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Abstract. We present a practically efficient functional encryption scheme for the class of functionalities
that can be expressed via bilinear forms over the integers. Bilinear forms are a general class of quadratic
functions that includes, for instance, multivariate quadratic polynomials. Our realization works over
asymmetric bilinear groups and is surprisingly simple, efficient and easy to implement. For instance, in
our scheme the public key and each ciphertext consist of 2n+1 and 4n+2 group elements respectively,
where n is the dimension of the encrypted vectors, while secret keys are only two group elements.

The scheme is proved secure under the standard (adaptive) indistinguishability based security notion
of Boneh, Sahai and Waters (TCC 2011). The proof is rather convoluted and relies on the so-called
generic bilinear group model. Specifically, our proof comes in two main stages. In a preliminary step, we
put forward and prove a new master theorem to argue hardness in the generic bilinear group model of
a broad family of interactive decisional problems, which includes the indistinguishability-based security
game for our functional encryption scheme. Next, the more technically involved part of the proof consists
in showing that our scheme actually fits the requirements of our master theorem.

1 Introduction

Traditional public key encryption allows the owner of a secret key sk to decrypt ciphertexts created
with respect to a (matching) public key pk. At the same time, without sk, ciphertexts should not
reveal any non trivial information about encrypted messages. This all-or-nothing nature of encryp-
tion is becoming insufficient in applications where a more fine-grained access to data is required.
Functional Encryption (FE) allows to overcome this user-centric access to data of encryption in
a very elegant way. Intuitively, given Encrypt(m) and a key skf corresponding to some function
f , owner of skf learns f(m) and nothing else. Apart from being an interesting theoretical object,
Functional Encryption has many natural applications. Think about cloud storage scenarios where
users can rely on powerful external servers to store their data. To preserve their privacy users might
want to store their files encrypted. At the same time, the users may wish to let the service providers
perform basic data mining operations on this data for commercial purposes, without necessarily
disclosing the whole data. Functional Encryption allows to reconcile these seemingly contradicting
needs as service providers can get secret keys that allow them to perform the desired computations
while preserving, as much as possible, the privacy of users.

In terms of security, the standard notion for functional encryption is indistinguishability. Infor-
mally, this notion states that an adversary who is allowed to see the secret keys for functionalities
f1, . . . fn should not be able to tell apart which of the challenge messages m0 or m1 has been en-
crypted, under the restriction that fi(m0) = fi(m1), for all i. This notion was studied in [11,24]
and shown inadequate for certain, complex, functionalities3. They also explored an alternative,

3 Here by complex we intend, for instance, functions that are supposed to have some computational hiding properties.
In particular, Boneh et al. [11] argue that, in applications where security relies on such properties indistinguisha-
bility might become problematic.



simulation based, definition, which however cannot be satisfied, in general, without resorting to the
random oracle heuristic.

Background on Functional Encryption. The idea of functional encryption originates from
Identity Based Encryption (IBE) [26,10] and the closely related concept of Searchable Encryption
[9,1]. In IBE, the encrypted messages can be interpreted as a pair (I,m), where I is a, public,
string and m is the actual message (often called the “payload”). More in general, the index I can be
interpreted as a set of attributes that can be either public or private. Public index schemes are often
referred to as attribute based encryption [25,21], a primitive that is by now very well understood
[19]. For private index schemes, the situation is more intricate. A first distinction is between weak
and strong attribute hiding schemes [5]. The former notion refers to schemes where the set of secret
keys the adversary is allowed to see in the security games is significantly restricted. The adversary
is allowed to ask only keys corresponding to functions that cannot be used to decrypt the challenge
message. Examples of these schemes are Anonymous Identity based encryption [10,16], Hidden
Vector Encryption [12] and (private index) predicate encryption [22,20].

Things are less well established for the setting of private index, strong attribute hiding schemes,
a notion that turns out to be equivalent to full fledged functional encryption [11]. Indeed, all known
constructions supporting arbitrary circuits, either work for the case of bounded collusions [18,17]
or rely on powerful, but poorly understood, assumptions (e.g., [15]). Moreover, they are all terribly
inefficient from a practical point of view.

To improve efficiency, a very natural approach is to try to realize schemes using a different,
bottom up, perspective. Rather than focusing on generality, one might focus on devising efficient
realizations for specific functionalities of practical interest. In 2015, Abdalla et al. [2] addressed
this question for the case of linear functionalities. In particular they show a construction which is
both very simple and relies on standard, well studied assumptions (such as LWE and DDH). The
construction was proved secure in the so-called selective setting where the adversary is expected to
choose the messages on which she wants to be challenged in advance, even before the public key
is set up. Not too surprisingly, this result sparkled significant interest in this bottom-up approach,
with several results proposing new schemes [6], models [8,4] and improved security [6,3].

Still, none of these results managed to efficiently support more than linear functionalities4. This
motivates the following question:

Can we construct a practically efficient functional encryption scheme supporting more than
linear functionalities?

1.1 Our Contribution

In this paper we answer the previous question in the affirmative. We propose a functional encryp-
tion scheme that allows to compute bilinear forms over the integers. Using our scheme one can
encrypt pairs of n-dimensional vectors a, b, while secret keys are associated to (n× n) matrices F;
decryption then allows to compute a>Fb =

∑
i,j fi,jaibj . Bilinear forms represent a very general

class of quadratic functions, which includes for example multivariate quadratic polynomials. These
functions have several practical applications. For instance, a quadratic polynomial can express many
statistical functions (e.g., (weighted) mean, variance, covariance, root-mean-square), the euclidean

4 We stress that a functional encryption for linear polynomials can be used to support, say, quadratic polynomials,
by simply encrypting all the degree two monomials in advance. This however leads to an inefficient solution where
the size of the ciphertexts is quadratic in the number of variables.
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distance between two vectors, and the application of a linear or quadratic classifier (e.g., linear or
quadratic regression).

Our scheme works over asymmetric bilinear groups and is quite efficient. It is essentially optimal
in communication size: the public key and the ciphertexts are linear in the length of the encrypted
vectors (the public key and each ciphertext have 2n + 1 and 4n + 2 group elements respectively),
while a secret key consists of only two group elements (in addition to the plain function description).
In terms of computation, the cost of encryption is linear in the length of the vectors, while the
decryption work is linear in the size of the function.

Our FE scheme is proven secure under the standard adaptive indistinguishability-based security
notion of Boneh, Sahai and Waters [11]. We build the proof in the generic bilinear group model. In
fact, while our scheme is rather simple and easy to understand with respect to correctness, proving
its security is much trickier.

In the next paragraphs we give a brief description of our construction, and the proof strategy.

An Overview of Our FE Scheme. The scheme works over asymmetric bilinear groups G1,G2,GT .
Let us recall that the functionality provided by our FE scheme is that one encrypts pairs of vec-
tors a, b, functions are matrices F, and decryption allows to obtain a>Fb. The initial idea of the
construction is to encrypt the two vectors a and b à la ElGamal in the two groups G1 and G2

respectively, i.e., the ciphertext includes c = gr·x+a
1 and d = gs·y+b

2 where r, s are randomly chosen
and (gx1 , g

y
2 ) is the public key. Towards finding a decryption method, we observe that, given c,d and

a function F, one can use the bilinear map to compute U = e(g1, g2)
(r·x+a)>F(s·y+b). Starting from

this, our technique shows how to extend this simple construction with additional structure that
enables the extraction from U of the value e(g1, g2)

a>Fb, from which the function’s result can be
eventually obtained by discrete log computation.5 This basic scheme is extended as follows. First,

we let the secret key for function F be the element gx
>Fy

1 . Now, if in the ciphertext we include the
element grs2 , one can extract

e(g1, g2)
sa>Fy+rx>Fb+a>Fb = U · e(gx

>Fy
1 , grs2 )−1.

One can see that above the function’s result is still “blinded” by cross terms s(a>Fy) + r(x>Fb).
Our second idea, to solve this issue and enable full decryption, is to add to the ciphertext the
ElGamal encryptions of the vectors s · a and r · b. More in detail, we add to the ciphertext the
elements ĉ = gt·x+s·a1 and d̂ = gz·y+r·b2 for random t, z, and the element grs−t−z2 (instead of grs2 ).
With all this information, one can compute the value U in the same way as above, and then use
the public key (gx1 , g

y
2 ) and the ciphertext components ĉ, d̂ to compute

U ′ = e(g1, g2)
(t·x+s·a)>Fy+x>F(z·y+r·b).

By a simple calculation, the function’s result can be finally computed as

e(g1, g2)
a>Fb = U · U ′−1 · e(gx

>Fy
1 , grs−z−t2 )−1.

