
Projective Arithmetic Functional Encryption

and

Indistinguishability Obfuscation From Degree-5 Multilinear Maps

Prabhanjan Ananth∗

prabhanjan@cs.ucla.edu

Amit Sahai†

sahai@cs.ucla.edu

Abstract

In this work, we propose a variant of functional encryption called projective arithmetic func-
tional encryption (PAFE). Roughly speaking, our notion is like functional encryption for arith-
metic circuits, but where secret keys only yield partially decrypted values. These partially
decrypted values can be linearly combined with known coefficients and the result can be tested
to see if it is a small value.

We give a degree-preserving construction of PAFE from multilinear maps. That is, we show
how to achieve PAFE for arithmetic circuits of degree d using only degree-d multilinear maps.
Our construction is based on an assumption over such multilinear maps, that we justify in a
generic model. We then turn to applying our notion of PAFE to one of the most pressing open
problems in the foundations of cryptography: building secure indistinguishability obfuscation
(iO) from simpler building blocks.

iO from degree-5 multilinear maps. Recently, the works of Lin [Eurocrypt 2016] and Lin-
Vaikuntanathan [FOCS 2016] showed how to build iO from constant-degree multilinear maps.
However, no explicit constant was given in these works, and an analysis of these published works
shows that the degree requirement would be in excess of 30. The ultimate “dream” goal of this
line of work would be to reduce the degree requirement all the way to 2, allowing for the use
of well-studied bilinear maps, or barring that, to a low constant that may be supportable by
alternative secure low-degree multilinear map candidates. We make substantial progress toward
this goal by showing how to leverage PAFE for degree-5 arithmetic circuits to achieve iO, thus
yielding the first iO construction from degree-5 multilinear maps.

∗Affiliated with Center for Encrypted Functionalities and Department of Computer Science, UCLA. This work is
partially supported by grant #360584 from the Simons Foundation and the grants under Amit Sahai.
†Affiliated with Center for Encrypted Functionalities and Department of Computer Science, UCLA.Research

supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348,
1228984, 1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the
Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views
expressed are those of the author and do not reflect the official policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Technical Overview . 7
1.3 Organization . 14

2 Preliminaries 14
2.1 Indistinguishability Obfuscation (iO) . 14
2.2 Secret-Key Functional Encryption . 15
2.3 Exponentially-Efficient iO (XiO) . 16

3 Projective Arithmetic Functional Encryption 16
3.1 Definition . 16
3.2 Semi-Functional Security . 17
3.3 Other Notions . 19

4 (T,Φ)-Randomizing Polynomials 19
4.1 (T, φ)-Respecting Polynomials . 20
4.2 Definition of (T,Φ)-Randomizing Polynomials . 21
4.3 (T,Φ)-RP with Sub-linear Randomness: General Approach 23
4.4 Tools to Instantiate General Approach . 24
4.5 Instantiations: (T,Φ)-RP with Sub-linear Randomness 27

4.5.1 Via Randomizing Polynomials over F2 . 27
4.5.2 Via Randomizing Polynomials over Fp . 28
4.5.3 Ensuring Homogeneity . 32

5 iO from Constant Degree PAFE 33
5.1 Security . 35

6 Slotted Encodings 38
6.1 Structured (Asymmetric) Multilinear Maps . 39
6.2 Instantiations of Structured Multilinear Maps . 40
6.3 Definition . 41
6.4 Evaluation of Polynomials on Slotted Encodings 41
6.5 Implementation: Constant Degree Case . 42

7 Projective Arithmetic FE from Slotted Encodings 44
7.1 Construction . 44
7.2 Proof of Security . 45

7.2.1 Assumptions . 46

8 Justifying Assumptions in Ideal MMap Model 47
8.1 Ideal Multilinear Map Model . 47
8.2 Slotted Encodings: Proof in Ideal MMap Model 48

8.2.1 Slot Preservation Property in Ideal MMap Model 48
8.3 Security of Assumptions in Ideal Multilinear Map Model 51

A Implication of Sub-Linear FE to XiO 56

B Conversion of Polynomials: From F2 to Fp 58

2

1 Introduction

Functional encryption (FE), introduced by Sahai and Waters [SW05, SW08], allows for the
creation of secret keys skf corresponding to functions f , such that when such a secret key
skf is applied to an encryption of x, decryption yields f(x) but, intuitively speaking, nothing
more is revealed about x. In this work, we will focus on the secret-key variant of FE where
knowledge of the master secret key is needed to perform encryption. Functional encryption
has proven to be remarkably versatile: it captures as special cases efficient applications like
attribute-based encryption for formulas [GPSW06, BSW07] and predicate encryption for inner
products [KSW08] from bilinear maps. At the same time, the general notion of functional
encryption implies remarkably powerful primitives, including most notably indistinguishability
obfuscation (iO) [AJ15, BV15, AJS15, BNPW16].

In this work, we continue the study of functional encryption notions, constructions, and im-
plications. As a byproduct of our study, we tackle the one of the most pressing open problems
in theoretical cryptography: building secure iO from simpler building blocks. In particular, we
give the first construction of iO using only degree-5 multilinear maps.

FE in the arithmetic context. For a number of cryptographic objects that deal with gen-
eral computations, arithmetic circuits have been considered in addition to boolean circuits.
The primary motivation for this arises when we wish to apply these objects to cryptographic
computations, since many cryptographic computations can be better expressed as arithmetic
circuits rather than boolean circuits. For example, zero-knowledge proofs [GMR89] for arith-
metic circuits (e.g. [GS08] in the bilinear setting) have been influential because they allow for the
construction of zero-knowledge protocols whose structure and complexity more closely match
the structure and complexity of algebraic cryptographic algorithms.

In a similar spirit, we study general FE in the context where secret keys should correspond
to arithmetic circuits. Notably however, our motivation will not (primarily) be efficiency, but
rather achieving new feasibility results, as we will elaborate below.

Previous work has studied FE for arithmetic circuits in two special cases: The work of Boneh
et al. [BNS13, BGG+14] studied attribute-based encryption for arithmetic circuits from the LWE
assumption. (Our work will diverge technically from this.) Another line of work started with
the work of Katz, Sahai, and Waters [KSW08], studying FE where secret keys corresponded to
arithmetic inner product computations, using bilinear groups as the underlying cryptographic
tool. There has been several followup papers on FE for inner products [ABCP15, AAB+15,
BJK15, ABCP16, DDM16, LV16] with various security notions and correctness properties. An
issue that will be important to us, and that arises already in the context of inner products,
concerns the correctness property of the FE scheme. Ideally, a secret key for an arithmetic circuit
C, when applied to an encryption of x, should allow the decryptor to learn C(x). However,
FE constructions typically store values “in the exponent,” and thus the difficulty of discrete
logarithms in bilinear groups implies that if C(x) is superpolynomial, it will be difficult to
recover. This issue has been dealt with in the past either by requiring that decryption only
reveals whether C(x) = 0, as in [KSW08], or by requiring that decryption only reveals C(x)
if C(x) is polynomially bounded, such as in the works of Abdalla et al. and others [ABCP15,
BJK15, ABCP16, DDM16]. We will diverge from past work when dealing with this issue, in
order to provide greater flexibility, and in so doing, we introduce our notion of projective1

1We call our notion projective FE because, roughly speaking, a user holding a collection of keys {skC}C for
several arithmetic circuits C can only learn information about various linear projections

∑
C αCC(x) for known

small coefficients {αC}C . We discuss this in more detail below. Our name is also loosely inspired by the notion of
projective hash functions, introduced by Cramer and Shoup [CS02], where keys (called projective keys) only allow
one to evaluate the hash function on inputs x in some NP language, but not on all strings. In our setting, as well,
our keys are similarly only “partially functional” in that they only allow the user to learn information about various

3

arithmetic FE.

1.1 Our Contributions

Projective Arithmetic FE (PAFE). In projective arithmetic FE, like in FE, encrypting a
value x yields a ciphertext c. Also like in (arithmetic) FE, in PAFE each secret key skC is
associated with an arithmetic circuit2 C. However, unlike in FE, in PAFE when the secret key
skC is applied to the ciphertext c, it does not directly yield the decrypted value C(x), but rather
this yields a partial decryption pC . We call this process projective decryption. We envision a
party holding a collection of secret keys {skC}C would apply projective decryption using these
secret keys to the ciphertext c to obtain a collection of partial decryptions {pC}C . Finally, this
party can choose any collection of small coefficients {αC}C arbitrarily, and then call a different
efficient recovery algorithm which is given all the partial decryptions {pC}C and coefficients
{αC}C . The recovery algorithm then outputs a bit that indicates whether

∑
C αCC(x) = 0 or

not. (More generally, we can allow the user to recover the value of
∑
C αCC(x) as long as it is

bounded by a polynomial.)
Thus, projective arithmetic FE can be seen as relaxing the correctness guarantee that would

be provided by the standard notion of FE when applied to arithmetic circuits over fields of
superpolynomial size (which is not known to be achievable). Of course, if decryption actually
allowed a user to learn {C(x)}C for several arithmetic circuits C, then the user would be able
to compute

∑
C αCC(x) for any set of small coefficients {αC}C of her choice. Note that our

notion is more permissive than only revealing whether C(x) = 0, as in the original work for
FE for inner products [KSW08], or only revealing C(x) if it is polynomially bounded, such as
in other works on FE for inner products [ABCP15, BJK15, ABCP16, DDM16]. With regard
to security, our notion will, intuitively speaking, only require indistinguishability of encryptions
of x from encryptions of y, if C(x) = C(y) for all secret keys skC obtained by the adversary.
However, for our application of PAFE to iO, we require a stronger notion of security that we
call semi-functional security. We give an intuitive explanation of this notion in the technical
overview.

Degree-preserving construction of PAFE from multilinear maps. The first main tech-
nical contribution of our work is a construction of (secret-key) PAFE for degree-d arithmetic
circuits, from degree-d asymmetric multilinear maps3. Furthermore, it suffices that the groups
over which the multilinear maps are defined are prime order. Our construction is based on an
explicit pair of assumptions over such multilinear maps, that we can justify in the standard
generic multilinear model.

Theorem 1 (Informal). There exists secret-key PAFE for degree-d arithmetic circuits from
degree-d prime order asymmetric multilinear maps under Assumptions #1 and #2 (see Sec-
tion 7.2.1).

Our assumptions do not require any low-level encodings of 0 to be given to the adversary, and
we thus believe them to be instantiable using existing candidate multilinear maps. Indeed,
because of some pseudorandomness properties of our construction and generic proof of security,
we believe that our assumptions can be proven secure in the Weak MMap model considered in
the works of Miles et al. and Garg et al. [MSZ16, GMM+16], which would give further evidence
of its instantiability. Because we want to posit instantiable assumptions, we do not formulate

linear projections, and they do not in general reveal the full information that should be learned by obtaining all C(x)
values. However, to the best of our knowledge, only this loose relationship exists between projective hash functions
and our notion of projective FE.

2We only are interested in arithmetic circuits of fan-in 2.
3Roughly speaking, asymmetric multilinear maps disallows pairing of elements from the same group structure.

4

a succinct version of our assumption together with a reduction of security as was done in the
works of Gentry et al. or Lin and Vaikuntanathan [GLSW15, LV16], because unfortunately no
existing candidate multilinear map construction is known to securely support such reductions,
and indeed the assumptions of [GLSW15, LV16] are broken when instantiated with existing
candidates. We stress that, like in the recent work of [Lin16, LV16], if the degree d is constant,
then our pair of assumptions would only involve a constant-degree multilinear map.

Our construction can be seen as a generalizing FE for inner products (degree 2 functions)
from bilinear maps, to higher degrees in a degree preserving manner. Thus, our construction
can be applied to cryptographic computations that are naturally represented as arithmetic func-
tions of low degree, but not as inner products. In more detail, we introduce the notion of slotted
encodings that has the same flavor of multilinear maps defined over composite order groups.
We then show how to emulate slotted encodings using prime-order multilinear maps. However,
this emulation strategy only works in the case of constant degree. We hope that this technique
will be useful to transform constructions based on constant degree composite order multilinear
maps (for example [Lin16]) to constructions based on constant degree prime order multilinear
maps.

iO from degree-5 multilinear maps. Our motivation for building PAFE for arithmetic
circuits in a degree-preserving manner is to achieve new feasibility results for iO from low-degree
multilinear maps. The concept of iO was first defined by Barak et al. [BGI+01]. Informally
speaking, iO converts a program (represented by a boolean circuit) into a “pseudo-canonical
form.” That is, for any two equivalent programs P0, P1 of the same size, we require that
iO(P0) is computationally indistinguishable from iO(P1). The first candidate construction of
iO was given by Garg et al. [GGH+13b], and especially since the introduction of punctured
programming techniques of Sahai and Waters [SW14], iO has found numerous applications,
with numerous papers published since 2013 that use iO to accomplish cryptographic tasks
that were not known to be feasible before (see, e.g., [GGH+13b, SW14, GGHR14, HSW14,
GGG+14, BPR15, BP15, CHN+16, BGJ+16]). However, it is still not known how to build iO
from standard cryptographic assumptions. Given the enormous applicability of iO to a wide
variety of cryptographic problems, one of the most pressing open problems in the foundations of
cryptography is to find ways to construct iO from simpler building blocks. Indeed, while there
have been dozens of papers published showing how to use iO to accomplish amazing things, only
a handful of papers have explored simpler building blocks that suffice for constructing iO.

One line of work toward this objective is by Lin [Lin16] and Lin and Vaikuntanathan [LV16],
who showed how to build iO from constant-degree multilinear maps. Unfortunately, no explicit
constant was given in these works, and an analysis of these published works shows that the
degree requirement would be in excess of 100. The ultimate “dream” goal of this line of work
would be to reduce the degree requirement all the way to 2, allowing for the use of well-studied
bilinear maps, or barring that, to a low constant that may be supportable by alternative secure
low-degree multilinear map candidates.

We make substantial progress toward this goal by showing how to achieve iO starting from
PAFE. Specifically, we first construct ε-sublinear secret key functional encryption for NC1 cir-
cuits, with constant ε < 1, starting from PAFE4 for degree-d arithmetic circuits and a specific
type of degree d-randomizing polynomials [IK00, AIK06]5. We require that the randomiz-
ing polynomials satisfy some additional properties such as the encoding polynomials should
be homogenous, the randomness complexity6 is ε-sub-linear in the circuit size and the decod-

4We additionally require that PAFE has encryption complexity to be multiplicative overhead in the message size.
Our construction of PAFE satisfies this property.

5The degree of a randomizing polynomial is defined to be the maximum degree of the polynomials computing the
encoding function.

6Randomness complexity in this context refers to the size of the random string used in the encoding algorithm.

5

ing algorithm should be executed as a sequence of linear functions. We call a scheme that
satisfies these additional properties as homogenous randomizing polynomials with ε-sub-linear
randomness complexity. As we will see later, we can achieve ε-sub-linear randomness complex-
ity property for free by employing an appropriate pseudorandom generator of 1

ε′ -stretch, where
constant ε′ > 1 is related to ε. Hence, we only care about constructing homogenous randomizing
polynomials (without sublinear property) and we provide an information theoretic construction
achieving the same.

Once we construct ε-sublinear secret key functional encryption, we can then invoke the result
of [BNPW16] and additionally assume learning with errors to obtain iO. For this transformation,
we are required to assume that the underlying FE scheme and learning with errors is sub-
exponentially secure. Thus,

Theorem 2 (Informal). We construct an indistinguishability obfuscation scheme for P/poly
assuming the following: for some constant d,

1. Sub-exponentially secure PAFE scheme for degree d arithmetic circuits with multiplicative
overhead in encryption complexity. From Theorem 1, this can be based on sub-exponentially
secure Assumptions #1 and #2 (Section 7.2.1).

2. Sub-exponentially secure degree d homogenous randomizing polynomials with ε-sub-linear
randomness complexity. This can be based on sub-exponentially secure pseudorandom gen-
erators of stretch 1

ε′ , where constant ε′ > 1 is related to ε.

3. Sub-exponentially secure learning with errors.

Instantiation: We show how to leverage PAFE for degree-5 arithmetic circuits to achieve iO,
thus yielding the first iO construction from degree-5 multilinear maps. The crucial step in
this transformation is to first construct homogenous randomizing polynomials with sub-linear
randomness complexity of degree 15. We first identify that the work of [AIK06] satisfies the
required properties of a degree-3 homogenous randomizing polynomials scheme. To achieve sub-
linear randomness complexity, we assume an explicit degree-2 pseudo-random generator (PRGs)
achieving super-linear stretch in the boolean setting, and a related explicit degree-3 PRG achiev-
ing super-quadratic stretch in the arithmetic setting. In particular we use a boolean PRG of
stretch 1.49 and an algebraic PRG of stretch 2.49 [OW14] (see also [AL16]). We then observe
that for a special class of circuits C, the degree of the above polynomials can be reduced to 5
if we additionally allow for pre-processing of randomness. Also, we show how to remove the
algebraic PRG part in the construction of randomizing polynomials for C.

As alluded to above, the fact that our PAFE can directly deal with an arithmetic PRG in a
degree-preserving manner is critical to allowing us to achieve iO with just degree-5 mutlilinear
maps.

Theorem 3 (Informal). We construct an indistinguishability obfuscation scheme for P/poly
assuming the following: for some constant d,

1. Sub-exponentially secure PAFE scheme for degree 5 arithmetic circuits with multiplicative
overhead in encryption complexity. From Theorem 1, this can be based on sub-exponentially
secure Assumptions #1 and #2 (Section 7.2.1).

2. Sub-exponentially secure degree 5 homogenous randomizing polynomials for C with ε-sub-
linear randomness complexity. This can be based on sub-exponentially secure boolean PRG
of stretch 1.01 (see Section 4.4).

