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Abstract. Fuzzy extractors (Dodis et al., Eurocrypt 2004) turn a noisy secret into a stable, uniformly
distributed key. Reusable fuzzy extractors remain secure when multiple keys are produced from a sin-
gle noisy secret (Boyen, CCS 2004). Boyen proved that any information-theoretically secure reusable
fuzzy extractor is subject to strong limitations. Simoens et al. (IEEE S&P, 2009) then showed deployed
constructions suffer severe security breaks when reused. Canetti et al. (Eurocrypt 2016) proposed us-
ing computational security to sidestep this problem. They constructed a computationally secure reusable
fuzzy extractor for the Hamming metric that corrects a sublinear fraction of errors.
We introduce a generic approach to constructing reusable fuzzy extractors. We define a new primitive
called a reusable pseudoentropic isometry that projects an input metric space to an output metric space.
This projection preserves distance and entropy even if the same input is mapped to multiple output metric
spaces. A reusable pseudoentropy isometry yields a reusable fuzzy extractor by 1) randomizing the noisy
secret using the isometry and 2) applying a traditional fuzzy extractor to derive a secret key.
We propose reusable pseudoentropic isometries for the set difference and Hamming metrics. The set dif-
ference construction is built from composable digital lockers (Canetti and Dakdouk, Eurocrypt 2008)
yielding the first reusable fuzzy extractor that corrects a linear fraction of errors. For the Hamming met-
ric, we show that the second construction of Canetti et al. (Eurocrypt 2016) can be seen as an instantiation
of our framework. In both cases, the pseudoentropic isometry’s reusability requires noisy secrets distri-
butions to have entropy in each symbol of the alphabet.
Lastly, we implement our set difference solution and describe two use cases.

1 Introduction

Cryptography relies on uniformly distributed and reproducible long-term secrets to perform au-
thentication or derive keys. Numerous high entropy randomness sources exist, such as biometrics
and human-generated data [20,36], physically unclonable functions (PUFs) [50] and quantum in-
formation [8]. Many of these sources exhibit errors when read multiple times, preventing stable
cryptographic key generation. The errors of each physical phenomena implicitly define a metric
space.

Dodis et al. [23] stated that Hamming distance looks like the "most natural metric to con-
sider" [16,23,37]. Set distance better suits some biometric matchers such as human and digital
fingerprints and the exotic movie lover’s problem [36]. Typical systems create a template read-
ing from an initial reading; subsequent readings are directly compared to this initial template. A
subsequent reading is accepted if the two readings are “close” according to the distance metric.
Plaintext templates have privacy concerns [51,54]. In the worst case, a matching biometric can be
reverse engineered from the template [28].
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Information reconciliation [8] enables retrieving identical values from noisy data. Privacy am-
plification [8] converts values with entropy into uniform random strings. Fuzzy Extractors [23,22],
are a pair of non-interactive algorithms (Gen, Rep) that simultaneously perform information rec-
onciliation and privacy amplification. The algorithm Gen, used at enrollment, takes input ω from
an entropy source and outputs a uniformly distributed key R and a public helper string P . The
algorithm Rep takes P and ω′ and reproduces the secret key R as long as ω′ is close enough to
ω, specifically d(ω, ω′) ≤ t for a fixed parameter t. Fuzzy extractors exist with security against
information-theoretic [22] or computational adversaries [27].

Dodis et al. proposed fuzzy extractor constructions for the Hamming, set difference and edit
metrics adapting prior work [37,36]. We focus on the set difference metric: inputs ω are subsets of
size s of a universe U whose cardinality is n. For this metric, Dodis et al. distinguished two settings,
referred to as the small and large universe settings. Let λ be some security parameter. In the former
case, we have that n = poly(λ) while in the latter one n is superpolynomial in s. The large universe
setting occurs in practice. For example, consider a list of book titles or a list of movies (movie lover’s
problem due to [36]). The small universe setting benefits from a reduction to the Hamming metric,
referred to as the bin-set equivalence (described in Section 2). We concentrate on the large universe
setting where this transform is not applicable.

Reusability Boyen introduced reusable fuzzy extractors for which numerous helper strings P j from
a user’s fuzzy secret do not impact user’s security [13]. Boyen showed that information-theoretic
fuzzy extractors must leak substantial information about ω when numerous calls to Gen are made.
On the positive side, Boyen demonstrated reusable security when the exclusive OR of pairs of
enrolled values reveals no sensitive information. This is a restrictive class of correlations; we have no
evidence that practical sources obey this condition. We call this type of construction weakly reusable.
Subsequent work showed that existing fuzzy extractors are not reusable in practice [10,52]. Apon et
al. [6] added reusability to the learning-with-errors based fuzzy extractor of Fuller et al. [27]. Their
work inherits the small error tolerance of the latter construction [27]; it only corrects a logarithmic
fraction of errors, that is, for input ω, t = O(log |ω|).

Recently, Canetti et al. [16] constructed a reusable fuzzy extractor that makes no assumption
about how repeating readings are correlated. We call this type of construction strongly reusable.
It works for the Hamming distance and provides security against computationally bounded adver-
saries. It uses a strong form of symmetric encryption, called digital lockers [15] (our construction
also uses digital lockers but in a different way).

Their construction is secure for distributions with high entropy samples instead of global min-
entropy. This is in contrast to traditional constructions that only assume the source has min-entropy.
Their main Hamming construction can be extended through bin-set equivalence to a small set uni-
verse set difference fuzzy extractor. Their scheme allows an error rate t = o(|ω|).

Prior to this work, there were no known strongly reusable fuzzy extractors correcting a linear
error rate for any common metric.

1.1 Our contributions

Most upper bounds on the security of information-theoretic (reusable) fuzzy extractors are due
to strong connections to the field of coding theory (see for example [21]). The best security of
a information-theoretic fuzzy extractor allowing t errors is connected to the code with the most
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Scheme Reusability Error Tolerance Metric
RPI + Fuzz. Ext. (this work) Set difference/Hamming Strong Θ(|w|)
Sample-then-lock [16] Hamming Strong o(|w|)
Code Offset [13] Hamming Weak Θ(log |w|)
LWE Decoding [6] Hamming Weak Θ(|w|)

Table 1. Recent constructions of reusable fuzzy extractors. The code offset and LWE decoding schemes are weakly
reusable. They may leak information about the difference between repeated readings wi, wj .

keywords correcting t errors. Coding theory has a long history with established bounds on the best
codes.