As a final note, in the full scheme secret keys are slightly different, we randomize them in order to
achieve collusion resistance.

Our Proof Technique. To argue the security of the FE scheme illustrated above we resort to the
generic group model. In this model we show that the scheme is secure according to the adaptive

5 This means that in our scheme messages and functions coefficients are assumed to be sufficiently small integers.
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indistinguishability-based notion of Boneh, Sahai and Waters [11]. Our proof technique builds on
the generic group framework recently developed by Barthe et al. [7] for the automated analysis of
cryptographic assumptions. In this paper we specialize their definitions to bilinear groups, and we
extend some of their tools and results in order to deal with interactive decisional problems.

The proof of our functional encryption scheme is developed in two main steps. We first state and
prove a master theorem that shows hardness in the generic bilinear group model for a broad family
of interactive decisional problems, notably a family which includes the indistinguishability-based
experiment for our functional encryption scheme. Slightly more in detail, our master theorem states
that these problems are generically hard under a certain algebraic side condition on the distribution
of the group elements received by the adversary. These results and techniques are rather general
and can be of independent interest.

Second, following the guidelines of our master theorem, we show that our functional encryption
scheme meets the algebraic side condition of the master theorem. This is the core part of the proof.
Very intuitively, we look at the structure of the scheme’s group elements seen by the adversary –
public key, ciphertext, secret keys for a bunch of functions – for which the matching of the side
condition means that the only information extractable from them is the functions’ outputs. So,
if the adversary issues only “legitimate” queries (i.e., queries for functions that produce the same
results on the two challenge messages), it will not be able to understand which pair of vectors was
encrypted.

2 Preliminaries and Definitions

Notation. We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT)
algorithm A is a randomized algorithm for which there exists a polynomial p(·) such that for every
input x the running time of A(x) is bounded by p(|x|). We say that a function ε : N → R+

is negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0:

ε(λ) < 1/p(λ). If S is a set, x
$← S denotes the process of selecting x uniformly at random in S.

If A is a probabilistic algorithm, y
$← A(·) denotes the process of running A on some appropriate

input and assigning its output to y. For a positive integer n, we denote by [n] the set {1, . . . , n}.
We denote vectors x = (xi) and matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp.
|x|) denotes its cardinality (resp. number of entries).

Bilinear Groups. Let G(1λ) be an algorithm (that we call a bilinear group generator) which
takes as input the security parameter and outputs the description of a bilinear group setting bgp =
(p,G1,G2,GT , e, g1, g2), where G1, G2 and GT are groups of the same prime order p > 2λ, g1 ∈ G1

and g2 ∈ G2 are two generators, and e : G1×G2 → GT is an efficiently computable, non-degenerate,
bilinear map. We define gT = e(g1, g2) as the canonical generator of GT . In the case G1 = G2, the
groups are said symmetric, else they are said asymmetric. In this paper we work with asymmetric
bilinear groups in which there is no efficiently computable isomorphisms between G1 and G2 (these
are also known as Type-III groups [14]).

We use implicit representation of group elements as introduced in [13]. For s ∈ {1, 2, T} and
x ∈ Zp, we let [x]s = gxs ∈ Gs. This notation is extended to matrices (and vectors) as follows. For

4



any A = (ai,j) ∈ Zm×np we define

[A]s =

ga1,1s . . . g
a1,n
s

g
am,1
s . . . g

am,n
s

 ∈ Gm×n
s

Note that from an element [x]s ∈ Gs and a scalar a it is possible to efficiently compute [ax] ∈ Gs.
Also, given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute [ab]T = e([a]1, [b]2).
Furthermore, given a matrix of scalars F = (fi,j) ∈ Zn×np and two n-dimensional vectors of group
elements [a]1, [b]2, one can efficiently compute

[a>F b]T =

 ∑
i,j∈[n]

fi,j · ai · bj


T

=
∑
i,j∈[n]

fi,j · e([ai]1, [bj ]2)

As above, for an easier and more compact presentation, in our work we slightly abuse notation and
treat all groups G1,G2,GT as additive groups.

2.1 Functional Encryption

We recall the definitions of Functional Encryption as given by Boneh, Sahai and Waters [11].

Definition 1 (Functionality). A functionality F defined over (K,M) is a function F : K×M→
Y ∪ {⊥} where K is a key space, X is a message space and Y is an output space which does not
contain the special symbol ⊥.

Definition 2 (Functional Encryption). A functional encryption scheme FE for a functionality
F is defined by a tuple of algorithms FE = (Setup,KeyDer,Encrypt,Decrypt) that work as follows.

Setup(1λ) takes as input a security parameter 1λ and outputs a master secret key msk and a master
public key mpk.

KeyDer(msk,K) takes as input the master secret key and a key K ∈ K of the functionality (i.e., a
function), and outputs a secret key skK .

Encrypt(mpk,M) takes as input the master public key mpk and a message M ∈M, and outputs a
ciphertext Ct.

Decrypt(skK ,Ct) takes as input a secret key skK and a ciphertext Ct, and returns an output Y ∈
Y ∪ {⊥}.

For correctness, it is required that for all (mpk,msk)
$← Setup(1λ), all keys K ∈ K and all messages

M ∈ M, if skK
$← KeyDer(msk,K) and Ct

$← Encrypt(mpk,M), then it holds with overwhelming
probability that Decrypt(skK ,Ct) = F (K,M) whenever F (K,M) 6= ⊥.

Indistinguishability-Based Security. For a functional encryption scheme FE for a functionality
F over (K,M), security against chosen-plaintext attacks (IND-FE-CPA, for short) is defined via

the following experiment, denoted Expind-fe-cpa-β
FE,A (λ), which is parametrized by an adversary A, a

bit β ∈ {0, 1}, and a security parameter λ.

Setup: run (mpk,msk)
$← Setup(1λ) and give mpk to A.
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Query: A adaptively makes secret key queries. At each query, A specifies a key K and obtains

skK
$← KeyDer(msk,K) from the challenger.

Challenge: A chooses a pair of messages M0,M1 ∈M such that F (K,M0) = F (K,M1) holds for

all keys K queried in the previous phase. The challenger computes Ct∗
$← Encrypt(mpk,Mβ)

and returns Ct∗ to A.

Query: A makes more secret key queries. At each query A can adaptively choose a key K ∈ K,
but under the requirement that F (K,M0) = F (K,M1).

Guess: A eventually outputs a bit β′ ∈ {0, 1}, and the experiment outputs the same bit.

We define the advantage of A as

Advind-fe-cpa
FE,A (λ) =

∣∣∣Pr[Expind-fe-cpa-0
FE,A (λ) = 1]− Pr[Expind-fe-cpa-1

FE,A (λ) = 1]
∣∣∣

Definition 3 (Indistinguishability-Based Security). A functional encryption scheme FE is

secure against chosen-plaintext attacks if for every PPT algorithm A, Advind-fe-cpa
FE,A (λ) is negligible.

Bilinear Forms Functionality. In this work we consider functional encryption schemes for the
bilinear form functionality over the integers. This is defined as follows. For a positive integer n ∈ N+,
we let the message space M = Znp × Znp – every message M is a pair of vectors (a, b) – the key
space K = Zn×np consists of matrices – every key K ∈ K is a matrix F = (fi,j) – and the output

space is Y = Zp. The functionality F (K,M) is the one that computes the value a>F b ∈ Zp.
We note that bilinear forms capture an interesting class of quadratic functions. As an interesting

application, bilinear forms allow one to compute multivariate quadratic polynomials

p(m) = p0 +
∑
i

pi ·mi +
∑
i,j

pi,j ·mi ·mj

by setting a = b = (1,m) ∈ Zn+1
p and by encoding p’s coefficients in an upper triangular matrix

F = (fi,j) ∈ Z(n+1)×(n+1)
p where: f1,1 = p0, f1,i = pi−1 for all i ∈ [2, n + 1], fi,j = 0 for all i > j,

and fi,j = pi−1,j−1 for all i ∈ [2, n+ 1] and j ≥ i.

3 Our Functional Encryption for Bilinear Forms

In this section we present our construction of a functional encryption scheme that supports the
bilinear form functionality over the integers.

Setup(1λ, n,B1, B2) runs the bilinear group generator bgp
$← G(1λ) to obtain parameters bgp = (p,

G1,G2,GT , g1, g2, e). Next, the algorithm sets the message spaceM = {0, . . . , B1}n×{0, . . . , B1}n ⊆
Znp ×Znp and samples a scalar w

$← Zp and two vectors x,y
$← Znp uniformly at random. The key

space for the bilinear form functionality is set as the set of matrices K = {0, . . . , B2}n×n ⊆ Zn×np .
Essentially, B1 and B2 represent integer bounds on the entries of the encrypted vectors and
function matrices respectively. The way to set these bounds is discussed at the end of the
construction.