3. Sub-exponentially secure learning with errors.

Concurrent Work. In a concurrent work7, Lin obtains a new IO construction with a secu-
rity reduction to 1) L-linear maps with the subexponential symmetric external Diffie-Hellman

7We have engaged in several amicable exchanges with Lin about our respective results over the few weeks preceding

6

(SXDH) assumption, 2) subexponentially secure locality-L PRG, and 3) subexponential LWE.
When using a locality 5 PRG, 5-linear maps with the SXDH assumption suffice. The L-linear
maps consist of L source groups G1, · · · , GL, whose elements ga11 , · · · , gaLL can be ”paired” to-
gether to yield an element in a target group ga1···aLT . The SXDH assumption on such multilinear
maps is a natural generalization of the SXDH assumption on bilinear maps: It postulates that
the DDH assumption holds in every source group Gd, that is, elements gad , g

b
d, g

ab
d are indistin-

guishable from gad , g
b
d, g

r
d, for random a, b and r.

To obtain IO, she first constructs collusion-resistant FE schemes for computing degree-L
polynomials from L-linear maps, and then bootstraps such FE schemes to IO for P, assuming
subexponentially secure locality-L PRG and LWE.

We now give a technical overview of our approach.

1.2 Technical Overview

We give an informal description of the algorithms of projective arithmetic functional encryption
(PAFE). We focus on secret-key setting in this work.

• Setup: It outputs secret key MSK.

• Key Generation: On input an arithmetic circuit C and master secret key, it produces a
functional key skC .

• Encryption: On input message x, it outputs a ciphertext CT.

• Projective Decryption: On input a functional key skC and ciphertext CT, it produces
a partial decrypted value ι.

• Recover: On input many partial decrypted values {ιi} and a linear function (specified as
co-efficients), it outputs the result of applying the linear function on the values contained
in {ιi}.

We first show how to achieve iO starting from secret-key PAFE. Later, we show how to obtain
PAFE for degree D polynomials starting from degree D multilinear maps.

iO from Secret-Key PAFE: We start with the goal of constructing a sub-linear secret-key
FE scheme for NC1 starting from PAFE for constant degree arithmetic circuits. Our goal is to
minimize the degree of arithmetic circuits that suffices us to achieve sub-linear FE.

We start with the standard tool of randomizing polynomials to implement NC1 using a
constant degree arithmetic circuit. We use randomizing polynomials with a special decoder: the
decoder is a sequence of linear functions chosen adaptively 8. At a high level the construction
proceeds as follows: let the randomizing polynomial of circuit C, input x and randomness r be
of the form p1(x; r), . . . , pN (x; r). The sub-linear FE functional key corresponding to a circuit C
are a collection of PAFE keys for p1, . . . , pN . The encryption of x w.r.t sublinear FE scheme is
a PAFE encryption of (x, r). To obtain C(x), first execute the projective decryption algorithm
on key of pi and ciphertext of (x, r) to obtain partial decrypted values corresponding to pi(x, r).

the initial posting of our papers. During this time, with regard to the minimum level of multilinearity needed for
constructing iO, certain milestones were reached at different times. In particular, our group had the first paper
claiming iO from degree-15 maps. After that, Lin had the first paper claiming iO from degree-5 maps, and thereafter
our group was able to modify our paper to claim iO from degree-5 maps (this work). Both groups independently
relied on PRGs of locality 5 to achieve these results, and the common bottleneck at degree 5 reflects this. Prior to
posting, however, the groups did not exchange any manuscripts, and worked independently. There are several other
differences in our results, most notably with regard to the assumptions. In addition, the techniques are substantially
different.

8That is, choice of every linear function could depend on the output of the previously chosen linear functions on
the encoding of computation.

7

Now, execute the recover algorithm on input a linear function and the above partial decrypted
values, where the linear function is chosen by the decoder of the randomizing polynomials
scheme. Depending on the output of the recover algorithm, the decoder picks a new linear
function. This process is repeated until we finally recover the output of the circuit C.

Before we justify why this scheme is secure, we remark as to why this scheme satisfies the
sub-linear efficiency property. In order to achieve sub-linear efficiency, we require that |r| =
|C|1−ε for some ε > 0. Thus, we require randomizing polynomials with sub-linear randomness
complexity. We remark later how to achieve this.

The next goal is to argue security: prior works either employ function privacy proper-
ties [BS15] or Trojan techniques [CIJ+13, ABSV15] to make the above approach work. How-
ever, going through these routes is going to increase the degree of arithmetic circuits required to
achieve sub-linear FE. Instead, we start with a PAFE scheme with a stronger security guarantee
called semi-functional security. This notion is inspired by the dual system methodology intro-
duced by Waters [Wat09] in different context and later employed by several other works (see for
example, [LOS+10, GGHZ14]). Associated with this notion, there are two types of objects:

• Semi-Functional Keys: A semi-functional key is associated with an arithmetic circuit C
and a hardwired value v.

• Semi-Functional Ciphertexts: A semi-functional ciphertext is generated just using the
master secret key.

We define how honestly generated keys, honestly generated ciphertexts and semi-functional keys,
semi-functional ciphertexts are required to behave with each other in Table 1. Honestly gener-
ated key or ciphertext refers to generation of key or ciphertext according to the description of
the scheme.

Honestly
Generated
Keys

Semi-
Functional
Keys

Honestly
Generated
Ciphertexts

Honest
decryption

Honest
decryption

Semi-
Functional
Ciphertexts

Not Defined Output
Hardwired
Value

Table 1: We consider four possibilities of decryption: (a) honestly generated keys correctly decrypts honestly

generated ciphertexts (from correctness property), (b) semi-functional keys also correctly decrypts honestly

generated ciphertexts, (c) there is no correctness guarantee on the decryption of honestly generated keys on

semi-functional ciphertexts, (d) Finally, the decryption of semi-functional keys on semi-functional ciphertexts

yields the hardwired value associated with the key.

A PAFE scheme is said to satisfy semi-functional security if both the following definitions are
satisfied:

• Indistinguishability of Semi-functional keys: It should be hard to distinguish an honestly
generated functional key of C from a semi-functional key of C associated with any hard-
wired value v.

• Indistinguishability of Semi-functional Ciphertexts: It should be hard to distinguish an
honestly generated ciphertext of x from a semi-functional ciphertext if every functional
key of C issued is a semi-functional key associated with hardwired value C(x).

8

Once we have a secret key PAFE scheme that satisfies semi-functional security then we can
prove the security as follows: we consider a simple case when the adversary only submits one
message query (x0, x1).

• We first turn the functional key associated with an arithmetic circuit C into a semi-
functional key with the hardwired value C(x0).

• Once all the functional keys are semi-functional, we can now switch the ciphertext of x0

to semi-functional ciphertext.

• Since C(x0) = C(x1), we can switch back the semi-functional keys to be honestly generated
functional keys.

• Finally, we switch back the ciphertext from semi-functional to honestly generated cipher-
text of x1.

If the adversary requests multiple message queries, then the above process is to be repeated one
message query at a time.

Choice of Randomizing Polynomials with Sub-linear Randomness: The next question
is what randomizing polynomials do we choose to instantiate the above approach. As we will see
later, if we choose randomizing polynomials with sub-linear randomness complexity of degree
D then it suffices build PAFE from degree D multilinear maps. Also, we will require the
polynomials to be homogenous.

Hence, our goal is to choose a homogenous randomizing polynomials with minimal degree
and also satisfying (i) linear decodability and (ii) sub-linear randomness complexity properties.
We achieve this in the following steps:

1. First, build randomizing polynomials with minimal degree. We start with [AIK06] for
NC1, where the polynomials are of degree 3. In spirit, this is essentially information
theoretic Yao with the wire keys being elements over Fp and every wire key is associated
with a random mask (which is represented as a bit) that helps in figuring out which of the
four entries to be decoded for the next gate.

2. The above scheme already satisfies linear decodability property. This is because the de-
cryption of every garbled gate is a linear operation. The linear function chosen to decrypt
one garbled gate now depends on the linear functions chosen to decrypt its children gates.

3. Next, we tackle sub-linear randomness complexity: we generate the wire keys and the
random masks as the output of a PRG. The total length of all the wire keys is roughly
square the size of the NC1 circuit. This is because, the size of the wire keys at the bottom
most (input) layer are proportional to the size of the circuit. We use an algebraic PRG of
stretch (2+ε) to generate the wire keys and we use a boolean PRG to generate the random
masks. The degree of the algebraic PRG over Fp is 3 while the degree of the boolean
PRG represented over Fp is 5. When the above PRGs are plugged into the randomizing
polynomials construction from the above step, we get the degree of the polynomials to be
15.

4. Finally, we show how to make the above randomizing polynomials homogenous. This is
done using a standard homogenization argument: add dummy variables to the polynomials
such that the degree of all the terms in the polynomials are the same. While evaluating
these polynomials, set all these dummy variables to 1. This retains the functionality and
at the same time ensures homogeneity.

We can now use the above randomizing polynomials scheme to instantiate the above approach.
After partial decryption, we get partial decrypted values associated with {pi(x; r)}. Now, since
the decoding is composed of many linear functions, we can execute the Recover algorithm (mul-
tiple times) to recover the output.

9

Reducing the Degree: We can apply some preprocessing to reduce the degree of the above
polynomials further. We remark how to reduce the degree to 5. Later, in the technical sections,
we explore alternate ways of reducing the degree, as well.

Suppose we intend to construct sublinear FE for a specific class of circuits C. In this case,
we are required to construct randomizing polynomials only for C ∈ NC1.

We define C as follows: every circuit C ∈ C of output length N is of the form C =
(C1, . . . , CN), where (i) Ci outputs the ith output bit of C, (ii) |Ci| = poly(λ) for a fixed
polynomial poly, (iii) Depth of Ci is c · log(λ), where c is a constant independent of |C| and,
(iv) Ci for every i ∈ [N] has the same topology – what is different, however, are the constants
associated with the wires. We show later that it suffices to build sublinear FE for C to obtain
iO. We now focus on obtain randomizing polynomials for C.

We start with the randomizing polynomials scheme that we described above. Recall that it
involved generating a garbled table for every gate in the circuit C. Moreover, the randomness
to generate this garbled table is derived from an algebraic and a boolean PRG. We make the
following useful changes: let C = (C1, . . . , CN) such that Ci outputs the ith output bit of C.
Let wi1, . . . , w

i
nw be the set of wires in Ci and Gi1, . . . , G

i
ng be the set of gates in Ci.

• We invoke nw number of instantiations of boolean PRGs bPRGw1 , . . . , bPRG
w
nw and bPRGr1,

. . . , bPRGrnw. All these PRGs have the same structure (i.e., same predicates is used) and
have degree 5 over arbitrary field (with slightly superlinear stretch 1+ε). Pseudorandom
generator bPRGwj is used to generate wire keys for wires w1

j , . . . , w
N
j . Recall that earlier

we were using an algebraic PRG of quadratic stretch. This is because the size of wire keys
was proportional to exponential in depth, which could potentially be linear in the size of
the circuit. However, since we are considering the specific circuit class C, the depth of
every circuit is c log(λ). And thus the size of the wire keys is independent of the security
parameter. This is turn allows us to use just a PRG of superlinear stretch 1+ε. Finally,
bPRGrj is used to generate random masks for the wires w1

j , . . . , w
N
j .

• We now consider the [AIK06] randomizing polynomials associated with circuit C. As
before, we substitute the variables associated with wire keys and random masks with the
polynomials associated with the appropriate PRGs. The formal variables in the PRG
polynomials are associated with the seed.

• The result of the above process is the encoding of C consisting of polynomials p1, . . . , pN
with variables associated with the seeds of PRGs. Note that the degree of these polynomials
is still 15.

• We then observe that there are polynomials q1, . . . , qT in seed variables such that p1, . . . , pN
can be rewritten in terms of q1, . . . , qT and moreover, the degree of pi in the new variables
{qi} is 5. The advantage of doing this is that the polynomials {qi} can be evaluated during
the encryption phase9. The only thing we need to be wary of is the fact that T could be
as big as |C|. If this is the case then the encryption complexity would be at least linear
in |C|, which violate the sublinearity of the FE scheme. We show how to carefully pick
q1, . . . , qT such that T is sub-linear in |C| and the above properties hold. We refer the
reader to the technical sections for more details.

The only missing piece here is to show that sublinear FE for this special class of circuits C with
sub-exponential security loss implies iO. To show this, it suffices to show that sublinear FE for
C implies sublinear FE for all circuits. Consider the transformation from FE for NC1 to FE for
all circuits by [ABSV15] – the same transformation also works for single-key sublinear secret
key FE. We consider a variant of their transformation. In this transformation, a sublinear FE

9This idea is similar in spirit to the recent work of Bitansky et al. [BLP16], who introduced degree reduction
techniques in a different context.

10

key for circuit C ′ is generated by constructing a circuit C that has hardwired into it C ′ and
value v. Circuit C takes as input x, PRF key K and mode b. If b = 0 it outputs a Yao’s garbled
circuit of (C, x) computed w.r.t randomness derived from K. If b = 1 it outputs the value v.
We can re-write C as being composed of sub-circuits C1, . . . , CN such that each of Ci is in NC1,
|Ci| = poly(λ) and depth of Ci is c · log(λ) for a fixed polynomial poly and fixed constant c.
Intuitively, Ci, has hardwired into it gate Gi of C ′ and ith block of v. It computes a garbled
table corresponding to Gi if b = 0, otherwise it outputs the ith block of v.

Constructing PAFE: We now focus on building PAFE from multilinear maps. The first
attempt to encrypt the input x = (x1, . . . , x`inp) would be to just encode every xi separately.
Now, during evaluation of circuits C1, . . . , CN on these encodings will yield a top level encoding
of Ci(x). This homomorphic evaluation would correspond to projective decryption operation.
The recover algorithm would just compute a linear function on all the top level encodings of
Ci(x) and using zero test parameters, recover the answer if the output of the linear function is
0.

However, we cannot allow the adversary to evaluate recover outputs for circuits Ci of his
choice. We should ensure that he recovers outputs only for circuits corresponding to which
he has been issued functional keys. The main challenge in designing a functional key for C
is to guarantee authenticity – how do we ensure that if the adversary, given a functional key
corresponding to C, can only evaluate C on these inputs? To ensure this, we introduce a parallel
branch of computation: we instead encode (xi, αi) where {αi} are random elements determined
during the setup. Then as part of the functional key associated with C, we give out an encoding
of C({αi}) at the top level that will allow us to cancel the αi part after computing C on
encodings of {(xi, αi)} and in the end, just get an encoding of C(x). However, to implement
this, we need to make sure that the computation of C on {xi} and {αi} are done separately
even though xi and αi are encoded together.

The work of [Zim15, AB15] used the above idea in the context of designing iO. As we will
discuss below, we extend their techniques in several ways, to deal with the problem of mixing
ciphertext components and achieving the semi-functional security properties we need from our
PAFE scheme. However, before we discuss these difficulties, we note that the work of [Zim15,
AB15] implement parallel branches by using composite order multilinear maps. Composite
order multilinear maps allow for jointly encoding for a vector of elements such that addition
and multiplication operations can be homomorphically performed on every component of the
vector separately.

However, one of the primary motivations for this line of work on building constructions for iO
from low-degree multilinear maps is to enable the use of future candidate low-degree multilinear
maps, where achieving composite order may not be possible. Indeed, current instantiations of
composite order multlinear maps [CLT13] have poorly understood security properties, and have
been subject to efficient cryptanalytic attacks in some settings (see, e.g., [CHL+15, CGH+15]).
Thus, instead of relying on composite order multilinear maps, we do the following: we introduce
a primitive called a slotted encoding scheme, that allows for the same functionality as offered by
composite order multilinear maps. This then helps us in implementing the idea of [Zim15, AB15]
using a slotted encoding scheme. We later show how to realize a constant degree slotted encod-
ing scheme using prime order multilinear maps. We define slotted encodings next.

Slotted Encoding: A slotted encoding scheme, parameterized by L (number of slots), has
the following algorithms: (i) Setup: this generates the secret parameters, (ii) Encode: it takes
as input (a1, . . . , aL) and outputs an encoding of it, (iii) Arithmetic operations: it takes two
encodings of (a1, . . . , aL) and (b1, . . . , bL) and performs arithmetic operations on every compo-
nent separately. For instance, addition of encoding of (a1, . . . , aL) and (b1, . . . , bL) would lead
to encoding of (a1 + b1, . . . , aL + bL), (iv) Zero Testing: It outputs success if the encoding of

11

(a1, . . . , aL) is such that ai = 0 for every i.
In this work, we will be interested in asymmetric slotted encodings, where the slotted en-

codings is associated with a tree T such that every encoding is associated with a node in T and
two encodings can be paired only if their associated nodes are siblings. The degree of slotted
encodings is defined to be the maximum degree of polynomials the scheme lets us evaluate.

Constant Degree Slotted Encoding From Prime Order MMaps: We start with the
simple case when degree of slotted encodings is 2 (the bilinear case). The idea of dual vector
spaces were introduced by [OT08] and further developed as relevant to us by [OT09, BJK15] to
address this problem for bilinear maps. In this framework, there is an algorithm that generates
2n vectors (µ1, . . . , µn), (ν1, . . . , νn) of dimension n such that: (i) inner product, 〈µi, νi〉 = 1 and,
(ii) inner product, 〈µi, νj〉 = 0 when i 6= j. Using this, we can encode (a1, . . . , an) associated
with some node u in the tree as follows: encode every element of the vector a1µ1 + · · ·+ anµn.
The encoding of (b1, . . . , bn) associated with a node v, which is a sibling of u, will be encodings
of the vector b1ν1 + · · ·+ bnνn. Now, computing inner product of both these encodings will lead
to an encoding of a1 · b1 + · · ·+ an · bn.

This idea doesn’t suffice for degree 3. So our idea is to work modularly, and consider
multiple layers of vectors. The encoding of (a1, . . . , an) under node u will be encodings of the
vector (a1µ1 ⊗ µ′1 + · · ·+ anµn ⊗ µ′n)10, where {µ′i} is a basis of a vector space associated with
the parent of node u. Now, when this is combined with encoding of b1ν1 + · · ·+ bnνn, computed
under node v, we get encoding of (a1b1µ

′
1 + · · · anbnµ′n). Using this we can then continue for

one more level.
To generalize this for higher degrees we require tensoring of multiple vectors (potentially as

many as the depth of the tree). This means that the size of the encodings at the lower levels
is exponential in the depth and thus, we can only handle constant depth trees. Implementing
our tensoring idea for multiple levels is fairly technical, and we refer the reader to the relevant
technical section for more details.

