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Abstract. First-order secure Threshold Implementations (TI) of sym-
metric cryptosystems provide provable security at a moderate overhead;
yet attacks using higher-order statistical moments are still feasible. Cryp-
tographic instances compliant to Higher-Order Threshold Implementa-
tion (HO-TI) can prevent such attacks, however, usually at unacceptable
implementation costs. As an alternative concept we investigate in this
work the idea of dynamic hardware modification, i.e., random changes
and transformations of cryptographic implementations in order to ren-
der higher-order attacks on first-order TI impractical. In a first step, we
present a generic methodology which can be applied to (almost) every
cryptographic implementation. In order to investigate the effectiveness
of our proposed strategy, we use an instantiation of our methodology
that adapts ideas from White-Box Cryptography and applies this con-
struction to a first-order secure TI. Further, we show that dynamically
updating cryptographic implementations during operation provides the
ability to avoid higher-order leakages to be practically exploitable.

1 Introduction

Side-channel analysis (SCA) uses information leakage by measuring physical de-
vice internals, e.g., timing [9], power consumption [10] or electromagnetic emana-
tions [2], to extract cryptographic secrets. Modern side-channel countermeasures
are classified either as hiding or masking [11]. While hiding countermeasures aim
to decrease the Signal-to-Noise ratio (SNR) in order to hide information leak-
age in random noise, masking countermeasures tackle information leakage using
secret sharing and multi-party computation techniques. The idea of Threshold
implementation (TI) has been developed based on Boolean masking in partic-
ular to target hardware implementations [15]. However, the initial concept of
TI was only suitable to counteract first-order side-channel leakages, still allow-
ing attacks using higher-order statistical moments to successfully recover cryp-
tographic secrets. Naturally, higher-order Threshold Implementations (HO-TI)
have been proposed to solve this problem [4]. Despite, HO-TI might be limited



2 Pascal Sasdrich, Amir Moradi, and Tim Güneysu

to uni-variate scenarios [18] as well as they come with increased time overhead
and area demands due to the ever increasing number of minimum shares for
higher-order protection. Therefore, combining first-order secure TI with hiding
countermeasures to achieve (practical) higher-order protection might be an al-
ternative solution.

Previous Work: Although the threat of side-channel attacks is well known,
many cryptographic devices are vulnerable to side-channel analysis due to their
static design and behavior which allows attacks based on statistical and dif-
ferential analysis. Introducing dynamic behavior in terms of ever-changing and
morphing implementations and circuits could help to overcome these problems.
However, this is not a trivial task and poses big challenges to designers of cryp-
tographic implementations in particular using static hardware devices. In recent
years, several research into this direction has been performed and published
but still existing solutions are at an early stage and have to face many diffi-
culties. In 2008, Mentens et al. [12] introduced a first work for using dynamic
reconfiguration of modern FPGAs as countermeasure against power and fault
attacks. However, their solution had to struggle with slow reconfiguration times
as well as too small complexity which still allowed efficient analysis and attacks.
Besides, their solution specifically targeted reconfigurable hardware which pro-
vides dynamic reconfiguration features. Moradi and Mischke [13] examined the
opportunities of using dual ciphers as alternative representations (in particular
for AES) in order to achieve protection against side-channel attacks. Though,
dual ciphers maintain structural properties of the original representation which
again could be exploited using statistical analysis. Recently, Sasdrich et al. [19]
proposed the application of affine equivalence representations of cryptographic
S-boxes to change the cipher implementation dynamically during runtime. Al-
though the complexity of this approach is quite high, it exploits very specific
properties of the cryptographic components, so that this approach cannot be
generically applied to cryptographic implementations.

Contribution: Our contribution in this work is twofold: First, we present a
generic approach to change the representations of cryptographic implementations
dynamically in order to introduce non-static behavior. Our methodology can be
applied to (almost) every cryptographic implementation and circuit independent
of the cryptographic algorithm or scheme. Our approach uses random substitu-
tion of basic elements along with random encoding of intermediate connections
and offers high flexibility and scalability of attack complexities depending of the
used level of abstraction and granularity of the underlying circuit. Second, we
investigate and analyze a specific instantiation of our approach to randomize a
TI. In particular, we are going to examine a first-order PRESENT TI as a case
study which is implemented in reconfigurable hardware. The randomization of
intermediate signals, in terms of random non-linear 4-bit encodings, is chosen
dynamically during runtime and injected into each implemented look-up table
in order to substitute them by different representations. In particular, this ap-
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proach adapts ideas and techniques from the area of White-Box Cryptography
(WBC), although we want to emphasize that we do not aim to achieve resis-
tance against attacks in the white-box adversary model. Eventually, we conduct
practical side-channel measurements for our case study. Using a leakage assess-
ment methodology, we focus on effects of our countermeasure on higher-order
statistical properties and moments and show that our approach can increase the
protection against higher-order side-channel attacks from a practical point of
view.