To circumvent these results, we propose a new framework to achieve reusability. The main idea
is to separate the task of reusability from the task of noise elimination. Our contributions are as
follows:

1. We introduce a randomization stage captured by a new primitive we call a pseudoentropic isom-
etry. Informally, a pseudoentropic isometry projects fuzzy secrets while maintaining distances
between two noisy readings and entropy of the original secret. To be reusable, a pseudoentropic
isometry must generate “uncorrelated” values Ωi from correlated noisy enrollments values of
the same secret. The reusability property is that each Ωi has sufficient entropy conditioned on
knowledge of the other Ωj , j 6= i. Reusable pseudoentropic isometries (RPIs) do not perform
any form of error correction. We do not believe they are subject to bounds from coding theory.
First passing the input through an RPI makes a fuzzy extractor reusable.

2. We propose two reusable pseudoentropic isometries. The first one is an original construction
with an RPI based on digital lockers [15]. This construction is in the set difference metric with a
large universe. Roughly for each element of the set the construction samples a point in the new
metric space and locks this point using the set element as the key.
We then show that Construction 2 of Canetti et al. [16, Section 5.1] fits our framework in the
Hamming metric. Both instantiations require sources with superlogarithmic entropy (in each
alphabet symbol) to achieve reusability. We compare these constructions with previous reusable
fuzzy extractors in Table 1.

3. We provide an implementation of our set difference RPI and describe two use cases suited to
our constructions.

Notes: To the best of our knowledge all computational fuzzy extractors information-theoretically
determine the key. That is, it is possible for an unbounded adversary to search through possible
input values and exclude them based on the public value P . However, this does not break secu-
rity as a computationally bounded adversary can only check a polynomial number of values. This
is in contrast to information-theoretic fuzzy extractors that do not confirm correctness of a guess
(information-theoretic constructions ensure that ω has high entropy conditioned on P ). We are not
aware of any constructions are both secure against information-theoretic adversaries and provide
additional security against computational adversaries (such as reusability, better key length).

Digital lockers are a strong cryptographic tool4 and our construction requires substantial struc-
ture on the input source ω. Reusable fuzzy extractors are notoriously difficult to construct. Reducing
the required assumption to build an RPI is the primary future direction of this work.

4 They require a strong assumption on the underlying cryptographic primitives. However, they can be efficiently imple-
mented using Diffie-Hellman groups or hash functions.
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2 Preliminaries

Notation log denotes the base 2 logarithm. GF (n) denotes the finite field of n elements. x← f(.)
denotes that x is an output of a function f . If f is randomized, we use the semicolon to make the
randomness explicit. f(x;µ) is the result of f computed on x with randomness µ. U` denotes the
uniformly distributed random variable on {0, 1}l. For a distinguisher D (or a class of distinguishers
D), we write the computational distance between X and Y as δD(X,Y ) = |E[D(X)]−E[D(Y )]|.
Dssec denotes the class of randomized circuits which output a single bit and have size at most ssec.
We write δDssec (X,Y ) ≤ ε if this is true for all D ∈ Dssec .

A metric space is a finite set M equipped with a distance d : M ×M → N fulfilling the
properties of symmetry, triangle inequality and zero distance between equal points.

Set Difference Metric LetM consist of all subsets of a universe U whose cardinality is n. For two

sets ω and ω′ belonging toM, their symmetric difference is defined as ω∆ω′
def
= {x ∈ ω ∪ ω′|x /∈

ω ∩ ω′}. Symmetric difference is a metric that we denote by d.
Dodis et al. [23] noted the bin-set equivalence: if ω denotes a set, it can be viewed a binary

vector in {0, 1}n, with 1 at position x if x ∈ ω, and 0 otherwise. Viewed in this way, set difference
can be expressed as Hamming distance between these associated vectors. This transform is not
efficient when the universe size n is superpolynomial.

Entropy Notions Entropy specifies the amount of information contained in some data. In security-
related contexts, we care about how well an adversary can guess the value of a random variable.
In the information-theoretic case, we rely on the notion of min-entropy. A random variable A has
min-entropy m, denoted H∞(A) = m, if

H∞(A)
def
= − log(max

a∈A
P [A = a]).

The average min-entropy of A given B is:

H̃∞(A|B) def
= − log(Eb∈BmaxaPr[A = a|B = b]).

HILL entropy is a commonly used computational notion of entropy [34]. It was extended to the
conditional case by Hsiao, Lu, and Reyzin [35].

Definition 1. Let (W,S) be a pair of random variables.W has HILL entropy at least k conditioned
on S, denoted HHILL

εsec,ssec
(W |S) ≥ k if there exists a collection of distributions Xs (defined for each

value s in the support of S) giving rise to a joint distribution (X,S), such that H̃∞(X|S) ≥ k and

δDssec ((W,S), (X,S)) ≤ εsec.

Fuzzy Extractors The original definition of fuzzy extractors provides information-theoretic security.
We state the computational definition introduced by Fuller et al. [27].

Definition 2 (Fuzzy Extractor). A pair of randomized procedures "generate" (Gen) and "repro-
duce" (Rep) is a (M,W, `, t, γ)-(computational) fuzzy extractor that is (εsec, ssec)-hard if Gen and
Rep satisfy the following properties:
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– Gen on input ω ∈M outputs an extracted string R ∈ {0, 1}` and a helper string P ∈ {0, 1}∗.
– Rep takes an element ω′ ∈M and a bit string P ∈ {0, 1}∗ as inputs.
– Correctness: for all ω, ω′ where d(ω, ω′) ≤ t,

Pr[Rep(ω′, P ) = R : (R,P )← Gen(ω)] ≥ 1− γ

where the probability is over the coins of Gen and Rep.
– Security: for each distribution W ∈ W ,

δssec((R,P ), (U`, P )) ≤ εsec.

This definition can be naturally extended to support auxiliary input I: the security property then
requires that δssec((R,P, I), (U`, P, I)) ≤ εsec appear indistinguishable.

In prior definitions, the family of distributions W was all distributions with a given amount
of entropy, known computational constructions require additional structure on the source beyond
entropy. When we consider fuzzy extractors that are secure for all distributions of (average) min-
entropy m, we replaceW with the parameter m.

Dodis et al. designed FEs based on three different metrics which are Hamming, set difference
and edit distances. All their constructions rely on secure sketches.

Definition 3. An (M,W, m̃, t, γ)-secure sketch is a pair of randomized procedures:

1. The sketching procedure SS on input ω ∈M returns a bit string s ∈ {0, 1}∗.
2. The recovery procedure Rec takes an element ω′ ∈M and a bit string s ∈ {0, 1}∗.
3. Correctness guarantees that if d(ω, ω′) ≤ t, then

Pr[Rec(ω′,SS(ω)) = ω] ≥ 1− γ

where the probability is taken over the coins of SS and Rec.
4. Security: for any distribution W ∈ W , H̃∞(W |SS(W )) ≥ m̃.