PAFE from Slotted Encodings: Using slotted encodings, we make a next attempt in con-
structing PAFE:

• To encrypt x = (x1, . . . , x`inp), we compute a slotted encoding of (xi, αi), where αi are
sampled uniformly at random during the setup phase.

• A functional key of C consists of a slotted encoding of (0, C({αi})) at the top level.

The partial decryption first homomorphically evaluates C on slotted encodings of (xi, αi) to
get a slotted encoding of (C({xi}), C({αi})). The second slot can be ‘canceled’ using top level
encoding of (0, C({αi})) to get an encoding of (C({xi}), 0). The hope is that if the evaluator
uses a different circuit C ′ then the second slot will not get canceled and hence, he would be
unable to get a zero encoding.

However, choosing a different C ′ is not the only thing an adversary can do. He could also
mix encodings from different ciphertexts and try to compute C on it – the above approach
does not prevent such attacks. In order to handle this, we need to ensure that the evaluation
of ciphertexts can never be mixed. In order to solve this problem, we use a mask γ that be
independently sampled for every ciphertext. Every encoding will now be associated with this
mask. Implementing this idea will crucially make use of the fact that the polynomial computed
by the arithmetic circuit is a homogenous polynomial.

Yet another problem arises is in the security proof: for example, to design semi-functional
keys, we need to hardwire a value in the functional key. In order to enable this, we introduce
a third slot. With this new modification, we put forward a template of our construction. Our
actual construction involves more details which we skip to keep this section informal.

10Here, µi ⊗ µj denotes the tensoring of µi and µj .

12

• To encrypt x = (x1, . . . , x`inp), we compute a slotted encoding of (xi, αi, 0), where αi are
sampled uniformly at random during the setup phase. Additionally, you give out encoding
of (0, S, 0) at one level lower than the top level, where S is also picked at random in the
setup phase.

• A functional key of C consists of a slotted encoding of (0, C({αi}) ·S−1, 0) at the top level.

The decryption proceeds as before, except that the encodings of (0, C({αi})·S−1, 0) and (0, S, 0)
are paired together before we proceed.

Note that in both the ciphertext and the functional key, the third slot is not used at all. The
third slot helps in the security proof. To see how we describe the semi-functional parameters at
a high level as follows:

- Semi-functional Ciphertexts: To encrypt x = (x1, . . . , x`inp), we compute a slotted encoding
of (0, αi, 0), where αi is computed as before. Additionally, you give out encoding of (0, S, 1)
at one level lower than the top level, where S is also picked at random in the setup phase.
Note that the third slot now contains 1 which signals that it is activated.

- Semi-functional Keys: A functional key of C consists of a slotted encoding of (0, C({αi}), v)
at the one level lower than top level, where v is the hardwired value associated with the
semi-functional key.

During the decryption of semi-functional key with honestly generated ciphertext, the third slot
will not be used since it will be deactivated in the ciphertext. So the decryption proceeds nor-
mally. However, during the decryption of semi-functional key with semi-functional ciphertexts,
the third slot is used since the third slot is activated in the ciphertext. We argue the security
of our construction in the ideal multilinear map model.

Comparison With [LV16]. We now compare our work with the recent exciting work
of [LV16], in order to illustrate some differences that allow us to achieve lower degree. The work
of [LV16] first defines FE for NC0 with a non-trivial efficiency property and give a new boot-
strapping theorem11 to achieve compact FE. They then show how to achieve FE for NC0 from
constant degree multilinear maps12. Interestingly, they use arithmetic randomizing polynomials
within their construction of FE for NC0 – this will be important as we note below.

In contrast, we do not build FE for NC0, but rather show how to proceed directly from
projective arithmetic FE for degree-5 arithmetic circuits to iO (without additional use of multi-
linear maps). Furthermore, our construction of PAFE is degree preserving, so to achieve PAFE
for degree-5 arithmetic circuits, we only need degree-5 multilinear maps. In contrast, in [LV16],
to build FE for NC0, their work has to “pay” in degree not only based on the depth of the NC0

circuit that underlies each secret key, but also for the arithmetic randomizing polynomial that
they apply to the NC0 circuit. This adds a significant overhead in the constant degree their
multilinear map must support. Our approach is simpler, as our randomizing polynomials are
only used in the path from PAFE to iO, which does not use multilinear maps in any additional
way. There are, of course, many other technical differences between our work and [LV16], as
well. Another conceptual idea that we introduce, and that is different from [LV16], is the notion
of slotted encodings, an abstraction of composite order multilinear maps, and our method for
emulating slotted encodings using prime order multilinear maps without increasing the degree.

11Their bootstrapping theorem also works if we start with FE for constant degree polynomials over F2.
12Note that, in particular, the security of their scheme reduces to a succinct assumption called the multilinear joint

SXDH assumption. As we noted earlier, unfortunately this assumption is not known to be instantiable with existing
multilinear map candidates. However, one can posit a different assumption that directly assumes their FE for NC0

scheme to be secure, and we do not know of any attacks on that (non-succinct) assumption.

13

1.3 Organization

1. We start with preliminaries in Section 2.

2. The concept of projective arithmetic functional encryption is defined in Section 3.

3. We then show how to construct iO starting from PAFE. To do that, we construct sublinear
secret key FE. This is done in two steps:

• First, we introduce the notion of (homogenous) (T,Φ)-randomizing polynomials in
Section 4. This will be a tool used in the construction of iO.

• Once this is done, we construct sublinear secret key FE from PAFE and homogenous
(T,Φ)-randomizing polynomials in Section 5.

4. Finally, we demonstrate how to construct PAFE from multilinear maps. This is accom-
plished in the following steps:

• We first define an abstraction of composite order multilinear maps, that we call slotted
encodings. This is done in Section 6. In the same section, we show how to implement
slotted encodings from prime order multilinear maps.

• We construct PAFE from slotted encodings in Section 7. The security of PAFE is
based on concrete assumptions on slotted encodings.

• Finally in Section 8, we show how to justify the assumptions on slotted encodings in
the ideal multilinear map model.

2 Preliminaries

We denote the security parameter by λ. Two distributions D1 and D2, defined on the same
sample space, are said to be computationally indistinguishable, denoted by D1

∼=c D2 if the
following holds: for any PPT adversary A and sufficiently large security parameter λ ∈ N,∣∣∣Pr[1← A(1λ, s1) : s1

$←− D1]− Pr[1← A(1λ, s2) : s2
$←− D2(1λ)]

∣∣∣ ≤ negl(λ),

where negl is some negligible function.

2.1 Indistinguishability Obfuscation (iO)

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+01],
guarantees that the obfuscation of two circuits are computationally indistinguishable as long
as they both are equivalent circuits, i.e., the output of both the circuits are the same on every
input. Formally,

Definition 1 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO
is called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of
circuits C of the form C : {0, 1}inp → {0, 1} with inp = inp(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}inp, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: for all sufficiently large λ ∈ N, for all pairs of
circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}inp and |C0| = |C1|,
we have: ∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

14

• Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that |iO(λ,C)| =
poly(λ,C).

2.2 Secret-Key Functional Encryption

A secret-key functional encryption (FE) scheme FE over a message space X = {Xλ}λ∈N and a
function space C = {Cλ}λ∈N is a tuple (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) of PPT algorithms
with the following properties:

• FE.Setup(1λ): The setup algorithm takes as input the unary representation of the security
parameter, and outputs a secret key FE.MSK.

• FE.KeyGen(FE.MSK, f): The key-generation algorithm takes as input the secret key FE.MSK
and a function f ∈ Cλ, and outputs a functional key FE.SKf .

• FE.Enc(FE.MSK, x): The encryption algorithm takes as input the secret key FE.MSK and
a message x ∈ Xλ, and outputs a ciphertext CT.

• FE.Dec(FE.SKf ,CT): The decryption algorithm takes as input a functional key FE.SKf
and a ciphertext CT, and outputs out.

In terms of correctness, we require that there exists a negligible function negl(·) such that for all
sufficiently large λ ∈ N, for every message x ∈ Xλ, and for every function f ∈ Cλ it holds that

FE.Dec (FE.KeyGen(FE.MSK, f), FE.Enc(FE.MSK, x)) = f(x)

with probability at least 1 − negl(λ), where FE.MSK ← FE.Setup(1λ), and the probability is
taken over the random choices of all algorithms.

Definition 2 (Security). A secret-key functional encryption scheme Π = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) over a function space C = {Cλ}λ∈N and a message space X = {Xλ}λ∈N is secure
if for any PPT adversary A there exists a negligible function negl(·) such that

AdvtgeFEΠ,A(λ) =
∣∣∣Pr[ExptFEΠ,A(λ, 0) = 1]− Pr[ExptFEΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEΠ,A(1λ, b),
modeled as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples FE.MSK← FE.Setup(1λ).

2. Message queries: On input 1λ the adversary submits ((x
(0)
1 , . . . , x

(0)
`x

), (x
(1)
1 , . . . , x

(1)
`x

)) for
some polynomial `x = `x(λ). The challenger replies with (CT1, . . . ,CT`x), where CTi ←
FE.Enc(FE.MSK, x

(b)
i) for every i ∈ [`x].

3. Function queries: The adversary queries the challenger with any function f ∈ Fλ such

that f(x
(0)
i) = f(x

(1)
i) for every i ∈ [`x]. The adversary makes `f such queries. For each

such query, the challenger replies with FE.skf ← FE.KeyGen(FE.MSK, f).

4. Output phase: The adversary outputs a bit b′ which is defined as the output of the
experiment.

t-overhead. An FE scheme is said to have t-overhead if the size of a functional key, associated
with function f , has size at most (|f | · λ)t. More formally,

Definition 3. Consider a constant t ∈ N. A FE scheme FE = (Setup,KeyGen,Enc,ProjectDec)
for a class of functions C is said to have t-overhead if |skf | ≤ (|f | · λ)t for every f ∈ C, where
(i) MSK← Setup(1λ) and, (ii) skf ← KeyGen(MSK, f).

15

Sublinear Secret Key FE. A secret key functional encryption scheme is said to be sub-
linear if the encryption complexity is sublinear in the complexity of the function family. More
formally,

Definition 4 ([BV15, AJ15]). Let p be a polynomial. A secret key FE scheme FE = (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec) for C is said to be sublinear if the running time of FE.Enc(FE.MSK,m)
is (`f)1−ε · p(λ, |m|) , where FE.MSK ← FE.Setup(1λ) and `f = max

C∈C|m|
{C} with C|m| consisting

of all circuits in C with inputs of length |m|.

2.3 Exponentially-Efficient iO (XiO)

We recall the definition of XiO introduced by the work of Lin, Pass, Seth and Telang [LPST16].

Exponentially-Efficient iO (XiO). XiO is an indistinguishability obfuscation with the
weaker efficiency requirement that dictates that the size of the obfuscated circuit should be
sublinear in the size of the truth table associated with the circuit.

Definition 5. (Exponentially-Efficient iO (XiO)) For a constant γ < 1, a machine XiO is
a γ-compressing exponentially-efficient indistinguishability obfuscator (XiO) for a circuit class
{Cλ}λ∈N if it satisfies the functionality and indistinguishability in Definition 1 and the following
efficiency requirements:

• Non-trivial efficiency: For every λ ∈ N, every C ∈ Cλ, we have that |iO(λ,C)| ≤
2nγpoly(λ,C), where n is the input length of C.

3 Projective Arithmetic Functional Encryption

In this section, we introduce the notion of projective arithmetic functional encryption scheme.
There are two main differences from a (standard) functional encryption scheme:

• Functional keys are associated with arithmetic circuits.

• The projective decryption algorithm only outputs partial decrypted values. There is a
recover algorithm that computes on the partial decrypted values and produces an output.

3.1 Definition

We can consider either a public key projective arithmetic FE scheme or a secret key projective
arithmetic secret key FE scheme. In this work, we define and construct a secret key projective
arithmetic FE scheme.

A secret-key projective arithmetic functional encryption (FE) scheme PAFE over field Fp is
associated with a message space X = {Xλ}λ∈N and a arithmetic circuit class C = {Cλ}λ∈N over
Fp. Here, X comprises of strings with every symbol in the string belongs to Fp.

PAFE comprises of a tuple (Setup,KeyGen,Enc,ProjectDec) of PPT algorithms with the fol-
lowing properties:

• Setup(1λ): The setup algorithm takes as input the unary representation of the security
parameter, and outputs a secret key MSK.

• KeyGen(MSK, C): The key-generation algorithm takes as input the secret key MSK and a
arithmetic circuit C ∈ Cλ, over Fp, and outputs a functional key skC .

• Enc(MSK, x): The encryption algorithm takes as input the secret key MSK and a message
x ∈ Xλ, and outputs a ciphertext CT.

16

• ProjectDec(skC ,CT): The projective decryption algorithm takes as input a functional key
skC and a ciphertext CT, and outputs a partial decrypted value ι.

• Recover(c1, ι1, . . . , c`f , ι`f): The recover algorithm takes as input co-efficients c1, . . . , c`f ∈
Fp, partial decrypted values ι1, . . . , ι`f and outputs out.

We first define the correctness property and later, define the security property.

B-Correctness. The correctness is parameterized by a set B ⊆ Fp. We emphasize that
B is a set of polynomial size, i.e., |B| = poly(λ). Consider an honestly generated ciphertext
CT of input x. Consider honestly generated keys skC1 , . . . , skC`f

. Denote the corresponding

decrypted values to be ι1, . . . , ι`f . If it holds that
∑`f
i=1 ci · Ci(x) = out∗ ∈ B then we require

that Recover(c1, ι1, . . . , c`f , ι`f), where ci ∈ Fp, always outputs out∗.

Remark 1. Our construction only supports the case when B = {0} when implemented by
multilinear maps that only allows for zero testing at the final level. However, if encodings of 1
are given out at the top level, then B can be defined to be the set {0, . . . ,poly(λ)}, where poly
is a fixed polynomial.

Remark 2 ((B,B′)-Correctness). We can also consider a property that we call (B,B′)-correctness.
It is the same as B-correctness except that the co-efficients ci input to the above evaluation al-
gorithm has to be in the set B′ ⊆ Fp.

Remark 3 (Alternate Notation of Evaluation). Instead of feeding coefficients to the evaluation
algorithm, we can directly feed in the description of the linear function. That is, if out∗ ←
Recover(f, (ι1, . . . , ι``f)) with f being a linear function then we require that f(C1(x), . . . , C``f) =
out∗, where ιi is obtained by decrypting a functional key of Ci with x.

Remark 4 (General Recover Functions). Here, we are considering recover algorithms that
compute a linear function on the outputs of the arithmetic circuits. This suffices for our work.
However, we can envision more general type of evaluation functions which compute an arbitrary
polynomial on the outputs of arithmetic circuits.

3.2 Semi-Functional Security

We introduce a notion of semi-functional security associated with projective arithmetic FE.
We refer the reader to the technical overview for an informal intuition behind the notion of
semi-functional security.

We define the following two auxiliary algorithms.

Semi-Functional Key Generation, sfKG(MSK, C, θ): On input master secret key MSK, arith-
metic circuit C, value θ, it outputs a semi-functional key skC .

Semi-Functional Encryption, sfEnc(MSK, 1`inp): On input master secret key MSK and `inp,
it outputs a semi-functional ciphertext CT.

We now introduce two security properties. We start with the first property, namely indistin-
guishability of semi-functional keys.

This property states that it should be hard for an efficient adversary to distinguish a semi-
functional key associated with circuit C and value v from an honestly generated key associated
with C. Additionally, the adversary can request for other semi-functional keys or honestly
generated keys. The ciphertexts will be honestly generated.

Definition 6 (Indistinguishability of Semi-Functional Keys). Consider a projective arithmetic
functional encryption scheme PAFE = (Setup,KeyGen,Enc,ProjectDec,Recover). We say that

17

PAFE satisfies indistinguishability of semi-functional keys with respect to sfKG if for any
PPT adversary A there exists a negligible function negl(·) such that

AdvtgePAFEA (λ) =
∣∣∣Pr[ExptPAFEA (λ, 0) = 1]− Pr[ExptPAFEA (λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptPAFEA (1λ, b),
modeled as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples MSK← Setup(1λ).

2. Message queries: On input 1λ the adversary submits (x1, . . . , x`x) for some polynomial
`x = `x(λ).

3. Function queries: The adversary also submits arithmetic circuit queries to the chal-
lenger. There are three tuples the adversary submits:

• This comprises of circuits and values associated with every circuit; (C0
1 , θ1, . . . , C

0
`f
, θ`f).

Here, θj ∈ Fp.

• This comprises of just circuits; (C1
1 , . . . , C

1
`′f

).

• This corresponds to a challenge circuit pair query (C∗, θ∗)

4. Challenger’s response: The challenger replies with (CT1, . . . ,CT`x), where CTi ←
Enc(MSK, xi) for every i ∈ [`x]. It also sends the following functional keys: for every
j ∈ [`f],

• skC0
j
← sfKG(MSK, C0

j , θj).

• skC1
j
← KeyGen(MSK, C1

j).

• If b = 0, generate skC∗ ← sfKG(MSK, C∗, θ∗). Otherwise generate skC∗ ← KeyGen(MSK,
C∗).

5. Output phase: The adversary outputs a bit b′ which is defined as the output of the
experiment.

The second property is indistinguishability of semi-functional ciphertexts. This property states
that it should be hard for an efficient adversary to distinguish honestly generated ciphertext of
x from a semi-functional ciphertext. In this experiment, it is required that the adversary only
gets semi-functional keys associated with circuits Ci and value vi such that vi = Ci(x).

Definition 7 (Indistinguishability of Semi-Functional Ciphertexts). Consider a projective arith-
metic functional encryption scheme PAFE = (Setup,KeyGen,Enc,ProjectDec,Recover). We say
that PAFE satisfies indistinguishability of semi-functional ciphertexts with respect to
sfEnc if for any PPT adversary A there exists a negligible function negl(·) such that

AdvtgePAFEA (λ) =
∣∣∣Pr[ExptPAFEA (λ, 0) = 1]− Pr[ExptPAFEA (λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the experiment ExptPAFEA (1λ, b),
modeled as a game between the adversary A and a challenger, is defined as follows:

1. Setup phase: The challenger samples MSK← Setup(1λ).

2. Message queries: On input 1λ the adversary submits (x1, . . . , x`x) for some polynomial
`x = `x(λ) and it also sends the challenge query x∗ .