Outline: The remainder of this article is organized as follows: Section 2 sum-
marizes and provides important background information on directed graphs,
Threshold Implementations and White-Box Cryptography. In Section 3 we present
a description of our generic approach to dynamically update and randomize cryp-
tographic implementations which is applied in a case study in Section 4 using a
specific instantiation based on a PRESENT TI and 4-bit non-linear encodings
(as proposed for WBC). Section 5 provides side-channel evaluation results us-
ing power measurements and state-of-the-art leakage assessment methodologies.
Eventually, our work concludes in Section 6.

2 Background

This section briefly introduces the theory of directed graphs before we recapit-
ulate the background of Threshold Implementations (TI) and White-Box Cryp-
tography (WBC).

2.1 Notations

We denote single-bit random variables using lower-case characters, bold ones for
multi-bit vectors, bars for shared representations, lowering indices for elements
within a vector and raising indices for elements of a shared vector.

Furthermore, let us denote any element x ∈ GF(2m) as vector of m single bit
elements 〈x1, . . . , xm〉. The shared representation x̄ of a vector x using Boolean
masking with s shares is given as x̄ = (x1, . . . ,xs), where

x =
s⊕

i=1

x̄ =
s⊕

i=1

xi =
s⊕

i=1

〈xi1, . . . , xim〉.

Eventually, we denote functions using sans serif fonts and sets using calli-
graphic ones.

2.2 Directed Graphs

Directed Graphs (or digraphs) are use for many applications in order to ab-
stractly model a certain problem and find according solutions. In general, a
graph is a set of nodes that are connected by some edges. For a directed graph,
the edge are provided with a certain direction.
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Definition 1. A directed graph or digraph is an ordered pair of
sets G = (V,A) where V is a set of vertices and A is a set of ordered
pairs aij = 〈vi, vj〉 (called arrows or directed edges) with vi, vj ∈ V.

In particular, each vertex has a certain number of connected edges. Due to the
direction of the edges, we can distinguish between edges that arrive at a vertex
and edges that leave a vertex. The number of arriving edges is given by the in-
degree of a node, whereas the number of leaving edges is given by the out-degree.

Definition 2. In a directed graph, the in-degree deg+(v) and the
out-degree deg−(v) of a vertex v ∈ V count the number of directed
edges connecting to and from a vertex respectively. It holds, that∑

v∈V deg
+(v) =

∑
v∈V deg

−(v) = |A|.

Eventually, every node (connected to a digraph) has to have at least one arriving
or leaving edge. In case the node has an in-degree of zero, it is called source,
since it only serves as starting point for several edges. Similarly, a node without
any leaving edges is called sink, since it is only an ending point for some edges.
In the following, we consider the source nodes as starting points of our directed
graph, whereas the sink will be the final points.

2.3 Threshold Implementation

Threshold Implementation (TI) is a widely used technique to protect hardware
devices against physical attacks. In particular, TI is based on Boolean masking
and multi-party computation and provides provable security, even in the pres-
ence of glitches3. In general, any Threshold Implementation has to provide the
following three properties:

Correctness: Given a vector x̄ = (xi, . . . ,xs) in its shared representation, we
can compute any function F(x̄) = ȳ on it but have to ensure correctness, i.e., the
result ȳ = (yi, . . . ,yt) has to be shared representation of y = F(x) with t ≥ s.
But for this purpose, we can use according component functions fi to evaluate
F for each share individually. However, finding correct component functions is
not trivial, in particular if F is a non-linear function [3]. In addition, each com-
ponent function has to ensure further properties such as non-completeness and
uniformity.