Roughly, a secure sketch performs error correction without leaking information while a fuzzy ex-
tractor also yields a uniform value. The sketch-then-extract construction [23] combines a secure
sketch and an average-case extractor [48] to build a fuzzy extractor.

Reusable Fuzzy Extractor Reusability allow multiple calls to Gen on the noisy readings of ω while
retaining security [13]. Consider ρ readings ω1, . . . , ωρ of the same fuzzy source from which the
user will be enrolled on ρ different authentication servers. Gen independently generates ρ pairs
(R1, P 1), . . . , (Rρ, P ρ) where (Rj , P j)← Gen(ωj).

Definition 4 (Reusable Fuzzy Extractor [16]). Let (Gen,Rep) be a (M,W, l, t, γ)-fuzzy extractor
that is (εsec, ssec)-hard. Let W 1, W 2, . . . ,W ρ be ρ arbitrarily correlated random variables where
W j ∈ W for all 1 ≤ j ≤ ρ. Define the random variables (Ri, P i) ← Gen(W i). (Gen,Rep) is
(εsec, ssec,ρ)-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ:

Pr[D(R1, . . . , Rρ, {P j}16j6ρ) = 1]

−Pr[D(R1, . . . , Rj−1, U`, R
j+1, . . . , Rρ, {P j}16j6ρ) = 1] ≤ εsec.
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2.1 Tools

Digital Lockers Digital lockers are secure symmetric encryption schemes that retain security even
when used multiple times with correlated and nonuniform keys [17]. Furthermore, an incorrect key
can also be recognized with high probability. We use notation c = lock(key, val) for the algorithm
that performs the locking of the value val using key, and unlock(key, c) for the algorithm that per-
forms the unlocking (which will output val if key is correct and ⊥ with high probability otherwise).

Digital lockers can be constructed in the random oracle (see Lynn, Prabhakaran, and Sahai [42,
Section 4]). Bitansky and Canetti [9], building on the work of [15,17], show how to obtain com-
posable digital lockers based on a version of the Decisional Diffie-Hellman assumption without
random oracles. Furthermore, it is possible that cryptographic hash functions satisfy the required
functionality without resorting to the random oracle model.

We consider security via virtual-grey-box simulatability [9], a simulator is allowed unbounded
running time but only a bounded number of queries to an ideal locker. Intuitively, the definition says
if the keys to the ideal locker are hard to guess, the simulator will not be able to unlock the ideal
locker and thus neither will the real adversary. Formally, let idealUnlock(key, val) be the oracle that
returns val when given key, and ⊥ otherwise.

Definition 5 (Digital Lockers). The pair (lock, unlock) with security parameter λ is an `-composable
secure digital locker with error γ if the following hold:

– Correctness For all key and val,

Pr[unlock(key, lock(key, val)) = val] ≥ 1− γ.

– Wrong key detection For any key′ 6= key,

Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1− γ.

– Security For every PPT adversary A and every positive polynomial p, there exists a (possi-
bly inefficient) simulator S and a polynomial q(λ) such that for any sufficiently large s, any
polynomially-long sequence of values (vali, keyi) for i = 1, . . . , `, and any auxiliary input
z ∈ {0, 1}∗, ∣∣Pr [A(z, {lock (keyi, vali)}`i=1

)
= 1
]

−Pr
[
S{idealUnlock(keyi,vali)}

`
i=1

(
z, {|keyi|, |vali|}

`
i=1

)
= 1
] ∣∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries.

Obfuscated Point Functions Canetti et al.’s construction for large alphabets [16, Section 5.1] uses
a weaker primitive called an obfuscated point function. This primitive can be viewed as a digital
locker without a plaintext: it outputs 1 if the key is correct, 0 otherwise. Such a function can be
constructed from the above mentioned digital locker with a single possible plaintext, or from a
version of the Decisional Diffie-Hellman assumption [14]. We use notation c = lockPoint(key)
and unlockPoint(key, c). Point functions security is defined the same way as for digital lockers
with a fixed plaintext.
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3 Reusability Pseudoentropic Isometries

Reusable fuzzy extractors combine entropy extraction and error-correction without leaking infor-
mation to achieve reusability. Our approach is to separate reusability from entropy extraction and
error-correction. The idea is to randomly project the fuzzy secrets into a new metric space before
applying a nonreusable fuzzy extractor. If we can build a randomized projection that creates unre-
lated values, a standard fuzzy extractor should not leak information across projected values. We call
this randomization stage a pseudoentropic isometry:

Definition 6 (Pseudoentropic isometry). Let (M1, d1), (M2, d2) be two metric spaces.
A (M1,M2,W,m2, εsec, ssec, γ)-pseudoentropic isometry is a pair of randomized procedures (RPI-
Gen, RPIRep) with the following properties:

1. RPIGen on ω ∈M1 outputs Ω ∈M2 and f ∈ {0, 1}∗.
2. RPIRep takes an element ω′ ∈M1 and a bit string f ∈ {0, 1}∗ as inputs to output Ω′ ∈M2.
3. Correctness: if (Ω,F ) ← RPIGen(ω), then Pr[d2(Ω,Ω

′) = d1(ω, ω
′)] ≥ 1 − γ. where the

probability is over the randomness of (RPIGen, RPIRep).
4. Security: for any W ∈ W , for (R,F )← RPIGen(W ) we have HHILL

εsec,ssec
(R|F ) ≥ m2.

Note: Security implies thatHHILL(W |V ) ≥ m2 with a slight loss in parameters as any adversary
that can recover W can use RPIRep to recover U .

On their own pseudoentropic isometries are not novel (the identity function is a pseudoentropic
isometry). A reusable pseudoentropic isometry or RPI is the key to our approach. To be reusable,
a pseudoentropic isometry generates ρ uncorrelated values Ω1, . . . , Ωρ from ρ enrollments values
ω1, . . . , ωρ drawn from the fuzzy secret ω.

Definition 7 (RPI). Let W ∗ ∈ W be some distribution. Let W 1,W 2, . . . ,W ρ be ρ arbitrar-
ily correlated random variables over M1 where each W i ∈ W . Define the random variables
(Ωi, F i) ← RPIGen(W i) and (Ω∗, F ∗) ← RPIGen(W ∗). (RPIGen,RPIRep) is (εsec, ssec,ρ)-
reusable if for all j = 1, . . . , ρ:

δDssec ((Ω1, . . . , Ωρ, F 1, . . . , F ρ),

(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ)) ≤ εsec

Following this randomization stage, we can apply a traditional fuzzy extractor on the uncorre-
lated randomized values Ωjs. This idea is depicted in Figure 1.

Within this framework, the FE is always applied on unrelated values Ωjs. Even when re-
enrolling a fingerprint ω, the generated helper values P js only yield information on the decorrelated
values Ωjs and not on the original noisy secret. Thus, the combination of an RPI with a traditional,
nonreusable, fuzzy extractor yields an RFE.