It returns the master secret key msk := (w,x,y), and the master public key
mpk := (bgp, [x]1, [y]2, [w]2, B1, B2).
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KeyDer(msk,F) takes as input the master secret key msk and a matrix F ∈ K and it returns a secret
key skF := (S1, S2,F) ∈ G2

1 × K where S1, S2 are computed as follows. It samples a random

γ
$← Zp and computes

(S1, S2) := ([x>Fy + γ · w]1, [γ]1).

Encrypt(mpk, (a, b)) takes as input the master public key and a message consisting of two vectors
a, b ∈M, and returns a ciphertext Ct := (c, ĉ,d, d̂, E, Ê) computed as follows.

Choose r, s, t, z ∈ Zp uniformly at random and compute

c := [r · x+ a]1, ĉ := [t · x+ s · a]1

d := [s · y + b]2, d̂ := [z · y + r · b]2
E := [rs− z − t]2 Ê := [w(rs− z − t)]2

Decrypt(skF,Ct) parsing skF := (S1, S2,F) and Ct := (c, ĉ,d, d̂, E, Ê), it first computes

V := c>Fd− [x]1
>F d̂− ĉ>F [y]2 − e(S1, E) + e(S2, Ê) ∈ GT

and then extracts the discrete logarithm v ∈ Zp of V in base gT .

Note that, in order for the decryption algorithm to be efficient we work under the assumption
that the encrypted vectors a, b and the function F all have small entries so that a>Fb is small
as well. In particular, we require that the quantity B = n2B2

1B2 < p is small enough to allow
for efficient discrete logarithm computation.

3.1 Correctness

To see the correctness of our scheme, let

A = c>Fd = [r · x+ a]>1 F [s · y + b]2 = [(rs) · x>Fy + r · x>F b+ s · a>Fy + a>F b]T

B = [x]1
>F d̂+ ĉ>F [y]2 = [x]>1 F [z · y + r · b]2 + [t · x+ s · a]>1 F [y]2

= [z · x>Fy + r · x>F b+ t · x>Fy + s · a>Fy]T

and note that

A−B = [(rs− t− z) · x>Fy + a>F b]T = e(S1 − [w · γ]1, E) + [a>F b]T

= e(S1, E)− e(S2, Ê) + [a>F b]T

Since V = A−B − e(S1, E) + e(S2, Ê) it is easy to see that V = [a>F b]T .

4 Proof of Security

In this section we state and prove the security of our functional encryption scheme in the generic
group model. As an interesting note, in appendix A we show that, when treated as a standard
encryption scheme (i.e., no key derivation queries are allowed), the scheme can be proven semanti-
cally secure under the Decisional External Diffie-Hellman assumption (i.e., assuming DDH in both
groups G1 and G2).
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Theorem 1. The functional encryption scheme described in Section 3 satisfies security against
chosen-plaintext attacks (i.e., indistinguishability-based security) in the generic bilinear group model.
Precisely, for every adversary A which makes at most Q key derivation oracle queries and Q̃ generic
group oracle queries its advantage is

Advind-fe-cpa
FE,A (λ) ≤ 5(6n+ 6 + Q̃+ 2Q)2

p

The proof consists of two main steps. We first state and prove a master theorem that shows
hardness in the generic bilinear group model for a broad family of interactive decisional problems,
notably a family which includes the indistinguishability-based experiment for our functional encryp-
tion scheme. Slightly more in detail, our master theorem states that these problems are generically
hard under a certain algebraic side condition on the distribution of the elements received by the
adversary. Then, following the guidelines of our master theorem, the second step of the proof con-
sists in showing that our functional encryption scheme meets the algebraic side condition of our
master theorem.

4.1 Generic Bilinear Group Model for Interactive Problems

In this section we introduce the generic group model framework that we use to prove the security
of our functional encryption scheme. We adopt the framework of Barthe et al. [7] for analyzing
assumptions in generic k-linear groups, and specialize their definitions to our case of interest,
that are asymmetric (Type-III) bilinear groups. In addition, since the results in [7] for interactive
assumptions can only model computational problems, we provide extensions that allow us to deal
with interactive decisional problems.

Generic Bilinear Group Model. Let bgp = (p,G1,G2,GT , e, g1, g2) be a bilinear group setting,
L1, L2, LT be lists of group elements in G1,G2 and GT respectively, and let D be a distribution over
L1, L2, LT . The generic model for a bilinear group setting bgp and a distribution D is described
compactly in Figure 4.1. In this model, the challenger first initializes the lists L1, L2, LT by sampling
the group elements according to D, and the adversary receives handles for the elements in the lists.
For s ∈ {1, 2, T}, Ls[h] denotes the h-th element in the list Ls. The handle to this element is simply
the pair (s, h). An adversary running in the generic bilinear group model can apply group operations
and bilinear maps to the elements in the lists. To do this, the adversary has to call the appropriate
oracle specifying handles for the input elements. The challenger computes the result of a query,
stores it in the corresponding list, and returns to the adversary its (newly created) handle. Handles
are not unique (i.e., the same group element may appear more than once in a list under different
handles), but the adversary is provided with an equality oracle to check if two handles refer to the
same group element. This generic group model follows closely that of Maurer [23] (which slightly
differs in presentation, although it is equivalent, to that of Shoup [27]) in that the adversary has
access to the state of the challenger via handles, and equality queries have “free” cost in the sense
that they are not counted for measuring the adversary’s computational complexity.

Below we recall a specific class of distributions on lists of group elements that is used in our work.

Intuitively, it considers group elements that are generated by sampling random values x1, . . . , xn
$←

Zp and by computing [p(x1, . . . , xn)]s ∈ Gs for some multivariate polynomial p.

Definition 4 (Polynomially Induced Distributions [7]). Let P = (P1, P2, PT ) be three lists
of polynomials in Zp[X1, . . . , Xn] such that each list contains the constant polynomial 1. We define

8



State: Lists L1, L2, LT over G1,G2,GT respectively.

Initialization: Lists L1, L2, LT sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear map and equalities:

– For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and returns its handle (s, |Ls|).
– For all s ∈ {1, 2, T}: negs(h) appends −Ls[h] to Ls and returns its handle (s, |Ls|).
– mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle (T, |LT |).
– For all s ∈ {1, 2, T}: eqs(h1, h2) returns 1 if Ls[h1] = Ls[h2] and 0 otherwise.

All queries return ⊥ when given invalid indices.

Fig. 1. Generic group model GGMbgp
D for bilinear group setting bgp = (p,G1,G2,GT , e, g1, g2) and distribution

D.

the distribution DP as follows: uniformly sample a vector x
$← Znp and return three lists L =

(L1, L2, LT ) where, for every s ∈ {1, 2, T}, Ls = {[p1(x)]s, . . . , [p|Ps|(x)]s} with pj(X) being the
j-th polynomial in the list Ps. We compactly denote this process as L ← DP . A distribution D is
called polynomially induced if D = DP for some P .

To give an example, the input to an adversary for the computational Diffie-Hellman assumption
(in G1) can be described as a polynomially induced distribution where P1 = (1, X1, X2) contains
three polynomials in Zp[X1, X2].

Definition 5 (Completion). Given lists of polynomials P = (P1, P2, PT ), we define their com-
pletion C(P ) as

C(P ) := PT ∪ {p1,i(X) · p2,j(X) : ∀p1,i ∈ P1, p2,j ∈ P2}

Intuitively speaking, for lists of polynomials P their completion represents the list of all polynomials
that can be computed by the adversary by applying bilinear maps (i.e., multiplications) to the
polynomials in P . Our definition given above is a specialization (which gets somewhat simplified)
of the completion definition for k-linear groups given in [7].

To give an example, if P = (P1, P2, PT ) with P1 = {1, X1, X2}, P2 = {1, X2}, PT = {1}, then
its completion is the list {1, X1, X2, X1X2, X

2
2}.

Symbolic Group Model. The symbolic group model for a bilinear group setting bgp and a
polynomially induced distribution DP , denoted as SGMbgp

DP
, gives to the adversary the same interface

as the corresponding generic group model, except that internally the challenger stores lists of
polynomials in Zp[X1, . . . , Xn] instead of lists of group elements. The oracles adds, negs, map and
eqs compute addition, negation, multiplication, and equality in the polynomial ring. For any event
E in the generic group model, we define a symbolic version of it, S(E), where equalities over group
elements are replaced by equalities over polynomials. In the case where E is an event which does not
involve equality tests on group elements (e.g., in decisional problems where the finalization event

can be a simple check β
?
= 1 on the adversary’s output bit) it holds S(E) = E .