Non-Completeness: As mentioned before, each resulting share (yi, . . . ,yt)
is given by an individual evaluation of a component function fi∈{1,...,t}(·) over
the input shares. However, in order to achieve security in sense of first-order
statistical moments, each component function has to provide non-completeness.
This means that each component function fi∈{1,...,t}(·) must be non-complete,
i.e., independent of at least one input share.

3 For a more detailed description, please refer to the original articles [15, 16, 4].
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Uniformity: The security of Threshold Implementations as masking schemes
is based on the uniform distribution of the mask respectively the shared repre-
sentation which serve as input for a function evaluation. However, since results
of a function, e.g., an S-box, are used as input to another function, the outputs
of the functions again have to be uniformly distributed. This means, given a set
of all possible input sharings X = {x̄|

⊕s
i=1

x̄ = x} the set of all possible output
sharings, i.e., {(f1(·), . . . , ft(·)|x̄ ∈ X} should be drawn uniformly from the set
of Y = {ȳ|

⊕t
i=1

ȳ = y} as all possible sharings of y = F(x).

2.4 White-Box Cryptography

The concept of White-Box Cryptography is concerned with the protection of im-
plementations of cryptographic algorithms in the presence of white-box adver-
saries that have virtually unlimited capabilities and access to an implementation
as well as full control of the execution environment. Implementations are assumes
secure against white-box adversaries if they provide an adversary with not more
information than given by a black-box access, in other words, the white-box
implementation should behave as virtual black box.

As a matter of fact, an ideal white-box implementation of a cryptographic
algorithm would consist of a single look-up table which maps every possible
plaintext to an according ciphertext (for a given and fixed secret key). How-
ever, for modern ciphers that provide security levels and key sizes of 128 bits
and more, this approach is obviously impractical. Consequently, alternative ap-
proaches which can be realized in practice are necessary. In 2002, Chow et al.
proposed practical white-box implementations for DES [6] and AES [7] using
divide-and-conquer strategies to build white-box implementations using net-
works of randomized look-up tables.

In general, the proposed strategy can be applied for any key-alternating,
round-based, symmetric block cipher EK to derive its white-box implementation
E′K and it can be described as:

E′K = (fr+1)−1 ◦ Er
kr
◦ fr︸ ︷︷ ︸

table(s)

◦ · · · ◦ (f3)−1 ◦ E2
k2
◦ f2︸ ︷︷ ︸

table(s)

◦ (f2)−1 ◦ E1
k1
◦ f1︸ ︷︷ ︸

table(s)

= (fr+1)−1 ◦ Er
kr
◦ · · · ◦ E2

k2
◦ E1

k1
◦ f1 = (fr+1)−1 ◦ EK ◦ f1,

In this context, Ei∈{1,...,r} is a single round of EK , and fi∈{1,...,(r+1)} are en-
coding functions which are chosen randomly in order to randomize and hide any
key material inside the look-up tables. Besides, in order to ensure full protection
of the first and last round of a block cipher and to prevent so called Code Lift-
ing attacks [8], white-box implementations usually use external encodings (here
given as f1 respectively (fr+1)−1).
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3 Methodology

In this section, we introduce our methodology to dynamically update and ran-
domize cryptographic implementations using a generic approach. We first state
some important observations that directly lead to a generic representation of the
problem. This is followed by an algorithmic solution to achieve dynamic updates
of cryptographic implementations.

3.1 Generic Approach

In general, our generic approach can be applied to any cryptographic implemen-
tation. However, the provided physical platform has to allow some changes of
the implementation during runtime. Since we want to focus on hardware imple-
mentations throughout this work, we particularly target reconfigurable hardware
in terms of Field-Programmable Gate Arrays (FPGA). Eventually, we present
a solution that achieves on-the-fly dynamic randomization of cryptographic im-
plementations.

Observation 1. Any cryptographic implementation can be repre-
sented as network or sequence of modular or atomic functions sub-
sequently applied on an internal state.

Consequently, we can model any cryptographic implementation as a directed
graph. Depending on the level of abstraction and the desired granularity (e.g.,
system level, gate level, etc.), each node of the graph represents a single or
multiple modular and atomic functions of the algorithm. Besides, the edges which
connecting the nodes in a certain direction represent the data flow of the internal
state.

Observation 2. Any cryptographic implementation can be modeled
by different but equivalent directed graphs.

