Setup(1λ) : Generate a random supersingular elliptic curve E0/Fp2

with a sufficiently large, odd prime p, generate a suitable (�, κ),

(G0, Ĝ0,GT ; e0) : a system of asymmetric pairing groups of order q from

subgroups of E0, where e0 is defined by e0(h0, ĥ0) := eweil,0(h0, ĥ0)

κ

for any h0 ∈ G0, ĥ0 ∈ Ĝ0, from the Weil pairing eweil,0 on E0

g0
U← G0, ĝ0

U← Ĝ0,

for t ∈ [d], (Et, ξt)
R← Isog
,κ(E0), φt := φξt

, Gt := φt(G0), Ĝt := φt(Ĝ0),

gt := φt(g0), ĝt := φt(ĝ0), et(ht, ĥt) := eweil,t(ht, ĥt) for any ht ∈ Gt, ĥt ∈ Ĝt,

where eweil,t is the Weil pairing on Et,
generate a random hash H : Fq → G0 with the tag space Fq,

return pk := ((Gt, Ĝt, ĝt, et)t∈[0,d],GT , H), sk := (ξt)t∈[d] for (φt)t∈[d].

KeyGen(pk, sk, tag, S := (M,ρ)) : h0 := H(tag) ∈ G0,

choose random �u such that �1 · �u = 1,
for i ∈ [l], si := Mi · �u, t := ρ(i), ki := si · φt(h0),
return sktag, S := {ki}i∈[l].

Enc(pk, m, tag, Γ ) : h0 := H(tag) ∈ G0, ζ
U← Fq, for t ∈ Γ, ct := ζ · ĝt,

z := e0(h0, ĝ0)ζ , cT := z ·m, return cttag, Γ := ({ct}t∈Γ , cT ).
Dec(pk, sktag, S := {ki}i∈[l], cttag′, Γ := ({ct}t∈Γ , cT )) :

if tag = tag′ and S := (M,ρ) accepts Γ := {t}, then compute {σi}ρ(i)∈Γ
such that �1 =

∑
ρ(i)∈Γ σiMi, where Mi is the i-th row of M,

z′ :=
∏
t:=ρ(i)∈Γ et(ki, ct)

σi , return m′ := c/z′, otherwise, return ⊥.

[Correctness]: If tag = tag′ and S accepts Γ ,
z′ =

∏
t:=ρ(i)∈Γ et(ki, ct)

σi =
∏
t:=ρ(i)∈Γ eweil,t(ki, ct)σi

=
∏
t:=ρ(i)∈Γ eweil,t (si · φt(h0), ζ · ĝt)σi =

∏
t:=ρ(i)∈Γ eweil,t (φt(h0), φt(ĝ0))

ζσisi

=
∏
ρ(i)∈Γ eweil,0(h0, ĝ0)


κζσisi = eweil,0(h0, ĝ0)

κζ = e0(h0, ĝ0)ζ = z

by Prop. 2 and deg(φt) = �κ.

We obtain an elliptic curve instantiation of large universe KP-ABE in Sec-
tion 5.3 in a similar manner as above (which seems to be described in a rather
complicated manner).
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C Proposed PH-PQ Secure HIBE

C.1 Construction

The proposed HIBE scheme is a Gentry-Silverberg type HIBE. A master secret
key sk is given by an isogeny from G0 to G1. Hash functions Ht : Fq → Gt

(t = 0, 1) map an arbitrary ID sequence (IDi), which is represented as an element
in Fq, to a point of Gt. Note that the size of Fq is exponential in λ.

Setup(1λ) : ( pkIPG := ((Gt, Ĝt, gt, ĝt, et)t=0,1,GT ), skIPG := φ1 ) R← GenIPG(1λ, 1),
generate a random hash Ht : Fq → Gt with the identity space Fq,

return pk := ((Gt, Ĝt, ĝt, et,Ht)t=0,1, GT ), sk := φ1.