Generic and Symbolic Group Model for Simple Interactive Problems. The definitions
given so far work for adversaries that receive statically defined lists at the beginning of the game,
and then can interact through the oracles to compute group operations and bilinear maps over
them. In what follows we generalize the generic and symbolic group models in order to capture a
family of interactive decisional problems which includes the indistinguishability security experiment
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of our functional encryption scheme. The difference in modeling interactive problems in the generic
(and symbolic) group model is that the adversary is provided with access to additional oracles that
compute further operations on the elements stored in the lists maintained by the challenger in its
state. To formalize this setting, we build on the notion of oracles given by Barthe et al. [7] to model
interactive assumptions. One difference, though, is that in our work we consider oracles that do not
take as inputs group elements (i.e., handles to elements in the challenger’s lists) from the adversary
– we call these problems “simple interactive problems”. In other words, we consider oracles that
take as inputs scalar parameters in Zp and return handles to group elements that are computed
from these scalar parameters, values randomly sampled by DP and other Zp values freshly sampled
by the oracle itself. This restriction on the type of oracles simplifies the presentation, and allows
us to state a master theorem which deals with interactive decisional problems, whereas the master
theorem for interactive assumptions given in [7] can only deal with computational problems.

We begin by defining the notion of an oracle in the generic bilinear group model.

Definition 6 (Oracles in the generic bilinear group model). An oracle is a tuple O =
(Q′, `,m,p,v) where:

– Q′ is the number of oracle queries that are allowed;
– ` is the number of variables δ1, . . . , δ` in Zp that are taken as scalar parameters;
– m is the number of values ω1, . . . , ωm randomly sampled by the oracle in Zp;
– p = (p1, . . . , pc) is a vector of polynomials in Zp[X1, . . . , Xn, ∆1, . . . ,∆`, Ω1, . . . , Ωm] that de-

scribes the c values returned by the oracle;
– v = (v1, . . . , vc) is a vector of indices such that every vi ∈ {1, 2, T} describes in which group the

polynomial pi belongs to.

Basically, in the generic bilinear group model, the oracle takes as input a vector δ ∈ Z`p from
the adversary and returns handles to group elements [p1(x, δ,ω)]v1 , . . . , [pc(x, δ,ω)]vc computed by

sampling ω
$← Zmp . In the symbolic group model the oracle has the same interface, except that:

instead of sampling new values ωi, it creates new formal variables Ωi; instead of returning handle
to group elements, it returns handles to formal polynomials in the polynomial ring augmented with
the newly created formal variables, i.e., pj(X, δ,Ω) ∈ Zp[X,Ω].

As an example, the reader may consider the key derivation oracle corresponding to our functional
encryption scheme. It takes as input ` = n2 values δ1, . . . , δn2 which are the coefficients of the
bilinear form F; it samples m = 1 random value ω1 = γ; returns c = 2 elements of G1 which can
be described by polynomials X>FY +Ω1W and Ω1 in Zq[X,Y ,W,F, Ω1].

Now we state and prove a theorem which shows that one can switch from a generic group
model experiment to a corresponding symbolic group model experiment. This theorem extends to
interactive problems of Theorem 1 in [7].

Theorem 2 (From Generic to Symbol Group Model with Oracles). Let bgp be a bilinear
group setting, where p is prime, DP a polynomially induced distribution, O = (Q′, `,m,p,v) an
oracle such that c = |p|, A an adversary performing at most Q queries, and E an event without
group equality tests. If d is an upper bound on the degree of the polynomials occurring in the internal
state of SGMbgp

DP
, and N = |P1|+ |P2|+ |PT | is the sum of the lists cardinalities, then∣∣∣Pr[GGMbgp

DP ,O(A) : E ]− Pr[SGMbgp
DP ,O(A) : S(E)]

∣∣∣ ≤ d · (N +Q+ c ·Q′)2

2p

where the probability is taken over the coins of GGMbgp
DP

and A.
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Proof. The proof of this theorem is essentially the same as that of Theorem 1 in [7], which however
does not consider oracles. Given the similarity to [7], we only provide an intuition here. The basic
idea is that the adversary, who only sees handles and the outcome of equality queries, can notice
a difference between the two games only if an equality query would be answered differently. For
a single equality check, the probability of seeing a difference (that occurs when two polynomials
f1 6= f2 are different in SGM, but f1(x̃) = f2(x̃) for a random x̃ in GGM) is bounded using the
Schwartz-Zippel lemma, and is ≤ d/p. The final bound is then obtained by a union bound on
the maximum number of equality checks between group elements (resp. polynomials) in the lists.
This number is upper bounded by T 2/2, where T is the maximal length of the lists, which is
T = N + Q + c · Q′ for an adversary that makes at most Q queries to the generic group oracles,
and has additional access to O which can be queried at most Q′ times, each time returning c
polynomials. ut

Looking ahead to defining our master theorem for simple interactive decisional problems, we
introduce a notion of parametric completion which works in this interactive setting where the
adversary gets access to more polynomials in addition to those statically defined in the initial lists
P .

Definition 7 (Parametric Completion). Given lists of polynomials P = (P1, P2, PT ) and an
oracle O = (Q′, `,m,p,v), we define their parametric completion CO(P ) as follows. Assuming that
the c polynomials in p are in Zp[X,∆,Ω], we define an extended set of formal variables

∆̂ = {∆i,j}i∈[`],j∈[Q′], Ω̂ = {Ωi,j}i∈[m],j∈[Q′]

The parametric completion CO(P ) consists of polynomials in Zp[X, ∆̂, Ω̂], and is computed as
follows:

1. P ′ := P

2. foreach i ∈ [Q′]:

3. foreach j ∈ [c]:

4. p′j := pj(∆1 := ∆1,i, . . . ,∆` := ∆`,i, Ω1 := Ω1,i, . . . , Ωm := Ωm,i)

5. P ′vj := P ′vj ∪ {p
′
j}

6. CO(P ) := C(P ′)

Basically, for every query and every polynomial which is to be returned by the oracle, line 4 redefines
the polynomial by making a change of variables (so that the newly introduced variables are unique in
the game instead of being only locally unique in the query), while line 5 simply adds this polynomial
to the corresponding list (i.e., group) according to the index vj . Finally, the parametric completion
is just a completion (as per Definition 5) computed on the lists of polynomials P ′ which include
the initial lists P plus all the polynomials returned by the oracle. We also note that the notion
extends naturally to be parametrized by more than one oracle.

4.2 A Master Theorem for Simple Interactive Decisional Problems

Equipped with the framework and the tools introduced in the previous section, we are now ready
to state our master theorem. First, we define what we call simple interactive decisional problems.

Definition 8 (Simple Interactive Decisional Problems). A simple interactive decisional prob-
lem in the generic and symbolic bilinear group model for oracles O = (Q′, `,m,p,v), Och =
(1, `∗,m∗,f ,v∗), and O′ch = (1, `∗,m∗,f ′,v∗), and a legitimacy predicate H is an experiment where:
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– The adversary A gets the same input and the same oracles as in Figure 4.1.
– A can interact with two more oracles, either O and Och, or O and O′ch, such that Och (resp.
O′ch) can be queried only once.

– A can make (adaptive) queries to its oracles under the restriction that A is “legitimate”, where
legitimacy is defined by some predicate H over its oracle queries. Specifically, if δ̂∗ ∈ Z`∗p is A’s

query to oracle Och (or O′ch), and δ̂ = (δ̂1, . . . , δ̂Q′) ∈ Z`·Q
′

p are the Q′ queries of A to oracle

O, then H is defined as a predicate H(δ̂, δ̂∗) ∈ {0, 1}.
– A returns a bit β, and the finalization event E is “β

?
= 1”.

Note that the two oracles Och, O′ch differ only in their output polynomials. Namely, it can be f 6= f ′

(while their length is clearly the same).
Below we state and prove our master theorem whose goal is to bound the difference between

the probabilities of the winning event E in the two executions of the experiment, provided that a
certain algebraic condition on the parametric completions is met.