Relation to other fuzzy extractor primitives A pseudoentropic isometry is related to biometric em-
beddings used in [22]. A biometric embedding projects any fingerprint value into a metric space
where a fuzzy extractor exists while loosely maintaining distances.

If we consider a slightly different primitive that is allowed to reduced distances d2(Ω,Ω′) ≤
d1(ω, ω

′), this primitive can be constructed using either a fuzzy extractor or a secure sketch. How-
ever, the connection is not clear when distance must be maintained precisely.
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Fig. 1. Overview of reusability framework

Generation procedure Gen
Input: ω ∈M1.
1. (Ω,F )← RPIGen(ω).
2. (R,Q)← Gen’(Ω).
3. Set P = (F,Q).
4. Return (R,P ).

Reproduction procedure Rep
Inputs: ω′ ∈M1,

Helper data P ∈ {0, 1}∗.
1. Parse P = (F,Q)
2. Ω′ ← RPIRep(ω′, F ).
3. R← Rep’(Ω′, Q).
4. Return R.

Fig. 2. A generic reusable FE

3.1 RPIs imply reusable fuzzy extractors

Let (Gen’, Rep’) denote a (average-case) nonreusable fuzzy extractor. The generation procedure
Gen’ implicitly draws a ball B(ω, t) centered on its input ω where the radius t is the error tolerance
of the fuzzy extractor. Whenever a noisy reading ω′ is given to procedure Rep’, the secret key will
be recovered as long as ω′ belongs to B(ω, t).

To address reusability, we randomly project the ρ fuzzy versions of ω onto unrelated values so
that each of these retains original entropy independently of others. By using a ρ-RPI, the user gets
unrelated values Ω1, . . . , Ωρ that will be each enrolled once, respectively toward servers 1, . . . , ρ.

Let (RPIGen, RPIRep) be a ρ-RPI fromM1 toM2. Let (Gen’, Rep’) be an average-case FE
over M2 correcting t errors. The generation procedure Gen will first call RPIGen to randomize
the input ω into Ω. The nonreusable FE is then applied on Ω. The RPI ensures that d2(Ω,Ω′) =
d1(ω, ω

′) while the correctness of the underlying nonreusable FE ensures that Rep’ recoversR from
Ω′ and the associated helper string as long as d2(Ω,Ω′) 6 t. Overall this leads to recovering R as
long as d1(ω, ω′) 6 t.

Theorem 1. Suppose that (RPIGen, RPIRep) is a (M1,M2,W,m2, εRPI, sRPI, γRPI)-RPI that is
ρ-reusable and (Gen’, Rep’) be an average-case (M2,m2, `, t, γFE)-fuzzy extractor that is (εFE, sFE)-
hard.

Figure 2 defines a (M1,W, l, t, γRPI + γFE)-fuzzy extractor that is (ρ, εsec, ssec)-reusable for
εsec = 4εRPI + εFE and ssec = min{sRPI − |Gen′|, sFE}.
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Proof. The correctness is straightforward and follows from aforesaid explanations. To ensure secu-
rity, we first show that R is pseudorandom knowing P and then treat reusability.

Under notation of Definition 6, we HHILL
εRPI,sRPI

(Ω|F ) > m2. We first show that fuzzy extrac-
tors work on distributions with HILL entropy. The proof is straightforward and delayed until Ap-
pendix A.1.

Lemma 1. Suppose that U, V are a joint distribution where HHILL
εRPI,sRPI

(U |V ) ≥ m2 and let (Gen’,
Rep’) be an average-case (M2,m2, l, t)-fuzzy extractor that is (εFE, sFE)-hard. Define (R,P ) ←
Gen′(U), then

δDs((R,P, V ), (Ul, P, V )) 6 ε.

for ε = 2εRPI + εFE and s = min{sRPI, sFE}.

Lemma 1 allows us to conclude that δDs((R,Q, F ), (Ul, Q, F )) 6 ε. That is,

δDs((R,P ), (Ul, P )) 6 ε

for P = (F,Q), and aforesaid parameters ε = 2εRPI + εFE, s = min{sRPI, sFE}. That is, Figure 2
describes a fuzzy extractor.

Reusability Let W 1, . . . ,W ρ be correlated distributions overM1, where W j ∈ W for all j. The
following games are between a challenger C and D for some fixed i0:

G0 C honestly samples values as prescribed in Definition 4 and sends

(R1, F 1, Q1), . . . , (Ri0 , F i0 , Qi0), . . . , (Rρ, F ρ, Qρ)

to D.
G1 C now does the following:

1. Samples each ωjs and uses RPIGen to obtain (Ω1, F 1), . . . , (Ωρ, F ρ).
2. Replaces ωi0 with ω∗ ←W ∗.
3. Computes (Ω∗, F ∗)← RPIGen(ω∗), (R∗, Q∗)← Gen’(Ω∗).
4. Sets P ∗ = (F i0 , Q∗).
5. Gives D Rjs and P js except for j = i0 for which he receives (R∗, P ∗).

If D can distinguish this game from the previous one, he would then be able to distinguish the
distribution with Ωi0 from the one with Ω∗. This breaks the reusability of the RPI. That is, G1
appears indistinguishable from G0 for ε = εRPI and s = sRPI − |Gen′|.

G2 In this game, after computing (R∗, Q∗) ← Gen’(Ω∗), C discards R∗ and replaces it with ran-

domly sampled η $← {0, 1}` randomly sampled. Since HHILL
εRPI,sRPI

(Ω∗|F ∗) ≥ m2 then

HHILL
εRPI,sRPI

(Ω∗|F i0) ≥ m2.

Thus by Lemma 1, (Ul, P ∗) and (R∗, P ∗) are computationally indistinguishable. Hence, this
game is indistinguishable from the previous one for ε = 2εRPI + εFE and s = min{sRPI, sFE}.

G3 In the previous game, D is given (R1, F 1, Q1), . . . , (η, F i0 , Q∗), . . . , (Rρ, F ρ, Qρ) where η is
random and does not depend on P ∗. In this game, C sends the actualQi0 (obtained via computed
Gen’(Ωi0) instead of Q∗.
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If D can distinguish that Qi0 has been given instead of Q∗ (obtained via computed Gen′(Ω∗),
he can in particular distinguish Ωi0 from Ω∗. Hence, he can distinguish

(Ω1, . . . , Ωi0 , . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ)

from
(Ω1, . . . , Ωi0−1, Ω∗, Ωi0+1, . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ).

This contradicts the reusability of the RPI. Thus, G3 is indistinguishable from G2 for ε = εRPI
and s = sRPI − |Gen′|.