3. Function queries: The adversary also submits arithmetic circuit queries to the chal-
lenger. The query is of the form (C1, θ1, . . . , C`f , θ`f). It should hold that θj = Cj(x

∗) for
every j ∈ [`f]. If it does not hold, the experiment is aborted.

18

4. Challenger’s response: The challenger replies with (CT1, . . . ,CT`x), where CTi ←
Enc(MSK, xi) for every i ∈ [`x]. It sends CT∗ ← Enc(MSK, x∗) only if b = 0, other-
wise it sends CT∗ ← sfEnc

(
MSK, 1|x

∗|). Finally, it sends the following functional keys:
for every j ∈ [`f], compute skCj

← sfKG(MSK, Cj , θj).

5. Output phase: The adversary outputs a bit b′ which is defined as the output of the
experiment.

Remark 5. One can also define a stronger property where instead of submitting one challenge
message x∗, the challenger submits a challenge message pair (x∗0, x

∗
1) and the requirement that

for every circuit Cj query, Cj(x
∗
0) = Cj(x

∗
1). The reduction, in response, encrypts x∗b where b

is the challenge bit. It can be seen that this stronger security property is implied by the above
property.

We now define semi-functional security property.

Definition 8. We say that a projective arithmetic FE scheme, over Fp, is said to be semi-
functionally secure if it satisfies both (i) indistinguishability of semi-functional keys property
and, (ii) indistinguishability of semi-functional ciphertexts property.

3.3 Other Notions

We also consider the following two notions of projective arithmetic FE.

Constant Degree Projective Arithmetic FE. In this work, we are interested in pro-
jective arithmetic FE for circuits that compute constant degree arithmetic circuits. In particular,
we consider constant degree arithmetic circuits over arbitrary field Fp.

Multiplicative Overhead in Encryption Complexity. We say that a projective
arithmetic FE scheme, over field Fp, satisfies multiplicative overhead in encryption complexity
property if the complexity of encrypting x is |x| · poly(λ, log(p)). That is,

Definition 9 (Multiplicative Overhead in Encryption Complexity). Consider a projective arith-
metic FE scheme PAFE = (Setup,KeyGen,Enc,ProjectDec), over field Fp. We say that PAFE
satisfies multiplicative overhead in encryption complexity if |Enc(MSK, x)| = |x| ·poly(λ, log(p)),
where MSK is the secret key generated during setup.

Circuits versus Polynomials. Often in this manuscript, we interchangeably use arith-
metic circuits over Fp with polynomials computed over Fp. If there is a polynomial p over Fp

having poly(λ) number of terms then there is a poly′(λ)-sized arithmetic circuit over Fp, where
poly and poly′ are polynomials. However, the reverse in general need not be true: if there is
a poly′(λ)-sized arithmetic circuit over Fp then the associated polynomial could have exponen-
tially many terms. For example: (x1 +x2) · · · (x2n−1 +x2n) has a succinct circuit representation
but when expanded as a polynomial has exponential number of terms.

In this work, we are only interested in arithmetic circuits which can be expressed as polyno-
mials efficiently. In particular, we consider arithmetic circuits of constant fan-in and constant
depth.

4 (T,Φ)-Randomizing Polynomials

In this section, we define the notion of (T,Φ)-randomizing polynomials. We start by defining

the notion of
(
T, ~φ

)
-respecting property for polynomials.

19

u1 u2 u3 u4

Figure 1: Tree T1

u1 u2

Figure 2: Tree T2

Example: Consider a polynomial ring of 10 variables x1, . . . , x10. A monomial t = x1x2x3x4 is
(T1, φ)-respecting, where φ(ui) = i. However, it is not respecting with respect to (T1, φ

′)-respecting,
where φ′(u1) = 5. Similarly, t is not (T2, φ)-respecting with respect to any φ.

4.1 (T, φ)-Respecting Polynomials

Consider a binary tree T and a set of maps ~φ = (φ1, . . . , φN) with φi : [V]→ [n]. We introduce

a property associated with n-variate polynomials, termed as (T, ~φ)-respecting. To do that, we
first introduce the (T, φ)-respecting property in the context of monomials. Once we do that, we

define a polynomial p over Fp to be (T, ~φ)-respecting if every monomial ti is (T, φi)-respecting,

where p =
∑N
i=1 ci · ti and ci ∈ Fp.

Definition 10 ((T, φ)-Respecting Monomials). Let T = (V,E) be a tree and let φ : [V] → [n].
We say that a monomial t ∈ Fp[y1, . . . , yn] is a (T, φ)-respecting monomial over Fp if it is a
monomial and is computed as follows:

1. If u is a leaf node then the monomial associated with u is tu = xφ(u).

2. If u is a non-leaf node and let v, w are children of u then tu = tv · tw.

3. If rt is the root of T then t = trt is the monomial associated with rt.

We are now ready to define (T, ~φ)-respecting polynomials. We also define the notion of homo-

geneity in this context. A polynomial is said to be (T, ~φ)-respecting homogenous polynomial if

firstly, it is (T, ~φ)-respecting and secondly, it is homogenous i.e., every monomial in the polyno-
mial has the same degree.

Definition 11 ((T, ~φ)-Respecting (Homogenous) Polynomials). Let T = (V,E) be a tree and let
−→
φ = (φ1, . . . , φN), where φi : [V] → [n]. A polynomial p ∈ Fp[y1, . . . , yn] is a (T, ~φ)-respecting
polynomial over Fp and is computed as

p =

N∑
i=1

citi

• ci ∈ Fp

• ti is a (T, φi)-respecting monomial.

Furthermore, we define p to be a homogenous polynomial if ti, for every i ∈ [N], has the same
degree.

Remark 6. For every polynomial p, there exists a tree T and a set of maps ~φ such that p
satisfies (T, ~φ)-respecting property.

Finally, we define the notion of degree of (T,Φ)-respecting polynomials.

Definition 12 (Degree). The degree of a (T,Φ)-respecting polynomial p ∈ Fp[y1, . . . , yn],
defined to be same as the degree of p, will be denoted by degp. We say that the degree of a
tuple of polynomials (p1, . . . , pN) is D if D = max{deg[p](p1), . . . ,deg[p](pN)}.

20

4.2 Definition of (T,Φ)-Randomizing Polynomials

We now define (T,Φ)-randomizing polynomials. We later show how to construct (T,Φ)-randomizing
polynomials with sub-linear randomness complexity.

The general approach is to combine existing randomizing polynomials with algebraic pseu-
dorandom generators to get the desired result. We later show how to instantiate this approach
by considering specific instantiations of randomizing polynomials and algebraic pseudorandom
generators. As a result, we get low degree (T,Φ)-randomizing polynomials with sub-linear ran-
domness complexity.

(T,Φ)-(Homogenous) Randomizing Polynomials. We first recall the definitions of
randomizing polynomials [IK00, AIK06].

Definition 13 (Randomizing Polynomials). A randomizing polynomials scheme RP = (E,D)
for a class of circuits C has the following syntax:

• Encoding, E(1λ, C, x): On input security parameter λ, circuit C, input x, it outputs an
encoding of C ∈ C and x, 〈(C, x)〉.

• Decoding, D(〈(C, x)〉): On input encoding of C and x, it output the decoded value α.

RP is required to satisfy the following properties:

• Correctness: For every security parameter λ ∈ N, circuit C and input x, C(x) = D(E(1λ, C,
x)).

• Efficiency: The typical efficiency we require is that the depth complexity of E should be
independent of size/ depth complexity of C.

• Security: For every PPT adversary A, for large enough security parameter λ ∈ N, circuit
C and input x, there exists a simulator Sim such that:{

E(1λ, C, x)
} ∼= {Sim(1λ, 1|C|, C(x))

}
The indistinguishability can either be computational, statistical or perfect.

We now give the definition of (T,Φ)-randomizing polynomials. Its a randomizing polynomials
scheme with two additional requirements: (i) the polynomials associated with the encoding
algorithm are (T,Φ)-respecting and, (ii) the decoding algorithm should be of a specific form – in
particular, it should be composed of many linear functions (computed adaptively). Furthermore,
we also consider the notion of (T,Φ)-homogenous randomizing polynomials: the polynomials in
the encode procedure are homogenous.

We define the special decoding property, namely composable linear decoding property, that
is necessary for our construction.

B-Composable Linear Decoding: We are interested in the following decoding property,
parameterized by a constant B ∈ Fp. Consider a circuit C and input x. Let L be a list such
that the ith element in L is 〈(C, x)〉i ∈ Fp, where 〈(C, x)〉i is the ith element in 〈(C, x)〉. The
decoding algorithm D proceeds as follows:

• The decoder has oracle access to elements in L. It proceeds in a sequence of T steps.

• In the ith step, it submits a linear function fi to L and in turn receives a value vi ∈
{0, . . . , B} which is the output of fi(L). If fi(L) /∈ {0, . . . , B} then oracle outputs ⊥.

• Let vT be the output of the oracle in the T th step.

The output of this process is vT . Such a decoder will be called B-composable linear decoder.

21

Example: Information theoretic Yao’s garbling schemes [IK02] for NC1 circuits is an example
of a randomizing polynomial scheme which has a composable linear decoder. This is similar to
Yao’s garbling schemes [Yao86, BHR12] except that the encryption used in the garbled table
is a one-time encryption. This means that the length of the keys used in every layer grows
exponentially from the output gate to the input layer.

At a high level, the randomizing polynomial of a circuit C and input x consists of the
following: (i) for every gate G in C, garbled table with four entries, one for each entry of
the truth table of the gate, (ii) wire keys corresponding to the input x. Every entry in the
garbled table is a double one-time encryption of the appropriate output wire key appended with
a suitable fixed mask (to indicate the successful decryption) of length λ. The two keys used to
perform the double encryption are the appropriate input wire keys of the ith gate. For every
output gate, the wire keys K0

w and K1
w are set to all zeroes and all ones respectively.

The decoding algorithm roughly proceeds as follows: to decode the ith gate, it first has to
decode its children gates (these are the gates whose output wires are fed to the ith gate). Once
it obtains the input wire keys of ith gate, it tries to decrypt all the entries of the table. This
decryption is a linear operation since we are using a one time encryption. The decryption is
successful for one of the entries in the table – the decryption is successful if the decoder recovers
a fixed mask. We set the fixed mask to be all zeroes string.

This scheme has a B-composable linear decoder for B = {0}. This can be seen as follows: the
linear function submitted to the oracle corresponding to the ith gate is used to indicate which
of the four entries yielded a successful decryption query. Also this linear function is computed
on the input wire keys as well as all the gates that are in the sub-circuit of the ith gate. More
formally, the decoder proceeds in the following steps:

• The set of all wires in C is denoted by W. The length of a wire key associated with wire
w is Lw. Let the input wires of C be w1, . . . , w`. As part of encoding of (C, x), the wire
keys Kw1

, . . . ,Kw`
are given out.

• Let G1, . . . , Gn be the gates in C. Let the garbled table associated with Gi be Ti. Recall
that Ti consists of four entries Ti[1], . . . , Ti[4]. We say that Ti[j] is a valid entry if it is
decrypted during the evaluation of the garbled circuit.

• Recursively, the decoder constructs linear functions {f̂kw}w∈W,k∈[λ+1,Lw+λ] and {fj.ki }i∈[n],j∈[4],k∈[λ]

such that f̂kw on input the encoding, outputs the kth least significant bit of the wire key of

w obtained during evaluation and fj.ki outputs 0 if and only if the kth least significant bit

of Ti[j] is 0. Note that the decoder itself do not submit the functions {f̂w} to the oracle,

but instead use them to construct functions {fj.ki } which are submitted to the oracle.

– For every input wire w, f̂kw outputs the kth least significant bit of the wire key Kw.

– For every gate Gi with input wires w1 and w2, fj.ki first recovers the wire keys Kw1

and Kw2 using functions {f̂k′w1
} and {f̂k′w2

} for every k′ ∈ [λ + 1, Lw + λ]. It then
outputs 0 if kth least significant bit of Ti[j]− (Kw1 +Kw2) is 0.

Suppose w3 is the output wire of Gi. If for some j, fj.ki outputs 0 for every k ∈ [λ] then

f̂k′w3
outputs (k′)th least significant bit of (Ti[j]− (Kw1 +Kw2))k′ for k′ ∈ [λ+ 1, Lw + λ].

• If the output of the linear function corresponding to the output gate Gouti is all zeroes then
the corresponding output bit is set to 0, otherwise the output bit is set to 1.

This concludes the decoding process.

We now define the notion of homogenous randomizing polynomials.

Definition 14 ((T,Φ)-(Homogenous) Randomizing Polynomials). Let T = (V,E) be a tree and

let Φ =
(−→
φ1, . . . ,

−→
φN

)
. A scheme RP = (E,D) is said to be a (T,Φ)-randomizing polynomials

22

scheme over Fp for a class of circuits C = {Cλ} if:

1. (E,D) is a randomizing polynomial scheme for C.

2. D is a B-composable linear decoder for some constant B ∈ Fp.

3. For every circuit C and input x, we have E(C, x; r) = (p1(x, r), . . . , pN (x, r)), where pi ∈
Fp[y1, . . . , yn] is a (T,

−→
φi)-respecting polynomial.

Furthermore if every i ∈ [n], pi is homogenous and of the same degree then we term RP to be a
homogenous (T,Φ)-randomizing polynomial scheme RP. We say that the degree of homogenous
(T,Φ)-randomizing polynomial scheme RP is D if for every i ∈ [n], deg[p](pi) = D.

Definition 15 ((T,Φ)-Randomizing Polynomials with ε-Sub-linear Randomness Complexity).
A (T,Φ)-randomizing polynomials scheme for C is said to have ε-sub-linear randomness com-
plexity if the size of the randomness used to encode a circuit C and input x is |C|ε · poly(λ).

We now switch to constructing (T,Φ)-RP with sub-linear randomness. We first start by sketch-
ing the general approach and later show how to instantiate it.

4.3 (T,Φ)-RP with Sub-linear Randomness: General Approach

Existing constructions of randomizing polynomials already yield (T,Φ)-randomizing polynomi-
als – although we still need to argue that they satisfy the composable linear decoder property.
To ensure sub-linear randomness complexity, we use algebraic pseudorandom generators of ap-
propriate stretch. We begin by describing algebraic pseudorandom generators.

Algebraic PRGs. We first define the notion of algebraic PRGs.

Definition 16 (p-Algebraic PRGs). An arithmetic circuit PRG : Znp → Zmp over Zp, where
m > n, is said to be an algebraic pseudorandom generator if the following holds for every PPT
distinguisher D, for sufficiently large λ ∈ N,∣∣∣∣∣∣ Pr

s
$←−Zn

p

[1← D(PRG(s))]− Pr
r

$←−Zm
p

[1← D(r)]

∣∣∣∣∣∣ ≤ negl(λ)

where negl is a negligible function.

Approach. We start with a randomizing polynomials scheme RP = (E,D) for a class of
circuits C = {Cλ}λ∈N. Let the encoding of circuit C, given by E(C, ·; ·) = (p1(·; ·), . . . , pN (·; ·)).

Let the randomness complexity required to encode C be `R. We use an algebraic pseudo-

random generator PRG : Z`
ε
R
p → Z`Rp for some constant ε < 1.

We now define the new randomizing polynomials scheme (E′,D′) that enjoys ε-sub-linear
randomness complexity.

E′(C, x; r): On input circuit C, input x and randomness r; first compute PRG(r) to get R.
Output E(C, x;R).

The decode algorithm D′ is defined to be identical to D.

Thus we have the following theorem.

Theorem 4. The randomizing polynomials scheme (E′,D′) is secure assuming the security of
(E,D) and security of PRG.

23

Ensuring (T,Φ)-respecting property. We now remark how to ensure (T,Φ)-respecting
property for randomizing polynomials. We start with a randomizing polynomials scheme (E,D).

Consider a tree T . As long as the number of leaves in T is the same as the degree of
homogeneity of the polynomials {pi}i∈[N], with pi ∈ Fp[x1, . . . , xn] associated with the encode

function E(C, ·; ·) in the randomizing polynomials scheme, we can find a set of maps ~φi such

that pi is (T, ~φi)-respecting. Let pi =
∑Ki

j=1 ci,jti,j , where ci,j ∈ Fp. We can always find
φi,j : [V]→ [n] such that when xφi,j(u) is assigned to node u and the tree T is evaluated to yield
a monomial ti,j .

This in itself is not sufficient to ensure that the randomizing polynomials scheme is (T,Φ)-

respecting, where Φ = (~φ1, . . . , ~φN), since Φ could depend on C. However, there are randomizing

polynomials schemes (demonstrated next), where for every polynomial pi =
∑Ki

j=1 ci,jti,j derived
from encoding of C, only the coefficients depend on C and in particular, the monomials are
independent of C. This means that for every circuit C, the polynomials {pi}i∈[N] derived

from the encoding of C are (T,Φ)-respecting, where Φ = (~φ1, . . . , ~φN). Thus, the randomizing
polynomials scheme is (T,Φ)-respecting.

4.4 Tools to Instantiate General Approach

We instantiate the general approach sketched in the previous section by using specific algebraic
PRGs and low degree randomizing polynomials.

I. Instantiations of Algebraic PRGs. We use a low degree pseudorandom generator with
polynomial stretch. In particular, we use a candidate proposed by Goldreich [Gol11]: the
pseudorandom generator PRG : Znp → Zmp is designed by picking m indexing c-local predicates

Pi : Zcp → Zp and indexing functions χ1, . . . , χm at random, with χi : [c]→ [n]. The ith output
bit of PRG(x), for i ∈ [m], is defined to be:

PRGi(s) = Pi
(
sχi(1), . . . , sχi(c)

)
In this work, all the predicates are fixed ahead of time and in fact all of them have the same
description. In particular, define the following predicate considered by O’Donnell and Wit-
mer [OW14]:

Pi(x1, . . . , xc) = x1 + . . .+ xt +Q(xt+1, . . . , xc) mod p,

where Q is any (c− t)-ary predicate. We set m to be O(n
t
2−ε) for any constant ε > 0.