Theorem 3 (Master Theorem for Simple Interactive Decisional Problems). Let bgp be
a bilinear group setting, DP be a polynomially-induced distribution, and O = (Q′, `,m,p,v) be an
oracle. Furthermore, let Och = (1, `∗,m∗,f ,v∗) and O′ch = (1, `∗,m∗,f ′,v∗) be two other oracles.
Let N = |P1| + |P2| + |PT |, c = |p|, c∗ = |f | = |f ′|, r = |CO,Och(P )|, and let d denote an
upper bound on the total degrees of the polynomials in the parametric completions. If for all vectors

δ̂ ∈ Z`Q
′

p , δ̂∗ ∈ Z`∗p such that H(δ̂, δ̂∗) = 1 it holds

{k ∈ Zrp | k · C = 0} = {k ∈ Zrp | k · C ′ = 0}, (1)

where C = CO,Och(P )(∆̂ = δ̂, ∆̂∗ = δ̂∗) and C ′ = CO,O′ch(P )(∆̂ = δ̂, ∆̂∗ = δ̂∗), then∣∣∣Pr[GGMbgp
DP ,O,Och

(A) : E ]− Pr[GGMbgp
DP ,O,O′ch

(A) : E ]
∣∣∣ ≤ (N +Q+ cQ′ + c∗)2 · d

p

holds for all legitimate adversaries A that perform at most Q group operations.

Proof. To prove the theorem we first apply Theorem 2 in order to switch the two experiments from
the generic to the symbolic group model.∣∣∣Pr[GGMbgp

DP ,O,Och
(A) : E ]− Pr[SGMbgp

DP ,O,Och
(A) : S(E)]

∣∣∣ ≤ (N +Q+ cQ′ + c∗)2 · d
2p∣∣∣Pr[SGMbgp

DP ,O,O′ch
(A) : S(E)]− Pr[GGMbgp

DP ,O,O′ch
(A) : E ]

∣∣∣ ≤ (N +Q+ cQ′ + c∗)2 · d
2p

To complete the proof we claim that∣∣∣Pr[SGMbgp
DP ,O,Och

(A) : S(E)]− Pr[SGMbgp
DP ,O,O′ch

(A) : S(E)]
∣∣∣ = 0

Since we are quantifying over legitimate adversaries, we take for granted that A’s queries are such
that H(δ̂, δ̂∗) = 1. A’s view in the symbolic game depends only on the outcome of the equality
checks which are performed on the polynomials appearing in the lists stored by the challenger. At
this point, the key observation is that the parametric completion C = CO,Och(P )(∆̂ = δ̂, ∆̂∗ =
δ̂∗) can be viewed as the generating set of a vector space V which describes all the polynomials
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computable by the adversary starting from the polynomials in P and the polynomials returned by
the oracles. So, every polynomial v ∈ V can be expressed as a linear combination of polynomials
in C (i.e., v = λ · C for some λ) and K = {k ∈ Zrp | k · C = 0} is the kernel of this linear map.
Moreover, since the lists P1, P2 are assumed to contain the constant polynomial 1, we note that the
parametric completion C in the target group is sufficient to express all polynomials in V . Therefore,
the side condition on the equality of the kernels of the two linear maps (i.e. condition 1) means
that the adversary sees exactly the same equalities in the two experiments. To see this, consider
an execution of the SGM experiment where the adversary has two handles h1, h2, and assume that
these point to polynomials v1, v2 in the left game (i.e., with oracle Och) and v′1, v

′
2 in the right game

(i.e., with oracle O′ch), such that v1 = v2 (i.e., eqs(h1, h2) = 1 in the left game) and v′1 6= v′2 (i.e.,
eqs(h1, h2) = 0 in the right game). Notice that in both experiments the polynomial vl (resp. v′l)
can be expressed using the same linear combination of elements in the respective completion, i.e.,
for l = 1, 2, in the left game we have vl = λl · C whereas in the right game we have v′l = λl · C ′.
However, this means that (λ1 − λ2) ·C = 0 whereas (λ1 − λ2) ·C ′ 6= 0, which contradicts our side
condition. ut

4.3 Security of the Functional Encryption Scheme

In this section we use the generic group framework presented in the previous section to prove
Theorem 1. We proceed as follows. First, we show that the indistinguishability security game for
our functional encryption scheme is a simple interactive decisional problem as per Definition 8, and
thus it fits our Theorem 3. Next, we give the core part of the proof which is to show that the scheme
is symbolically hard, in the sense that it satisfies the side condition of equation (1) in Theorem 3.

Indistinguishability Security is a Simple Interactive Decisional Problem. Let us consider
the indistinguishability security experiment for our functional encryption scheme in the generic
bilinear group model. At the beginning the adversary is given handles for the following lists

L1 = {[1]1, [x1]1, . . . , [xn]1}
L2 = {[1]2, [w]2, [y1]2, . . . , [yn]2}
LT = {[1]T }

which can be seen as output of the polynomially induced distribution (L1, L2, LT )← DP , where

P1 = {1, X1, . . . , Xn}, P2 = {1,W, Y1, . . . , Yn}, PT = {1}

are lists of polynomials over Zp[X,Y ,W ].
The adversary is also given access to the key derivation oracle that we can write as O =

(·, n2, 1, (p1, p2), (1, 1)) since it can be queried an unbounded number of times, it takes as input the
description of a quadratic form which is an (n×n)-dimensional matrix F = (fi,j), samples a single
value γ, and outputs two elements of G1 which can be described with polynomials

p1 =
∑
i,j∈[n]

fi,j ·XiYj + Γ ·W, p2 = Γ ∈ Zp[X,Y ,W,F, Γ ].

Also, A can query the challenge oracle that is either Och(1, 4n, 4,p∗,v∗) or O′ch(1, 4n, 4,p∗′,v∗).
To see the definition of these oracles, note that they can be queried only once, they take as input
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two challenge messages (a, b), (a′, b′), sample four random values r, s, t, z, and output polynomials
corresponding to the ciphertexts, that are either:

p∗ = ( {RXi +Ai}ni=1, {TXi + SAi}ni=1,

{SXi +Bi}ni=1, {ZYi +RBi}ni=1,

RS − Z − T, W (RS − Z − T ) )

or

p∗′ = ( {RXi +A′i}ni=1, {TXi + SA′i}ni=1,

{SXi +B′i}ni=1, {ZYi +RB′i}ni=1,

RS − Z − T, W (RS − Z − T ) )

over Zp[X,Y ,W,A,B,A′,B′, R, S, T, Z].
Moreover, for an adversary A that makes Q queries F1, . . . ,FQ ∈ Zn×np to the key derivation

oracle, one query a, b,a′, b′ ∈ Znp to the challenge oracle, and returns a bit β, then by the security
definition we have that A is legitimate if “H(F1, . . . ,FQ,a, b,a

′, b′) = 1”, where the predicate H

is true iff a>Fib = a′>Fib
′ for all i = 1 to Q.

It is easy to see that the indistinguishability security experiment for our functional encryption
scheme is a simple interactive decisional problem as per Definition 8. In order to obtain a proof of
Theorem 1, then we invoke our master Theorem 3.

Instantiating the master theorem. Before focusing on the main part of the proof, which is to
show the satisfaction of the side condition, we briefly show how the bound of Theorem 1 is obtained.
This follows by observing that: the sum of lists cardinalities is 2(n+ 1) + 2, the key derivation and
challenge oracles give 2Q and 4n+ 2 polynomials respectively, and, as we shall see a bit later, the
maximal total degree of polynomials in the parametric completions is d = 5.

Satisfaction of the master theorem side condition. The remaining part of the proof focuses
on showing that the interactive decisional problem corresponding to the security of our functional
encryption scheme satisfies the side condition of equation (1). To this end, our first step is to
compute the parametric completions CO,Och(P ) and CO,O′ch(P ). In the completions computation we
consider directly the adversary’s queries as scalars instead of formal variables. Namely, we consider
the polynomials in the parametric completions evaluated at A = a,B = b,A′ = a′,B′ = b′ and
F̂ k = f (k), ∀k ∈ [Q]; this is indeed what we need for analyzing the side condition of equation (1).

Notation. In the rest of the proof, for presentation’s convenience we use the following vector
notation to express a bilinear form:

〈f ,a⊗ b〉 =
∑
i,j∈[n]

fi,jaibj

Above, f is the n2-dimensional vector obtained by concatenating all the rows of F, i.e., f =
(f1,1, f1,2, . . . , f1,n, f2,1, . . . , fn,n−1, fn,n) For any n-dimensional vectors a, b, we denote by a ⊗ b
their tensor product that we write as an n2-dimensional vector (aibj)i,j where the entries i, j are
ordered lexicographically, e.g., a⊗ b = (a1b1, a1b2, . . . , anbn−1, anbn).

