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Abstract—This paper introduces dudect: a tool to assess
whether a piece of code runs in constant time or not on a given
platform. We base our approach on leakage detection techniques,
resulting in a very compact, easy to use and easy to maintain
tool. Our methodology fits in around 300 lines of C and runs
on the target platform. The approach is substantially different
from previous solutions. Contrary to others, our solution requires
no modeling of hardware behavior. Our solution can be used
in black-box testing, yet benefits from implementation details if
available. We show the effectiveness of our approach by detecting
several variable-time cryptographic implementations. We place
a prototype implementation of dudect in the public domain.
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I. INTRODUCTION

Timing attacks are a broad class of side-channel attacks that
measure the execution time of a cryptographic implementation
in order to infer secrets, such as keys or passwords. Kocher
writes in 1996 his seminal paper on recovering cryptographic
keys by measuring the execution time of cryptographic
implementations [Koc96]. More concretely, he exploits data-
dependent variance in the execution time of RSA, DSS or Diffie-
Hellman to recover secret key bits in a divide-and-conquer
fashion. Since then, timing attacks have been broken numerous
variable-time implementations, including high-impact systems
such as TLS [AP13]. In comparison to other side-channel
attacks, timing attacks require minimal interaction with the
target and can be mounted remotely [BB03].

Assessing whether an implementation runs in constant time
is not a trivial task. Even implementations that were supposed
to be constant-time turned out not to be so [GBY16], [Cry16]—
reinforcing the argument that timing leaks may not be easy to
detect, but can have serious consequences.

Security-conscious practitioners have traditionally relied on
manual inspection of assembly code to assess information
leakage by timing channels. The practitioner typically checks
that there are no memory indices or branches that are secret-
dependent. Higher-level code that gets compiled can be
inspected (at the compiled code level) for constant-time in the
same way. This manual approach can be very time consuming
already for moderately sized code bases, and should be repeated
for every exact combination of compiler flags being used.

There are several tools already for detection of variable-
time code. Langley’s ctgrind [Lan10] extends Valgrind, a
dynamic analysis tool. This tool tracks secret-dependent paths
or memory accesses. Flow-tracker is a tool by Rodrigues Silva
that “finds one or more static traces of instructions” that lead to

timing variability [RQaPA16]. Almeida and others’ ctverif
builds on a fruitful series of formal methods tools to build a
static analyzer for assessing whether a piece of code is constant
time or not [ABB+16].

A common drawback is that these methods have to model
somehow the hardware. However, this is extremely difficult.
CPU manufacturers publish little information on the inner
workings of the CPU. Furthermore, this behavior is subject
to change by e.g. a micro-code update. In short, while the
principles the previous tools rely on are sound, correct hardware
models are not easy to build [Ber14].

Our contribution. In this paper we present dudect: a tool
to detect whether a piece of code runs in constant-time or not
on a given platform. Our approach is very simple in nature. We
leverage concepts from the hardware side-channel domain and
port them to our context. More precisely, we base our approach
on leakage detection tests. The result is a very compact tool that
can be used to test timing variability in cryptographic functions
in an easy way. Our tool does not rely on static analysis but
on statistical analysis of execution timing measurements on
the target platform. In this way, we circumvent the problem of
modeling the underlying hardware.

II. OUR APPROACH: TIMING LEAKAGE DETECTION

Our approach in a nutshell is to perform a leakage detection
test on the execution time. We first measure the execution
time for two different input data classes, and then check
whether the two timing distributions are statistically different.
Leakage detection tests were introduced by Coron, Naccache
and Kocher [CKN00], [CNK04] shortly after the introduction
of DPA [KJJ99] and were targeted towards hardware side-
channel evaluations.