KeyGen(pk, sk, (IDi)i∈[j]) : for i ∈ [j − 1], ri
U← Fq, d̂i := ĝri

1 ∈ Ĝ1,

h1 := H0(ID1) ∈ G0, for i ∈ [2, j], hi := H1(ID1, . . . , IDi) ∈ G1,

dj := φ1 (h1) ·
j∏
i=2

h
ri−1
i , return sk(IDi)i∈[j]

:= ((d̂i ∈ Ĝ1)i∈[j−1], dj ∈ G1).

Enc(pk,m, (IDi)i∈[j]) : ζ
U← F

×
q , ĉ0 := ĝζ1 ,

for i ∈ [2, j], hi := H1(ID1, . . . , IDi) ∈ G1, ci := hζi ,

h1 := H0(ID1) ∈ G0, z := e0(h1, ĝ0)ζ , cT := z ·m,
return ct(IDi)i∈[j]

:= ( ĉ0 ∈ Ĝ1, (ci ∈ G1)i∈[2,j], cT ).

Dec(pk, sk(IDi)i∈[j]
= ((d̂i), dj), ct(ID′

i)i∈[j]
= (ĉ0, (ci), cT )) :

if (IDi) = (ID′
i), z

′ :=
e1(dj , ĉ0)∏j

i=2 e1(ci, d̂i−1)
,

m′ := cT · (z′)−1, return m′, otherwise, return ⊥.
Delegatej(pk, sk(IDi)i∈[j]

= ((d̂i), dj), IDj+1) :

for i ∈ [j], r′i
U← Fq, for i ∈ [j − 1], d̂ ′

i := d̂i · ĝr
′
i

1 ∈ Ĝ1, d̂ ′
j := ĝ

r′j
1 ∈ Ĝ1,

for i ∈ [2, j + 1], hi := H1(ID1, . . . , IDi) ∈ G1,

d ′
j+1 := dj ·

j+1∏
i=2

h
r ′

i−1
i , return sk(IDi)i∈[j+1]

:= ((d̂ ′
i ∈ Ĝ1)i∈[j], d

′
j+1 ∈ G1).

Dec correctly decrypts since

z′ =
e1(dj , ĉ0)∏j

i=2 e1(ci, d̂i−1)
=
e1(φ1 (h1) ·

∏j
i=2 h

ri−1
i , ĝζ1)∏j

i=2 e1(h
ζ
i , ĝ

ri−1
1 )

= e1(φ1(h1), ĝ1)ζ

= e0(h1, ĝ0)ζ = z

if (IDi) = (ID′
i). Here, we use the compatibility e1(φ1(h1), ĝ1) = e0(h1, ĝ0) in

Definition 4.
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C.2 Security

Theorem 5. The proposed HIBE scheme is PH-PQ secure under the 1-qIsog-
DBDH assumption in the quantum random oracle model.

For any adversary A := (A1,A2), there exists an adversary B := (B1,B2)
for the 1-qIsog-DBDH problem, where B1 is a polynomial-time quantum machine
and B2 is a classical ppt machine, such that for any security parameter λ,
Advhibe,ph-pq

A (λ) ≤ ν2 ·Adv1-qIsog-DBDH
B (λ), where ν2 is the maximum number of the

random oracle queries of A2.

The proof is given in the full version of this paper.

Remark 5. Our HIBE scheme can be modified to be level-1 anonymous ID secure
against pre-challenge quantum adversaries as in the modified GS-HIBE given in
Section 5.3 in [1].

D Anonymity of Our IBE : Proof of Theorem 2

First, we define the security notion of Anonymous-ID secure against Pre-challenge
Quantum adversary (AI-PQ) for IBE.