In G3, D is given (R1, P 1), . . . , (η, P i0), . . . , (Rρ, P ρ) where η is randomly sampled. By transitiv-
ity, this latter game is indistinguishable from G0 . Indistinguishability between G0 and G3 satisfies
the requirements of Definition 4.

4 Instantiating the framework

We propose two instantiations of the above mentioned framework, the first one for the set difference
metric and the second one for the Hamming distance.

4.1 Set Difference-based Instantiation

Environment and Notation Set difference based FEs in [22] take as inputs subsets of a universe U
with n = |U|. We denote (MU , d), the metric spaceMU consisting of all the subsets of U with the
set difference metric d. LetMU ,s denote the restriction ofMU to s-elements subsets.Mκ denotes
(GF (2κ), d) equipped with the set difference metric d. SimilarlyMκ,s denotes the restriction to sets
of sizes s. Let W be a probability distribution over U with min-entropy m. We use digital lockers
to construct our set difference-based RPI. Our construction, presented in Figure 3, randomizes each
set element using a digital locker.

Algorithm RPIGen
Input: ω = {ω1, . . . , ωs},

∀1 6 i 6 s, ωi ∈ U .
1. For i = 1 . . . s,

xi
$←Mκ.

ci = lock(ωi, xi).
2. Set Ω = {x1, . . . , xs}

and c = c1, . . . , cs.
3. Return (c,Ω).

Algorithm RPIRep
Inputs: ω′ = {ω′1, . . . , ω′s},

c = c1, ..., cs.
1. n = s,
2. For i = 1 . . . s,

For j = 1 . . . n,
a. x′i ← unlock(ω′i, cj).

b. if x′i =⊥ ∧ j = n: x′i
$←Mκ.

c. else if x′i =⊥ ∧ j 6= n: continue.
d. else: remove cj ; n- -; break.

3. Set Ω′ = {x′1, . . . , x′s′}.
4. Return Ω′.

Fig. 3. A set difference-based RPI

It is possible to have a collision between xis in Algorithm RPIGen, however this occurs with
negligible probability (κ must be super-logarithmic for security). This could be addressed by using
rejection sampling to ensure all output points are unique.
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RPIRep adds additional elements to ensure that the output set is of size s. This step can be
triggered if there was a collision in RPIGen or if unlock outputs ⊥ in Step 2.a. This is the only
time where d(Ω,Ω′) ≥ d(ω, ω′) is when unlock outputs ⊥ when the two values actually match.
Considering the worst case scenario, where ω and ω′ are disjoint sets, we end up with s2 calls to the
unlock function. This construction is secure when each element of the input set has superlogarithmic
min-entropy.

Theorem 2. Let λ be a security parameter and let κ = ω(log λ). Let W be the set of all joint
distributions W1,W2, . . .Ws where, for any i 6 s, H(Wi) ≥ κ. Let (lock, unlock) be a (s · ρ)-
composable digital locker with error γ. Then for any ssec = poly(λ) there exists a εsec such that
Figure 3 defines a (MU ,s,Mκ,W, s · κ, εsec, ssec, γ

′)-RPI for the set difference metric for
– εsec = q(q + 1)2−κ + q2−s·κ = ngl(λ),
– γ′ = s2 · γ + (1− e−s2/|Mκ|).

Our proof is similar to the proof of Canetti et al. [16]. We first prove a present proposition that
the construction is a PI and then consider reusability. The proof of this proposition is delayed until
Appendix A.2.

Proposition 1. Let λ be a security parameter and let κ = ω(log λ). LetW be the set of all joint dis-
tributions W1,W2, . . .Ws where, for any i 6 s, H(Wi) ≥ κ. Let (lock, unlock) be a s-composable
digital locker with error γ. Then for any ssec = poly(λ) there exists a εsec = ngl(λ) such that
Figure 3 defines a (MU ,s,Mκ,W, s ·κ, εsec, ssec, γ

′)-pseudoentropic isometry for the set difference
metric for γ′ = s2 · γ + (1− e−s2/|Mκ|).

Reusability Reusability follows from the security of digital lockers. For each i ∈ {1, ..., ρ}, we can
treat the outputs

Ω1, . . . , Ωi−1, Ωi+1, . . . , Ωρ

as auxiliary input to the digital locker adversary. The result follows by simulatability of this adver-
sary, but requires additional composability from the digital locker.

Corollary 1. Let λ be a security parameter and suppose there exists (lock, unlock) with that is `
composable for any ` = poly(λ) with error δ = ngl(λ). Using the RPI defined in Figure 3 for the
family W defined above one can construct a reusable FE for any ssec = poly(λ), ρ = poly(λ)
such that εsec = ngl(λ) and where t = Θ(n).

Discussion Our instantiation of an RPI for the set difference metric (large universe) allows con-
struction of the first reusable fuzzy extractor correcting a linear error rate that makes no assumption
about how individual readings are correlated. The previous work of Boyen [13] assumed that the
exclusive OR of two repeated enrollments leaked no information. Canetti et al. [16] achieves a
sublinear error rate (and works for Hamming or set difference in the small universe setting).

Looking ahead, we efficiently implement this RPI and there exist fast implementations of fuzzy
extractors for the set difference metric (c.f. Section 5).

It is easy to adapt this construction to handle variable sizes. To do so, the RPIGen algorithm
needs to pad with random elements up to a maximal set size to hide the actual number of elements
in ω. If ω′ is not the same size as ω it suffices to loop over the size of ω′ in step 2 of RPIRep. Then,
one could couple this RPI with any nonreusable fuzzy extractor that can handle sets of variable sizes
(see [22, Subsection 6.3]) to add reusability.
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4.2 Hamming Distance Instantiation

The work of Canetti et al. [16] presents three constructions of fuzzy extractors. They only claim
reusability for Construction 1. However, under certain conditions Construction 2 is reusable. Fur-
thermore, it implicitly uses the RPI framework, it first computes a map that preserves distance then
applies an error-correcting code.5

Adapted construction of Canetti et al. Let Z be an alphabet and let W = W1, ...,Ws be a dis-
tribution over Zs. Let C ⊂ {0, 1}s a Hamming error correcting code that corrects t errors. Let
(lockPoint, unlockPoint) be an s-composable secure obfuscated point function with error γ (for
keys over Z). The algorithms Gen,Rep are defined in Figure 4.

Algorithm RPIGen
Input: ω = ω1, ..., ωs
1. Sample c← C, r ← Us.
2. For j = 1, ..., s:

a. If rj = 0: pj = lockPoint(ωj).
b. Else:

tj
$← Z .

Let pj = lockPoint(tj).
3. Output (c, p), where
p = p1 . . . ps, o = r ⊕ c.