O’Donnell and Witmer showed evidence that the above predicate is a secure PRG by suit-
ably instantiating Q. In particular, they gave evidence of security for the following candidate.

1.49PRGAssumption: Set m = O(n1.49), c = 5 and p = 2. Pick indexing functions
χ1, . . . , χm at random, with χi : [c] → [n]. We define the pseudorandom generator 1.49PRG :
{0, 1}n → {0, 1}m such that ith bit of PRG, on input seed s, is computed as follows:

1.49PRGi(s) = P (sχi(1), . . . , sχi(c)),

where P (x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5 mod 2.

Yet another PRG we are interested is an algebraic PRG with stretch 2 + ε. We state the fol-
lowing two assumptions depending on which field we are operating upon.

2.49PRG[2]Assumption: Set m = O(n2.49), c = 8 and p = 2. Pick indexing functions
χ1, . . . , χm at random, with χi : [c]→ [n]. We define the pseudorandom generator 2.49[2]PRG :
{0, 1}n → {0, 1s}m such that ith bit of PRG, on input seed s, is computed as follows:

2.49[2]PRGi(s) = P (sχi(1), . . . , sχi(c)),

24

where P (x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 + x5 + x6x7x8 mod 2.

2.49PRG[p]Assumption: Set m = O(n2.49), c = 8 and large enough prime p. Pick indexing
functions χ1, . . . , χm at random, with χi : [c] → [n]. We define the pseudorandom generator
2.49[p]PRG : Znp → Zmp such that ith bit of PRG, on input seed s, is computed as follows:

2.49[p]PRGi(s) = P (sχi(1), . . . , sχi(c)),

where P (x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4 + x5 + x6x7x8 mod p.

Remark 7. For all our applications that use PRG with stretch n1.49 can be replaced by any
other locality-5 PRG of stretch n1+ε for constant ε > 0. Similarly, for the case of algebraic
PRGs, we only require PRGs of stretch n2+ε for constant ε > 0.

We note that we are currently unaware of any work that provides evidence about the security
of either 2.49[2]PRG or the 2.49[p]PRG candidate.

II. Low Degree Randomizing Polynomials [AIK06]. We consider the information theo-
retic version of the randomizing polynomials construction of [AIK06] defined for the class of
log-depth and poly-sized formulas which corresponds to the class NC1. More specifically, we
consider formulas which when transformed, yields a balanced NC1 circuit. If the size of the
original poly-sized formula is a polynomial in λ and if the depth of the new NC1 circuit is d,
we require that 2d is polynomial in λ13.

On input log-depth formula C and input x, assign two random keys to every wire in C,
associated with bits 0 and 1. We denote the key assigned to wire w and associated with bit b
as Kb

w. In turn, Kb
w can be written as (Kb,0

w ||Kb,1
w). If w is a output wire then Kb

w = b. We
remark later about the size of the keys. Also associated with wire w is a random bit rw.

The encoding of (C, x) comprises of garbled gates G̃1, . . . , G̃κ along with input keys Wx,
computed as a function of the keys assigned to all the wires in C. Further, for every i ∈ [κ], the

garbled gate G̃i = (G̃i[a1, a2])a1∈{0,1},a2∈{0,1}.
For i ∈ [κ], let wA and wB denote the input wires of Gi and let wC denote its output wire.

For a1, a2 ∈ {0, 1}, we have:

G̃i[a1, a2] = K
a1⊕rwA

,a2
wA ⊕Ka2⊕rwB

,a1
wB ⊕

(
K
Gi(a1⊕rwA

,a2⊕rwB
)

wC || rwC
⊕Gi(a1 ⊕ rwA

, a2 ⊕ rwB
)
)

For input wires w1, . . . , wn, the keys corresponding to input x are Wx = (Kx1
w1
||x1 ⊕ rw1 , . . . ,

Kxn
wn
||xn ⊕ rwn

).
Furthermore, the decoder of the above randomizing polynomial is a B-composable linear

decoder with B = {0}. The linear function for the ith gates incorporates all the keys recovered
in the sub-circuit of the ith gate. The output of the linear function is the mask recovered at the
ith gate. We argue this formally below.

Claim 1. The information-theoretic variant of [AIK06] as described above satisfies B-composable
linear decoder property for B = {0}.

Proof. The decoder is designed along the same lines as the decoder of the information-theoretic
Yao.

13The type of circuits that we encode later using the randomizing polynomials already satisfy this property. Specif-
ically, the circuit has many parallel copies of gate garbling circuit. Each of these gate garbling circuits perform some
PRG computations. By making sure that PRG has a balanced NC1 circuit, we can ensure the overall circuit is
balanced.

25

• The set of all wires in C is denoted by W. The length of a wire key associated with wire
w is Lw + 1 – “+1” part is for the random mask. Let the input wires of C be w1, . . . , w`.
As part of encoding of (C, x), the wire keys (Kw1

, r1), . . . , (Kw`
, r`) are given out.

• Let G1, . . . , Gn be the gates in C. Let the garbled table associated with Gi be Ti. Recall
that Ti consists of four entries Ti[0], . . . , Ti[3]. We say that Ti[j] is a valid entry if it is
decrypted during the evaluation of the garbled circuit.

• Recursively, the decoder constructs linear functions {f̂kw}w∈W,k∈[2,Lw+1] and {fi}i∈[n] such

that f̂kw on input the encoding, outputs the kth least significant bit of the wire key of
w obtained during evaluation and fji outputs 0 if and only if the least significant bit
(corresponding to random mask) of the wire key obtained during the evaluation of gate

Gi is 0. Note that the decoder itself do not submit the functions {f̂w} to the oracle, but
instead uses them to construct functions {fi} which are submitted to the oracle.

– For every input wire w, f̂kw outputs the kth least significant bit of the wire key Kw.

– For every gate Gi with input wires w1 and w2, do the following: fi, with j hardwired,

first recover the wire keys Kw1
and Kw2

using functions {f̂k′w1
} and {f̂k′w2

} for every
k′ ∈ [2, Lw + 1]. It then outputs 0 if kth least significant bit of Ti[j]− (Kw1

+ Kw2
)

is 0. Else it outputs 1.

Suppose w3 is the output wire of Gi. Let the output wire of Gi′ be w1 and output wire
of Gi′′ be w2. Let b0 and b1 be the bits output by fi′ and fi′′ respectively. Set j to be the

integer representation of b0b1. Now, the function f̂k′w3
outputs (k′)th least significant bit of

(Ti[j]− (Kw1
||r1 +Kw2

||r2))k′ for k′ ∈ [2, Lw + 1].

• If the output of the linear function corresponding to the output gate Gouti is 0 then the
corresponding output bit is set to 0, otherwise the output bit is set to 1.

This concludes the decoding process.

Size of Keys. We now remark about the size of the keys. To do this, we view the circuit C as
layered with d number of layers, where d is the depth of C. The first layer corresponds to the
input gates and the dth layer corresponds to the output gates. The ith layer (except the first
layer) has its input wires coming from the (i−1)th layer. Similarly, the output wires of ith layer
(except the dth layer) are input to (i+ 1)th layer.

All the keys corresponding to ith layer have size at most O(2d−i). That is, the keys at the
0th layer have size at most O(2d).

Size of random masks. There is one random mask rw assigned for every wire w and thus, the
total size of all the random masks is upper bounded by the size of the circuit, |C|.

Representing Encoding as Polynomials. Assign polynomial Q[j, a1, a2] associated with jth bit of

G̃i[a1, a2], variable Y1[j, w, a1, a2] associated with jth element of Ka1⊕rw,a2
w and variable Y2[w]

associated with bit rw. Assign polynomial T[wi, b] associated with input wire wi corresponding
to the random wire label b⊕ rwi .

The polynomial Q[j, a1, a2] over F2 is computed as follows: We consider the case when
a1 = 1 and a2 = 0. We also consider Gi to be a NAND gate. The other three cases follow
symmetrically.

26

1. When j is not the least significant bit of Ka1⊕rw,a2
w :

Q[j, 1, 0] = (1−Y2[wA]) ·Y1[j, wA, 1, 0] + Y2[wA] ·Y1[j, wA, 0, 0]

+(1−Y2[wB]) ·Y1[j, wB , 0, 1] + Y2[wB] ·Y1[j, wB , 1, 1]

+(1−Y2[wA]) · (1−Y2[wB]) ·Y1[j, wA, 1, 0]

+(1−Y2[wA]) · (Y2[wB]) ·Y1[j, wA, 1, 1]

+(Y2[wA]) · (1−Y2[wB]) ·Y1[j, wA, 0, 0]

+(Y2[wA]) · (Y2[wB]) ·Y1[j, wA, 0, 1]

2. When j is the least significant bit of Ka1⊕rw,a2
w (this corresponds to the random mask):

Q[j, 1, 0] = (1−Y2[wA]) ·Y1[j, wA, 1, 0] + Y2[wA] ·Y1[j, wA, 0, 0]

+(1−Y2[wB]) ·Y1[j, wB , 0, 1] + Y2[wB] ·Y1[j, wB , 1, 1]

+(1−Y2[wA]) · (1−Y2[wB]) · (1−Y2[wC])

+(1−Y2[wA]) · (Y2[wB]) · (1−Y2[wC])

+(Y2[wA]) · (1−Y2[wB]) · (Y2[wC])

+(Y2[wA]) · (Y2[wB]) · (1−Y2[wC])

Finally, we can set the polynomial T[wi, a, b] = Y2[wi] + b, where b is a bit.

4.5 Instantiations: (T,Φ)-RP with Sub-linear Randomness

We consider two instantiations of the general approach. In the first instantiation, we first in-
stantiate a (T,Φ)-randomizing polynomials over F2 and then apply the polynomial conversion
procedure (Section B) to obtain (T,Φ)-randomizing polynomials over Fp. The resulting ran-
domizing polynomial is such that the encoding of a circuit and an input is a binary string. In
the other instantiation, we show how to directly instantiate a (T,Φ)-randomizing polynomials
over Fp. In this instantiation, the encoding of a circuit and an input is a vector over Fp. We
then plug in the appropriate PRGs for both the instantiations to get sub-linear randomness
complexity.

4.5.1 Via Randomizing Polynomials over F2

We employ the following steps:

1. Step I: Start with (T,Φ)-RP over F2. In particular, we start with the construction in
Section 4.4.

2. Step II: We apply the polynomial conversion procedure to Step I from Section B to obtain
a (T,Φ)-RP over Fp.

3. Step III: We then instantiate the general approach (Section 4.3) using Step II and an
appropriate algebraic PRG to achieve the sub-linear randomness complexity.

Step I: Consider the RP construction in the previous section. We now consider the wire keys
over F2. That is, every entry in the garbled table can now be treated as XOR of wire keys.
More specifically, the set of variables {Y1[j, w, a1, a2]} and {Y2[w]} take binary values.

27

Step II: Applying the naive the conversion ConvPoly described in Section B to polynomials of
the form Q[j, 1, 0], where Y1[j, w, a1, a2] are assigned boolean values (Case 1), we get the result-
ing polynomials over field Fp. Further as described in the previous section, it can be ensured
that these polynomials are (T,Φ)-respecting, for a suitably defined T and Φ.

Step III: In this case, Y1[·, ·, ·, ·] can be substituted with a polynomial computing a boolean
PRG, denoted by PRG1, that converts strings of size, say `, into strings of at least length (2+ε)·`,
where ε > 0 is a constant. Further, we substitute Y2[·] with a polynomial computing a boolean
PRG, denoted by PRG2, that converts strings of length, say `, into strings of length (1 + ε) · `,
where ε > 0 is a constant.

Theorem 5. Set PRG1 = 2.49[2]PRG and PRG2 = 1.49PRG. Assuming that 2.49PRG[2]Assumption
and 2.49PRG[p]Assumption holds, there exists a (T,Φ)-randomizing polynomials scheme with
sub-linear randomness complexity.

4.5.2 Via Randomizing Polynomials over Fp

We employ the following steps:

1. Step I: Instantiate (T,Φ)-RP over Fp.

2. Step II: Plug in the appropriate PRG in Step I to obtain (T,Φ)-RP over Fp with sub-linear
randomness complexity.

Step I: Consider the RP construction in the previous section. The wire keys are elements over
Fp. The random masks are binary values. More specifically, the set of variables {Y1[j, w, a1, a2]}
take values over Fp and {Y2[w]} take binary values.

Theorem 6. The scheme (E,D) described above is a (T,Φ)-randomizing polynomials for a class

of circuits C, where E(C, x; r) ∈ Zpoly(λ)
p and E(·, ·; ·) can be represented by polynomials of degree

3.

As before, we analyze the degree when the variables in the polynomials Q[·, ·, ·] and T[·, ·, ·]
are substituted with polynomials. In particular, Y1[·, ·, ·, ·], Y2[·] be substituted by polynomials
of degree DY1

and DY2
respectively.

Theorem 7. The above randomizing polynomials scheme (where the wire keys are vectors over
Fp) is such that the polynomials Q[·, ·, ·] have degree max{2DY2

+ DY1
, 3DY2

} over Fp.

Step II: In this case, Y2[·] can be substituted with a polynomial computing a PRG over Zp,
denoted by PRG1, that converts vectors in Zp of length ` into vectors of length (2 + ε) · `, where
ε > 0 is a constant. As before, we substitute Y2[·] with a polynomial computing a boolean
PRG, denoted by PRG2, that converts strings of length, say `, into strings of length (1 + ε) · `,
where ε > 0 is a constant. In particular, we assign PRG1 = 2.49[p]PRG and PRG2 = 1.49PRG.
We note that the degree of PRG1 over Fp is 3. If we apply polynomial conversion from Section B
on PRG2, which is computed over F2, we end up with a polynomial of degree 5 over Fp.

Theorem 8. Set PRG1 = 2.49[p]PRG and PRG2 = 1.49PRG. Assuming 2.49PRG[p]Assumption
and 1.49PRGAssumption, there exists a (T,Φ)-randomizing polynomials scheme with sub-linear
randomness complexity. Furthermore, it is associated with B-composable linear decoder with
B = {0} (see Section 4.4). From Theorem 6 and 7, the degree of this scheme is 15.

It is possible to weaken the PRG assumptions by considering PRGs of smaller stretch. See
Remark 7 for more details.

28

Getting the Degree Below 15. The main reason why degree 15 appears is because, for
every gate, we need to compute a function of three random masks corresponding to its input
and output wires. Intuitively, random masks are used to emulate the role of permutation in
Yao’s garbled circuits – it is necessary that we hide which of the entries in the garbled table is
decrypted. We consider different strategies of emulating the role of permutation that reduces
the degree further. We sketch the strategies for degree 13 and degree 7 below. We describe the
strategy for degree 5 in detail.

Degree 13: Consider the polynomials {Q} defined in Section 4.5. The degree of polynomials
Q[j, ·, ·] is 13, when j is not the least significant bit. However, the degree of Q[j, ·, ·] is 15, when
j is the least significant bit of the associated wire key. In this polynomial, we use two field ele-
ments to represent Y2[wC] and 1−Y2[wC] respectively. These two field elements are generated
using an algebraic PRG (of degree 2, with more than quadratic stretch). We then separately
give out these two elements in the clear along with a mapping from these two field elements to
random boolean elements. The random boolean elements are generated using a boolean PRG.
During decryption, you recover the random masks which are field elements and then using the
mapping, recover the corresponding boolean elements. This is done for every gate in the circuit.
This reduces the degree of Q[j, ·, ·] to be 12 when j is the least significant bit of the associated
wire key. Computing the mapping part can be implemented by a degree 5 polynomial. Thus,
the maximum degree of all polynomials is at most 13.

Degree 5: We elaborate on the intuition presented in the technical overview to reduce the degree
below 15. We consider a specific class of circuits C. We just focus on constructing randomizing
polynomials for C.

We define C as follows: every circuit C ∈ C of output length N is of the form C =
(C1, . . . , CN), where:

- Ci outputs the ith output bit of C,

- Depth of Ci is c · log(λ), where c is a constant independent of C,

- |Ci| = poly(λ) for a fixed polynomial poly and,

- Ci for every i ∈ [N] have the same topology. That is, every Ci can be written as Ĉ[Vi],
where Ĉ is a circuit and Vi are the constants on a subset of its wires.

We show in Appendix A that it suffices to build sublinear FE for C to obtain iO. We now focus
on obtaining randomizing polynomials for C.

We start with the randomizing polynomials scheme of [AIK06] that we described earlier.
Recall that it involved generating a garbled table for every gate in the circuit C. Moreover, the
randomness to generate this garbled table is derived from an algebraic and a boolean PRG. We
will see that we can emulate the role of algebraic PRG using just a boolean PRG. We make the
following useful changes: let C = (C1, . . . , CN) such that Ci outputs the ith output bit of C.
Let wi1, . . . , w

i
nw be the set of wires in Ci and Gi1, . . . , G

i
ng be the set of gates in Ci.

• We invoke nw number of instantiations of boolean PRGs bPRGw1 , . . . , bPRG
w
nw and bPRGr1,

. . . , bPRGrnw. All these PRGs have the same structure (i.e., same predicates are used) and
have degree 5 over arbitrary field (with stretch 1.49). Pseudorandom generator bPRGwj is

used to generate wire keys for wires w1
j , . . . , w

N
j . Since we are using a boolean PRG, we

generate bits of key and then combine it into a field element using powers of two.

Recall that earlier we were using an algebraic PRG of stretch strictly greater than quadratic.
This is because the size of wire keys was proportional to exponential in depth, which could
potentially be linear in the size of the circuit. However, since we are considering the spe-
cific circuit class C, the depth of every circuit is c log(λ). And thus the size of the wire
keys is independent of the security parameter. This is turn allows us to use just a PRG of
stretch 1.49. Finally, bPRGrj is used to generate random masks for the wires w1

j , . . . , w
N
j .

29

• We now consider the [AIK06] randomizing polynomials associated with circuit C. As
before, we substitute the variables associated with wire keys and random masks with the
polynomials associated with the appropriate PRGs. The formal variables in the PRG
polynomials are associated with the seed.