Parametric Completions. Consider an adversary A which queries a, b,a′, b′ to the challenge
oracle Och, and f (1), . . . ,f (Q) to the key derivation oracle. The computation of the parametric
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completion CO,Och(P ) (evaluated at A = a,B = b,A′ = a′,B′ = b′ and F̂ k = f (k), ∀k ∈ [Q]) first
builds the following lists:

P ′1 = {1} ∪ {Xi, RXi + ai, TXi + aiS}i∈[n] ∪ {〈f (k),X ⊗ Y 〉+ ΓkW, Γk}k∈[Q]

P ′2 = {1, W, RS − Z − T, W (RS − Z − T )} ∪ {Yi, SYi + bi, ZYi + biR}i∈[n],
P ′T = {1}

The last step of the parametric completion computation, C(P ′), then yields:

C = {1, W, RS − Z − T, W (RS − Z − T )} ∪
{Xi, Yi, WXi, RSXi − ZXi − TXi, RSWXi − ZWXi − TWXi}i∈[n] ∪
{XiYj}i,j∈[n] ∪
{Γk, ΓkW,RSΓk − ZΓk − TΓk, RSWΓk − ZWΓk − TWΓk}k∈[Q] ∪

{〈f (k),X ⊗ Y 〉+ ΓkW, 〈f (k),W (X ⊗ Y )〉+ ΓkW
2}k∈[Q] ∪

{〈f (k), (RS − Z − T )(X ⊗ Y )〉+ (RS − Z − T )WΓk}k∈[Q] ∪

{〈f (k), (RS − Z − T )W (X ⊗ Y )〉+ (RS − Z − T )W 2Γk}k∈[Q] ∪

{〈f (k), Yj(X ⊗ Y )〉+ YjΓkW, YjΓk}j∈[n],k∈[Q] ∪
{RXi + ai, TXi + ai · S, SYi + bi, ZYi + bi ·R}i∈[n],∪
{RWXi + ai ·W, TWXi + ai · SW}i∈[n],∪
{R2SXi −RZXi −RTXi + ai · (RS − Z − T )}i∈[n] ∪
{R2SWXi −RWZXi −RTWXi + ai · (RS − Z − T )W}i∈[n],∪
{RSTXi − TZXi − T 2Xi + ai · (RS2 − SZ − ST )}i∈[n] ∪
{RSTWXi − TWZXi − T 2WXi + ai · (RS2 − SZ − ST )W}i∈[n],∪
{SXiYj + bj ·Xi, ZXiYj + bj ·RXi, RXiYj + ai · Yj , TXiYj + ai · SYj}i,j∈[n] ∪
{RSXiYj + aibj + bj ·RXi + ai · SYj}i,j∈[n] ∪
{RZXiYj + aibj ·R+ bj ·R2Xi + ai · ZYj}i,j∈[n] ∪
{STXiYj + aibj · S + bj · TXi + ai · S2Yj}i,j∈[n] ∪
{TZXiYj + aibj ·RS + bj ·RTXi + ai · SZYj}i,j∈[n] ∪

{〈f (k), (SYj + bj)(X ⊗ Y )〉+ SWYjΓk + bj ·WΓk}j∈[n],k∈[Q] ∪

{〈f (k), (ZYj + bj ·R)(X ⊗ Y )〉+ ZWYjΓk + bj ·RWΓk}j∈[n],k∈[Q] ∪
{SYjΓk + bj · Γk, ZYjΓk + bj ·RΓk}j∈[n],k∈[Q]

The completion C ′ = CO,O′ch(P ) is the same as C except for replacing coefficients ai with a′i
and bj with b′j , for all i, j ∈ [n]. In total, both completions consist of r = |C| = |C ′| = 4 + 15n +

9n2 + 8Q + 6nQ polynomials in the ring Zp[X1, . . . , Xn, Y1, . . . , Yn,W, Γ1, . . . , ΓQ, R, S, T, Z]. Also
it is possible to see by inspection that the maximal total degree of the polynomials in C and C ′ is
d = 5 (this is the degree of the monomials R2SWXi).

Towards showing equality of the two kernels. Let us recall that the goal of the proof is
to show that

K = {k ∈ Zrp | k · C = 0} = {k ∈ Zrp | k · C ′ = 0} = K ′ (2)
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under the condition that 〈f (k),a ⊗ b〉 = 〈f (k),a′ ⊗ b′〉 for all k = 1 to Q. One way to show this
equality is to compute bases for both kernels K and K ′, and show that these bases generate the
same space (or that they are actually the same). This is what we eventually do. However, instead of
proceeding straight to computing bases for the two kernels, we first show that showing the equality
in (2) is equivalent to showing a similar equality for a much simpler (smaller) vector space.

Lemma 1. Let C and C ′ be the parametric completions computed above. There exist two sets of
polynomials C̃ ⊂ C and C̃ ′ ⊂ C ′, both of cardinality r̃, such that if

K̃ = {k ∈ Zr̃p | k · C̃ = 0} = {k ∈ Zr̃p | k · C̃ ′ = 0} = K̃ ′ (3)

is satisfied then equation (2) is satisfied as well.

Proof. As a first step, we show the existence of a set of indices S ⊆ [r] and a corresponding vector
subspace U = {k ∈ Zrp : ki = 0,∀i ∈ S} ⊂ Zrp such that both K and K ′ are contained in U , i.e.,
K ⊂ U and K ′ ⊂ U . This fact implies that the equality of equation (2) is the same as

K = {k ∈ U | k · C = 0} = {k ∈ U | k · C ′ = 0} = K ′ (4)

We show the existence of this set S by observing the specific shapes of the polynomials in C and
C ′. S is the set of indices i ∈ [r] such that the i-th polynomial in both C and C ′ contains a unique
monomial, i.e., a monomial which appears only in that polynomial. For every polynomial pi (resp.
p′i) such that i ∈ S it holds that any vector k ∈ K (resp. K ′) must have ki = 0.

By inspection, the set of such unique monomials (which implicitly determines S) is

{WXi, RSXi, ZXi, RSTXi, RSTWXi, RSWXi, ZWXi, R
2SXi, RZXi}i∈[n] ∪

{R2SWXi, RZWXi, RTWXi, RWXi, TZXi, T
2Xi, TZWXi, T

2WXi}i∈[n] ∪
{STXiYj , TZXiYj , RZXiYj , SXiYj}i,j∈[n] ∪
{RSΓk, ZΓk, TΓk,W 2Γk, RSW

2Γk, ZW
2Γk, TW

2Γk}k∈[Q] ∪
{YjΓk, SYjΓk,WYjΓk, ZYjΓk, SWYjΓk, ZWYjΓk}j∈[n],k∈[Q]

Then we define C̃ (resp. C̃ ′) as the subset of C (resp. C ′) including all those polynomials whose
index i is not in S, i.e., C̃ = {pi ∈ C | i /∈ S} and C̃ ′ = {pi ∈ C ′ | i /∈ S}. Let r̃ = |C̃| = |C̃ ′|.

By the definitions of U , C̃ and C̃ ′ given above, it is easy to see that if the following equality

K̃ = {k ∈ Zr̃p | k · C̃ = 0} = {k ∈ Zr̃p | k · C̃ ′ = 0} = K̃ ′

is satisfied, so is the equality of equation (4), and thus that of equation (2). This completes the
proof of the lemma.
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For convenience, we show explicitly the simplified completion C̃:

C̃ = {1, W, RS − Z − T, W (RS − Z − T )} ∪
{Xi, Yi}i∈[n] ∪
{XiYj}i,j∈[n] ∪
{Γk, ΓkW,RSWΓk − ZWΓk − TWΓk}k∈[Q] ∪

{〈f (k),X ⊗ Y 〉+ ΓkW}k∈[Q] ∪

{〈f (k), (RS − Z − T )(X ⊗ Y )〉+ (RS − Z − T )WΓk}k∈[Q] ∪
{RXi + ai, TXi + ai · S, SYi + bi, ZYi + bi ·R}i∈[n],∪
{TWXi + ai · SW}i∈[n],∪
{RXiYj + ai · Yj , ZXiYj + bj ·RXi, TXiYj + ai · SYj}i,j∈[n] ∪
{RSXiYj + aibj + bj ·RXi + ai · SYj}i,j∈[n]

C̃ ′ is the same except for having coefficients a′i, b
′
i instead of ai, bi. ut

By using the result of Lemma 1, we are left with showing the equality of equation (3). To this
end, we apply below an analogous simplification.