Algorithm RPIRep
Input: (ω′, p)
1. For j = 1, ..., s:

a. If unlockPoint(ω′j , pj) = 1:
set r′j = 0.
b. Else: set r′j = 1.

2. Set c = Decode(o⊕ r′).
3. Output c⊕ r.

Fig. 4. A Hamming distance-based RPI

The construction in Figure 4 does not produce a uniformly random r, it is necessary to apply
a randomness extractor (technically, an average-case computational randomness extractor) to r, see
[16, Section 5] for more information.

In the work of Canetti et al. [16], this construction is not presented as reusable because not
all symbols wi are assumed to have entropy. If each symbol wi individually has entropy (there is
requirement on the correlation between symbols), the construction leaks no information. The only
information about r is revealed by c⊕r because c is chosen from a code. The digital locker is an RPI
mappingw to r. In Rep, the computed string d(r, r′) ≤ d(w,w′) ≤ t (assuming the locker never has
an error). The string c is functioning as a secure sketch (specifically, the code-offset secure sketch).
Thus, this construction is actually a combination of a RPI and a (non-reusable) secure sketch.

5 Implementation

Here we describe a basic prototype implementation of our set difference based RPI in Python. The
construction can be found in Figure 5. Our construction assumes that SHA512 can be used to con-
struct a digital locker as follows: Let H be SHA512. The locking algorithm lock(key, val) outputs
the pair nonce, H(nonce, key)⊕ (0256||val), where nonce is a nonce and || denotes concatenation.

We stress our construction is only a construction of an RPI, not a full fuzzy extractor. In practice,
we feed our function into the improved Juels-Sudan [36] implementation due to Harmon, Johnson
and Reyzin [33].

5 We change the construction of Canetti et al. slightly to illustrate the connection to RPI but our construction is secure
under the same conditions.
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omega = [ ]
c = [ ]
l e n g t h = hash ( ) . d i g e s t _ s i z e
f o r wi in w:

x i = g e n e r a t e _ r a n d o m ( l e n g t h / 2 )
s eed = g e n e r a t e _ r a n d o m ( 1 6 )
z e r o s = bytearray ( [ 0 f o r x in range ( l e n g t h / 2 ) ] )
l o c k = bytearray ( hmac . new ( seed , wi , hash ) . d i g e s t ( ) )
c i = xor ( lock , ( z e r o s + x i ) )
c . append ( ( c i , s eed ) )
omega . append ( x i )

re turn c , omega

def RPIRep (w, c , hash= sha512 ) :
l e n g t h = hash ( ) . d i g e s t _ s i z e
n = s = l e n (w)
omega = [ ]
f o r i in range ( s ) :

f o r j in range ( n ) :
c j , s eed = c [ j ]
h = bytearray ( hmac . new ( seed , w[ i ] , hash ) . d i g e s t ( ) )
x i = xor ( c j , h )
r e s = c h e c k _ r e s u l t ( x i )
i f ( not r e s and j ==(n−1) ) :

omega . append ( g e n e r a t e _ r a n d o m ( l e n g t h / 2 ) )
e l i f ( not r e s and j != ( n−1) ) :

c o n t i nu e
e l s e :

c . pop ( j )
n −= 1
omega . append ( x i [ l e n ( x i ) / 2 : ] )
break

return omega

def xor ( b1 , b2 ) :
re turn bytearray ( [ x ^ y f o r x , y in z i p ( b1 , b2 ) ] )

def g e n e r a t e _ r a n d o m ( l e n g t h ) :
re turn bytearray ( [ random . SystemRandom ( ) . r a n d i n t ( 0 , 255) \

f o r x in range ( l e n g t h ) ] )

def c h e c k _ r e s u l t ( r e s ) :
re turn a l l ( v ==0 f o r v in r e s [ : l e n ( r e s ) / 2 ] )

Fig. 5. Python implementation of set difference RPI (implementing Figure 3). We assume that a keyed hash function acts
as a digital locker.
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6 Use cases

Many companies now prefer multi-factor authentication (also called strong authentication), with
factors falling in at least two of the following categories: knowledge ("what you know"), possession
("what you own") and inherence ("what you are") [3]. Mobile applications usually use possession
and knowledge factors to achieve strong authentication:

– Possession The ownership of the mobile device is often proved via a One Time Password (OTP)
sent by SMS. Once having received the OTP, the user enters it on the authentication web page
to prove that she indeed has the device in her possession.

– Knowledge A password chosen by the user.

Both of these means are subject to strong limitations. The SMS OTP is vulnerable to numerous
attacks (see [46] and references therein) and the SMS channel has been deprecated by authorities
such as NIST, which recommend to move to more secure means of authentication [49]. Human
memorable passwords do not achieve sufficient entropy, recent estimates place the password entropy
at 34 bits [38].

6.1 New Trends for Mobile Authentication

Alternative methods of authentication have emerged such as biometrics and PUFs, which could
respectively fulfill inherence and possession proofs. While these solutions have received attention
in the authentication literature, they rely on dedicated hardware sensors and components. This is
problematic in the case of mobile authentication as the availability of such hardware components
(e.g. biometric sensors) varies greatly between devices.

In the same vein, some hardware components (SIM cards [53], dedicated Secure Element [29,44],
TEE [30]) are used as possession proofs. Such solutions present several drawbacks and are not
widely deployed. While SIM cards and a TEE are widespread, their usage by third party applica-
tions remains marginal. As the security component is owned by either the mobile operator (for SIM
card-based solutions) or its manufacturer (for SE/TEE-based solutions), a third party application
will need to be granted access rights. This leads to additional costs and makes the design of such an
authentication solution much more complicated.

As a result, mobile applications are often left using purely software implementations, even crit-
ical applications such as banking. To address this limitation, such applications integrate numerous
layers of protection including white-box cryptography, tamper-resistance mechanisms and code ob-
fuscation.

In the specific case of HCE-based payment [1], major payment schemes [43,55,7] require use of
device fingerprinting [24,39]. In addition, new regulations, such as GDPR (General Data Protection
Regulation) in the European Union [26], will soon strictly regulate the usage of personal data and
limit their sharing with a server.

Eckersley showed how to create a fingerprint from characteristics of a web browser (user agent,
list of fonts, list of plug-ins,. . . ) [24]. Subsequent studies deployed similar systems for personal
computers [11,45,47,4]. This research naturally led to studying the practicability of fingerprints on
mobile devices.

While early mobile solutions were insufficient [41,18,19,57], recently Kurtz et al. provided a
comprehensive analysis in the mobile setting [39]. In their work, the list of installed applications
and the top 50 songs are among the most identifying values present on a device. These fingerprints
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reflect the user’s behavior and are candidates to be an inherence authentication factor. Many of these
device fingerprints draw on features coming from large universes with variation according to the set
difference metric (e.g. songs and applications).

