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Abstract

This work is the extended version of [1] which proposed the first code-based group sig-
nature. The new group signature scheme we present here has numerous advantages over all
existing post-quantum constructions and even competes (in terms of properties) with pairing
based constructions: it allows to add new members during the lifetime of the group (dynamic).
Plus, it appears that our scheme might be extended into a traceable signature according to the
definition of Kiayias, Tsiounis and Yung [2] (KTY model) while handling membership revo-
cation. Our security is based on a relaxation of the model of Bellare, Shi and Zhang [3] (BSZ
model) verifying the properties of anonymity, traceability and non-frameability. The main idea
of our scheme consists in building an offset collision of two syndromes associated to two dif-
ferent matrices: a random one which enables to build a random syndrome from a chosen small
weight vector; and a trapdoor matrix for the syndrome decoding problem, which permits to find
a small weight preimage of the previous random syndrome to which a fixed syndrome is added.
These two small weight vectors will constitute the group member’s secret signing key whose
knowledge will be proved thanks to a variation of Stern’s authentication protocol. For appli-
cations, we consider the case of the code-based CFS signature scheme [4] of Courtois, Finiasz
and Sendrier. If one denotes by N the number of group members, CFS leads to signatures and
public keys sizes in N1/

√
log(N). Along with this work, we also introduce a new kind of proof

of knowledge, Testable weak Zero Knowledge (TwZK), implicitly covered in the short version
of this paper [1]. TwZK proofs appear particularly well fitted in the context of group signature
schemes: it allows a verifier to test whether a specific witness is used without learning anything
more from the proof. Under the Random Oracle Model (ROM), we ensure the security of our
scheme by defining the One More Syndrome Decoding problem, a new code-based problem
related to the Syndrome Decoding problem [5].

Keywords. Code-Based Cryptography, Group Signature, Proof of Knowledge, Random Oracle
Model.
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1 Introduction

A group signature scheme allows members of a group to issue signatures on behalf of the group in
an anonymous but revocable way: an opener is able to revoke anonymity of the actual signer in case
of abuse. Since its introduction by Chaum and van Heyst [6], group signatures have been extensively
studied. Bellare et al. [7] (BMW model) first gave formal security properties of group signature.
Later, Bellare, Shi and Zhang [3] extended this model to dynamic groups (BSZ model). Numerous
efficient group signatures such as [8, 9, 10] were proposed but only proven secure in a relaxation
security of [7]. Delerablée and Pointcheval [11] proposed the first practical scheme fully fitting BSZ
in the random oracle model (ROM) whereas Groth [12] also provided such a scheme but secure in
the standard model. Then, as an improvement of group signatures, Kiayias, Tsiounis and Yung,
suggested traceable signatures schemes in [2]. In addition to classic properties of a group signature
scheme, a traceable signature enables the opening authority to delegate its revoking (or opening)
capability to sub-openers but only against specific users. This gives two crucial advantages: sub-
openers can run in parallel and authorities can monitor misbehaving users and then preserve honest
users anonymity. The first efficient traceable signatures, provably secure in the standard model,
were introduced by Libert and Yung in [13].

All these aforesaid schemes are pairing-based constructions. It was then worth looking for
alternative since their security might collapse in front of quantum computers and that they involve
heavy computations. Thus, many lattice-based constructions have been proposed such as [14] who
first designed a lattice-based group signature scheme with both public key and signature size linear
in the number of group members N . Recently, numerous works such as [15, 16, 17, 18] proposed
more efficient lattice-based constructions where both sizes the group public keys and signatures are
proportional to log(N). In a concurrent and posterior work, Ezerman et al. [19] also designed a code
based group signature that suffers weaker features in terms of size of parameters and properties.
Plus, it is interesting to notice that, with the recent exception of [20], all lattice and code based
constructions base their security on the static model of [7] meaning that our scheme constituted the
first post-quantum dynamic group signature scheme.

Because of a restriction for adding new users (procedure Join), our scheme ensures security
properties of traceability, anonymity and non-frameability in a relaxation of the BSZ model. Indeed,
the security of our protocol is ensured only when an adversary can add honest users (oracle joinP )
that may be corrupted later while the BSZ model requires to fulfill security even in presence of an
adversary adding already corrupted users: it led us to define our construction as weakly dynamic.

The main idea of our scheme consists in building an offset collision of two syndromes associated
to two different matrices: a random one which enables to build a random syndrome from a chosen
small weight vector; and a trapdoor matrix, which permits to find a small weight preimage of the
previous random syndrome to which a fixed syndrome is added. These two small weight vectors
will constitute the group member’s secret signing key whose knowledge will be proved thanks to a
variation of Stern’s protocol.

Our contributions In this work, we propose a generic construction for designing the first code-
based group signature. In a concurrent and independent work, [19] proposed a group signature
scheme based on coding assumptions but only fitting the limited BMW model and with signatures
and public key sizes linear in the number of group members.

Our security is based on a relaxation of the restrictive BSZ model with the properties of anonymity,
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traceability and non-frameability. Furthermore, it has numerous advantages over all existing post-
quantum constructions and even some pairing based constructions: it allows to dynamically add
new members (weakly dynamic) and enjoys nice features such as traceability in the sense of the
KTY model and membership revocation. When instantiated with the CFS scheme [4], it leads to
signatures and public keys sizes proportional to N1/

√
log(N) for N the number of group members,

which is greater than a logarithmic complexity but asymptotically smaller than N1/d for any d.
Plus, the proposed scheme can easily be extended into a traceable signature (according to the KTY
model) handling membership revocation. In order to reach our goal, we introduce a new kind of
proof of knowledge, Testable weak Zero Knowledge (TwZK), implicitly covered in [1]. It can be
seen as a weaker version of zero-knowledge proofs [21]: it allows a verifier to test whether a spe-
cific witness is used without learning anything more from the proof. This new notion, that could be
of independent interest, appears particularly well-fitted in the context of group signature schemes.
Under the Random Oracle Model (ROM), we ensure the security of our scheme by defining the One
More Syndrome Decoding problem, a new code-based problem related to the Syndrome Decoding
problem [5].

Organization The following Section is dedicated to notations and background; Section 3 deals
with the building blocks of our construction. In Section 4, we give formal definition for group
signature while our construction is described in Section 5. Section 6 is concerned with the security
of our scheme and we finally give an example and parameters for building an instance of our scheme
in Section 7.

2 Preliminaries

In this section, we first present the notation used throughout this work and then make a focus on
code-based cryptography.

2.1 Notation

µ denotes some randomness and we use the symbol ‖ for concatenation. crs denotes the common
string shared by involved parties in the Common Reference String (CRS) model.
For a vector (resp. a string) v, v[r] denotes the r-th coordinate (resp. symbol) of v. The set
{1, 2, . . . , n} is denoted by [n]. Fq denotes the finite field of cardinality q. Mm×n(Fq) denotes
matrices over Fq of m rows and n columns. Snω is the set of vectors of weight ω lying in Fn2 . Σn

denotes the set of permutations over [n].
We denote by λ a security parameter. For a protocol, lλ denotes the number of iterations needed

to reach the level of security required by λ.
H, Hλ : F∗2 −→ {0, 1, 2}lλ , h : F∗2 −→ Fn2 and h′ : F∗2 −→ Mk×n(F2) model random oracles.
Except stated otherwise, log denotes the logarithm in base 2. For any entity E , we denote by E(I)
the fact that E has knowledge of I . A(z : O) denotes that entity A has knowledge of z and access
to oracle O. For protocols, we denote by P and V respectively the prover and the verifier.

We use usual coding theory notation, where G and H respectively denote generator and parity
check matrices of a code. Let H ∈Mk×n(Fq) and x ∈ Fnq . The product HxT is called a syndrome
and ωt(x) refers to the Hamming weight of x.

For an instance of a group signature scheme, we denote by N the number of group members.
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2.2 Code-based Cryptography Background

In this subsection, we only give necessary recalls for the well understanding of our work; for more
details on coding theory, see [22].

Syndrome Decoding Problem The Syndrome Decoding problem (SD-problem) is a problem
based on coding theory shown NP-complete [5]. It consists in finding a small weight word for
a given syndrome s.

Definition 1. Let H be a random matrix fromM(n−k)×n(Fq), ω an integer and s ∈ Fqn−k. The
Syndrome Decoding problem consists in finding e of weight below or equal to ω such as HeT = s.

The case where one is asked to find a small solution where the weight is approximated within a
constant was also proven to be computationally intractable in [23].

One More Syndrome Decoding problem We now define a related problem, that we call the
One-More Syndrome Decoding (OMSD) problem which we believe difficult. Let H a (n− k)× n
random binary matrix, s a random syndrome and l vectors x1, x2, . . . , xl of weight ω such as for
any i = 1 . . . l, HxTi = s.

Question Is it possible to find a (l + 1)-th vector xl+1 such as xl+1 6= xi for any i = 1 . . . l,
of weight ω and verifying HxTl+1 = s?