A. Step 1: Measure execution time

First off, we repeatedly measure the execution time of the
cryptographic function under study for inputs belonging to two
different input data classes.

a) Classes definition: Leakage detection techniques take
two sets of measurements for two different input data classes.
There are several families of leakage detection tests, mostly
differing in the way the input data classes are defined. A strand
of leakage detection tests that is known to capture a wide
range of potential leakages is fix-vs-random tests [GJJR11],
[CDG+13]. Typically, in a fix-vs-random leakage detection
test, the first class input data is fixed to a constant value,
and the second class input data is chosen at random for each
measurement. The fixed value might be chosen to trigger certain



“special” corner-case processing (such as low-weight input for
arithmetic operations).

b) Cycle counters: Modern CPUs provide cycle counters
(such as the TSC register in the x86 family; or the systick
peripheral available in ARM), that can be used to accurately
acquire execution time measurements. In lower-end processors
one can resort to high-resolution timers when available, or use
external equipment.

c) Environmental conditions: To minimize the effect
of environmental changes in the results, each measurement
corresponds to a randomly chosen class.1 The class assignment
and input preparation tasks are performed prior to the
measurement phase.

B. Step 2: Apply post-processing

The practitioner may apply some post-processing to each
individual measurement prior to statistical analysis.

a) Cropping: Typical timing distributions are positively
skewed towards larger execution times. This may be caused by
measurement artifacts, the main process being interrupted by
the OS or other extraneous activities. In this case, it may be
convenient to crop the measurements (or discard measurements
that are larger than a fixed, class-independent threshold).

b) Higher-order preprocessing: Depending on the
statistical test applied, it may be beneficial to apply some higher-
order pre-processing, such as centered product [CJRR99]
mimicking higher-order DPA attacks. Higher-order leakage
detection tests already appeared in other contexts [SM15].

C. Step 3: Apply statistical test

The third step is to apply a statistical test to try to disprove
the null hypothesis “the two timing distributions are equal”.
There are several possibilities for statistical tests.

a) t-test: A simple statistical test to use and implement
is Welch’s t-test. This statistic tests for equivalence of means,
and hence failure of this test trivially implies that there is a
first-order timing information leakage (that is, the first order
statistical moment carries information). Note that when a t-
test is coupled with cropping pre-processing, one is no longer
testing only for equality of means but also for higher order
statistical moments since the cropping is a non-linear transform
(in the same way as one uses a non-linear pre-processing
function to perform a higher-order DPA).

b) Non-parametric tests: One can use more general non-
parametric tests, such as Kolmogorov-Smirnov [WOM11]. The
advantage is that these tests typically rely on fewer assumptions
about the underlying distributions; the disadvantage is that they
may converge slower and require more samples.

III. RESULTS

A. Implementation

A prototype was built in around 300 lines of C and
is available from https://github.com/oreparaz/dudect. This

1In the original leakage detection paper [CKN00] the authors propose
to interleave the sequence of classes during the evaluation. We extend this
suggestion and randomize this sequence to prevent interference due to any
concurrent process that may be executing in parallel.

shows the inherent simplicity of our approach. The following
experiments are executed on a 2015 MacBook and compiled
with LLVM/clang-703.0.31 with optimization -O2
turned on unless otherwise stated. We detail in the following
several implementation choices. Each of the following
experiments runs for 120 seconds.

a) Pre-processing: We pre-process measurements prior to
statistical processing. We discard measurements that are larger
than the p percentile, for various2 values of p. The rationale
here is to test a restricted distribution range, especially the
lower cycle count tail. The upper tail may be more influenced
by data-independent noise. This (heuristic) process gives good
empirical results (makes detection faster); nevertheless we also
process measurements without pre-processing.

b) Statistical test: We use an online Welch’s t-test with
Welford’s variance computation method for improved numeric
stability [Knu81, §4.2.2.A].

B. Memory comparison

Our first case study is a memory comparison routine. This
task appears in many cryptographic contexts that require
constant time execution. Two examples of such contexts
are password verification and message authentication tag
verification.

a) Variable-time implementation: As a smoke test, we
implement a straightforward 16-byte memory comparison
function based on memcmp and test its timing variability. The
function compares an input string against a “secret” fixed string
s.

Our first test harness is as follows. The first class for the
leakage detection test considers uniformly distributed random
16-byte strings (“random class”); the second class fixes the
input to s (“fix class”). (This assumes a white-box evaluator
that has access to implementation internals.)