• The result of the above process is the encoding of C consisting of polynomials p1, . . . , pN
with variables associated with the seeds of PRGs. Note that the degree of these polynomials
is still 15.

• We then observe that there are polynomials q1, . . . , qT in seed variables such that p1, . . . , pN
can be rewritten in terms of q1, . . . , qT and moreover, the degree of pi in the new variables
{qi} is 5. The advantage of doing this is that the polynomials {qi} can be evaluated during
the encryption phase. The only thing we need to be wary of is the fact that T could be
as big as |C|. If this is the case then the encryption complexity would be at least linear
in |C|, which violate the sublinearity of the FE scheme. We show how to carefully pick
q1, . . . , qT such that T is sub-linear in |C| and the above properties hold.

We now describe the polynomials {qi}i∈[T]. First, we set up some notation. We use the formal

variables Yw[j, k] to represent the kth seed element corresponding to bPRGwj . We use the formal

variables Yr[j, k] to represent the kth seed element corresponding to bPRGrj . For every seed index

k ∈ [n], j1, j2 ∈ [nw], such that jth1 and jth2 wires are input wires of a gate,

Z1

[
~j = (j1, j2), k, ~S

]
=

∏
~S=(d1,d2,d3)∈{0,1}3

Yw[j1, k]d1 ·Yr[j1, k]d2 ·Yr[j2, k]d3

We also compute the following polynomials for every k ∈ [n], j1, j2, j3 ∈ [nw] such that there
exists a gate G with jth1 and jth2 wires being input wires of G, jth3 wire being output wire of G:

Z2

[
~j = (j1, j2, j3), k, ~S

]
=

∏
~S=(d1,d2,d3)∈{0,1}3

Yr[j1, k]d1 ·Yr[j2, k]d2 ·Yr[j3, k]d3

The polynomials {Z1[·, ·, ·],Z2[·, ·, ·]} form the set of polynomials {qi}i∈[T]. We have the following
two claims.

Claim 2. We have T to be sublinear in |C|.

Proof. By construction, the total number of all Z1 and Z2 polynomials is O(k3 · |nw|).

Claim 3. Consider the polynomials {Q} defined in Section 4.5. The polynomial Q[j, ·, ·] has
degree 5 when expressed in terms of polynomials q1, . . . , qT .

Proof. There are two cases to consider: Let {Q[j, ·, ·]} be the set of polynomials associated with
a gate G. Let wij1 and wij2 be the input wires of G for some i. Let wij3 be the output wire of G.

• Q[j, ·, ·], when index j does not correspond to the least significant bit: it comprises of
terms which are multi-linear in variables {Yw[j1, kc],Yw[j1, kc],Yr[j2, kc]}c∈[5]. Thus,

every term can be re-written in terms of polynomials Z1[~j = (j1, j2), k1, ·], . . . ,Z1[~j =
(j1, j2), k5, ·] and the degree of every such term is at most 5.

• Q[j, ·, ·], when index j corresponds to the least significant bit: it comprises of terms which
is multi-linear in variables {Yr[j1, kc],Yr[j2, kc],Yr[j3, kc]}c∈[5]. Thus, every term can be

re-written in terms of polynomials Z1[~j = (j1, j2, j3), k1, ·], . . . ,Z1[~j = (j1, j2, j3), k5, ·] and
the degree of every such term is at most 5.

30

We thus have the following theorem.

Theorem 9. Assuming 1.49PRGAssumption, there exists a (T,Φ)-randomizing polynomials
scheme with sub-linear randomness complexity. Furthermore, it is associated with B-composable
linear decoder with B = {0} (see Section 4.4). The degree of this scheme is 5.

It is possible to weaken the PRG assumptions by considering PRGs of smaller stretch. See
Remark 7 for more details.

The sampling of the randomness in this randomizing polynomials scheme is done by first
sampling the seeds of all the PRGs and then pre-computing the polynomials q1, . . . , qT on the
sampled seeds. The output is a pre-computed randomness that will be used in the computation
of the randomizing polynomial.

Degree 7: The previous two randomizing polynomials were essentially a modification of the
degree-15 randomizing polynomials construction. We consider a different approach to achieve
degree-7 randomizing polynomials. As we will see later, we cannot just hope to just plug in
this randomizing polynomials construction in the construction of sub-linear FE from PAFE for
7-linear maps. Instead, we make “non-black box” use of this construction to build sub-linear
FE from 7-linear maps. We elaborate on this more, when we deal with the construction of
sub-linear FE.

We now sketch the approach of obtaining degree-7 randomizing polynomials. Recall that we
had remarked that the main bottleneck to reduce the degree in all these constructions is the
fact that we have to deal with hiding which one of the entries in the garbled table needs to be
decrypted. As we saw earlier, one way to do this, to have masks associated with wire keys that
signal which one of the entries needs to be decrypted. Another way to do this is to emulate the
functionality of inner product functional encryption. The rough idea is the following:

- For every wire wi, there is an instantiation of inner product functional encryption associ-
ated with it. We denote the master secret key of this instantiation to be MSKi.

- Compute garbled table T of gate G according to the Yao’s garbling scheme. The only
difference is that, instead of the output wire key, you encrypt an inner product functional
encryption key associated with the output wire. More specifically, do the following. Let
the output wire of G be wk. Instead of encrypting Kb

wk
associated with bit b, you encrypt

a inner product functional key skk,b w.r.t instantiation associated with wk. We will see
soon, the functionality associated with this key. Finally, the table T is encrypted twice
w.r.t instantiations associated with wires wi and wj , where wi and wj are input wires of
G. That is, T ′ = IPFE.Enc(MSKi, IPFE.Enc(MSKj , T)). The garbled table associated with
G is set to be T ′.

- The wire key corresponding to input wire wi and bit b is an inner product functional key
skk,b w.r.t instantiation associated with wi.

The evaluation proceeds as follows: Consider a gate G with input wires wi, wj and output wire
wk. Let T ′ be associated with G. First, decrypt T ′ using ski,b0 to obtain T ∗ – T ∗ essentially
consists of two entries of T associated with bit b0 encrypted under MSKj . Note that the inner
product FE scheme essentially hides which of the two entries of T remains after the decryption
operation. In the next, T ∗ is decrypted using skj,b1 and the result is exactly one of the entries
of T that corresponds to bits b0 and b1. Again, the inner product FE scheme hides which is the
entry of T that remains. Inner product functional encryption is used just as a template for the
above construction.

Implementation Idea: We now focus on implementing the above high level idea. Without loss of
generality, for every gate, we can call one of its input wires to be first input wire and the other
input wire to be second input wire. We use binary vectors β1

1 , β
1′

1 , β
1
2 , β

1′

2 of dimension poly(λ)

31

such that 〈β1
i , β

1′

j 〉 = 1 if i = j, else the inner product outputs 0. Similarly we use vectors

β2
1 , β

2′

1 , β
2
2 , β

2′

2 such that 〈β2
i , β

2′

j 〉 = 1 if i = j, else the inner product outputs 0. A garbled table
TG associated with gate G corresponding to input wires wi (first input wire), wj (second input
wire) and output wire wk, is computed as follows:

TG = β1
1 ⊗ β2

1CT00 + β1
1 ⊗ β2

2CT01 + β1
2 ⊗ β2

1CT10 + β1
2 ⊗ β2

2CT11

We set CTb0b1 as follows:

CTb0b1 = Kb0
wi

+Kb1
wj

+KG(b0,b1)
wk

+ rwk
+ βu

′

v ,

rwk
is a random binary vector associated with wire wk, v = G(b0, b1) + 1 and u = 1 if wk is

the first input wire to some gate, otherwise if wk is the second input wire to some gate then
u = 2. TG is encoded at the topmost level of multilinear maps. Additionally, you also encode
the following two elements at the topmost level.

E1 = 〈rwi , β
1
1 ⊗ β2

1 + β1
1 ⊗ β2

2 + β1
2 ⊗ β2

1 + β1
2 ⊗ β2

2〉; E2 = 〈rwj
, β2

1 + β2
2〉

The input wire key corresponding to wire w and bit b is Kb
w + rw +βu

′

b+1, where u = 1 if w is the
first input wire of a gate, otherwise u = 2. Note that these wire keys are given in the plaintext
form.

The decryption proceeds as follows: Consider a gate G with first input wire wi, second input
wire wj and output wire wk. Suppose we have obtained the wire keys Kb0

wi
+ rwi + β1′

b0+1 and

Kb1
wj

+ rwj
+ β2′

b1+1. We first decrypt the encoding of T using Kb0
wi

+ rwi
+ β1′

b0+1 to obtain an

encoding of 〈rwi , β
1
1 ⊗ β2

1 + · · · + β1
2 ⊗ β2

2〉 + β2
1CTb00 + β2

2CTb01. The 〈rwi , ∗〉 is canceled out
using encoding of E1. In the next step, this is further decrypted using Kb1

wj
+ rwj

+ β2′

b1+1 to

obtain 〈rwj , β
2
1 + β2

2〉 + CTb0b1 . The 〈rwj , ∗〉 is canceled out using encoding of E2 to obtain
CTb0b1 , which is nothing but the wire key of wk. Note that CTb0b1 is a boolean vector and can
be recovered from zero testing.

The above scheme as described is not necessarily secure since the adversary can manipulate
the encodings in an illegal manner. However, the above scheme can be combined with the PAFE
construction (Section 7) in a “non-black box” manner to obtain sub-linear secret key FE along
the same lines as sketched in Section 5. In the construction of sublinear FE, the computation
of the randomizing polynomials happens in the first slot. The second slot will be used to ensure
that the encoding part is correctly computed. The resulting encodings at the top level will
correspond to the randomizing polynomials scheme.

Comment on the Degree: Note that rwi has to be computed randomly and furthermore, it has
to be boolean. Thus we need a boolean PRG and this contributes to degree 5. Furthermore,
this is multiplied by β1

∗ and β2
∗ (which are sampled at random during the setup phase and the

same is used throughout), which additionally contributes degree 2. This is the same case even
for the wire keys Kb

w part. Thus, the total degree is 7.

4.5.3 Ensuring Homogeneity

We now show how to achieve a homogenous (T,Φ)-randomizing polynomials scheme RP′ =
(E′,D′) over Fp for a circuit class C starting from any (T,Φ)-randomizing polynomials scheme
RP = (E,D) (not necessarily homogenous) over Fp for a circuit class C.

The transformation is as follows: on input a circuit C, instance x and randomness r;

- E′ first executes E(C, ·; ·) to determine the polynomials p1, . . . , pN . It then “homogenizes”
these polynomials by introducing dummy variables as follows. Let D = maxi∈[N] deg[pi].

32

Pick dummy variables ~z = z1, . . . , zD. For every i ∈ [N] and for every monomial t in pi, it
determines if the degree of t is exactly D or not. If the degree of t is strictly than t then it
replaces t with the monomial t′, where t′ = t ·

∏
j∈[D−deg[t]] zj . That is, t′ is the product of

t and the first D− deg[t] dummy variables z1, . . . , zD. After this operation is performed,
we call the new set of polynomials p′1, . . . , p

′
N . We observe that these polynomials are

homogenous and of degree D.

- E′ then evaluates p′i(x,~z = ~1; r) for every i ∈ [N]. That is, it evaluates p′i by setting all
dummy variables to 1. The result of evaluations of all the polynomials p′i is the randomized
encoding of (C, x).

The decoding algorithm D′ is identical to D.

Remark 8. The degree of polynomials p′i, in the above transformation, is exactly the same as
the degree of polynomial pi.

5 iO from Constant Degree PAFE

We show how to obtain iO from projective arithmetic FE over Fp. This transformation requires
that the multi-key FE satisfies multiplicative overhead property in the encryption complexity.
We achieve this in two steps:

1. Step I: Build (sub-exponentially secure) single key sub-linear FE for boolean circuits start-
ing from (sub-exponentially secure) projective arithmetic FE satisfying multiplicative over-
head property in the encryption complexity. We additionally also use a sub-exponentially
secure homogenous (T,Φ)-randomizing polynomials with sublinear randomness complex-
ity.

2. Step II: Obtain iO from single key sub-linear FE for boolean circuits. This is in turn
obtained in the following steps:

(a) Obtain (sub-exponentially secure) XiO from (sub-exponentially secure) sub-linear se-
cret key FE. This is obtained along the same lines as the construction of XiO from
compact secret key FE. We sketch this construction in Section A for completeness.

(b) Obtain (sub-exponentially secure) compact public key FE from (sub-exponentially
secure) XiO and sub-exponentially secure learning with errors. This was shown in
Lin et al. [LPST16].

(c) Obtain iO from sub-exponentially secure compact public key FE. This was shown by
two works [AJ15, BV15].

Since Section A when combined with [LPST16] and [AJ15, BV15] show how to achieve Step II,
we focus on Step I.

Sub-linear Secret Key FE from Arithmetic FE. We construct a single-key sub-
linear secret key FE for boolean circuits starting from projective arithmetic FE scheme for
degree D. Consider the following tool.

Homogenous (T = (V,E),Φ)-randomizing polynomials scheme with ε-sub-linear ran-
domness complexity: Denote this by RP = (E,D). We use denote the degree of RP to be D
– this is same as the degree of polynomials supported by PAFE. Associated with this scheme is
a B-composable linear decoder. In particular, we employ a scheme satisfying B = {0}.

Without loss of generality, we assume that the polynomials as part of the encoding algo-
rithm are made homogenous as described in Section 4.5.3. This means that the polynomials
also additionally take as input the dummy variables z.

33

Let PAFE = (Setup,KeyGen,Enc,ProjectDec) be a projective arithmetic functional encryption
scheme satisfying B-correctness. Specifically, we consider the construction of PAFE from T -
structured mmaps described in Section 7.

Setup(1λ): On input security parameter λ, it executes the setup of the underlying projec-

tive arithmetic FE scheme to obtain PAFE.MSK ← PAFE.Setup(1λ). It outputs secret key
MSK = PAFE.MSK.

KeyGen(MSK, C): It takes as input master secret key MSK and circuit C. Denote E(C, · ; ·) =

(p1(·), . . . , pN (·)), where pi are (T,
−→
φi)-respecting polynomials. Compute keys for every polyno-

mial pi with respect to the arithmetic FE scheme. That is, skpi ← PAFE.KeyGen(PAFE.MSK, pi).
It outputs the functional key skC = (skp1 , . . . , skpN).

Enc(MSK, x): It takes as input the master secret key MSK and input x. It samples a string

R uniformly at random of length `R from an appropriate domain14. Here, `R is the length of
randomness used in algorithm E to encode a circuit of size |C| and input length `x. It picks
an all 1s vector z of length D - this corresponds to the dummy variables that are necessary to
enforce homogeneity. It then computes CT← PAFE.Enc(MSK, (x,R, z)). It outputs CT.

ProjectDec(skC ,CT): It takes as input functional key skC and ciphertext CT, it executes the de-
cryption algorithm of the arithmetic FE scheme as follows: it computes ιi ← PAFE.ProjectDec(skpi ,
CT). It then executes the B-composable linear decoder corresponding to RP homomorphically
on the partial decrypted values {ιi}. Specifically,

• The number of steps executed by the composable linear decoder is T .

• In the ith step, the decryptor executes the linear function fi (chosen by the B-composable
linear decoder) homomorphically on the partial decrypted values {ιi}. More formally, it
computes vi ← Recover(f, {ιi}) (see Remark 3 in Section 3.1).

• Let vT be the value recovered after T steps.

Output vT .

Encryption Complexity. From the multiplicative overhead in encryption complexity of
the projective arithmetic FE scheme, we have the following calculation.

|Enc(MSK, x)| = (|x|+ |R|+ |z|) · poly(λ, log(p))

≤ |C|ε · poly(|x|, λ) (∵ ε-sublinear randomness complexity of RP)

Thus, the encryption complexity is ε-sublinear in the size of circuit.

Correctness. Consider a functional key defined w.r.t to sublinear FE scheme associated
with boolean circuit C. Consider a ciphertext of message x.

The functional key of C in turn consists of many projective arithmetic FE keys associated
with polynomials pi, for every i ∈ [N]. Here, polynomials pi are such that (p1, . . . , pN) ←
E(C, · ; ·). Furthermore, the ciphertext of x consists of encryption w.r.t projective arithmetic
FE of (x,R), where R is a random string of appropriate length.

From the B-composable linear decoding property, we have that the B-composable linear de-
coder of the randomizing polynomials scheme with oracle access to the values (p1(x;R), . . . , pN (x;R))

14The domain is dictated by the description of the randomizing polynomials scheme. For instance, in Theorem 8,
the randomness is divided into two parts: one part is composed of elements from Fp and acts as a seed to algebraic
PRG. The other part is composed of bits and acts as a seed to boolean PRG.

34

produces linear functions f1, . . . , fN adaptively such that fi(p1(x;R), . . . , pN (x;R)) produces the
value vi. Furthermore, (from the correctness of randomizing polynomials scheme), vT is indeed
the correct output of C(x).

Now, let the decryption of functional key of pi on ciphertext of (x,R) yield the partial
decrypted value ιi. The decryptor of the sublinear FE scheme first executes Recover(f1, {ιi})
and let the result be v′1. By the correctness of arithmetic FE scheme, we can argue that v′1 is
indeed v1. Proceeding along these lines, we can show that the output of Recover(fT , {ιi}) is vT .
As remarked earlier, vT is nothing but C(x).

5.1 Security

Theorem 10. The scheme FE is a secure 1-key ε-sub-linear secret key functional encryption
scheme for C assuming the security of (T,Φ)-randomizing polynomials scheme RP of degree D
and projective arithmetic FE scheme PAFE for degree D polynomials.

Proof. We present the hybrids below. In all the hybrids below, the adversary (selectively)
requests for challenge message pairs (x0

1, x
1
1), . . . , (x0

µ, x
1
µ) and circuit C. In response, it receives

the ciphertexts (CT1, . . . ,CTµ) and key skC from the challenger.
In the first hybrid, the challenge bit b is picked at random and the bth entry in every message

pair query is encrypted by the challenger. In the final hybrid, the challenger’s message to the
adversary is independent of the challenge bit.