We denote (H, s, ω, {xi}i=1...l) such an OMSD instance where the goal is to find a valid xl+1.

Discussion on the problem This problem corresponds to a code version of problems which
are well known in number theory based cryptography [24]. In the case of coding theory and the Syn-
drome Decoding problem, the best known attacks are direct retrieval of independent syndromes, and
it is widely believed that having an oracle which give you information on l independent syndromes
does not help the attacker in finding a (l + 1)-th solution to a syndrome decoding problem.

Stern’s protocol With security based on the SD-problem, Stern first proposed an efficient code-
based ZK protocol [25]. Stern’s protocol (Figure 1) is a 3-pass prover-verifier protocol with cheating
probability equal to 2/3 during which P makes a zero-knowledge proof to V on a small weight
secret z solving an SD-instance (H, s, ω).

Remark 1. The protocol presented here is the original one as introduced in [25]. It suffers a
distinguishability issue since a verifier with knowledge of z is able to check whether this given
witness z was actually involved during the protocol. Indeed, when ch = 0 (respectively ch = 1): in
addition to checking c1 and c2 (resp. c1 and c3), such a verifier V(z) can also compute c3 = h(π(z+
u)) (resp. c2 = h(π(z + u + z)) and then deduces involment of z. To fix this distinguishability
issue, Stern then proposed a randomized version of its protocol for which commitments c1, c2, c3
are computed by concatenating inputs to random seeds [26].

This ability to somewhat trace a user in the original version will constitute a central point for
designing our group signature for which security will be ensured by defining what we call Testable
weak Zero-Knowledge(TwZK) proofs (Definition 3).
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Public data: (H, s, ω) ∈M(n−k)×n(F2)× F2
n−k × N

P proves knowledge of z ∈ Fn2 such as HzT = s and ωt(z) = ω

1. P computes commitments as follows:

π
$← Σn, u $←∈ Fn2

c1 = h(π||HuT ), c2 = h(π(u)), c3 = h(π(z + u))
2. P sends c1, c2, c3
3. V sends ch $← {0, 1, 2}
4. 3 cases for P:
ch = 0: P sends π, u
ch = 1: P sends π, z + u

ch = 2: P sends π(z), π(u)
5. 3 cases V:
ch = 0: V checks c1, c2
ch = 1: V checks c1, c3
ch = 2: V checks c2, c3

and ωt(π(z)) = ω
6. V outputs Accept if all checks passed
⊥ otherwise.

Figure 1: Stern’s protocol

Fiat-Shamir Paradigm Fiat and Shamir proposed in [27] a general paradigm for designing a
signature scheme from a secure identification scheme. The idea is to start from a secure 3-round
public coin identification scheme (with cmt a commitment from the prover, ch a random challenge
from the verifier, and rsp the response to ch), and then turn it into a digital signature scheme with
the help of a random oracle H. Indeed, to sign a message m, the signer (who knows the secret)
produces a valid transcript (cmt , ch, rsp) of the interactive protocol where ch = H(cmt ,m).

Trapdoor Matrix In this work, we propose a generic construction of a code-based group signature
scheme through the use of what we call a trapdoor matrix. Such a matrix is actually hard to find
and the only current candidate for instantiating our construction is the CFS matrix (see Section 7).

Definition 2. A trapdoor matrix family is a couple of polynomial algorithms
(TrapGen, Inv) such that:

• TrapGen(1λ): outputs a pair (Q, trk) ∈ M(n−k)×n(F2) × T RK according to security
parameter λ;

• Inv(Q, trk, s, ω): outputs, with non negligible probability, some x ∈ Sωn such as QxT = s
assuming (Q, trk) ← TrapGen(1λ), s ∈ Fn−k2 and ω ∈ N. x has to appear random in Sωn .
If no such solution is found, it returns ⊥;

• (Correctness): for all (Q, trk) output by TrapGen(1λ), and all s ∈ Fn−k2 , we have that
Q(Inv(Q, trk, s, ω))T = s;

• (One-wayness): for all polynomial adversary A, the following is negligible: Pr[(Q, trk) ←
Gen(1λ); s ∈ Fn−k2 ;x← A(1λ, Q, s, ω) : (QxT = s andωt(x) = ω)].

We say that Q is a trapdoor matrix and trk a trapdoor key if (Q, trk) was generated by
TrapGen .

3 Cryptographic Primitives Revisited

In this section, we first introduce a Stern-like protocol whose contribution could be of independent
interest. Secondly, we define a new kind of proof of knowledge which aims at capturing the trace-
ability issue of deterministic Stern-like protocols as highlighted in Remark 1. After exhibiting how
our new protocol can satisfy this new definition, we prove its security.
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3.1 A variation on Stern’s Protocol: Concatenated Stern’s protocol

We propose a variation of Stern’s protocol, referred as Concatenated Stern’s protocol (CSP) and
depicted in Figure 2. The main idea consists in splitting the small weight secret z the prover will be
challenged on and to run two related instances of Stern’s protocol in parallel.

Let us consider the following SD-instance : (H, s, 2ω) for which z is said to be a valid solution
if z = (x‖y) where x and y have the same length and ωt(x) = ωt(y) = ω. Then H can also be
written as H = (R‖Q) such as HzT = s ⇔ RxT + QyT = s. We additionally assume that the
verifier V can be given some y′. As exhibited at step 6 of Figure 2, he is then able to check in two
out of three cases (ch = 0 and ch = 1) if y′ = y without learning x.

Public data: (H, s, ω) ∈M(n−k)×2n(F2)× Fn−k2 × N
P proves knowledge of a valid z = (x‖y) ∈ F2n

2 to V(y′)

1. P computes commitments as follows:

(π, σ)
$← Σn × Σn, (u, v)

$←∈ Fn2 × Fn2
c1 = h(π||RuT +QvT ), c2 = h(π(u)), c3 = h(π(x+ u))
d1 = h(σ||RuT +QvT ), d2 = h(σ(v)), d3 = h(σ(y + v))
2. P sends c1, c2, c3, d1, d2, d3.

3. V sends ch $← {0, 1, 2}
4. 3 cases for P:
ch = 0. P sends {π, σ, u, v}
ch = 1. P sends {π, σ, x+ u, y + v}
ch = 2. P sends {π(x), π(u), σ(y), σ(v)}

5. 3 cases for V:
ch = 0: V checks c1, c2, d1, d2
ch = 1: V checks c1, c3, d1, d3
ch = 2: V checks c2, c3, d2, d3
and ωt(π(x)) = ωt(σ(y)) = ω
If all checks passed, V accepts P’s knowledge.

6. Additional checks for V(y′):
ch = 0: checks if d3 = h(σ(y′ + v))
ch = 1: checks if d2 = h(σ(y′ + (y + v)))
ch = 2: no additional check
If additional check passed, V accepts y′.

Figure 2: Concatenated Stern’s Protocol (CSP)

Compared to classic Stern’s protocol, the interest of CSP is twofold: it enables to check inde-
pendently the weight of each half of a small weight secret while a part of the secret can be com-
promised without revealing the entire secret. From now, by CSP-instance, we refer to (H, s, ω) for
which one is asked to find z = (x‖y) such as HzT = s ∧ ωt(x) = ωt(y) = ω. Relying on Stern’s
protocol (Figure 1), we prove the security of CSP in subsection 3.4.

3.2 Testable weak Zero Knowledge

Introduced in [21], ZK proofs allow a proverP to convince a verifier V of the veracity of a statement
S, without leaking any additional information on the proof but its length. Since its introduction, this
kind of proofs has been widely applied to digital identification protocols, and by extension signature
schemes using the Fiat-Shamir paradigm [27]. These proofs satisfy the following three properties:

• Completeness: if S is true, the honest verifier will be convinced except with negligible prob-
ability,

• Soundness: if S is false, no cheating prover can convince the honest verifier that it is true
except with negligible probability,

• Zero-Knowledge: anything that is feasibly computable from the proof is also feasibly com-
putable from the assertion itself.
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A classical variant of ZK proofs generally used is Witness-Indistinguishable (WI) proofs [28],
where the ZK requirement is roughly weakened into “seeing the proof does not provide any in-
formation on the witness used”. More formally, assuming a language L and witnesses z0, z1 sat-
isfying the language, WI requires distributions D0 and D1 to be indistinguishable where Db =
{(z0, z1,Prove(zb,L;µ)), for random string µ}, while not requiring proof simulatability anymore.

Nevertheless, our construction is going to need somewhat opposite requirements: we want to be
able to build a simulator capable of simulating proofs, while allowing anyone possessing informa-
tion to test if this piece of information is related to the witness used for generating the proof. Proofs
of knowledge meeting these requirements will be called Testable weak Zero-Knowledge (TwZK for
short). The general idea behind TwZK is that there is a little information leaking compared to clas-
sical ZK: the fact that an attacker can test whether a particular information is related to the witness
used in a proof. If this value is not known, an attacker should either test all possible values or find a
particular one which, in both cases has to be hard. Hence an attacker who breaks the security of our
model either breaks ROM security or is able to solve a computational problem.