In general, the numbers of nodes and edges required to model a cryptographic im-
plementation is not determined and particularly not limited by an upper bound.
Principally, we can add new nodes and edges arbitrarily to the graph to find new
representations (with sufficient complexity). However, we still have to maintain
and ensure correctness of the overall implementation.

3.2 Morphing Algorithm for Cryptographic Implementations

Based on this observations, we developed a generic algorithm to morph a digraph
of a cryptographic implementation into an equivalent but encoded digraph while
still maintaining correctness of the implementation.

According to Algorithm 1, each arrow 〈vi, vj〉 of a digraph is replaced by
an encoded directed edge. For this purpose, both adjacent vertices have to be
replaced as well. The starting vertex vi is replace such that it not only performs
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Algorithm 1: Morphing algorithm for cryptographic implementations

Input : G = (V,A): digraph representing a cryptographic implementation.
Output: G∗ = (V∗,A∗): digraph representing an encoded cryptographic

implementation.

G∗ = (V∗,A∗): V∗ ← V, A∗ ← A
for ∀vi ∈ V∗ do

D ← ∅
s← f(vi), V∗ ← V∗ \ {vi}
for ∀vj ∈ V∗ do

if aij ∈ A∗ then
D ← D ∪ f−1(vj)
V∗ ← V∗ \ {vj}, A∗ ← A∗ \ {aij},

end

end

for ∀di ∈ D do
V∗ ← V∗ ∪ {s, di}, A∗ ← A∗ ∪ 〈s, di〉,

end

end

return G∗

its originally provided function but in addition performs an encoding function f
to the state. In order to maintain correctness of the implementation, the ending
vertex vj has to cancel the applied encoding using the inverse (decoding) function
f−1 before performing its original function to the state.

3.3 Applicable encoding functions

In this section, we will briefly discuss properties and requirements on encoding
functions that are applicable within our algorithm. First of all, the encoding
function should be a randomly drawn function in order to perform a randomiza-
tion of the implementation during the update. However, each encoding function
has to fulfill a few minimal requirements and has to provide some properties to
be compatible with our methodology. Obviously, the encoding function has to
be injective, i.e., it has to be information preserving in order to allow a correct
operation of the original implementation. Apart from that, input and output
sizes of the encoding functions will depend on the desired granularity of the
algorithm and can differ as long as the output size is at least the input size.
Besides, the chosen encoding function can have any complexity (but still should
be reasonable efficient). Possible realizations of encoding functions could be: lin-
ear functions [23], non-linear bijections (like S-boxes) [7], or any other instance
which meets the requirements.
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3.4 Verification and semantic equivalence checking

Since our methodology should not affect the correctness of the final result of
the original implementation, we have to ensure semantic equivalence of the ran-
domized implementations. Therefore, our approach has to include checking and
verification steps. As mentioned before, the randomly drawn encoding functions
have to meet minimal requirements which has to be checked and verified con-
tinuously during the operation. Correctness of the final result, i.e., semantic
equivalence of the randomized implementation, is ensured by only encoding sin-
gle edges (or small paths4) and including the inverse decoding function at the
same time.

4 Case Study: PRESENT Threshold Implementation

Throughout this section, we present a practical realization of our proposed coun-
termeasure using an encoded PRESENT TI as case study. Before investigating
the feasibility of our approach in terms of hiding higher-order side-channel leak-
age, we give a detailed description of our practical architecture realized on a
modern Xilinx FPGA and elaborate our design strategy.

4.1 Adversary Model

Although our practical instantiation employes certain ideas and concepts of
White-Box Cryptography in terms of using encoded look-up tables to hide se-
cret key material, we want to emphasize that we still do not consider adversaries
of the white-box model. It is obvious that every adversary who has full access
and control of the execution environment can circumvent our proposed counter-
measures in order to extract secret keys from the implementation using more
powerful attacks, e.g., an algebraic analysis of the look-up tables. However, we
therefore only consider adversaries of the gray-box model, i.e., adversaries that
still can access the implementation but can only gain helpful information through
side-channel leakage.

4.2 Design Considerations

PRESENT [5] is a lightweight symmetric block cipher based on a block size of
64 bits. In particular, it is a Substitution-Permutation network (SPN) with 31
rounds. It provides two different key sizes (80 bit or 128 bit) and derives 32
different 64-bit round-keys based on the initial key. Since nowadays, it is advised
against using 80-bit keys, we opted to implement and focus on PRESENT-128.