In Figure 1 we plot the cumulative distribution function
(cdf) for both timing distributions corresponding to the fix
and random classes. We can see that a single execution of the
function takes less than 100 cycles. More importantly, we see
that the distributions for the two classes are clearly different,
that is, there is timing leakage about the input data.

The results of the statistical test used to discern if the two
distributions are different are plotted in Figure 2. We plot the
evolution of the t-statistic (absolute value) as the number of
measurements increases. The different lines indicate various
values of pre-processing parameter p from Section III-A. A t
value larger than 4.5 provides strong statistical evidence that
the distributions are different3. This threshold divides the plot
into two regions: red background (above the 4.5 threshold) and
green background (below). We can see that all lines surpass the
4.5 threshold for any number of measurements (they belong to
the red background, and some of them achieve the whopping

2The exact values for p follow an inverse exponential trend, see https:
//github.com/oreparaz/dudect/blob/master/src/fixture.c#L57 for the concrete
specification.

3The t statistic tests for equality of means; since measurements are pre-
processed here it indicates that the distributions are somehow different.

https://github.com/oreparaz/dudect
https://github.com/oreparaz/dudect/blob/master/src/fixture.c#L57
https://github.com/oreparaz/dudect/blob/master/src/fixture.c#L57
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Fig. 1: Timing distributions (cdfs) for memcmp-based
variable time memory comparison, for two different input
classes. Timing leakage is present.
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Fig. 2: Evolution of the |t| statistic as the number of traces
increases (same implementation of Figure 1). Different
lines correspond to different pre-processing parameters.
Clearly surpassing the 4.5 threshold.

value of |t| = 1000). Some lines (i.e. some threshold values
for p) grow faster, but almost all make the test fail. The figure
shows that timing leakage is detectable even when few thousand
measurements are available, as expected. We can also observe
the asymptotic behavior of the t statistic: it grows as

√
N

where N is the number of samples.
Now we perform a slight variation on the test fixture. Namely,

instead of assuming that the evaluator knows the secret s (which
is internal to the implementation), we are relaxing the evaluator
capabilities and assume black-box testing (i.e., the evaluator
does not know s). Thus, the value for the fixed class is set
to 0, and not s as in the previous case. In this setting, as
Figure 3 shows, the two timing distributions are much closer
to each other, but they are still different. The statistical tests
still reject the null hypothesis that both distributions are the
same, as Figure 4 shows, albeit they need more measurements
to get statistically significant results. The t statistic values are
much lower than in the previous case but still significant. Some
pre-processing strategies did not lead to faster detection, as it
can be seen from Figure 4.

b) Constant-time implementation: We also analyze an
implementation of memory comparison that is supposed to run
in constant time. (This function performs the comparison by
logical operations, and does not abort early on mismatch.) In
Figure 5 we can see that both empirical distributions seem to
be equal. The statistical test of Figure 6 indicates that both
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Fig. 3: Similar to Figure 1, but assuming a black-box
evaluator. Timing leakage is present, but harder to detect.
(Zoomed picture.)

Fig. 4: Similar to Figure 2, but assuming a black-box
evaluator. Timing leakage is detectable, although a bit
harder than in Figure 2.
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Fig. 5: Similar to Fig. 1, but for a constant time memory
comparison function. There are two overlapped cdfs. No
apparent timing leakage.

Fig. 6: Similar to Figure 2, but for a constant time memory
comparison function. No test rejects the null hypothesis,
thus, no timing leakage detected.
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Fig. 7: Timing distributions for the T-tables AES
implementation. The two classes induce clearly different
distributions.

Fig. 8: Evolution of the t statistic for the T-tables AES
implementation. Clear leaks are detected very quickly, all
pre-processing parameter choices for p lead to leakage
detection.

distributions are indeed indistinguishable up to 20 million
measurements.