As an example, considering Stern’s protocol (Figure 1), this particular information about the
witness is the witness itself. Indeed, as exhibited in Remark 1, if V knows the prover’s secret z, he
is able to trace this witness z by checking more requirements for cases ch = 0 and ch = 1.

We then propose the following definition.

Definition 3 (Testable weak Zero-Knowledge Proofs). A Testable weak Zero-Knowledge proof is
defined through the following algorithms:

• TSetup(1λ): generates the public parameters of the system among which some function f
and possibly a simulation trapdoor stk ;

• Prove(z,L;µ): generates a proof Π that a word z is in the language L using some random
string µ;

• TVerif (Π,L): checks that the validity of a proof Π with respect to the language L;

• TestWit(y′,Π,L): for a valid proof Π ← Prove(z,L;µ) and f generated during TSetup,
this algorithm checks, with negligible failure probability, if y′ = f(z);

• SProve(stk ,L;µ): generates a simulated proof of knowledge of a word in L using a trapdoor
stk .

In addition to classical correctness and soundness properties, we want weak indistinguishability
of proof simulation:
for a non empty language L, a proof
generated using a witness (case S0) must
be indistinguishable from one using the
trapdoor (case S1) meaning that S0 =
{Prove(z,L;µ)|w ∈ L} and S1 =
{SProve(stk ,L;µ)} have to be indistin-
guishable.

ExpwS−bP,A (λ)

1.params← TSetup(1λ)
2.if (b = 0), Π∗ ← Prove(z,L;µ)
3.else Π∗ ← {SProve(stk ,L;µ)}
4.b′ ← A(Π∗,TestWit(.))
5.Return b′

Compared to what might be expected for Classical Zero-Knowledge, the previous property can
only be achieved for some languages. Namely those where guessing the correct related information
f(z) is hard (either because there is no efficient way to search through the possible set, or simply
because the set of potential f(z) is hard to sample).
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Original Stern’s protocol is TwZK We consider here the particular case of the non randomized
version of Stern’s protocol to exhibit that it is TwZK instead of ZK. We do not formally describe here
how Stern’s original protocol fulfills Definition 3 since the goal is only to highlight that it satisfies the
property of TwZK encompassed in weak indistinguishability of proof simulation described above.
To cope with step 6 of protocol CSP (Figure 2), we propose the following additional checks for a
verifier, with additional knowledge a vector z′, to Stern’s protocol (Figure 1):

• case ch = 0. V(z′) checks if commitment c3 = h(π(z′ + u));

• case ch = 1. V(z′) checks if commitment c2 = h(π(z + u+ z′));

• case ch = 2. No additional test in this case.

In two out of three cases (ch = 0 and ch = 1), an additional check can be processed so that this
step has a failure probability 6 1/3. Hence, in the non-interactive case where several repetitions
of the protocol are demanded, this failure probability can be made as small as wished to design an
algorithm TestWit . For a dishonest prover, there are 3 different cheating strategies depending on
the value computed for c. We are going to focus on c = 0, the others are left to the sagacity of the
reader. (It should be noted that for c = 2 no test is possible so the indistinguishability proof is even
easier.)

We use the Random Oracle programmability on H to force the hash value to be 0. Following
Stern’s framework, in this case the SProve algorithm would have to pick an honest π and u, and
a random vector z of weight ω (not satisfying the equation HzT = s), and proceeds as expected.
The difference in distributions between honestly generated proofs and simulated one comes from
h(π(z + u)), which in the first case is correctly generated while in the other one is not. Assuming
h is also a random oracle the value h(π(z + u)) is random compared to the rest of the view of the
adversary.

Now the only way the adversary could possibly distinguish a value h(π(z + u)) computed for
a z in the language from a random value, would be by querying π(z + u) to the ROM. (Until now,
the ROM programmability allows us to argue that the two visions are indistinguishable).

Using Random Oracle Observability, one can then monitor the calls to the random oracles made
by the adversary, and for the π, u used in the challenge, parse his calls to define values zis. In the
eventuality the adversary queries the ROM on a zi in the language (i.e. HzTi = s and ωt(zi) =
ω), a simulator generating a random proof without knowing a word in the language can use the
adversary’s query to solve the Syndrome Decoding challenge.

Formal transform into TwZK proofs and security of protocol CSP are respectively studied in
subsection 3.3 and 3.4. Similar results for Stern’s non randomized protocol could then easily be
deduced.

3.3 From CSP to Testable weak Zero Knowledge Proofs

Even if some points may appear straightforward, we detail here how our protocol CSP (Figure 2)
can be seen as TwZK proofs satisfying Definition 3.

Description of TSetup According to a security parameter λ, TSetup algorithm generates public
parameters among which an CSP-instance (H,ω, s) and some function f . The CSP-instance is
meant to be chosen difficult and defines the following language L = {z = (x‖y), x, y ∈ Fn2 :

8



Hzt = s ∧ ωt(x) = ωt(y) = ω}. The function f stipulates how much information f(z) could be
tested about z while knowing some side information (algorithm TestWit).

TSetup(1λ)

1. (H, s, ω, f)
$← 1λ where:

-H = (R‖Q) with R, Q ∈M(n−k)×n(F2)

-s ∈ Fn−k2 , ω ∈ N
-f : F2n

2 → Fn2 such as f(x‖y) := y
2. Set L = {z = (x‖y), x, y ∈ Fn2 :

Hzt = s ∧ [ωt(x) = ωt(y) = ω]}
Return (H, s, ω, f,L).

Figure 3: TSetup protocol

In the following, we denote by params the quantity (H, s, ω, f,L)← TSetup(1λ).

Description of Prove and TVerif Algorithm Prove enables anyone that possesses an element
of L to prove such a knowledge without revealing it. Nevertheless, contrary to ZK proofs, some
controlled information can be leaked and later be tested through algorithm TestWit . Through
Fiat-Shamir paradigm, algorithm Prove reaps benefit of the interactive protocol CSP to generate
a proof of knowledge on an element of L. It then processes as follows: it first pre-computes 6 ×
lλ commitments to be stored in cmt on which the random oracle is then applied. Finally, for
each ternary symbol ch[j], algorithm Prove sets the corresponding response rsp[j], as specified by
protocol CSP , and outputs the proof (cmt , rsp) that will later be given to TVerif .

This latter unfolds the proof, computes ch = Hλ(cmt) and checks consistency according to
interactive protocol CSP . We recall here that lλ is the number of times protocol CSP should
be repeated to ensure negligible error probability. Algorithms Prove and TVerif are depicted in
Figure 4.

Description of TestWit Contrary to classical ZK proofs, the newly introduced concept of Testable
weak Zero Knowledge (Definition 3) states that some controlled information can leak. Indeed,
algorithm TestWit will be able to decide if some side information (y′ here) is related to the secret
witness (z here), as stipulated by f , used to generate a valid proof Π ← Prove(z,L;µ). Similarly
to the non randomized version of Stern’s protocol (see Remark 1), it is possible to trace proofs
outputted by Prove . Before depicting the algorithm TestWit , we first give the general idea. Let
us consider a witness z = (x‖y) used to generate a proof. Now, using f defined such as f(z) = y
(Figure 3), algorithm TestWit can check if f(z) = y′ without knowing z by running additional
checks when unfolding a proof (cmt , rsp). Indeed, according to the value of ch[j], TestWit works
as follows:

• ch[j] = 0, parse rsp[j] = {π, σ, u, v} and check if d3 = h(σ(y′ + v));

• ch[j] = 1, parse rsp[j] = {π, σ, x+ u, y + v} and check if d2 = h(σ(y′ + y + v));

• ch[j] = 2, no such additional check is possible in this case.
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(a) Prove(z,L;µ)
Parse z = (x‖y).
1. Commitments Generation
For j = 1 . . . lλ

(π, σ)
$← Σn × Σn, (u, v)

$←∈ Fn2 × Fn2
c1 = h(π||RuT +QvT ), c2 = h(π(u)),
c3 = h(π(x+ u)), d1 = h(σ||RuT +QvT ),
d2 = h(σ(v)), d3 = h(σ(y + v))
cmt [j]← {c1, c2, c3, d1, d2, d3}

2. Challenge Oracle Generation
ch := Hλ(cmt) ∈ {0, 1, 2}lλ
3. Response Generation
For j = 1 . . . lλ

3 cases:
ch[j] = 0: rsp[j] = {π, σ, u, v}
ch[j] = 1: rsp[j] = {π, σ, x+ u, y + v}
ch[j] = 2: rsp[j] = {π(x), π(u), σ(y), σ(v)}

4. Π← (cmt , rsp)
Return Π = (cmt , rsp).