Lemma 2. Let C̃ and C̃ ′ be the sets of polynomials as defined in Lemma 1. There exist two sets
of polynomials Ĉ ⊂ C̃ and Ĉ ′ ⊂ C̃ ′, both of cardinality N , such that if

K̂ = {k ∈ ZNp | k · Ĉ = 0} = {k ∈ ZNp | k · Ĉ ′ = 0} = K̂ ′ (5)

is satisfied then equation (3) is satisfied as well.

Proof. The proof of this Lemma is quite similar to that of Lemma 1. As a first step, we show the
existence of a set of indices S̃ ⊆ [r̃] and a corresponding vector subspace Ũ = {k ∈ Zr̃p : ki = 0,∀i ∈
S̃} ⊂ Zr̃p such that both K̃ and K̃ ′ are contained in Ũ , i.e., K̃ ⊂ Ũ and K̃ ′ ⊂ Ũ . This fact implies
that the equality of equation (3) is the same as

K̃ = {k ∈ Ũ | k · C̃ = 0} = {k ∈ Ũ | k · C̃ ′ = 0} = K̃ ′ (6)

To see the existence of this set S̃ we again look at the specific shapes of the polynomials in C̃ and
C̃ ′. S̃ is the set of indices i ∈ [r̃] such that the i-th polynomial in both C̃ and C̃ ′ contains a unique
monomial, i.e., a monomial which appears only in that polynomial. For every such polynomial pi
(resp. p′i) it holds that any vector k ∈ K̃ (resp. K̃ ′) must have the corresponding i-th coefficient
ki = 0.

By inspection, the set of such unique monomials is

{W,RS,Z, T,RSW,WZ, TW} ∪ {Γk}k∈[Q] ∪ {Xi, Yi, TXi, TWXi, ZYi}i∈[n] ∪ {RXiYj}i,j∈[n]

Similarly to the previous lemma, we define Ĉ (resp. Ĉ ′) as the subset of C̃ (resp. C̃ ′) including all
those polynomials whose index i is not in S̃, i.e., Ĉ = {pi ∈ C̃ | i /∈ S̃}, Ĉ ′ = {pi ∈ C̃ ′ | i /∈ S̃}.
Let N = |Ĉ| = |Ĉ ′|.

By the definitions of Ũ , Ĉ and Ĉ ′, it is easy to see that if the following equality

K̂ = {k ∈ ZNp | k · Ĉ = 0} = {k ∈ ZNp | k · Ĉ ′ = 0} = K̂ ′
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is satisfied, so is the equality of equation (6), and thus that of equation (3). This completes the
proof of the lemma.

For convenience, we show the simplified completion Ĉ:

Ĉ0 = {1}
Ĉ1,i = {RXi + ai}i∈[n],
Ĉ2,i = {SYi + bi}i∈[n]
Ĉ3,i,j = {XiYj}i,j∈[n]
Ĉ4,i,j = {RSXiYj + aibj + bj ·RXi + ai · SYj}i,j∈[n]
Ĉ5,i,j = {TXiYj + ai · SYj}i,j∈[n]
Ĉ6,i,j = {ZXiYj + bj ·RXi}i,j∈[n]
Ĉ7,k = {WΓk}k∈[Q]

Ĉ8,k = {RSWΓk − ZWΓk − TWΓk}k∈[Q]

Ĉ9,k = {〈f (k),X ⊗ Y 〉+WΓk}k∈[Q]

Ĉ10,k = {〈f (k), (RS − Z − T )(X ⊗ Y )〉+ (RS − Z − T )WΓk}k∈[Q]

Ĉ ′ is defined analogously, except for having values a′i and b′i instead of ai and bi respectively. ut

By using the result of Lemma 2, we are left with showing the equality of equation (5) that we
recall below

K̂ = {k ∈ ZNp | k · Ĉ = 0} = {k ∈ ZNp | k · Ĉ ′ = 0} = K̂ ′

All the polynomials in the completions Ĉ and Ĉ ′ can be seen as linear combinations of the
following set of monomials, that we call the monomials basis

H0 = 1 {H1,i = RXi}i∈[n] {H2,i = SYi}i∈[n]
{H3,i,j = XiYj}i,j∈[n] {H4,i,j = RSXiYj}i,j∈[n] {H5,i,j = TXiYj}i,j∈[n] {H6,i,j = ZXiYj}i,j∈[n]
{H7,k = WΓk}k∈[Q] {H8,k = RSWΓk}k∈[Q] {H9,k = TWΓk}k∈[Q] {H10,k = ZWΓk}k∈[Q]

Let us write the above monomials basis as a vector H of N entries. Then, H is a monomial basis
in the sense that for every polynomial p ∈ Ĉ (resp. p′ ∈ Ĉ ′) there exists a vector v ∈ ZNp (resp.
v′) such that p = 〈v,H〉 (resp. p′ = 〈v′,H〉). (Precisely, v has coefficients in {0, 1} ∪ {ai, bi}i∈[n] ∪
{f (k)i,j }i,j∈[n],k∈[Q] while v′ has coefficients in {0, 1} ∪ {a′i, b′i}i∈[n] ∪ {f

(k)
i,j }i,j∈[n],k∈[Q].)

Let M ∈ ZN×Np be the matrix obtained by concatenating, row after row, all these vectors

v1, . . .vN , i.e., such that all polynomials in the completion can be compactly expressed as Ĉ =
M ·H. And let us define analogously M′ such that Ĉ ′ = M′ ·H.

Using this representation in the monomial basis, then showing the equality in (5) is the same
as showing

{k ∈ ZNp : k> ·M = 0} = {k ∈ ZNp : k> ·M′ = 0}

namely that M and M′ have the same left kernel.
We finalize the proof of Theorem 1 by proving the following lemma.
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Lemma 3. Let M and M′ be the matrices defined above. Then ker(M>) = ker(M′>).

Proof. We prove the lemma by computing bases for the kernels of both transposed matrices M>

and M′>. Below we write the matrix M> using a “block representation” that we explain slightly
below:

M> =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 1 a b 0 a⊗ b 0 0 0 0 0 0
H1 RX 0 I 0 0 I⊗ b 0 I⊗ b 0 0 0 0
H2 SY 0 0 I 0 a⊗ I a⊗ I 0 0 0 0 0

H3 X ⊗ Y 0 0 0 I 0 0 0 0 0 F 0
H4 RS(X ⊗ Y ) 0 0 0 0 I 0 0 0 0 0 F
H5 T (X ⊗ Y ) 0 0 0 0 0 I 0 0 0 0 −F
H6 Z(X ⊗ Y ) 0 0 0 0 0 0 I 0 0 0 −F

H7 WΓ 0 0 0 0 0 0 0 I 0 I 0
H8 RSWΓ 0 0 0 0 0 0 0 0 I 0 I
H9 TWΓ 0 0 0 0 0 0 0 0 −I 0 −I
H10 ZWΓ 0 0 0 0 0 0 0 0 −I 0 −I

Above, the elements on the left and above the double rules || are intended as labels for the rows
and columns of the matrix.

In our “block representation” we have that:

– Ĉ0 is a single column, Ĉ1, Ĉ2 consist of n columns each, Ĉ3, . . . , Ĉ6 have n2 columns each, and
Ĉ7, . . . , Ĉ10 have Q columns each.

– Similarly to above, H0 is a single row, H1,H2 consist of n rows each, H3, . . . ,H6 have n2 rows
each, and H7, . . . ,H10 have Q rows each.

– a, b are n-dimensional row vectors.

– I is the identity matrix of dimension n× n, or n2 × n2 or Q×Q.

– 0 denotes a vector or a matrix of zeros whose dimension is easily extrapolated from its position.

– F is the (n2 × Q)-dimensional matrix F =
[
f (1) | · · · | f (Q)

]
, which essentially represents a

concatenation, column after column, of all the queried functions, each represented as a column
vector.

– Tensoring notation: For any vectors a, b of dimension n, we denote by a⊗ b their tensor prod-
uct that we write as an n2-dimensional row vector (aibj)i,j where the entries i, j are ordered
lexicographically, e.g., a⊗ b := (a1b1, a1b2, . . . , anbn−1, anbn). Clearly, ⊗ is not commutative.

Moreover, abusing notation, we define the tensor product between an (`×n)-dimensional matrix
A and an n-dimensional vector b as the component-wise tensor product of every row of A with
b, i.e., letting Ai be the i-th row of A, we define

A⊗ b :=

A1 ⊗ b
...