4 Given for instance a linear operation within a cryptographic implementation (e.g.,
MixColumns of the AES algorithm) and the application of linear encoding functions
would allow to keep encoded intermediate values. However, the decoding function
then has to consider the inversion of the linear operation as well.



Hiding Higher-Order Side-Channel Leakage 9

x1

x2

x3

g2,3

g1,3

g1,2

f2,3

f1,3

f1,2

y1

y2

y3

Fig. 1. First-Order TI of the PRESENT S-box

Threshold Implementation of PRESENT: Our implementation is based
on the first TI that was presented in [17]. In particular, we apply the decompo-
sition of the S-box into two quadratic functions g and f that was proposed by
Poschmann et al. in order to benefit from the minimal number of shares (i.e.,
m = n = 3). Since the permutation of the PRESENT cipher is a linear function,
it can be applied to each share individually and without modification. Due to
the decomposition of the S-box, additional register stages have to be placed in
between g and f in order to prevent side-channel leakage caused by glitches. The
final structure of the first-order TI of the PRESENT S-box is shown in Figure 1.

Encoding the TI: Before instantiating and implementing our proposed al-
gorithm taking the example of a first-order secure PRESENT TI, we have to
find an architecture which supports dynamic updates of sub-functions or com-
ponents and can be implemented on an FPGA. Given the basic structure of a TI
of the PRESENT S-box as shown in Figure 1 we chose the component functions
as basic building blocks that have to be updated on-the-fly. Besides, we opted
to implement each function as look-up tables because it is a natural choice for
FPGAs but also allows fast updates.

Starting from this, the PRESENT TI can be implemented as network of look-
up tables, each operating on 4-bit nibbles of the internal state. In a next step,
the output of each look-up table is encoded using a non-linear 4-bit bijection. In
order to maintain correctness, all subsequent look-up tables have to apply the
according decoding function before being evaluated, i.e., the original table has to
be combined with the according inverse bijection. In general, this approach re-
flects basic ideas and concepts of White-Box Cryptography as initially proposed
by Chow et al. in [6, 7].

However, this strategy has some important implications that effect the final
hardware architecture. First, the secret key has to be known during design time
since it is included within the look-up tables. Hence, the (shared) key is fixed
and combined with the look-up tables of the first layer of the TI S-box. Second,
since the permutation layer is a linear functions which operates on single bits,
we cannot perform the permutation on 4-bit encoded values. Instead, we have
to implement the permutation layer as sequence of look-up tables that decode
and re-encode the nibbles while performing the original permutation.
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Fig. 2. Quarter Round of Encoded PRESENT TI

Eventually, our encoded TI is implemented using different look-up tables for
each sub-function and all rounds. However, this complicates the task of imple-
menting our design efficiently using an round-based approach. None the less,
modern FPGAs provide useful features that allow an efficient implementation
(as presented in Section 4.3).

Dynamic Update of Encodings So far, our TI is encoded statically using
arbitrary non-linear functions applied during design time. However, in order to
perform dynamic randomization during operation time, we want to modify these
initial encodings. Therefore, in general, we have to find solutions for the following
two issues:

1. How to find or compute random non-linear functions on-the-fly?
2. How to inject random non-linear functions into our hardware implementation

during runtime?

Random 4-bit non-linear functions, i.e., a random permutations of the se-
quence {0, 1, . . . , 15} can be generated using a linear-time algorithm using swap-
ping operations and sampling uniform random numbers [22]. Although the per-
mutation generation is slightly biased, this effect can be neglected in the context
of side-channel analysis.

Since our encoded TI is implemented as network of look-up tables, inject-
ing random non-linear functions can be realized as table re-computation and
re-ordering. In particular, we can apply arbitrary functions to the output of a
table by replacing each table entry by the according encoded value. The de-
coding function can be applied to the input of a table by re-odering the table
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Table 1. Area Consumption of our Hardware Architecture

Module/ Resource Utilization

Component Logic Memory Area

(LUT) (FF) (LUTRAM) (BRAM) (Slices)

Control Logic 11 24 0 0 13

Round Function 96 0 0 192 87

g-Layer 0 0 0 48 0

f-Layer 0 0 0 48 0

p1-Layer 0 0 0 48 0

p2-Layer 0 0 0 48 0

Reconfiguration 3129 3222 1952 0 2373

Context Engine 22 44 32 0 18

Encoding Engine 2880 2880 1920 0 2258

Randomness Generator 136 256 0 0 40

Total 3236 3246 1952 192 2473

entries according to the decoded address value. Fortunately, this procedure is
independent of the previous injection of random functions, i.e., if we first apply
a random function n1 follow by a second function n2 this is the same as applying
another function n3 with n3 = n2 ◦n1. Hence, we can continually update our im-
plementation using random non-linear functions without increasing the size of
our implementation by just performing table re-computations and re-orderings.