(b) TVerif(Π,L):
1. Parse Π = (cmt , rsp)
2. Challenge Oracle Generation
ch := Hλ(cmt) ∈ {0, 1, 2}lλ
3. Commitments and Responses Checks
For j = 1 . . . lλ
Parse cmt [j] = {c1, c2, c3, d1, d2, d3}
3 cases according to ch[j]:
ch[j] = 0: V uses rsp[j] to check c1, c2, d1, d2
ch[j] = 1: V uses rsp[j] to check c1, c3, d1, d3
ch[j] = 2: V uses rsp[j] to check c2, c3, d2, d3

and ωt(π(x)) = ωt(σ(y)) = ω
4. If all checks passed, Return 1.
Else Return 0.

Figure 4: Algorithms Prove and TVerif

These additional checks pass if and only if y = y′ which means that some verifier V(y) can
trace a user owning the secret witness z = (x‖y). As in Stern’s protocol, an additional check
is possible in two out of three cases (ch = 0 and ch = 1) whereas no such test in proposed when
ch = 2. The failure probability of this additional checking step is then 6 1/3. In the non-interactive
case where several repetitions of the protocol are demanded, this failure probability can be made as
small as wished to design algorithm TestWit . We refer the reader to Figure 5 (a) for a description
of TestWit .

Remark 2. As it will be proven in next subsection, CSP is a prover verifier protocol with cheating
probability of 2/3. To provide convincing proofs, with negligible error probability, we then have to
set lλ = λ/log(3/2). On the other hand, additional checks do not apply only when ch = 2 so that
proofs simulating lλ iterations of CSP will also also lead to a negligible error probability in the
case of TestWit .

Description of SProve It enables anyone with the trapdoor simulation stk to program the random
oracle to generate a proof without knowledge of the secret key z that appears indistinguishable to a
fair one i.e. as if it was an output of Prove .

According to the SD-problem, it is difficult to find a vector z both of small weight 2ω and
verifying Hzt = s. Nevertheless, it is easy to independently find a z1 = (x1||y1), with no weight
constraint, such as Hz1T = s and a z2 = (x2||y2) such as ωt(x2) = ωt(y2) = ω. Let us now
consider a simulator not knowing a valid secret that can set the value of ch∗ by programming
the random oracle. Following algorithm Prove , the simulator randomly picks π, σ, u and v and
accordingly sets the value cmt∗.

• ch∗ = 0: the simulator computes commitments with z1 or z2 playing the role of z and stores
the following values in rsp∗: π, σ, u, v.
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• ch∗ = 1: the simulator computes commitments with z1 playing the role of z and stores the
following values in rsp∗: π, σ, x1 + u , y1 + v

• ch∗ = 2: the simulator computes commitments with z2 playing the role of z and stores the
following values in rsp∗: π(x2), π(u), σ(y2), σ(v).

When called by Algorithm TVerif , because of programmability the random oracle Hλ will output
ch∗ on input cmt∗ so that the simulated proof Π∗ set to (cmt∗, rsp∗) clearly passes algorithm
TVerif .

Algorithm SProve is formally described in Figure 5 (b).

(a) TestWit(y′,Π,L)
1. Check proof validity
If TVerif (Π,L) = 0, return ⊥.
2. Challenge Oracle Generation
ch := Hλ(cmt) ∈ {0, 1, 2}lλ
3. Additional Checks
Parse Π = (cmt , rsp)
For j = 1 . . . lλ

Parse cmt [j] = {c1, c2, c3, d1, d2, d3}
3 cases according to ch[j]:
ch[j] = 0: parse rsp[j] = {π, σ, u, v}

If d3 = h(σ(y′ + v)), return 1.
Else, return 0.

ch[j] = 1: parse rsp[j] = {π, σ, x+ u, y + v}
If d2 = h(σ(y′ + y + v)), return 1.
Else, return 0.

ch[j] = 2: does not apply
4. In any other case, return ⊥.

(b) SProve(stk ,L;µ)
Parse params = (H, s, ω, f,L).
1. For j = 1 . . . lλ

1.1. Fake secrets Generation

z1 = (x1‖y1)
$← F2n

2 such as HzT1 = s

z2 = (x2‖y2)
$← F2n

2 such as ωt(x2) = ωt(y2) = ω
1.2. Simulated Proof Generation

(π, σ)
$← Σn × Σn, (u, v)

$←∈ Fn2 × Fn2
ch∗[j]

$← {0, 1, 2}
Following Step 1 and Step 3 of Figure 4 (a):
ch∗[j] = 0: compute commitments cmt∗[j] using z1 or z2

and set rsp∗[j] = {π, σ, u, v}
ch∗[j] = 1: compute commitments cmt∗[j] using z1

and set rsp∗[j] = {π, σ, x1 + u, y1 + v}
ch∗[j] = 2: compute commitments cmt∗[j] using z2

and set rsp∗[j] = {π(x2), π(u), σ(y2), σ(v)}
2. Use stk to program the random oracle to have:

Hλ(cmt∗) = ch∗ ∈ {0, 1, 2}lλ
Return Π∗ = (cmt∗, rsp∗).

Figure 5: Algorithms TestWit and SProve

3.4 Security of the Concatenated Stern’s protocol

In this subsection we show that protocol CSP presented in Figure 2 is a TwZK protocol that ensures
completeness, soundness and testable weak zero-knowledge. This protocol is a prover-verifier pro-
tocol with cheating probability equal to 2/3 that needs to be repeated several times to decrease this
cheating probability close to 0.

By design, it is straightforward that proving the security of protocol CSP enables to prove that
algorithms defined in previous subsection fulfill Definition 3. Indeed, completeness and soundness
of protocol CSP imply that algorithms Prove , TVerif and TestWit are well defined while showing
that proofs outputted by Prove and SProve are indistinguishable ensures TwZK of protocol CSP .
Let us notice that we extend methodology of subsection 3.2 about TwZK of non randomized Stern’s
protocol to prove the TwZK of protocol CSP .

Theorem 1. The Concatenated Stern’s protocol CSP is a prover verifier Testable weak Zero-
Knowledge protocol with cheating probability 2/3 verifying properties of completeness, soundness
and Testable weak Zero-Knowledge in the ROM and assuming the hardness of the SD-problem.
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Proof We prove Theorem 1 through 3 lemmas in which we respectively discuss completeness,
soundness and Testable weak Zero-Knowledge.

Completeness To ensure the completeness of our scheme, we exhibit that for a prover and a
verifier honestly proceeding CSP , it always succeeds.

Lemma 1. IfP and V honestly execute CSP , we have for any round that Pr[CSPP,V = Accept] =
1.

Proof. The proof of the completeness is straightforward. The only subtlety might be to notice that z
is a valid secret, which means thatRxT +QyT = s. Then, for checking c1 and c2 in the case ch = 1,
we have to use thatR(x+u)T +Q(y+v)T−s = RxT +RuT +QyT +QvT−s = RuT +QvT .

Soundness To ensure the soundness of our scheme, we ensure that a cheating prover P cannot
convince V that he knows a valid secret z when he does not.

Lemma 2. If a cheating prover P and an honest verifier V execute CSP , then for any round, we
have that: Pr[CSPP,V = Accept] = 2/3.

Proof. We will prove that P has a maximum probability probability 2/3 to cheat. For P to cheat,
he must be able to answer correctly to any challenge ch at each round whereas he does not know
a valid z. To accept the protocol, V should be able to verify all the hash values at the end of the
interaction.

• ch = 0: P reveals two permutations π1, σ1 and two vectors u and v respectively simulating
values of π, σ, u and v in a fair protocol (we do not make this precision in the following).

• ch = 1: P reveals two permutations π2, σ2 and two vectors u′ and v′.

• ch = 2: P reveals vectors X , U , Y , V with ωt(X) = ωt(Y ) = ω

Those values must verify hash values involved in the protocol. Let us consider a knowledge extractor
E rewinding the random oracle. Since h is a random oracle (one cannot find a collision on it), we
have the following straightforward results: π1 = π2, σ1 = σ2 and RuT +QvT = Ru′T +Qv′T − s
which leads to R(u′ − u)T +Q(v′ − v)T = s.
By exploiting consistency between different forms of c2 and d2, E gets that: U = π(u) and V =
σ(v). Thanks to d3 and c3, we get: π(u′) = X + U and σ(v′) = Y + v. Finally, by setting
z∗ = (u′ − u||v′ − v), P enabled E to find z∗ verifying Hz∗T = s and ωt(z∗) = 2ω i.e. E solved
the SD-problem.

Then, P cannot anticipate the 3 challenges and the protocol clearly outputs Accept with a
maximum probability of 2/3 (cases ch = 0 and ch = 1 or cases ch = 0 and ch = 2 according to
the strategy of the cheating prover).
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Testable weak Zero-Knowledge We will now prove the Testable weak Zero-Knowledge property
of our scheme. The idea is to prove that a verifier cannot learn nothing more from a fair execution
than prover’s secret is correct and whether the auxiliary value he knows is related to prover’s secret
or not.

Lemma 3. The Concatenated Stern’s protocol CSPP,V depicted in Figure 2 is a Testable weak
Zero-Knowledge proof in the random oracle model assuming the hardness of the SD-problem.