C. AES

We also test several AES128 implementations to confirm
the validity of our approach.

a) T-tables implementation: We first test the classic T-
tables AES implementation for 32-bit processors. We take
the reference code rijndael-alg-fst.c by Rijmen,
Bosselaers and Barreto and plug it in our tool. The fix class
corresponds to a (randomly chosen) input plaintext, the key is
chosen at random but kept fix within all executions. The key
schedule is not included in the cycle count measurements. In
Figure 7 we can see quite some timing variability depending on
the input data. This is expected, as the implementation is known
to be vulnerable to timing attacks [Ber05]. In Figure 8 we can
see that indeed the statistical tests reject the null hypothesis
with as few as a couple thousand measurements.

b) Bitsliced: We also test a purported constant-time
implementation based on bitslicing. We take the code by Käsper
and Schwabe [KS09] included in the libsodium library.4

As in the previous case, the key is fixed and the key schedule
is not included in the cycle count measurements. In Figure 9
we can see that indeed different input data seem to yield the

4We are leaving aside the mode of operation and testing the AES128
primitive in isolation.
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Fig. 9: Timing distributions for the bitsliced AES
implementation. There are two overlapped cfs. No
apparent timing leakage.

Fig. 10: Evolution of the t statistic for the bitsliced AES
implementation. No leakage detected.

same timing distribution5. In Figure 10 we can observe that
the statistical test fails to reject the null hypothesis of both
distributions being equal, up to 4 million measurements. (In
this case, we also left the test running overnight until almost 1
billion measurements with identical results.)

c) Vector permutations: We also tested the AES
implementation by Hamburg [Ham09]. This implementation
features SSSE3-specific instructions such as pshufb vector
permute and is written in assembly. We run it on an Intel Xeon
“Westmere” processor. We left it running until we acquired 1
billion measurements. No leakage was detected.

D. Curve25519 on an ARM7TDMI

This subsection is a case study of applying dudect
on an embedded platform. Our target platform is a 32-bit
Atmel’s AT91SAM7S ARM7TDMI processor. We focus on
a Curve25519 elliptic-curve scalar multiplication function
purported to be constant time on x86 processors.

For this experiment, we divide the codebase of dudect into
two parts. Most of step 1 from Section II runs on the target
ARM7TDMI platform and the rest runs on the host computer.
(In particular, statistics are run on the host computer.) The
execution time itself is measured by the host computer, which
communicates with the ARM7TDMI via GPIO pins. Note that
other approaches are possible, as explained in Section II-A.

5Note that this implementation packs several plaintexts into a single
execution, so absolute cycle counts from Figure 9 are not comparable with
those from Figure 7.



We cross-compile stock curve25519-donna with
arm-elf-gcc version 4.1.1 and optimization flags -O2 to
produce code running on the target platform.

The test harness is as follows. The first class considers
uniformly distributed random input points; the second class
fixes the input to all-zeros. In Figure 11 we plot the cdf for
the resulting distributions. We can see that both distributions
are indeed different, that is, the execution time depends on the
input. The variance for the fixed class (orange cdf) is noticeably
smaller. Figure 12 shows the results of the t-test. It clearly
detects leakage from a few hundred measurements. Thus, this
implementation is deemed variable-time.

The timing variability likely comes from the multiplication
instructions. ARM7TDMI processor cores feature a variable-
time multiplier, as documented by ARM [ARM04, §6.6]. More
concretely, the hardware multiplication circuit early terminates
if some bits of the operands are 0. This can justify that this
executable curve25519-donna is not constant time. The
same behavior arises in other processor families (such as the
ARM Cortex-M3 family). Großschädl and others have presented
SPA attacks based on this behavior [GOPT09].

Interestingly, the same source code is considered to be
constant time for x86 architectures, and this fact can even
be “certified” [ABB+16]. We would like to stress that such
“certification” is bound to a specific processor behavior model
and relies on the accuracy of such model. As we have seen,
even the same code can show different behavior under different
toolchain, processor, architecture or other parameters.