Definition 17 (AI-PQ for IBE). Let (Setup,KeyGen,Enc,Dec) be an IBE
scheme and let A = (A1,A2) be a stateful adversary, where A1 is modeled as
a polynomial-time quantum adversary. Consider the experiment Expibe,ai-pq

A [λ]
below:

Expibe,ai-pq
A [λ] : (sk, pk) R← Setup(1λ), state

R← ARO(·),KeyGen(sk,·)
1 (pk),

(ID(0), ID(1),m(0),m(1)) R← ARO(·),KeyGen(sk,·)
2 (state), b

U← {0, 1},
ct∗ R← Enc(pk,m(b), ID(b)), b′ R← ARO(·),KeyGen(sk,·)

2 (ct∗), output b′.

/ ∗ None of ID(0) and ID(1) are queried to RO in the pre-challenge phase by A1,

and not queried to KeyGen in any phase ∗ /

Here, RO is quantum-accessible (i.e., with quantum superposed inputs and out-
puts) and KeyGen is classical-accessible. If b = b′, A := (A1,A2) wins. The ad-
vantage of adversary A in the experiment is defined as Advibe,ai-pq

A (λ) := Pr[A wins]−
1/2 for any security parameter λ. An IBE scheme is anonymous-ID secure
against pre-challenge quantum adversary (AI-PQ) if all adversaries A = (A1,A2),
where A1 be a polynomial-time quantum machine and A2 a classical ppt ma-
chine, achieve at most a negligible advantage in the above security game (or
experiment).
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Proof Sketch of Theorem 2. Theorem 2 is proven in a manner similar to Lemma
4.3 in [1]. We have

Advibe,ai-pq
A (λ) = Pr[A wins]− 1/2

= Pr[b′ = 1 ∧ b = 1 in Expibe,ai-pq
A ] + Pr[b′ = 0 ∧ b = 0 in Expibe,ai-pq

A ]− 1/2

= 1/2 · (Pr[b′ = 1|b = 1 in Expibe,ai-pq
A ] + Pr[b′ = 0|b = 0 in Expibe,ai-pq

A ])− 1/2
= 1/2 · (Pr[b′ = 1|b = 1] + (1− Pr[b′ = 1|b = 0]))− 1/2
= 1/2 · (Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]).

Therefore, we will show that Adv ′
A(λ) := Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]

for the experiment Expibe,ai-pq
A is negligible. First, we note that the proof of

Theorem 1 shows that the adversary A has only negligible advantage in “the
real-or-random game”, where A’s task is to distinguish the real ciphertext of the
message that A asked or the random ciphertext of a random message. Then, we
can make a standard hybrid argument for the indistinguishability of Adv ′

A as

Adv ′
A(λ) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

= Pr[b′ = 1|b = 1]
−Pr[b′ = 1| challenge ciphertext is for a random message and ID1 ]

+ Pr[b′ = 1| challenge ciphertext is for a random message and ID1 ]
−Pr[b′ = 1| challenge ciphertext is for a random message and ID0 ]

+ Pr[b′ = 1| challenge ciphertext is for a random message and ID0 ]
−Pr[b′ = 1|b = 0]

≤ Advibe,ph-pq
A (λ) + Adv ′′

A(λ) + Advibe,ph-pq
A (λ),

where

Adv ′′
A(λ) := Pr[b′ = 1| challenge ciphertext is for a random message and ID1 ]
−Pr[b′ = 1| challenge ciphertext is for a random message and ID0 ].

Here, note that the ciphertext of our IBE has the form of

ctID := (c := ĝζ1 , cT := e0(H(ID), ĝ0)ζ ·m),

with ζ U← Fq. Thus, if the encrypted message m is random and hidden, then cT
is also random and perfectly hides H(ID) from the adversary’s view. Therefore,
Adv ′′

A(λ) = 0 and Advibe,ai-pq
A (λ) (= 1/2 · Adv ′

A(λ)) is negligible in λ under the
1-qIsog-DBDH assumption. This completes the proof of Theorem 2. ��
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