Proof. Given a valid proof Π∗ (i.e. for which TVerif outputs 1), there are two possibilities for
an adversary A: algorithm TestWit either outputs 0 or 1. In the first case, honestly generated
proofs and simulated ones are clearly random since commitments stored in cmt are obtained via
the random oracle h and values to be revealed, stored in rsp, are designed to appear random (the
security of all Stern like protocols relies on this fact).

We now focus on the case where case TestWit outputs 1.
If Π∗ was generated by algorithm SProve , there are three different cheating strategies:

• ch = 0: the simulator runs SProve to output Π∗. While generating this proof (see Figure 5
(b)), the simulator implicitly defined the SD-instance (Q, s1, ω) where s1 = QyT1 for a certain
y1 with no constraint on the weight (ωt(y1) 6= ω a priori). The adversary will first check the
proof by running TVerif and he additionally runs TestWit using its auxiliary knowledge y′

to check the consistency of d3. Thanks to RO observability, the simulator can monitor the
calls made by the adversary to h. Now when A calls h to run TestWit , the simulator can
parse these calls to identify y′. Since y′ is such as TestWit(y′,Π∗,L) = 1, the simulator
is able to find a vector y′ of weight ω such as s1 = Qy′T and thus solving the SD-instance
(Q, s1, ω).

• ch = 1: this time, the simulator implicitly defined the SD-instance (Q, s2, ω) while gener-
ating Π∗, where s2 = QyT2 for a certain y2 with QyT2 6= QyT a priori. Once again, the RO
observability enables the simulator to monitor the calls made by the adversary to h. Now
when the adversary calls h to run TestWit to additionally check d2, the simulator can parse
these calls to identify y′. Since y′ is such as TestWit(y′,Π∗,L) = 1, the simulator is able to
find a vector y′ of weight ω such as s2 = Qy′T and thus solving the SD-instance (Q, s2, ω).

• ch = 2: the algorithm TestWit does not apply in this case and indistinguishability is straight-
forward.

Now, if this valid proof Π∗ was generated by algorithm Prove , we consider the following game.

G The challenger supposed to run Prove will attribute random values to commitments stored in
cmt except for the values of d3 in the case ch = 0 and d2 in the case ch = 1 for which he
computes values according to CSP .

Because of h modeled as a random oracle, to A′s view, this game G is indistinguishable from
an honest Prove procedure. Plus, for the same reason, it is also indistinguishable from the previous
case with SProve (all commitments stored in cmt always appear random).

Hence, we can consider that A will never provide a word y′ such as TestWit(y′,Π∗,L) = 1
since it leads to breaking the SD-problem. Finally, under the ROM and the SD-problem, we can
consider that distributions S0 and S1 are indistinguishable.
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4 Definition and Security Model

In this section, we give the definition of the group signature we will rely on and the associated
security model.

A group signature scheme [6] is a protocol which allows members of a group to individually
issue signatures on behalf of the group in an anonymous but revocable way: an opener is able to
revoke anonymity of the actual signer in case of abuse. Several steps have been made in the study
of those protocols: Bellare et al. [7] first gave formal security properties of group signature. Later,
Bellare, Shi and Zhang (BSZ model) [3] extended this model to dynamic groups, emphasizing the
importance of unforgeability and anonymity. Numerous efficient group signatures schemes such as
[8, 9, 10] using bilinear maps were proposed but only secure in a relaxation of these models. While
recent post-quantum group signature schemes, namely lattice-based, such as [14, 15, 16, 17, 18]
only satisfy the static model of [7], we propose a scheme that we will define as weakly dynamic
with the classic properties of anonymity, traceability and non-frameability.

4.1 Definition

Let us precise that our scheme only involves three entities with a single authority: the group man-
ager. Indeed, in our model, the group manager will both participate in issuing users’ secret keys
and revoking anonymity (see Section 5) without impacting security (see Section 6). Consequently,
the algorithm Judge present in dynamic models does not appear in our model. Adapting the BSZ
model, we propose the following definition.

Definition 4. A group signature scheme GS = (GSetup, Join,GSign,GVerif ,Open) is a se-
quence of protocols such as:

• GSetup(1λ): this algorithm generates public parameters of the system gparams , the group
public key gpk and the group manager secret key gmsk = (trk , skO) made of a trapdoor key
trk and the opening key skO;

• Join(Ui): this is an interactive protocol between a user Ui and the group manager owning
trk . At the end of the protocol, the user obtains a secret signing key sk [i]. The group manager
adds the new user Ui and updates skO;

• GSign(gpk , sk [i],m;µ): to sign a message m, the user uses his secret key sk [i] and some
randomness µ to output a signature Σ valid under the group public key gpk ;

• GVerif (gpk ,m,Σ): anybody should be able to verify the validity of the signature Σ on the
message m with respect to gpk . It thus outputs 1 if the signature is valid, and 0 otherwise;

• Open(skO , gpk ,m,Σ): for a valid signature Σ with respect to gpk , the group manager can
provide the signer identity : it thus outputs the user Ui when it succeeds and 0 otherwise.

4.2 Security Model

We define our security notions in a game-based way defined in Figures 6 and 7. To be claimed
secure, a group signature scheme has to prove its correctness and fulfill three properties: anonymity,
traceability and non frameability.
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Correctness The correctness notion guarantees that honest users should be able to generate valid
signatures, and the opener should then be able to revoke anonymity of the signers.

Unforgeability Informally, the unforgeability notion guarantees that no one can produce a valid
signature that cannot be opened in convincing way (traceability) and that no one can produce a
signature on behalf of some group member (non-frameability).

In the following experiments, to join the group, an adversary runs the oracle joinP (passive
join) to create an honest user for whom it does not know the secret key: the index i is added to
the HU (Honest Users) list. For users whose secret keys are known to the adversary, we let the
adversary play on their behalf. For honest users, the adversary can interact with them, granted some
oracles:

• corrupt(i), if i ∈ HU , provides the secret key sk[i] of this user. The adversary can now
control it. The index i is then moved from HU to the list of corrupted users CU ;

• sign(i,m), if i ∈ HU , plays as the honest user Ui would do in the signature process. Then i
is appended to the list S[m];

• the oracle open which, on input (m,Σ) returns Open(skO, gpk,m,Σ).

(a) Experiment ExptrGS,A(λ)

1. (gpk , gmsk = (trk , skO))← GSetup(1λ)
2. (m,Σ)← A(gpk : joinP , corrupt , sign, open)
3. If GVerif (gpk ,m,Σ) = 0, return 0.
4. If ∃j 6∈ CU ∪ S[m],

Open(skO , gpk ,m,Σ) = j,
Return 1.

5.Else return 0.

AdvtrGS,A(λ) = Pr[ExptrGS,A(λ) = 1]

(b) Experiment ExpnfGS,A(λ)

1. (gpk , gmsk = (trk , skO))← GSetup(1λ)
2. (m,Σ)← A(gpk , skO : joinP , corrupt , sign)
3. If GVerif (gpk,m,Σ) = 0, return 0.
4. If ∃i ∈ HU \ S[m],

Open(skO , gpk ,m,Σ) = i,
Return 1.

5. Else return 0.

AdvnfGS,A(λ) = Pr[ExpnfGS,A(λ) = 1]

Figure 6: Unforgeability Notions

Traceability and Non-Frameability
Traceability (Figure 6 (a)) says that nobody should be able to produce a valid signature that

cannot be opened in a convincing way. Furthermore, non-frameability (Figure 6 (b)) guarantees that
no dishonest player (even the authorities, i.e. the Group Manager GM ) will be able to frame an
honest user: an honest user that does not sign a message m should not be convincingly declared as
a possible signer, non-frameability also shows that the group manager cannot cheat. We thus say
that:

• GS is traceable if, for any polynomial adversary A, the advantage AdvtrGS,A(λ) is negligible;

• GS is non-frameable if, for any polynomial adversary A, the advantage AdvnfGS,A(λ) is neg-
ligible.

In both games, the adversary generates a signature Σ on a message m of its choice. In the latter
game, the adversary itself can play the role of the opener, trying to frame an honest user i.
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Anonymity
Given two of honest users i0 and i1, the adversary should not have any significant advantage in

guessing which one of them have issued a valid signature.

Experiment Expanon−bGS,A (λ)

1.(gpk , gmsk = (trk , skO))← GSetup(1λ)
2.(m, i0, i1)← A(gpk : joinP , corrupt , sign, open)
3.Σ← GSign(gpk, ib,m, sk[i])
4.b′ ← A(Σ : joinP , corrupt , sign)
5.If i0 6∈ HU or i1 6∈ HU , return 0.
6.Return b′.