Hyb1: This corresponds to the real experiment when the challenge bit b is picked at random.

The challenger first samples MSK← Setup(1λ). It then computes the following:

• CTi ← Enc(MSK, xbi)

• skC ← KeyGen(MSK, C)

Hyb2,i,j for i ∈ [µ], j ∈ [N + 1]: The challenger samples bit b at random. It computes the follow-

ing:

• If i < i, it computes CTi ← Enc(MSK, x0
i). If i ≥ i, it computes CTi ← Enc(MSK, xbi).

• The functional key skC is computed by first determining the polynomials p1, . . . , pN such
that E(C, ·; ·) = (p1(·; ·), . . . , pN (·; ·)). It computes θj = pj(x

b
i) for j ∈ [N]. Consider the

following cases.

– If j < j, it computes skpj ← PAFE.sfKG(MSK, pj , θj). Here, PAFE.sfKG is the semi-
functional key generation algorithm of PAFE.

– It j ≥ j, it computes skpj ← PAFE.KeyGen(MSK, pj).

Set skC = (skp1 , . . . , skpN).

Hyb3,i for i ∈ [µ]: The challenger samples bit b at random. It computes the following:

• If i < i, it computes CTi ← Enc(MSK, x0
i). Else if i > i, it computes CTi ← Enc(MSK, xbi).

If i = i then it computes CTi ← PAFE.sfEnc(MSK, 1`inp). Here, PAFE.sfEnc is the semi-
functional encryption algorithm of PAFE.

• The functional key skC is computed by first determining the polynomials p1, . . . , pN such
that E(C, ·; ·) = (p1(·; ·), . . . , pN (·; ·)). It computes θj = pj(x

b
i) for j ∈ [N]. It finally

computes skpj ← PAFE.sfKG(MSK, pj , θj) for every j ∈ [N].

Set skC = (skp1 , . . . , skpN).

Hyb4,i for i ∈ [µ]: The challenger samples bit b at random. It computes the following:

35

• If i < i, it computes CTi ← Enc(MSK, x0
i). Else if i > i, it computes CTi ← Enc(MSK, xbi).

If i = i then it computes CTi ← PAFE.sfEnc(MSK, 1`inp).

• The functional key skC is computed by first determining the polynomials p1, . . . , pN such
that E(C, ·; ·) = (p1(·; ·), . . . , pN (·; ·)). It computes θj = pj(x

0
i) for j ∈ [N]. It finally

computes skpj ← PAFE.sfKG(MSK, pj , θj) for every j ∈ [N].

Set skC = (skp1 , . . . , skpN).

Hyb5,i for i ∈ [µ]: The challenger samples bit b at random. It computes the following:

• If i ≤ i, it computes CTi ← Enc(MSK, x0
i). Else if i > i, it computes CTi ← Enc(MSK, xbi).

• The functional key skC is computed by first determining the polynomials p1, . . . , pN such
that E(C, ·; ·) = (p1(·; ·), . . . , pN (·; ·)). It computes θj = pj(x

0
i) for j ∈ [N]. It finally

computes skpj ← PAFE.sfKG(MSK, pj , θj) for every j ∈ [N].

Set skC = (skp1 , . . . , skpN).

Hyb6,i,j for i ∈ [µ], j ∈ [N + 1]: The challenger samples bit b at random. It computes the follow-

ing:

• If i ≤ i, it computes CTi ← Enc(MSK, x0
i). If i > i, it computes CTi ← Enc(MSK, xbi).

• The functional key skC is computed by first determining the polynomials p1, . . . , pN such
that E(C, ·; ·) = (p1(·; ·), . . . , pN (·; ·)). It computes θj = pj(x

0
i) for j ∈ [N]. Consider the

following cases.

– It j < j, it computes skpj ← PAFE.KeyGen(MSK, pj).

– If j ≥ j, it computes skpj ← PAFE.sfKG(MSK, pj , θj).

Set skC = (skp1 , . . . , skpN).

Hyb7: This corresponds to the real experiment when the challenge bit 0 is used. The challenger

first samples MSK← Setup(1λ). It then computes the following:

• CTi ← Enc(MSK, x0
i)

• skC ← KeyGen(MSK, C)

Progression of Hybrids: We describe the progression of hybrids in Figure 3.

Hyb1 Hyb2,1,1 · · · Hyb2,1,N+1

Hyb3,1 Hyb4,1 Hyb5,1

Hyb6,1,1 · · · Hyb6,1,N+1

Hyb2,2,1 · · · Hyb6,µ,N+1 Hyb7

Claim 4 Claim 5 Claim 5

Claim 6

Claim 7 Claim 8

Claim 9

Claim 10 Claim 10

Claim 11

Claim 5 Claim 10 Claim 12

Figure 3: We describe the progression of hybrids and also indicate the claims proving the indistin-
guishability of hybrids.

36

Indistinguishability of Hybrids. We prove the indistinguishability of the above hybrids.

Claim 4. The hybrids Hyb1 and Hyb2,1,1 are identical.

The above claim follows from the fact that in Hyb2,1,1, the real encryption algorithm is used to

encrypt the bth message in every message pair query and real key generation algorithm is used
to compute the functional keys.

Claim 5. The hybrids Hyb2,i,j and Hyb2,i,j+1, for every i ∈ [µ], j ∈ [N − 1], are computation-
ally indistinguishable assuming that PAFE satisfies indistinguishability of semi-functional keys
property (Definition 6).

Proof. We can directly invoke the indistinguishability of semi-functional keys property15 here:
The reduction sends the message queries xi, where x = x0

i if i < i and x = xbi else if i ≥ i. The
reduction sends three types of function queries,

• For all j < j, it sends (pj , θj).

• For all j > j, it sends pj .

• It also sends (pj, θ)

For queries in bullet 1, the challenger (of PAFE scheme) uses the semi-functional key generation
algorithm. For queries in bullet 2, the challenger uses the honest key generation algorithm. For
the query in bullet 3, it either uses semi-functional key generation or honest key generation.
The ciphertexts for the message queries are generated as in the description of the scheme.

If there is a distinguisher that distinguishes the hybrids with non-negligible probability in the
statement of the claim then the reduction can break the indistinguishability of semi-functional
keys security with non-negligible probability.

Claim 6. The hybrids Hyb2,i,N and Hyb3,i are computationally indistinguishble assuming that
PAFE satisfies the indistinguishability of semi-functional ciphertexts property (Definition 7).

Proof. We can directly invoke the indistinguishability of semi-functional ciphertexts property16

here. The reduction sends the message queries {xi}i 6=i, where xi = x0
i if i < i and xi = xbi if

i > i. The challenge message is set to be xbi . The reduction sends the function queries (pj , θj)
for j ∈ N to the challenger. The challenger answers the message queries (except the challenge
message) using the (real) encryption algorithm. The challenger answers the challenge message
xbi by either using the semi-functional encryption algorithm or the (real) encryption algorithm.
The function queries are answered using the semi-functional key generation algorithm.

If the distinguisher distinguishes the hybrids with non-negligible probability in the statement
of the claim then the reduction can break the indistinguishability of semi-functional ciphertexts
property with non-negligible probability.

Claim 7. The hybrids Hyb3,i and Hyb4,i, for every i ∈ [µ], are computationally indistinguishable
assuming the security of RP.

Proof. Suppose Hyb3,i and Hyb4,i is distinguishable and denote the PPT distinguisher by A.
We use A to construct a reduction R. The reduction R gets (x0

i , x
1
i), for every i ∈ [µ], and

circuit C from A. It picks bit b at random and forwards (xbi , x
0
i) and C to the challenger

of RP. Note that since A is a valid adversary, it holds that C(x0
i) = C(x1

i). In response it

15As we will see later, in the instantiation of PAFE, this property will be proven based on Assumption #1 (Sec-
tion 7.2.1).

16As we will see later, in the instantiation of PAFE, this property will be proven based on Assumption #2 (Sec-
tion 7.2.1).

37

receives the randomized encoding, denoted by Θ = (θ1, . . . , θN). It then uses Θ to generate the
semi-functional keys skp1 , . . . , skpN . It sets skC = (skp1 , . . . , skpN). It generates CTi using the
semi-functional encryption algorithm. The rest of the ciphertexts are generated using the real
encryption algorithm.

If A distinguishes Hyb3,i and Hyb4,i with noticeable probability then R breaks the security
if RP with noticeable probability.

Claim 8. The hybrids Hyb4,i and Hyb5,i, for every i ∈ [µ], are computationally indistinguish-
able assuming that PAFE satisfies the indistinguishability of semi-functional ciphertexts property
(Definition 7).

Proof. This is similar to proof of Claim 6.

Claim 9. The hybrids Hyb5,i and Hyb6,i,1, for every i ∈ [µ], are identical

Claim 10. The hybrids Hyb6,i,j and Hyb6,i,j+1, for every i ∈ [µ], j ∈ [N − 1], are computation-
ally indistinguishable assuming that PAFE satisfies indistinguishability of semi-functional keys
property (Definition 6).

Proof. This is similar to the proof of Claim 5.

Claim 11. The hybrids Hyb6,i,N and Hyb2,i+1,1 are identical.

Claim 12. The hybrids Hyb6,µ,N and Hyb7 are identical.

Instantiation. We consider (T, ~φ)-randomizing polynomials of degree 5 for NC1 (Theo-
rem 8). This can be based on assumptions 1.49PRGAssumption (Section 4.4). Further, we
consider projective arithmetic FE for degree 5 polynomials (construction in Section 7). Putting
together both these tools in the above construction we get,

Theorem 11. Assuming projective arithmetic FE for degree 5 polynomials and 1.49PRGAs-
sumption holds, there exists a 1-key sublinear secret key FE scheme for NC1.

Note that, as demonstrated in Section A, the existence of sub-exponentially secure sub-linear
FE for NC1 (and additional assumptions) implies indistinguishability obfuscation.

6 Slotted Encodings

We define the notion of slotted encodings: this concept can be thought of as abstraction of
composite order multilinear maps. It allows for jointly encoding a vector of elements. Given
the encodings of two vectors, using the addition and multiplication operations it is possible to
either homomorphically add the vectors component-wise or multiply them component-wise.

To define this primitive, we first define the notion of structured asymmetric multilinear maps
in Section 6.1. We show in Section 6.2 how to instantiate this form of structured asymmetric
multilinear maps using current known instantiations of multilinear maps. Once we have armed
ourselves with the definition of structured multilinear maps, we define the notion of slotted
encodings (a special type of structured multilinear maps) in Section 6.3. In Section 6.5, then
show how to realize slotted encodings using structured asymmetric multilinear maps for the
constant degree17 case.

17As we see later, this corresponds to the scenario where the structured multilinear maps is associated with constant
number of bilinear maps.

38

6.1 Structured (Asymmetric) Multilinear Maps

We define the notion of structured asymmetric multilinear maps. It is associated with a binary
tree T . Every node is associated with a group structure and additionally, every non leaf node is
associated with a noisy bilinear map. Every element in this group structure has multiple noisy
representations as in the case of recent multilinear map candidates [GGH13a, CLT13, GGH15].

Suppose nodes u and v are children of node w in tree T . And let the respective associated
groups be Gu,Gv and Gw respectively. Let euv be the bilinear map associated with node w.
Then euv : Gu ×Gv → Gw.

Before we define structured multilinear maps we first put forward some notation about trees
and also define some structural properties that will be useful later.

Notation About Trees: Consider a tree T = (V,E), where V denotes the set of vertices and
E denotes the set of edges. We are only interested in binary trees (every node has only two
children) in this work.

1. We define the function lc : [V] → {0, 1} such that lc(u) = 0 if u is the left child of its
parent, else lc(u) = 1 if u is the right child of its parent.

2. We define par : [V]→ [V] such that par(u) = v if v is the parent of u.

3. rt(T) = w if the root of T is w.

We now define what we call left ancestral path, denoted by LPth. At a high level, left ancestral
path of a node u is defined to consist of its ancestors v1, . . . , vk+1 such that all vis, except vk+1,
are left children of their parents.

Definition 17 (Left Ancestral Path). We define LPth : [V] → [V]∗ as follows: LPth(u) =
(v1, . . . , vk+1) if the following conditions are satisfied:

• All nodes u, v1, . . . , vk (vk+1 is not included) are left children. That is, lc(u) = 0 ∧ lc(v1) =
0 ∧ · · · ∧ lc(vk) = 0

• Node v1 is a parent of u and node vi is a parent of node vi−1 for i > 1. That is, v1 =
par(u) ∧ · · · ∧ vk = par(vk−1) ∧ vk+1 = par(vk)

• Either vk+1 is a right child of some node or it is the left child of the root. That is, either
lc(vk+1) = 1 or (rt(T) = par(vk+1)) ∧ lc(vk+1) = 0.

We refer the reader to Figure 4 for a simple example.

r

v2

v1

u u′

v′1

w2

w1

w

Figure 4: We have LPth(u) = (v1, v2); LPth(v1) = (v2); LPth(v2) = ⊥; LPth(r) = ⊥;
LPth(v′1) = ⊥; LPth(w) = (w1, w2).

39

Some observations about left ancestral path.

1. Consider a node u. We have LPth(u) = (v1, . . . , vk+1). Recall that v1 is the parent of u.
If v1 6= ⊥ then LPth(v1) = (v2, . . . , vk+1).

2. If u is a child of the root. We have LPth(u) = ⊥ irrespective of whether it is a left child
or a right child.

Definition of Structured Multilinear Maps. A structured multilinear maps is de-
fined by the tuple SMMap = (T = (V,E), {Gu}u∈V) and associated with ring R, where:

• T = (V,E) is a tree.

• Gu is a group structure associated with node u ∈ V . The order of the group is N .

The encoding of elements and operations performed on them are specified by the following
algorithms:

• Secret Key Generation, Gen(1λ): It outputs secret key sk and zero test parameters
ztpp.

• Encoding, Encode(sk, a, u ∈ V): In addition to secret key sk, it takes as input a ∈ R and
a node u ∈ V . It outputs an encoding [a]u.

• Add, [a]u + [b]u = [a+ b]u. Note that only elements corresponding to the same node in
the tree can be added.

• Multiply, [a]u ◦ [b]v = [a · b]w. Here, w is the parent of u and v, i.e., w = par(u) and
w = par(v).

• Zero Test, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and an encoding [a]r
at level r, where r = rt(T), output 0 if and only if a = 0.

We define degree of structured multilinear maps.

Definition 18 (Degree of SMMAP). Consider a structured multilinear maps scheme given by
SMMap = (T = (V,E), {Gu}u∈V). The degree of SMMap is defined recursively as follows.
We assign degree to every node in the tree as follows:

• Degree of every leaf node u is 1.

• Consider a non leaf node w. Let u and v be its children. The degree of w is the sum of
degree of u and degree of v.

The degree of SMMap is defined to be the degree of the root node.

Remark 9. If we restrict ourselves to only binary trees (which is the case in our work) and if
d is the depth of the binary tree T then the degree of SMMap, associated with (T, {Gu}u∈V) is
2d.

Useful Notation: We employ the following notation that will be helpful later. Suppose
[v1]i , . . . , [vm]i be a vector of encodings and let v = (v1, . . . , vm) ∈ ZmN . Then, [v]

m
i denotes

([v1]i , . . . , [vm]i). If the dimension of the vector is clear, we just drop m from the subscript and
write [v]i.

6.2 Instantiations of Structured Multilinear Maps

We can instantiate structured multilinear maps using the ‘asymmetric’ version of existing mul-
tilinear map candidates [GGH13a, CLT13]. For example, in asymmetric GGH, every encoding
is associated with set S. Two encodings associated with the same set can be added. If there
are two encodings associated with sets S1 and S2 respectively, then they can be paired if and

40

only if S1 ∩ S2 = ∅. The encoding at the final level is associated with the universe set, that is
the union of all the sets.

To construct a structure multilinear map associated with (T = (V,E), φ), we can start with
a universal set U = {1, . . . , |V ′|}, where V ′ ⊆ V is the set of leaves in T . That is, there are
as many elements as the number of leaves in V . We then design a bijection ψ : U → [V ′]. An
encoding is encoded at a leaf node u under the set Su = {ψ−1(u)}. For a non leaf node w, the
encoding is performed under the set Sw = Su ∪ Sv, where u and v are the children of w.

6.3 Definition

A L-slotted encoding SEnc is a type of structured multilinear maps SMMap = (T = (V,E),
{Gu}u∈V) associated with ring R and is additionally parameterized by L. It consists of the
following algorithms:

• Secret Key Generation, Gen(1λ): It outputs secret key sk and zero test parameters
ztpp.

• Encoding, Encode(sk, a1, . . . , aL, u ∈ V): In addition to secret key sk, it takes as input
a1, . . . , aL ∈ R and a node u ∈ V . If u is not the root node, it outputs an encoding

[a1| · · · |aL]u. If u is indeed the root node, it outputs an encoding
[∑L

i=1 ai

]
u
.

• Add, [a1| · · · |aL]u + [b1| · · · |bL]u = [a1 + b1| · · · |aL + bL]u. Note that only elements corre-
sponding to the same node in the tree can be added. Further, the elements in the vector
are added component-wise. That is, if two encodings of (a1, . . . , aL) and (b1, . . . , bL) at
node u are added then the result is an encoding of (a1 + b1, . . . , aL+ bL) at the same node.

• Multiply: Suppose w = par(u) and w = par(v).

[a1| · · · |aL]u ◦ [b1| · · · |bL]v =


[a1b1| · · · |aLbL]w if rt(T) 6= w[
L∑
i=1

aibi

]
w

otherwise

The elements in the vectors are multiplied component-wise. That is, if you multiply two
encodings of (a1, . . . , aL) at node u and (b1, . . . , bL) at node v then the result is an encoding
of (a1 · b1, . . . , aL · bL) at node w.

• Zero Test, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and an encoding [a]r
at level r, where r = rt(T), output 0 if and only if a = 0.

Remark 10. The degree of slotted encodings can be defined along the same lines as the degree
of structured multilinear maps.

6.4 Evaluation of Polynomials on Slotted Encodings

We consider the homomorphic evaluation of (T, φ)-respecting polynomials on slotted encodings.
We first define evaluation of (T, φ)-respecting monomials on slotted encodings and then using

this notion define evaluation of (T,
−→
φ)-respecting polynomials on slotted encodings.