Eventually, for the given PRESENT implementation, we have to update 5904
4-bit encodings per encryption in order to perform a full dynamic hardware mod-
ification process. Since there are 16! different 4-bit encodings, the final random-
ization complexity of our methodology (for the given case study) is about 256.

4.3 Practical Implementation on Reconfigurable Hardware

The deliberate application of modern reconfigurable hardware in terms of a Xil-
inx Kintex-7 FPGA provides several interesting advantages and allows a prac-
tical evaluation and implementation in order to confirm the feasibility of the
proposed approach. In particular, the selected Kintex-7 XC7K160T FPGA im-
plements roughly 12 Mb of block RAM (BRAM) in the form of 325 individual
memory instances, each providing 32-Kb of general purpose memory as well as
a true dual-port feature. Note that the dual-port option is of particular impor-
tance for the dynamic update of our implementation since we can use one port
solely to perform the cryptographic operations whereas the second port is used
to perform the dynamic table re-ordering and re-computation.

Besides, since all look-up tables of our architecture are 256 × 4-bit tables,
each BRAM primitive could store up to 32 different look-up tables. Fortunately,
PRESENT has only 31 different rounds, so we can arrange tables of the same
operation but different rounds in the same BRAM instance. This strategy yields
a round-based hardware architecture as presented in Figure 2. Moreover, since
each BRAM still provides enough memory to store another table we can use this
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Table 2. Comparison of different PRESENT Hardware Architectures

Scheme/ Logic Memory Latency Freq. Throughput Ref.

Implementation (LUT) (FF) (LUTRAM) (BRAM) (cycles) (MHz) (MBit/s)

1st-order TI 808 384 - - 64 207 413 [14]

2nd-order TI 2245 1680 - - 128 204 406 [14]

Affine Equivalence 1834 742 - 1 64 112 224 [19]

Glitch-Free Duplication 5442 12672 - - 704 459 458 [14]

Dynamic Hardware Mod. 3236 3246 1952 192 124 153 315 new

free table entry to store an updated table. Hence, after performing the table re-
ordering and re-computation and storing the updated table in the free segment,
a context switch is performed, i.e., the storage of the old table is released and
the updated table is applied during operation. But since the update is performed
through the second port while the first port is continuously used for operation,
our strategy does not affect the overall performance.

Table 1 provides the implementation numbers of our design, including control
logic and a reconfiguration unit that generates new random 4-bit encodings on-
the-fly. Obviously, a lion’s share of the used resources is necessary to implement
the encoding generation. Basically, the round function can be implemented in 192
BRAM instances – the remaining logic in terms of LUTs is necessary to control
and operate the table update using the second port of the BRAM. Eventually,
the control logic implements a small finite state machine (FSM) that controls
both the round function and the reconfiguration engine and provides an interface
for external access and control.

4.4 Comparison

In Table 2, we provide a comparison of different approaches to achieve higher-
order side-channel resistance (except for the 1st-order TI ) by the example of
PRESENT. Obviously, our approach offers competitive results, both in terms
of performance and area utilization, although it has an increased demand for
BRAM instances. Still, the security of our proposed countermeasure may not
only be limited to second-order attacks but it may also affect higher-order leak-
ages, hence providing better security than a 2n-order TI (at least from a practical
point of view).