IV. DISCUSSION

a) Tools required: Our approach is very simple, and does
not require any exotic tools to run: just a C compiler and a
method to measure the execution time. Thus, it can be integrated
into deployed building systems relatively easily.

b) Computational effort: The computational effort is
normally dominated by the execution of the cryptographic
primitive to be tested. The statistical processing is very
lightweight in terms of computation, and negligible in terms
of memory. Memory requirements stay constant independently
of the number of measurements taken (thanks to online
algorithms).

c) Hardware modeling: A positive aspect of our approach
is that we do not require to model anyhow the underlying
hardware. We rely on actual measurements, so we have to place
fewer assumptions on the hardware than other approaches. This
kind of assumptions (for example: that a MUL instruction takes
constant time, or that a conditional move such as CMOV takes
constant time) are often the result of empirical observation, and
are not documented by the hardware manufacturer. As such,
they are subject to change (for instance, if the user acquires a
new CPU model, or a micro-code update is installed). In that
case, we would need to re-run the evaluation, but we would
not have to reverse-engineer the modifications performed to
the micro-code (which can be a very time-consuming task).
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Fig. 11: Timing distributions for the Curve25519
implementation running on an ARM7TDMI. There is
apparent timing leakage.
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Fig. 12: Evolution of the t statistic for the Curve25519
implementation running on an ARM7TDMI. Leakage
detected.

d) Leakage modeling: Some variants of leakage detection,
such as non-specific fix-vs-random, can detect a wide range
of leakages, without assuming much on the leakage behavior.
This is the approach we implemented. Thus, we do not have
to place assumptions on how the implementation may leak, or
which subcomponent may cause the timing leakage. There are
other tests such as fix-vs-fix that may be less generic but more
efficient, as Durvaux and Standaert note [DS16].

e) How many measurements to take?: In the previous
section, we saw that in some cases, the statistical test rejects the
null hypothesis only starting from a certain number of samples.
That is, if a leakage detection test fails to reject the null
hypothesis based on N samples, we cannot conclude anything
about the expected behavior when using N + 1 measurements.

A very similar situation appears in DPA attacks: typically
they require a minimum number of measurements to work.
In that case, the designer sets normally a target number
of measurements (“security level”) and claims that the
implementation is secure to side-channel attacks up to the
targeted security level. We conceive a similar approach here:
when a leakage detection test deems an implementation time
constant, it does so up to a certain number of measurements.
It is the evaluator’s responsibility to set a realistic and
meaningful value for the number of measurements. If more
evidence becomes available at a later time (for example, more
measurements are available), the results of the evaluation may
change (in a similar way DPA evaluations are carried out).



This is because leakage detection tests do not output a hard,
categorical, yes/no assessment on the timing variability, but
only statistical evidence of timing leakage up to a certain
number of measurements.

In addition, leakage detection tests also output the magnitude
of the leakage. This can be useful. Timing leaks that are
extremely hard to detect (for example, only detectable when
using billions of measurements) may be impossible to exploit
if the application enforces a limit on the number of executions
for the cryptographic operation, so one may deem as usable
implementations that exhibit tiny leakages.

f) False positives: Presence of leakage is a necessary
condition, but not sufficient, for a timing attack vulnerability.
As such, we could find settings that exhibit timing leakage, yet
it is hard (or impossible) to exploit. Our tool does not blindly
construct a timing attack on the implementation, but rather
outputs an indication that it might be susceptible to a timing
attack.

g) Crafting good test vectors: As we saw in Section III-B,
specially crafted input values lead to larger leakage that is more
easily detected. One can typically craft such input values if
the implementation details are known. Obviously, the choice
of these “special” values highly depends on the algorithm and
implementation being tested. For applications to RSA, see the
technical report from CRI and Riscure [JRW].

h) Comparison with other approaches: It is very hard to
compare with other approaches, since the underlying principles
are so different. An important difference with respect to other
approaches is that the output of our tool is not a categorical
decision, but rather statistical evidence. The complexity of our
tool compares favorably with other solutions (which rely on
more exotic languages, for example).

V. CONCLUSION

We described in this paper a methodology to test for
timing leakage in software implementations. Our solution is
conceptually simple, scales well and has modest speed/memory
requirements. Our methodology is based on established tools
(leakage detection) from the area of hardware side-channels. We
demonstrated the effectiveness of our approach with several
software implementations. As future work we consider the
problem of assisting the generation of input test vectors.
Techniques from fuzz testing may help in this process.
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