AdvanonGS,A(λ) = Pr[Expanon−1GS,A (λ) = 1]− Pr[Expanon−0GS,A (λ) = 1]

Figure 7: Anonymity Notion

The adversary can interact with honest users as before (with sign and corrupt), but the challenge
signature is generated using the interactive signature protocol GSign , where the adversary plays the
role of the corrupted users, but honest users are activated to play their roles.
GS is anonymous if, for any polynomial adversary A, the advantage AdvanonGS,A(λ) is negligible

(Figure 7). We will see that our anonymity notion can be related to selfless-anonymity introduced in
[9] where a user can check if he is the signer of a given signature and learns nothing about it else.
The full-anonymity notion, required by the BSZ model, means that anonymity is guaranteed even if
the adversary is granted access to all users’ private keys (even the challenged one) and the oracle
open (excepted on the challenge signature).

A weakly dynamic model The BSZ model [3] basically defines two ways for an adversary A
to add new group members: a passive one where an honest user is added and might be corrupted
later while a kind of active join protocol enablesA to add an already corrupted member (this user is
immediately added to CU ), for which he knows its secret key. In this latter case, the BSZ model can
still provide non-frameability. Giving such an active join to an adversaryA in our case is equivalent
to assuming that A knows the trapdoor key trk . Nevertheless, in Section 6, we ensure the security
of our scheme in a scenario in which A should never access to trk . This explains why A is only
given skO instead of gmsk in the non-frameability case. This difference between our model and the
BSZ model led us to define our scheme as weakly-dynamic.

Definition 5. A group signature scheme verifying security notions of Figures 6 and 7 is said to be
securely weakly-dynamic.

5 Our Code-Based Group Signature

We now present our group-signature scheme satisfying Definition 4. To fix ideas, we first present an
high level overview and then, we describe more precisely the operation of the different algorithms.

5.1 High Level Overview

Actors Our scheme brings into play:
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• a group manager (GM): the single authority of our scheme. It runs the GSetup algorithm, adds
new members to the group (algorithm Join protocol) and opens signatures (algorithm Open);

• group members: also referred as users who can sign on behalf of the group (algorithm GSign);

• outsiders: they do not belong to the group but can verify a signature granted the group public
key gpk (algorithm GVerif ).

The main idea of our scheme consists in building an offset collision of two syndromes associated
to two different matrices to instantiate CSP . We recall here that the trapdoor matrix Q enables to
invert syndromes so that a classic scenario could be as follows.

First Step GM generates Q a trapdoor matrix with trk the corresponding trapdoor key and a
random syndrome sG. U chooses a random vector x of weight ω and computes s = RxT . U then
sends s to GM who uses its trapdoor key to compute, via algorithm Inv , y such as: QyT = s+ sG
and ωt(y) = ω. If this steps fails, U chooses a new random value for x until a valid antecedent y
can be found.
Then, GM returns y to U who finally forms its secret signing key z = (x‖y). It is important to notice
that half of the secret key, namely x, is only known by U himself; it will ensure non-frameability of
our scheme.

Second Step U owns a secret key z = (x‖y) such as ωt(x) = ωt(y) = ω and HzT = RxT +
QyT = sG. This situation fits within the model of the protocol CSP . Every group member then
owns its secret key which leads to the group common syndrome sG, as depicted in Figure 8.

Figure 8: High level Overview

Third Step In case of doubt, GM should be able to revoke anonymity of group signatures. In the
present case, GM knows y, the second part of the secret key of every user U ; this point will enable
him to open signatures (algorithm Open).

5.2 Operation of our Scheme

In the CRS model, anyone is able to to generate R = h′(crs).
We first describe algorithms GSetup, Join and summed them up in Figure 9.

GSetup is performed by the group manager while Join(Ui) is an interactive protocol between a
candidate Ui for joining the group and the group manager GM .
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(a) GSetup(1λ)

1.gparams = (λ, k, n, ω) ∈ N4 ← 1λ

2.(Q, trk) ∈M(n−k)×n(F2)× T RK ← TrapGen(1λ)

3.sG
$← Fn−k2 , R = h′(crs)

4.gpk ← (H = (R‖Q), sG, ω)
5.skO ← ∅
6.gmsk ← (trk , skO)
7.Output (gparams, gpk , gmsk).

(b) Join(1λ)

1. user : Ui GM

xi
$← Snω

si = Rxi
T

si−→
2. Run Inv(Q, trk, si + sG, ω)

If Inv(Q, trk, si + sG, ω) = ⊥,
go to 1

If ∃i0 : skO [i0] = yi,
go to 1

Else skO [i] = yi

3. sk[i] = (xi‖yi)
yi←−

Figure 9: GSetup and Join algorithms

On adapting our TwZK protocol Our group signature scheme will mainly rely on the TwZK
proofs described in Section 3. To cope with Fiat-Shamir paradigm in the context of a group signature
scheme, we adapt algorithms Prove , TVerif and TestWit (Figures 4 and 5 (a)) so that step 2 of all
these algorithms takes into account the message to sign m during the challenge generation. More
precisely, algorithms Prove , TVerif and TestWit will take as additional input the message m so
that ch is now equal to ch = Hλ(m, cmt) instead of simply Hλ(cmt). We respectively denote
these (slightly) modified algorithms Provegs(m, ., .; .), TVerif gs(m, ., .) and TestWitgs(m, ., .).

GSetup The GSetup algorithm is executed by the group manager GM taking as input a security
parameter λ. It randomly generates a trapdoor matrix (according to Definition 2) Q and the cor-
responding trapdoor key trk . It also chooses a random syndrome sG ∈ Fn−k2 that will constitute
the group public identity and initializes gmsk = (trk , skO) where skO will be its opening key.
Finally, GM publishes global parameters gparams = (λ, n, k, ω) ∈ N4 and the group public key
gpk = (H = (R‖Q), sG, ω) where R and Q ∈ M(n−k)×n(F2). This algorithm implicitly covers
the run of a TSetup algorithm.

Join To proceed the Join protocol, GM and Ui behave as following: Ui randomly chooses a
vector xi ∈ Snω and computes si = Rxi

T . Then, he sends si to GM who uses its trapdoor key trk
to compute yi verifying: si+ sG = Qyi

T and ωt(yi) = ω. GM responds yi to Ui. Finally, Ui forms
sk[i] = (xi‖yi) and GM updates skO [i] = yi. The reader should notice that this methodology
may fail for two reasons. On the one hand, algorithm Inv can fail when computing antecedent
yi. On the other hand, when such an yi is successfully computed, GM should first check that yi
was not already attributed to another user (GM ensures that all yi’s are different to further revoke
anonymity). In both cases, GM tells Ui to choose another secret xi.

In the end of this protocol, each user is given a secret key zi = (xi‖yi) of weight 2ω and
verifying HzTi = RxTi +QyTi = si + si + sG = sG.

GSign and GVerif Algorithms CSP (Figure 2) is an interactive TwZK protocol during which P ,
which in fact consists, here, in the group G, proves to V the knowledge of a valid secret ensuring
him that he belongs to the group associated to the common syndrome sG.
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As already mentioned, we use Fiat-Shamir paradigm to get a signature scheme. Signing then
basically consists in outputting a proof of knowledge on a secret key that is linked to the message
to sign m. Namely a group member Ui has to produce a signature Σ seen as a transcript Σ =
(cmt , rsp) of the protocol CSP executed on public key gpk and small weight secret sk [i ] for which
each tuple (cmt [j], ch[j], rsp[j]) simulates a fair execution of CSP . It then suffices to run protocol
Provegs on inputs m, sk [i] and L.

For verification (algorithm GVerif ), one has only to check a signature outputted by GSign
which means checking the validity of some Σ ← Provegs(m, sk [i],L; ρ). We then apply algo-
rithm TVerif gs since it precisely aims at checking the validity of a proof outputted by Provegs .

Open Algorithm We first recall that GM ’s opening key skO consists in the pool of yis constitut-
ing half parts of users’ secret keys made of (xi||yi). According to Figure 5 (a), the knowledge of
such values permits to run (potentially successfully) algorithm TestWit and then to decide if the
tested value was the one used for generating the proof. The algorithm Open is then straightforward:
given a message m and a signature Σ = (cmt , rsp), GM reads through the opening key skO until
for some index i0, sk [i0] = yi0 passes algorithm TestWitgs . In this case, GM is ensured that the
actual signer is Ui0 .

Remark 3. By design of our scheme, any group member will then be able to open its own signatures
which was referred to selfless-anonymity in [9].

Algorithms GSign, GVerif and Open are depicted in Figure 10.

(a) GSign(gpk , sk [i],m, lλ;µ)
1. Parse gpk = (H, sG, ω).
2. Set L = {z = (x‖y), x, y ∈ Fn2 :

HzT = sG ∧ ωt(x) = ωt(y) = ω}
3. Σ = (cmt , rsp)← Provegs(m, sk [i],L;µ).
4. Return (m,Σ).

(b) GVerif(gpk ,m,Σ, lλ)
1. Parse gpk = (H, sG, ω).
2. Set L = {z = (x‖y), x, y ∈ Fn2 :

HzT = sG ∧ ωt(x) = ωt(y) = ω}
3. b← TVerif gs(m,Σ,L)
4. Return b.