5 Practical Side-Channel Evaluation

We evaluated side-channel information of our design implemented on a physical
device using a SAKURA-X FPGA platform [1] which provides a Xilinx Kintex-7
XC7K160T FPGA for practical side-channel evaluations using the power con-
sumption of the device. Measuring the voltage drop over a 1Ω resistor in the
Vdd path of the FPGA using a digital oscilloscope with a sampling rate of 500
MS/s, 20 MHz bandwidth limitation, and a stable, jitter-free clock frequency of
24 MHz, we could practically examine vulnerabilities of our proposed design.
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Fig. 3. Non-Specific t-Test Results: Profile 1 (1 000 000 Traces)

5.1 Non-Specific t-Test

A common technique to investigate the resistance and vulnerabilities of physical
cryptographic implementations against side-channel attacks is the Test Vector
Leakage Assessment (TVLA) methodology. The evaluation is based on Welsh’s
(two-tailed) t-test, sometimes also referred to as fix vs. random or non-specific
t-test, and can be extended naturally to higher-order statistical moments [20,
21].

5.2 Results

In this section we provide practical evaluation results using the non-specific t-test
on the first, second and third statistical order. Besides, we include the evolution
of the absolute maximum of the t-test over the number of used traces. In total,
we performed measurements and evaluations for two different evaluation profiles:
first, reference measurements without sharing (i.e., all-zero masks) and omitted
dynamic update, and second, measurements using shared values and including
our proposed countermeasure in terms of dynamically updating and randomizing
the implementation.

Profile 1: Before evaluating the feasibility and effectiveness of our proposed
approach, we have to ensure the correctness of our implemented first-order TI
using reference measurements. In order to provide such a reference, we measured
one million power traces while the PRNG that generates the random masks for
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Fig. 4. Non-Specific t-Test Results: Profile 2 (100 000 000 Traces)

sharing and random encodings was disabled, i.e., all masks were set to zero and
the dynamic update was omitted. We expect to detect and observer leakage on all
considered statistical orders which is confirmed by our evaluation results shown
in Figure 3. One the left-hand side, we provide the results of the non-specific
t-test for the first, second and third order after measuring and evaluating the
total number of one million traces while on the right-hand side, the development
of the absolute maximum for the t-test on each statistical order over the number
of evaluated traces is shown.

Profile 2: Eventually, we extend the previous measurement profile by apply-
ing our proposed approach in order to hide higher-order side-channel leakages
by continuously performing dynamic updates of the look-up tables of our im-
plementation. Again, we do not expect to detect any first-order leakage due to
the application of a first-order TI but moreover the leakage detectable at higher
statistical orders should be prevented as well. The evaluation results shown in
Figure 4 confirm the correctness of these assumptions since we could not detect
any leakage after measuring 100 million power traces – neither at the first, sec-
ond nor third statistical order – which hence also confirms the effectiveness of
our proposed approach.
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6 Conclusion

In this work we have presented a generic strategy and methodology in order
to apply dynamic and random updates to cryptographic implementations and
circuits in order to hide higher-order side-channel leakages. Using a case study
based on a first-order PRESENT TI and a random updates based on non-linear
encodings, we have shown the feasibility and practicability of proposed concept
using side-channel power measurements and applying the state-of-the-art leakage
assessment methodologies. Eventually, we can conclude that our methodology
presents a viable alternative to building higher-order Threshold Implementations
and convinces by its generality and scalability.

Acknowledgment

This work has been co-funded by the Commission of the European Communities
through the Horizon 2020 program under project number 645622 PQCRYPTO.

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/

SAKURA/index.html.

2. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, Revised Papers, pages 29–45, 2002.

3. T. Beyne and B. Bilgin. Uniform First-Order Threshold Implementations. Cryptol-
ogy ePrint Archive, Report 2016/715, 2016. http://eprint.iacr.org/2016/715.

4. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-Order Thresh-
old Implementations. In Advances in Cryptology - ASIACRYPT 2014 - 20th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., Proceedings, Part II, pages 326–343, 2014.

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, Proceedings, pages 450–466, 2007.

6. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A White-Box DES
Implementation for DRM Applications. In Security and Privacy in Digital Rights
Management, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, Revised
Papers, pages 1–15, 2002.

7. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-Box Cryptogra-
phy and an AES Implementation. In Selected Areas in Cryptography, 9th Annual
International Workshop, SAC 2002, St. John’s, Newfoundland, Canada, Revised
Papers, pages 250–270, 2002.

8. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-Box Security Notions
for Symmetric Encryption Schemes. In Selected Areas in Cryptography - SAC 2013
- 20th International Conference, Burnaby, BC, Canada, Revised Selected Papers,
pages 247–264, 2013.



16 Pascal Sasdrich, Amir Moradi, and Tim Güneysu
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