A` ⊗ b

 and similarly b⊗A :=

b⊗A1
...

b⊗A`


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As an example, using the just introduced notation, one can take a block-column such as Ĉ1 ∈ ZN×np

in M>, and compactly write

Ĉ1 ⊗ b =


a⊗ b
I⊗ b

0
...
0

 ∈ ZN×n
2

p

This block representation of M> is convenient as it allows us to perform gaussian elimination on M>

by expressing multiple column operations with single block-of-columns operations (i.e., intuitively
treating every block as if being of constant size). Namely, we will express operations using blocks
and observe that these get easily translated into corresponding column operations as follows:

– swap of column-blocks is translated into component-wise swapping of columns,

– addition/subtraction of two column-blocks becomes a component-wise addition/subtraction of
the corresponding columns,

– tensoring of a column-block by a vector is translated into (simultaneously) multiplying several
columns by field constants.

Now we proceed to computing a basis for the kernel of M>. To this end, we first extend below
M> with the identity matrix. This gives us the following matrix T1:

T1 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 a b 0 a⊗ b 0 0 0 0 0 0
H1 0 I 0 0 I⊗ b 0 I⊗ b 0 0 0 0
H2 0 0 I 0 a⊗ I a⊗ I 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 0 I 0 0 0 0 −F
H6 0 0 0 0 0 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I
H10 0 0 0 0 0 0 0 0 −I 0 −I

1 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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In what follows we perform gaussian elimination on the above matrix via a series of column
transformations until the upper matrix gets in column echelon form. In order, we apply the following
column transformations (expressed in block notation):

1. Ĉ1 = Ĉ1 − a⊗ Ĉ0 and Ĉ2 = Ĉ2 − b⊗ Ĉ0; this yields matrix T2.

2. Ĉ4 = Ĉ4 − (a⊗ b)⊗ Ĉ0 − Ĉ5 − Ĉ6; this yields matrix T3.

3. Ĉ5 = Ĉ5 − a⊗ Ĉ2 and Ĉ6 = Ĉ6 − Ĉ1 ⊗ b; this yields matrix T4.

4. Ĉ9 = Ĉ9 − Ĉ3 · F− Ĉ7 and Ĉ10 = Ĉ10 − Ĉ4 · F; this yields matrix T5.

5. Ĉ10 = Ĉ10 − Ĉ8 and Ĉ4 = Ĉ4 + Ĉ5 + Ĉ6; this yields matrix T6.

The matrices T1–T6 appear in the following.

T2 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 a⊗ b 0 0 0 0 0 0
H1 0 I 0 0 I⊗ b 0 I⊗ b 0 0 0 0
H2 0 0 I 0 a⊗ I a⊗ I 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 0 I 0 0 0 0 −F
H6 0 0 0 0 0 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I
H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −a −b 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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T3 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 I⊗ b 0 0 0 0
H2 0 0 I 0 0 a⊗ I 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 −I I 0 0 0 0 −F
H6 0 0 0 0 −I 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I
H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −a −b 0 −a⊗ b 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 −I I 0 0 0 0 0
0 0 0 0 −I 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I

22



T4 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 0 0 0 0 0
H2 0 0 I 0 0 0 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 −I I 0 0 0 0 −F
H6 0 0 0 0 −I 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I
H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −a −b 0 −a⊗ b a⊗ b a⊗ b 0 0 0 0
0 I 0 0 0 0 −I⊗ b 0 0 0 0
0 0 I 0 0 −a⊗ I 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 −I I 0 0 0 0 0
0 0 0 0 −I 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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T5 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 0 0 0 0 0
H2 0 0 I 0 0 0 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 0 0
H4 0 0 0 0 I 0 0 0 0 0 0
H5 0 0 0 0 −I I 0 0 0 0 0
H6 0 0 0 0 −I 0 I 0 0 0 0

H7 0 0 0 0 0 0 0 I 0 0 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I
H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −a −b 0 −a⊗ b a⊗ b a⊗ b 0 0 0 (a⊗ b)F
0 I 0 0 0 0 −I⊗ b 0 0 0 0
0 0 I 0 0 −a⊗ I 0 0 0 0 0
0 0 0 I 0 0 0 0 0 −F 0
0 0 0 0 I 0 0 0 0 0 −F
0 0 0 0 −I I 0 0 0 0 F
0 0 0 0 −I 0 I 0 0 0 F
0 0 0 0 0 0 0 I 0 −I 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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T6 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 0 0 0 0 0
H2 0 0 I 0 0 0 0 0 0 0 0
H3 0 0 0 I 0 0 0 0 0 0 0
H4 0 0 0 0 I 0 0 0 0 0 0
H5 0 0 0 0 0 I 0 0 0 0 0
H6 0 0 0 0 0 0 I 0 0 0 0
H7 0 0 0 0 0 0 0 I 0 0 0
H8 0 0 0 0 0 0 0 0 I 0 0
H9 0 0 0 0 0 0 0 0 −I 0 0
H10 0 0 0 0 0 0 0 0 −I 0 0

1 −a −b 0 a⊗ b a⊗ b a⊗ b 0 0 0 (a⊗ b)F
0 I 0 0 −I⊗ b 0 −I⊗ b 0 0 0 0
0 0 I 0 −a⊗ I −a⊗ I 0 0 0 0 0
0 0 0 I 0 0 0 0 0 −F 0
0 0 0 0 I 0 0 0 0 0 −F
0 0 0 0 0 I 0 0 0 0 F
0 0 0 0 0 0 I 0 0 0 F
0 0 0 0 0 0 0 I 0 −I 0
0 0 0 0 0 0 0 0 I 0 −I
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I

As one can see, in the above matrix T6 the upper part is in column echelon form. Hence, the
basis K of the kernel of M> is represented by the two rightmost block-columns of the lower matrix.
These columns are a collection of 2Q N -dimensional vectors as follows

K =





0
0
0
−F
0
0
0
−I
0
I
0



,



(a⊗ b)F
0
0
0
−F
F
F
0
−I
0
I





∈ ZN×2Qp

It is easy to see that when applying the analogous set of transformations on M′> (where a and
b are replaced by a′ and b′ respectively) one obtains the same basis K. Precisely, the analogous
transformations lead to the same vectors of the kernel except for having (a′ ⊗ b′)F instead of
(a⊗b)F. However, by the legitimacy condition of the security game it holds (a⊗b)F = (a′⊗b′)F.
Hence, M and M′ have the same basis for their left kernels, which completes the proof. ut
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A Security of the basic scheme

In this section we give a proof sketch for showing that if one does not have to simulate key derivation
queries (i.e., the scheme is treated as a plain asymmetric encryption scheme) then semantic security
can be proved under the (symmetric) external decisional Diffie-Hellman assumption (SXDH).

Precisely, we use the following assumption, which can be proved equivalent to SXDH via a
standard hybrid argument.

Assumption 1 Let (p,G1,G2,GT , e, g1, g2) be the output of the bilinear group generator algorithm.
For i = 1, 2, the following distributions are computationally indistinguishable

{(g1, g2, gai , g
b0
i , . . . , g

bn
i , g

c0
i , . . . , g

cn
i ) | r, s, a, t, b0, . . . bn ← Zp, cj = abj mod p}

{(g1, g2, gai , g
b0
i , . . . , g

bn
i , g

c0
i , . . . , g

cn
i ) | r, s, a, t, b0, . . . bn, c0, . . . , cn ← Zp}

Now we prove the semantic security of the scheme via the following hybrid argument.

Game 0 This represents the security game when played using the original scheme.
Game 1 Here, in the challenge ciphertext, we replace the component z · y in d̂ with a random

vector α. Indistinguishability from the previous game comes from assumption 1 (in G2). Notice
that now d̂ and e are independent random variables.

Game 2 Here we continue changing the way the challenge ciphertext is generated, and replace t ·x
in ĉ with a random vector β. Indistinguishability from the previous game comes from assumption
1 in G1. Notice that now also ĉ is random and independent from the rest of equations.

Game 3 Here we choose to replace the component r ·x in ĉ with random vector η. Indistinguisha-
bility from previous game comes from assumption 1 (in G1).

Game 4 Here we use similar ideas to replace s ·y with a random vector. Indistinguishability from
previous game comes from assumption 1 in G2. In this game it is clear that the challenge ci-
phertext does not contain any information about the challenge messages and thus the adversary
has zero advantage in winning into this game.

27

http://eprint.iacr.org/2010/556

	Practical Functional Encryption for Bilinear Forms
	Introduction
	Our Contribution

	Preliminaries and Definitions
	Functional Encryption

	Our Functional Encryption for Bilinear Forms
	Correctness

	Proof of Security
	Generic Bilinear Group Model for Interactive Problems
	A Master Theorem for Simple Interactive Decisional Problems
	Security of the Functional Encryption Scheme

	Security of the basic scheme