(c) Open(skO , gpk ,m,Σ)
1. If (GVerif(gpk ,m,Σ, lλ) = 0), return 0.
2. Parse gpk = (H, sG, ω)
3. Set L = {z = (x‖y), x, y ∈ Fn2 :

HzT = sG ∧ ωt(x) = ωt(y) = ω}
4. For i = 1 . . . N

b← TestWitgs(m, skO [i],Σ,L)
If (b = 1), return Ui.

5. If none skO [i] succeeds,
return 0.

Figure 10: GSign, GVerif and Open

5.3 Additional Properties

In this subsection, we briefly explain how the design of our group signature scheme might enable
us to turn it into a traceable signature following the definition of [2] and how to handle revocation.

A traceable signature Extending group signatures schemes, Kiayias et al. suggested traceable
signatures schemes in [2]. Such constructions enable the opening authority to delegate its opening
or tracing capability to sub-openers so that they can trace suspicious users without letting them
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trace others. Usually, such a scheme provides two additional protocols compared to a classic group
signature scheme: Trace and Claim .

Due to its construction, our scheme can easily be extended into traceable signature. Indeed if
GM wants a sub-opener So to trace or look after Ui0 with secret key z = (xi0 ||yi0), he just needs to
reveal him yi0 . Now, whenever So is given a signature Σ, he uses yi0 to apply algorithm Trace on
Σ: it outputs 1 if and only if the issuer was indeed Ui0 . In fact, he has to apply the methodology of
algorithm Open but since he does not know skO, he cannot look over all users’ tracing keys, then
he will only be able to open the signature if it was issued by Ui0 .

Furthermore, as pointed when defining anonymity, our scheme provides selfless-anonymity
since any user will be able to prove that he is the actual signer of his own signature: this is ex-
actly what algorithm Claim is meant to do.

Membership Revocation A crucial requirement for group signature schemes should be member-
ship revocation. Indeed, once a group has been set up, one must be able to keep on trusting a group
even in presence of misbehaving users; else, it means a new group should be regenerated to exclude
them. When it comes to post-quantum constructions, only few lattice-based schemes [16, 18] han-
dle this property by proceeding with verifier local revocation (VLR). VLR requires the verifiers to
possess some up-to-date revocation information, but not the signers. We follow the same method-
ology to provide membership revocation. As for the case of traceable signature, this revocation
information, in our case, simply consists in the revoked user’s tracing keys yis.

We neither provide formal definitions nor detailed proofs here but the conversion of our scheme
into in a traceable signature with membership revocation is rather straightforward. In particular, we
refer the reader to the non-frameability property of our scheme to ensure that information released
to potentials sub-openers or in the revocation list does not impact the security of our scheme.

6 Formal Security Analysis

In this section, we study the three requirements of anonymity, traceability and non-frameability
previously defined (Figures 6 and 7) in order to claim secure our scheme (Definition 5). In the
following, we consider A an adversary to our scheme and B, an adversary to a difficult problem
using advantage of A’s possibilities.

Recalls on our group signature A signature consists in a transcript representing several repeti-
tions of our Concatenated Stern’s protocol (Figure 2). Then a signature Σ is a couple (cmt , rsp)
such as:

(cmt , rsp) = (cmt [1], . . . , cmt [lλ], rsp[1], . . . , rsp[lλ]) (1)

• cmt [j] consists in commitments of our Concatenated Stern’s protocol (Figure 2) generated at
j-th iteration;

• ch[j] the j-th symbol of ch = Hλ(m, cmt) ∈ {0, 1, 2}lλ . It plays the role of the random
challenge sent by the verifier in the interactive version of CSP at j-th iteration;

• rsp[j] is the answer to the challenge ch[j] ∈ {0, 1, 2}.
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How to generate a simulated signature The methodology for a simulator, without knowledge
of a secret key, to generate a signature Π∗ that appears valid (i.e. that passes algorithm GVerif ) is
the one used in SProve . For each iteration j = 1 . . . lλ, the simulator chooses a value for ch[j] and
stores commitments and responses respectively in cmt and rsp according to methodology described
in protocol SProve . Finally, the simulator programs the RO to set Hλ(m, cmt) to ch and outputs
Σ∗ = (cmt , rsp).

Hence, such a simulator will then produce a transcript looking fair to any verifier, without know-
ing any valid secret z.

6.1 Anonymity

We begin with the anonymity property.

Theorem 2. If there exists an adversary A that can break the anonymity property of the scheme
(Figure 7), then there exists an adversary B that can break the Testable weak Zero-Knowledge
(TwZK) property of our Concatenated Stern’s protocol CSP .

Proof. Through a sequence of games, we will exhibit that an adversary against our anonymity
property would be able to break the TwZK property of our scheme.

G0 B first runs GSetup(λ). He gives gpk to A who has also access to oracles joinP, corrupt,
sign and open. Now B and A act as described in Expanon−0GS,A (λ) (Figure 7). In this game, B
will honestly challenge the adversary A on b = 0. At some point, A produces (m, i0, i1). B
will then behave honestly by signing m outputting Σ0 = GSign(gpk , sk [i0],m;µ).

G1 In this game, A and B behave the same way than in G0 with same knowledge and oracles
provided to A with the exception of queries about Ui0 . Indeed, when A produces (m, i0, i1),
instead of generating Σ0, B generates a simulated signature Σ∗ by programming the random
oracleHλ accordingly.

G2 This game is the version of game G0 in which B challenges A on challenge b = 1; the
rest consists in Expanon−1GS,A (λ) (Figure 7). So, when A produces (m, i0, i1), B responds
Σ1 = GSign(gpk , sk [i1],m;µ).

Since the Concatenated Stern’s protocol CSP is TwZK, we have, on the one hand, Σ0 and Σ∗

are statistically close to each other. On the other hand, for the exact same reason, Σ∗ and Σ1 are
statistically close then Σ1 is statistically close to Σ0. Finally, we can deduce that Expanon−0GS,A (λ)

and Expanon−1GS,A (λ) are indistinguishable which leads to that AdvanonGS,A(λ) = Expanon−0GS,A (λ) −
Expanon−1GS,A (λ) is negligible. This terminates the proof.

6.2 Soundness

The soundness analysis consists in proving traceability and non-frameability.
Through a methodology similar to [19], we will first begin to show how forging a signature could
lead to breaking a computational problem.
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Forging a signature
Let us suppose that A can forge a signature on user Ui0 supposed to be uncorrupted. It follows

that A can produce Σ = (cmt , rsp) such as GVerif (gpk ,m,Σ) = 1 without knowing sk [i0]. As
recalled in (1), Σ is the following transcript (cmt [1], . . . , cmt [lλ], rsp[1], . . . , rsp[lλ]) simulating lλ
fair iterations of protocol CSP .

If A can produce such a forgery, then A must have been able to successfully run lλ iterations
of CSP without knowing a valid secret whereas the cheating probability of CSP is 2/3 (Lemma 2).
Then A has either broken the soundness of CSP or enabled the design of a knowledge extractor
reaping benefits of the forgery to produce a valid solution z of the related SD instance.

Soundness Since traceability and non-frameability are two notions closely related, we treat them
simultaneously. Indeed, both notions require the adversaryA to produce a valid forgery Σ verifying
GVerif (gpk ,m,Σ) = 1. Nevertheless, breaking traceability implies for A to produce Σ such as
the group manager could not trace it back to any group member whereas non-frameability requires
to produce a signature that does trace back to an actual group member.

More precisely, if we consider thatA attacks an honest user Ui0 : to attack traceability,A should
produce a forgery Σ on m such as:

GVerif (gpk,m,Σ) = 1 ∧Open(skO, gpk,m,Σ) = 0, (2)

whereas to attack non-frameability its forgery Σ should verify:

GVerif (gpk,m,Σ) = 1 ∧Open(skO, gpk,m,Σ) = i0, (3)

with the obvious constraint in both cases that Σ 6= GSign(gpk , sk [i0],m;µ).
We now prove the traceability and the non-frameability of the proposed group signature scheme.

Theorem 3. If there exists an adversary A against the traceability (Figure 6 (a)) (resp. the non-
frameability, Figure 6 (b)) of the scheme, then we can build an adversary B that can either break
the security of the Concatenated Stern’s protocol CSP or the OMSD (resp. SD) problem.

Proof. Let A be a PPT adversary attacking the traceability (resp. non-frameability) property of our
scheme with advantage ε(λ). Through a sequence of games, we will show that ifA is efficient, then
it is possible for a simulator B to solve a difficult problem with non negligible probability related to
ε.

G0 Following our group signature scheme, a simulator B runs algorithm GSetup(λ). He then
chooses a user Ui0 on which A will be challenged. The following consists in the traceability
(resp. non-frameability) game defined in Figure 6 (a) (resp. Figure 6 (b)); B then provides
gpk = ((R||Q), ω) (resp. gpk = ((R||Q), ω) and skO) toA, which has also access to oracles
joinP, sign, open and corrupt (resp. joinP, sign and corrupt since in this case, A knows skO
and has no need for oracle open). For any query of A, B responds honestly but the game
aborts if A tries to corrupt Ui0 .