The usage of device and behavioral fingerprints, respectively as possession (of the mobile de-
vice) and inherence factors can enable strong authentication software only authentication of a user.
Device fingerprints can be constructed from the following values:

– IMEI (International Mobile Equipment Identity) [56] This value is 15 digits long, the first ones
identifying the manufacturer while the 6 last digits are randomly chosen to produce a serial
number that identifies the device. The IMEI carries roughly 6× log(10) ≈ 20 bits of entropy.

– IMSI (International Mobile Subscriber Identity) [25] The IMSI’s first digits are specific to the
country and the mobile network, while the remaining 8 digits are randomly chosen. Based on
the latter, we can assume that the IMSI carries more than 8× log(10) ≈ 26 bits of entropy.

– AndroidID [31] The AndroidID is a 64 bits random number which originally was generated at
the device’s first boot and remained constant throughout its lifetime, enabling its identification.
As of Android 8, it is specific to an application and randomly generated at its installation.

This list is far from being exhaustive, other values could also be used such as the device’s Wifi
and Bluetooth MAC addresses, the battery’s serial number, etc.
Behavioral sources include the following:

– Apps The user’s applications list [5,39].
– Music The user’s most listened to songs [5,39].
– Contacts The user’s favorite contacts. The most common first name in the United States is

‘James’ [2] with a frequency of 3.318% which yields an approximate min-entropy of− log(3.318×
10−2) ≈ 5 bits. The first name of the top 20 contacts list should exhibit min-entropy of around
100 bits.

– TopNetworks The Wi-Fi networks with the strongest signal at given time and given location.
More precisely, the n strongest networks -whose main identifiers are the service set identifiers
(SSIDs) and the basic service set identifiers (BSSIDs) define a kind of trusted place (e.g. the
user’s home or workplace). Alternatively we also consider RegSSID, the SSIDs of Wifi networks
already registered on the device.

Discussion These authentication factors do not require user interaction, contrary to passwords and
SMS OTP. This improves user experience which is critical in some use cases (e.g. mobile payment
applications). However, some of these values may require specific permissions to be available. Other
applications may ask for the same permissions, hence, malevolent ones may gain access to some of
the above mentioned values. Yet, such applications are steadily and more and more efficiently hunted
and removed from the Play Store [32]. Users are also more and more conscious of permissions and
privacy issues and grant permissions sparingly [40].

Our use cases both consider a bank authenticating a user on their Android device 6 using soft-
ware collectible fingerprints to construct possession and inherence authentication factors. We con-
sider a security level of 100 bits to be sufficient.

6 Similar solutions could also be deployed for iOS devices [39].
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6.2 Use Case 1

Our first construction uses a source that combines hardware and software identifiers to prove pos-
session of the phone. Alternative software fingerprints that reflect the user’s behavior are used for
the inherence factor [39,12,5].

Notation and examples We denote ωP and ωI respectively as sources intended to prove possession
and inherence. We will consider ωI as a source that varies according to the set difference metric in
the large universe setting. An example of ωP is described in Figure 6. An example of ωI is the first
name of the user’s top 20 contacts.

Data Estimated Entropy
IMEI 20 bits
IMSI 26 bits

AndroidID 64 bits
ωP = IMEI‖IMSI‖AndroidID 110 bits

Fig. 6. Device fingerprint’s entropy

Both ωP and ωI individually carry enough entropy for strong authentication purposes (see re-
spectively Figure 6 and Subsection 6.1). However, while the value ωP is static, ωI is a noisy secret
that fits set difference metric. At first glance, we could use our reusable FE construction on just ωI .
However, each element of ωI individually lacks entropy to fulfill the condition of Theorem 2 for
reusability.

To solve this problem, we propose to concatenate ωP to each element ωI . We denote this aug-
mented source as ω̃i = ωP ||ωI,i. This augmented source has min-entropy which is the sum of the
individual sources. Furthermore, it ties together the two sources in a cryptographic way. Recall that
our RPI instantiation (Figure 3) is built from digital lockers which only require min-entropy for
security. Let (Gen,Rep) be the RFE from Theorem 1.Then we describe the instantiation of a fuzzy
extractor for ωP and ωI in Figure 7.

RPIGen
Input: ωP , ωI = {ωI,1, . . . , ωI,s}.
1. For i = 1 . . . s:

Set ω̃i = ωP ‖ωI,i.
2. Set ω̃ = {ω̃1, . . . , ω̃s}.
3. (R,P )← Gen(ω̃).
4. Return (R,P ).

RPIRep
Inputs: ω′P , ω

′
I , P

1. For i = 1 . . . s:
Set ω̃′i = ω′P ‖ω′I,i.

2. Set ω̃′ = {ω̃′1, . . . , ω̃′s}.
3. R← Rep(ω̃′, P ).
4. Return R.

Fig. 7. A practical use case for set difference based metric

Security ωP remains the same whereas ωI can be subject to changes. Therefore, ω′P = ωP and ω̃′i =
ωP ‖ω′I,i. As a result, d(ωI , ω′I) = d(ω̃, ω̃′) and the correctness of the underlying RFE (Gen,Rep)
ensures the correctness of use case 1. The designed fingerprint enables application of Theorem 1.
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6.3 Use Case 2

Our second use case uses identifying data that leads to distributions under the set difference metric
with sufficient entropy for security. This construction can be seen as an extension of use case 1. We
use the following sources of data:

– ωhard, a device fingerprint based on the device’s hardware elements (e.g. IMEI, MAC ad-
dresses).

– ωsoft, a software fingerprint relying on the device’s software components.
– ωuser, a user fingerprint based on the user’s personal information.
– ωregSSID, a fingerprint based on the SSIDs registered on the device (see subsection 6.1).
– ωmisc, a fingerprint that can be based on miscellaneous data.

Some of these sources may not achieve sufficient entropy (e.g. ωuser or ωsoft). In this case, we
augment the sources by using AndroidID in the same way as in the last use case.

Potential Fingerprints for ωmisc We propose some behavioral fingerprints as candidates for ωmisc.
The idea would be to extract R̃ from the noisy ω̃ and use the output value as ωmisc. These potential
fingerprints include:

– ω̃ctcs, a top contacts fingerprint based on the user’s n1 favorite contacts.
– ω̃songs, a top songs fingerprint based on the user’s n2 most listened to songs.
– ω̃apps, a top applications fingerprint based on the user’s n3 most used applications.

Setting n1, n2, n3 accordingly should enable to fulfill the targeted security level (e.g. n1 = 20).

Security Policy Based on these sources, we assume a server that authenticates a user only if a few
ones have changed. This policy’s threshold corresponds here to the RFE correction capacity t.