At some point, A produces a forgery (m,Σ) under the condition that for all i ∈ CU ,
signatures on m were never queried. As supposed earlier, the probability for A to have
GVerif (gpk ,m,Σ) outputting 1 is ε.
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G1 In this game, B still runs algorithm GSetup(λ) and chooses a user Ui0 . A still knows gpk
(resp. gpk and skO) with the same respective oracle accesses. The only difference from
previous game is that whenever A queries oracle sign on user Ui0 , B generates a simulated
valid signature. Like previously, the game aborts A tries to corrupt Ui0 .

At some point, A produces a forgery (m,Σ) under the condition that for all i ∈ CU , sig-
natures on m were never queried. Similarly to anonymity game (subsection 6.1), signatures
honestly produced on behalf of Ui0 in game G0 are indistinguishable from random ones pro-
duced in this game.

Hence, toA’s view, games G0 and G1 are indistinguishable and we get that the probability for
A to have GVerif (gpk ,m,Σ) = 1 is still ε.

Under the soundness of CSP , we now treat separately traceability (game Gtrac1 ) and non-
frameability (game Gnf1 ).

Gtrac1 A has been given a forgery Σ verifying (2). Under the soundness of CSP , B could
thus apply the knowledge extractor algorithm E on Σ to generate a vector z∗ pass-
ing protocol CSP . All through this game, A may have queried for oracle corrupt on
all users except Ui0 meaning that he may have obtained many secret keys solving the
instance (H, sG, 2ω). In other words, A has obtained the following OMSD instance
(H, sG, 2ω, {usk [i]}i∈CU ). If z∗ /∈ {usk [i]}i∈CU , A has then enabled B to find one
more solution to the previous OMSD instance with probability directly related to ε.
Else, A replays the game until B gets a new solution to the aforesaid OMSD instance.

Gnf1 In the case of non-frameability, A has also been given a forgery Σ verifying (3). This
time, the knowledge of skO provides more information to A about users’ secret keys.
Indeed skO consists in all tracing keys (yis), that is, half of every user’s secret key.
Writing usk [i ] = (xi||yi) for all i, we have that A can compute si = QyTi (= RxTi ).
Through oracle corrupt, A can learn the entire zi for every user (different from Ui0)
he might corrupt. We recall here that every si, originally computed during the join
procedure by RxTi = si appears random since every xi is randomly chosen in Snω . In
fact,A has obtained the following unsolved SD-instances (R, si, ω)i∈HU containing the
particular one (R, si0 , ω).
Now, under the soundness of CSP , B, by programming the ROM, exploits Σ to get a
vector z∗ = (x∗||y∗) from which he can issues signatures verifying (3) just like Σ. In
particular, it means that applying algorithm Open on signatures issued with z∗ returns
i0. It leads to y∗ = yi0 and then that x∗ is a solution to the SD instance (R, si0 , ω).

At the end of game G1, A has either broken the soundness of CSP or been able to solve a
computational problem with non negligible probability related to ε. This terminates the proof.

7 Instantiation with the CFS scheme

Our scheme is generic and can be used with any trapdoor matrix. For coding theory based on
Hamming metric, a possible trapdoor function is the CFS signature algorithm [4].
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7.1 CFS Distinguishability and Security

The main idea of the CFS signature is to hide a Goppa code matrix with parameters [2m, 2m −
mω, 2ω + 1] correcting up to ω errors. Parameters are chosen such that the probability to invert a
syndrome is in 1/ω!; in practice, ω is of order O(log(2m)) = O(m). From the security discussion,
the parameters have to be chosen so that the Syndrome Decoding problem for the matrix H =
(R‖Q) is difficult for a weight 2ω.

A recent result has proven that the public matrix of the CFS scheme was distinguishable [29]
from a random matrix. Nevertheless, this result did not give rise to any attack on the scheme which
then remains usable. Indeed, in practice and despite the aforesaid distinguisher, best attacks to the
CFS problem are generic and treat the CFS matrix as a random one.

CFS-based problems and augmented-CFS matrix To be claimed secure (Section 6), our generic
scheme does not require the public matrix to be indistinguishable from random but only to be secure
against some computational problems defined in Section 2 (namely SD and OMSD problems). In
the case of random codes, these problems are either proven hard (SD problem) or assumed to be
(OMSD problem). Assuming the putative security of the CFS scheme, we also consider that these
problems are hard when instantiated with a CFS public matrix which can then be seen as a trapdoor
matrix satisfying Definition 2.

This leads us to deal with a global public matrix of the form H̃ = (R‖Q) where R is random
and Q is CFS public matrix; we then define augmented-CFS matrices as follows:

Definition 6. Let Q ∈ M(n−k)×n(F2) a CFS public matrix and R ∈ M(n−k)×n(F2) a random
binary matrix. We say that the following matrix H̃ = (R‖Q) is an augmented-CFS matrix.

Since computational problems defined in Section 2 are also assumed to be hard using the CFS
scheme, we can naturally extend this hardness to augmented-CFS matrices.

Remark 4. K. P. Mathew et al. recently proposed a provably secure code-based signature scheme [30].
Their work roughly consists in masking the public matrix of the original CFS scheme so that there
exists no distinguisher with random matrices. Nevertheless, since their scheme leads to greater keys
sizes and ours does not require indistinguishabilty from random to fulfill security (Section 6), we
focus on the classic CFS scheme when studying parameters.

7.2 Parameters

We then instantiate our generic scheme with augmented-CFS matrices and consider, relying on
previous subsection, the choice of parameters as if we were dealing with random ones. From the
best known attacks [31, 32] we can choosem = 20 and ω = 10. It leads to a matrix H̃ of length 221

and dimension 200, with a security of 80 bits. The level of security can be improved over 80 bits by
taking parameters with m = 20 and ω = 11. The fact that the searched small weight vectors have a
particular form since they have to be of same weight ω on the two parts of the matrix only decreases
the complexity of the attacks at the margin. Indeed it decreases the number of possible solutions to
the Syndrome Decoding problem only by a small factor, since random solutions of weight 2ω to the
problem have a good probability to be of equal weight on each part of the matrix.

The number of syndromes 2mω, for a [2m, 2m − mω, 2ω + 1] Goppa Code, gives an upper
bound on the number of users. In fact, this number of users corresponds to the number of decodable
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random syndromes which is equivalent to 2mω/ω!. In practice, one considers ω = O(m); hence,
from the Stirling formula, it gives 2O(m2) possible users. Since public keys matrices and signatures
sizes are proportional to the length of code 2m, this leads sizes of order N1/

√
log(N), for N the

number of group members.
Finally, parameters as chosen above lead to a signature (a transcript of proof of knowledge of a

small word associated to H̃) of length roughly 20 megabytes and a public key of size 2.5 megabytes.
Notice that what takes time in the protocol is the computation of the CFS signature by the signer,

but this is done only once for each member of the group when he enters the groups, and hence it
is less important that this signature takes a little more time than usual signatures. At last the CFS
signature scheme cannot find a preimage for any syndrome s, it does it only with probability 1/ω!,
this fact can be managed through the sending of ω! different syndromes s in the Join process so
that, on average, a preimage y by the CFS public matrix Q is found with a small failure probability,
in which case the set-up process is started over. Since the syndrome s is computed randomly, it does
not affect the security of the scheme.

As a final remark, let us also notice that in the quantum setting, it would be required to consider
a security parameter λ greater than 80. Even if theoretically feasible, this may to lead extreme sizes
of parameters in the case of CFS.

8 Conclusion

This work is the extended version of the code-based group signature scheme proposed in [1]. To
fulfill security, we introduced a new problem in code-based cryptography referred as the One More
Syndrome Decoding problem and a new kind of proof of knowledge, referred as Testable weak
Zero-Knowledge, for which a verifier is able to test whether some specific information is related
to the prover’s secret, without learning anything more from the proof. The main idea of our work
was to build an offset collision of two syndromes associated to two different matrices: a random
one which enables to build a random syndrome from a chosen small weight vector; and a trapdoor
matrix, which permits to find a small weight preimage of the previous random syndrome to which
a fixed syndrome is added. Applying a variation of Stern’s protocol on these two small weight
vectors led us to design our group signature scheme, secure under the ROM, through the use of Fiat-
Shamir paradigm. In spite of great sizes of keys, common to all post-quantum group signatures, our
instantiation proposes satisfying asymptotic performances since group public key and signatures
sizes are proportional to N1/

√
log(N). In particular, our scheme compares well with [19] which

is based on the static BMW model and presents size of parameters linear in the number of users.
Finally, we assume that the elegance, the simplicity and the large range of properties it fulfills make
this scheme a good alternative to all other post-quantum constructions. Indeed, not only does it
allow to dynamically add new members but it should be noted that its extension into a traceable
signature (KTY model) handling member revocation appears rather straightforward.
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