We then define the noisy secret

ω = {ωhard, ωsoft, ωuser, ωRegSSID, ωmisc1, ωmisc2}

for which ωhard and ωuser should be static while the others are prone to changes. Here, the authen-
tication server could set t = 2, 3.

Security As long as the number of errors remains inferior or equal to t, the correctness of the
underlying RFE ensures the correctness of the construction. Each element of ω has sufficient entropy
for our set difference instantiation to be reusable (see Theorem 1).

Discussion As mentioned in Subsection 6.1, new regulations such as GDPR will enforce restrictions
concerning the collect and processing of personal data. Our use cases cope with these restrictions by
executing on the mobile device a security policy decided by the server and thus avoiding the latter
collecting the data. Moreover, the usage of software accessible fingerprints which do not require
user interactions can be seen as a strong asset in mobile payment applications such as HCE-based
ones.
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7 Conclusion and Future Works

We present a framework for constructing reusable fuzzy extractors by using a randomization step
called a reusable pseudoentropic isometry. Since multiple readings of a fuzzy secret may be cor-
related, the RPI decorrelates them while preserving entropy and distances. We show how to build
reusable fuzzy extractors out of any efficient nonreusable fuzzy extractors and RPIs.

Relying on this new framework, we use digital lockers to construct an RPI and design the first
reusable fuzzy extractor for the set difference metric. Our construction is also the first reusable
fuzzy extractor handling a linear error rate that makes no assumption about how repeated readings
are correlated. We also show that the framework can be applied to the Hamming distance through
the example of Canetti et al.’s second construction. We then propose a Python implementation of
our set difference metric RPI construction.

In the two last sections, we described a prototype implementation of our set difference instanti-
ation and two use cases for our set difference instantiation. These use cases show the applicability
of our RPI construction in the context of industrial mobile authentication.

Future works The major open question is designing new RPI instantiations, especially those that
weaken the cryptographic assumption or the required structure on the noisy secret. Another com-
plementary path could be to focus on constructing a fuzzy extractor directly reusable. From a more
practical point of view, an extensive study of mobile devices’ fingerprints would allow accurate
assessment of their entropy and their variation over time. These two points will improve our RPI
framework.
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A Proofs

A.1 Proof of Lemma 1

Proof (Proof of Lemma 1). Suppose not, that is suppose that there exists some D of size at most
s such that δs((R,P, V ), (Ul, P, V )) > ε. Let Xv be a collection of distributions (defined for each
v ∈ V ) giving rise to a joint distribution such that H̃∞(X|V ) ≥ m2. Consider a D1 that does the
following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Output D(γ, ν, β).
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Also consider a D2 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Sample random string u← U`.
4. Output D(u, ν, β).

Denote R′, P ′ ← Gen′(X). By the triangle inequality we have the following:

δD1((U, V ), (X,V )) + δD2((U, V ), (X,V ))

= δD((R,P, V ), (R′, P ′, V )) + δD((U`, P, V ), (U`, P
′, V ))

≥ δD((R,P, V ), (U`, P, V ))− δD((U`, P ′, V ), (R′, P ′, V ))

≥ ε− εFE = 2εRPI

Thus, either D1 or D2 distinguishes U, V from X,V with advantage at least εRPI . Either of these
distinguishers contradict the HILL entropy of U, V . This completes the proof of Lemma 1.

A.2 Proof of Proposition 1

Proof (Proof of Proposition 1). We have to prove both isometric and security properties.
Isometry property. Ω is of size s. By a birthday bound calculation, the probability of any colli-

sion in the xis is 1 − e−s2/|Mκ|. For any ωi = ω′i, if no digital locker outputs ⊥ then xi = x′i and
the total number of calls to function unlock is s2. Thus,

Pr[d(Ω,Ω′) = d(ω, ω′)] ≥ 1− s2γ − (1− e−s2/|Mκ|).

Security. Our goal is to show that for all ssec = poly(λ) there exists εsec = ngl(λ) such that
δDssec ((R,P ), (U,P )) ≤ εsec. Fix some polynomial ssec and let D be a distinguisher of size at
most ssec. We want to bound

|E[D(Ω,P )]− E[D(UMκ , P )]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negligible. That is, suppose that

there is some polynomial p(·) such that for all λ0 there exists some λ > λ0 such that

|E[D(Ω,P )]− E[D(UMκ , P )]| > 1/p(λ).

Note that λ is a function of λ0 but we omit this notation for the remainder of the proof. By the
security of digital lockers (Definition 5), there is a polynomial q and an unbounded time simulator
S (making at most q(λ) queries to the oracles {idealUnlock(ωi, xi)}si=1) such that∣∣∣E[D(Ω,C1, ..., Cs)]− E

[
S{idealUnlock(ωi,xi)}

s
i=1 (Ω, κ)

]∣∣∣ ≤ 1

3p(λ)
. (1)

The same is true if we replaced Ω above by an independent uniform random variable U overMκ.
We now prove the following lemma, which shows that S cannot distinguish between Ω and UMκ .
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Lemma 2. Let U denote the uniform distribution overMκ. Then∣∣∣E [S{idealUnlock(ωi,xi)}si=1 (R, κ)
]

(2)

−E
[
S{idealUnlock(ωi,xi)}

s
i=1 (UMκ , κ)

] ∣∣∣ (3)

≤ q(q + 1)

2m
≤ 1

3p(λ)
, (4)

where q is the maximum number of queries S can make.

Proof. Fix any u ∈ Mκ (the lemma will follow by averaging over all u). Let Ω∗ be the correct
value of Ω. The only information that S can learn about whether the value is Ω∗ or u is through the
query responses. First, modify S slightly to quit immediately if it gets a response not equal to⊥ (we
assume such as soon as S gets back a non-⊥ response it distinguishes with probability 1). There are
q + 1 possible values for the view of S on a given input (q of those views consist of some number
of ⊥ responses followed by the first non-⊥ response, and one view has all q responses equal to ⊥).
By [22, Lemma 2.2b], H̃∞(Vi|V iew(S), {jik}) ≥ H̃∞(Vj |{jik})− log(q + 1) ≥ m− log(q + 1).
Therefore, at each query, the probability that S gets a non-⊥ answer is at most (q + 1)2−m. Since
there are q queries of S, the overall probability is at most q(q + 1)/2m. Then since 2m is ngl(λ),
there exists some λ such that for all λ > λ0, q(q + 1)/2m ≤ 1/(3p(λ)). This completes the proof
of Lemma 2.

Adding together Equation 1, Equation 4, and Equation 1 in which Ω is replaced with UMκ , we
obtain that

δD((Ω,P ), (UMκ , P )) ≤
1

p(λ)
.

This is a contradiction and completes the proof of Proposition 1.
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