HomEval (t, SMMap, {E1,u}u∈V , . . . , {En,u}u∈V): The input to this algorithm is (T, φ)-respecting
monomial t ∈ Fp[y1, . . . , yn], slotted encoding scheme SMMap = (T = (V,E), {Gu}u∈V) and
slotted encodings Ei,u, for every i ∈ [n] and every u ∈ V , encoded under Gu.

The evaluation proceeds recursively as follows: for every non leaf node u ∈ V , set Ẽu =
Eφ(u),u. Consider the case when u is a non-leaf node and let v and w be the children of u.

Compute encoding associated with node u as Ẽu = Ẽv ◦ Ẽw. Let rt be the root of T . Output

41

the encoding Ẽrt associated with rt.

HomEval (p,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V): The input to this algorithm is (T,
−→
φ)-respecting

polynomial p ∈ Fp[y1, . . . , yn], slotted encoding scheme SMMap = (T = (V,E), {Gu}u∈V) and
slotted encodings Ei,u, for every i ∈ [n] and every u ∈ V , encoded under Gu.

Let p =
∑n
i=1 citi, for ci ∈ Fp and ti is a (T, φi)-respecting monomial for every i ∈ [n]. The

evaluation proceeds as follows: for every i ∈ [n], execute Ẽrt

(i)
← HomEval(ti,SMMap, {E1,u}u∈V ,

. . . , {En,u}u∈V). Compute Ert =
n∑
i=1

ciẼrt

(i)
. Output the encoding Ert.

Remark 11. Based on the current implementation of multilinear maps, given an encoding of
an element a ∈ Fp, we don’t know how to securely obtain encoding of c ·a for some scalar c ∈ Fp

of our choice. But instead, we can still obtain encoding of c · a, when c is small (for instance,
polynomial in security parameter). This can achieved by adding encoding of a, c number of
times.

6.5 Implementation: Constant Degree Case

We show how to implement L-slotted encoding schemes associated with (T = (V,E), {Gu}u∈V)
and ringR starting from any structured multilinear maps scheme associated with (T = (V,E), {Gu}u∈V)
and ring R.

We begin by introducing some notation that will be helpful for presenting the transformation.

Notation. Considers vectors µ1, . . . , µn ∈ Zmp . We denote the jth element in µi to be µji .

We denote by µ∗ =
⊗n

i=1 µi a vector in Zmn

p with the elements in µ∗ indexed by [m]n such that

the (j1, . . . , jn)th element in µ∗ is µj11 · · ·µjnn . That is, µ∗ is the tensor product of {µi}i∈[n].
We can define inner product operation for vectors of different dimension.

Definition 19. Consider vectors of the form µ1 · · ·µn =
⊗n

i=1 µi ∈ Zmn

p and ν ∈ Zmp . We

define 〈
⊗n

i=1 µi, ν〉 to be the vector
⊗n

i=2 µi · 〈µ1, ν〉 ∈ Zmn−1

p .

Remark 12. According to the above definition, the notation 〈µ1 · µ2, ν〉 means µ2 · 〈µ1, ν〉 and
the notation 〈µ2 · µ1, ν〉 means µ1 · 〈µ2, ν〉. Thus, 〈µ1 · µ2, ν〉 6= 〈µ2 · µ1, ν〉.

We consider the following useful algorithm.

Dual Algorithm: We recall the dual algorithm Dual as defined in [BJK15]. It is a randomized
algorithm that takes as input modulus N , dimension n18 and outputs (−→µ = (µ1, . . . , µn), −→η =
(ν1, . . . , νn)) such that: (a) µi, νi ∈ ZnN (b) −→µ is sampled at random conditioned on µ1, . . . , µn
being linearly independent, (c) 〈µi, νj〉 = 0 if j 6= i and, (d) 〈µi, νi〉 = 1. Such vector spaces
have been considered in the literature on bilinear maps [OT08, OT09, BJK15].

Implementation. Consider a structured multilinear maps scheme SMMap = (T = (V,E),
{Gu}u∈V). We construct a L-slotted encoding scheme as follows.

Gen(1λ): Let n be the number of the nodes in the tree. Compute (−→µi,−→νi)← Dual(N,n · L) for

every i ∈ [L]. Here, −→µi = {µiu}u∈V,i∈[L] and −→νi = {νiu}u∈V,i∈[L] are such that: (a) µiu, ν
i
u ∈ ZnLN ,

(b) 〈µiu, νiu〉 = 1 for every u ∈ V , (c) 〈µiu, νjv〉 = 0 for every u, v ∈ V and either i 6= j or u 6= v.
For every u ∈ V and i ∈ [L], we assign βiu as follows:

- If u is the left child, i.e., lc(u) = 0, set βiu = µiu.

18The dimension here indicates both the number of vectors as well as the number of components in the vectors.

42

- If u is the right child, then let v be the sibling of u. That is, par(u) = par(v) and
lc(v) = 0. Assign βiv = νiu.
[Note: if u and v are siblings, we have 〈βiu, βiv〉 = 1.]

It also generates the setup of structured multilinear maps; (SMMap.sk,SMMap.ztpp)← SMMap.Gen(1λ).
Set the secret key sk = (SMMap.MSK, {βiu}u∈V,i∈[L]) and zero test parameters to be ztpp =
SMMap.ztpp.

Encode(sk, a1, . . . , aL, u ∈ V): Let LPth(u) = (u1, . . . , uku+1). Let k = ku. Let u0 = u. We
set,

- If u is not the root,

[a1| · · · |aL]u =

 L∑
i=1

ai k+1⊗
j=0

βiuj

(nL)k+2

u

- If u is the root,

[a1| · · · |aL]u =

[
L∑
i=1

ai

]
u

That is, [a1| · · · |aL]u is generated as an output of Encode

(
SMMap.MSK,

L∑
i=1

(
ai
⊗k+1

j=0 β
i
uj

)
, u

)
.

Addition: Let u ∈ V and let LPth(u) = (u1, . . . , uk+1). Let u0 = u.

[a1| · · · |aL]
(nL)k+1

u + [b1| · · · |bL]
(nL)k+1

u =

 L∑
i=1

ai k+1⊗
j=0

βiuj

(nL)k+2

u

+

 L∑
i=1

bi k+1⊗
j=0

βiuj

(nL)k+2

u

=

 L∑
i=1

(ai + bi)

k+1⊗
j=0

βiuj

(nL)k+2

u

= [a1 + b1| · · · |aL + bL]u

Multiplication: Let u, v, w ∈ V such that (i) w = par(u), (ii) w = par(v), (iii) lc(u) = 0, (iv)
LPth(u) = (u1, . . . , uk+1), (v) LPth(v) = (v1, . . . , vk+1). Let u0 = u and v0 = v.

Note that by construction, 〈βiu, βjv〉 = 1 if i = j, else 〈βiu, βjv〉 = 0 if i 6= j.

Case rt(T) 6= w: In this case, v1 = ⊥.

[a1| · · · |aL]u ◦ [b1| · · · |bL]v =

 L∑
i=1

ai k+1⊗
j=0

βiuj

(nL)k+2

u

◦

[
L∑
i=1

(
biβ

i
v0

)](nL)

v

=

 L∑
i=1

aibi k+1⊗
j=1

βiuj

 · 〈βiu0
, βiv0〉

(nL)k+1

w

= [a1b1| · · · |aLbL]w (∵ LPth(w) = (u2, . . . , uk+1))

43

Case rt(T) = w: In this case, u1 = ⊥ and v1 = ⊥.

[a1| · · · |aL]u ◦ [b1| · · · |bL]v =

[
L∑
i=1

(
aiβ

i
u

)](nL)

u

◦

[
L∑
i=1

(
biβ

i
v

)](nL)

v

=

[
L∑
i=1

aibi

]
w

Zero Testing, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and encoding [a]r, it

executes the zero testing algorithm of SMMap scheme; SMMap.ZeroTest(SMMap.ztpp, a). The
result of SMMap.ZeroTest is output.

7 Projective Arithmetic FE from Slotted Encodings

We show how to construct projective arithmetic FE starting from the notion of slotted encodings
defined in Section 6.3.

7.1 Construction

Consider a L-slotted encoding scheme SEnc, defined with respect to structured multilinear maps
SMMap = (T = (V,E), {Gu}u∈V) and is parameterized by L. We construct a multi-key secret
key projective arithmetic functional encryption scheme PAFE for a function class C = {Cλ}λ∈N
as follows. Here, Cλ consists of functions with input length λ and output length poly(λ).

Setup(1λ): On input security parameter λ,

• It executes the secret key generation algorithm of the slotted encoding scheme to obtain
sk← Gen(1λ).

• Sample values αi,u ∈ Fp for every i ∈ [`inp], u ∈ V at random. We define `inp later. Denote
−→α = (αi,u)i∈[`inp],u∈V .

• Sample a random value S ∈ Fp.

It outputs MSK = (sk,−→α , S).

KeyGen(MSK, p): It takes as input master secret key MSK and a polynomial p ∈ Fp[y1, . . . , y`inp]

associated with an arithmetic circuit C. Let T a tree and ~φ = (φ1, . . . , φK) with φi : [V]→ [`inp]
be such that:

• p =
∑K
j=1 citi, where ci ∈ Fp.

• ti is a (T, φi)-respecting monomial in `inp variables.

• Thus, p is (T, ~φ)-respecting.

Let δi be obtained by first assigning αφi(u),u to every leaf node u and then evaluating T 19. That

is, δi is the value obtained at the root of T . Assign ∆ =
∑K
i=1 ci · δi.

Let rt be the root of T and let u be its left child and v be its right child. Compute
EC = Encode (sk, (0,∆ · S, p(0; 0)), u) for every i ∈ [n]. Output skC = (C,EC).

Enc(MSK, x): It takes as input master secret key MSK and input x ∈ {0, 1}`x . Let inp = x and
`inp = |x|.

19Note that every non leaf node is treated as a multiplication gate.

44

It also samples an element γ ∈ Fp at random. For every i ∈ [`inp], u ∈ V and u is a
leaf node, encode the tuple (inpi, γ · αi,u, 0) with inpi denoting the ith bit of inp, as follows:

Einp
i,u = Encode (MSK, (inpi, γ · αi,u, 0), u). Also encode γD under group Gv, where v is the right

child of rt: Eγ = Encode(MSK, (0, γD · S−1, 0), v). Recall that D is the degree of homogeneity
of RP.

Output the ciphertext CT =
(
(Ei,u)i∈[inp],u∈V ,Eγ

)
.

ProjectDec(skC ,CT): It takes as input functional key skC and ciphertext CT. It parses skC as
(C,EC) and CT as

(
(Ei,u)i∈[inp],u∈V ,Eγ

)
. It executes the following:

• Compute out1 = HomEval(p, SMMap, (Ei,u)i∈[inp],u∈V).

• Compute out2 = EC ◦ Eγ .

Output the partial decrypted value ι = out1 − out2.

Recover(c1, ι1, . . . , c`f , ι`f): On input co-efficients ci ∈ Fp, partial decrypted values ιi, it first
computes:

temp = c1ι1 + · · ·+ c`f ι`f

The addition carried out above corresponds to the addition associated with the slotted encodings
scheme. Now, perform ZeroTest(ztpp, temp) and output the result. Note that the output is either
in {0, . . . , B} or its ⊥.

(B,B′)-Correctness. From the correctness of HomEval and slotted encodings, it follows that
out1 is an encoding of (p(x), γD ·p({αi,u}), 0). Further, out2 is an encoding of (0, γD ·p({αi,u}), 0).
Thus, the partial decrypted value out1 − out2 is an encoding of (p(x), 0, 0).

With this observation, we remark that for many polynomials p1, . . . , pN , the decryption
of functional key of pi on encryption of x yields as partial decrypted values, encodings of
(pi(x), 0, 0). Thus, sum of all encodings of (ci·pi(x), 0, 0), where ci ∈ B′ andB′ = {0, . . . ,poly(λ)},
yields a successful zero test query if and only if

∑N
i=1 cipi(x) = 0.

We remark that if ztpp just contains parameters to test whether a top level encoding is zero
or not, then the above construction only supports B = {0}. If it additionally contains encoding
of 1, then we can set B = poly(λ).

Encryption Complexity: Multiplicative Overhead. We calculate the encryption
complexity as follows.

|Enc(MSK, x)| = |x| · (Number of groups in SMMap) · poly(λ)

Thus, the above scheme satisfies the multiplicative overhead property.

7.2 Proof of Security

Semi-Functional Algorithms: We describe the semi-functional encryption and the key gen-
eration algorithms. We start with the semi-functional key generation algorithm.

sfKG(MSK, p, θ): Parse MSK as (sk,−→α). In addition, it takes as input a (T, φ)-respecting poly-

nomial p and value θ to be hardwired in the third slot. Let p =
∑K
j=1 cjtj , where tj is a

(T, φj)-respecting monomial in `inp variables. Let δj be obtained by first assigning αφj(u),u to
every leaf node u and then evaluating T . That is, δj is the value obtained at the root of T .

Assign ∆ =
∑K
j=1 ci,j · δj .

45

Let rt be the root of T and let u be its left child and v be its right child. Compute
Ep = Encode (sk, (0,∆, p(0; 0)− θ), u) for every i ∈ [n]. Output skC = (p,Ep).

We now describe the semi-functional encryption algorithm.

sfEnc(MSK, 1`inp): Parse MSK as (sk,−→α). It samples an element γ ∈ Fp at random.
For every i ∈ [`inp], u ∈ V and u is a leaf node, encode the tuple (0, γ · αi,u, 0) as follows:

Einp
i,u = Encode (MSK, (0, γ · αi,u, 0), u). Also encode γD under group Gv, where v is the right

child of rt: Eγ = Encode(MSK, (0, γD, 1), v). Recall that D is the degree of homogeneity of RP.
Output the ciphertext CT =

(
(Ei,u)i∈[inp],u∈V ,Eγ

)
.

We now prove the indistinguishability of semi-functional ciphertexts and indistinguishability of
functional keys properties. Before that we state the assumptions on the slotted encodings upon
which we prove the security of our scheme.

7.2.1 Assumptions

We define the following two assumptions.

Assumption #1: For all (i) inputs x = (x1, . . . , xµ) ∈ {0, 1}µ·`x , (ii) polynomials p ∈ Fp[y1, . . . , yn],q =
(q1, . . . , qN) ∈ Fp[y1, . . . , yn]N be (T, φ)-respecting polynomials, (iii) subset I ⊆ [n] and finally,

(iv) values θ ∈ Fp,Θ = (θi)i∈I ∈ F|I|p and for every sufficiently large λ ∈ N, the following holds:

{ KeyGen(MSK, p, θ), aux[x,q, I,Θ] } ∼=c { sfKG(MSK, p), aux[x,q, I,Θ]}

• MSK← Setup(1λ)

• aux[x,q, I,Θ] = (CT1, . . . ,CTµ, sk1, . . . , skN) consists of two components:

1. For every i ∈ [n], compute CTi ← Enc(MSK, xi).

2. For every i ∈ [N] and i ∈ I, compute ski ← sfKG(MSK, qi, θi). Else if i /∈ I, compute
ski ← KeyGen(MSK, qi).

Assumption #2: For all (i) inputs x∗ ∈ {0, 1}`x ,x = (x1, . . . , xµ) ∈ {0, 1}µ·`x , (ii) polynomials
q = (q1, . . . , qN) ∈ Fp[y1, . . . , yn]N be (T, φ)-respecting polynomials and finally, (iii) values
Θ = (θi)i∈[N] and for every sufficiently large λ ∈ N, the following holds:{

sfEnc(MSK, 1`inp), aux[x,q,Θ]
} ∼=c { Enc(MSK, x∗), aux[x,q,Θ]}

• MSK← Setup(1λ)

• aux[x,q,Θ] = (CT1, . . . ,CTµ, sk1, . . . , skN) is computed in the following way:

1. For every i ∈ [n], compute CTi ← Enc(MSK, xi).

2. For every i ∈ [N] θi = qi(x
∗).

3. For every i ∈ [N], compute ski ← sfKG(MSK, qi, θi).

The following two theorems directly follow from the above two assumptions.

Theorem 12. The scheme PAFE satisfies indistinguishability of semi-functional keys under
Assumption #1.

Theorem 13. The scheme PAFE satisfies indistinguishability of semi-functional ciphertexts
under Assumption #2.

From the above two theorems, we have the following theorem.

Theorem 14. The PAFE satisfies semi-functional security under Assumptions #1 and #2.

46

8 Justifying Assumptions in Ideal MMap Model

We justify the security of both the assumptions in the ideal multilinear map model. We first
recall the definition of the ideal multilinear map model.

8.1 Ideal Multilinear Map Model

We describe the ideal multilinear model [BR14, BGK+14] tailored to the asymmetric setting.
The model is parameterized by structured multilinear maps SMMap = (T = (V,E),

{Gu}u∈V), where Gu is a group of order p. The adversary in this model has access to an
oracleM. Initially, the adversary is handed out handles (sampled uniformly at random) instead
of being handed out actual encodings. A handle is an element in a ring R of order p. The oracle
M maintains a list L consisting of tuples (e,Y[e], u), where e is the handle issued, Y[e] is the
formal expression associated with e and e is associated with Gu.

The adversary is allowed to submit the following types of queries to the oracle:

• Addition/ Subtraction: The adversary submits (e1, u1) and (e2, u2) along with the oper-
ation ‘+’(or ‘-’) to the oracle. If there is no tuple associated with either e1 or e2, the
oracle sends ⊥ back to the adversary. Otherwise, it locates the tuples (e1, pe1 , u1) and
(e2, pe2 , u2). If u1 6= u2, it sends ⊥ to adversary. Else, it creates a new handle e′ (sampled
uniformly at random from R) and appends (e′, pe1 + pe2 , u1) (or (e′, pe1 − pe2 , u1)) to the
list. The oracle sends e′ to the adversary.

• Multiplication: The adversary submits (e1, u1) and (e2, u2) to the oracle. If there is no
tuple associated with either e1 or e2, the oracle sends ⊥ back to the adversary. Otherwise,
it locates the tuples (e1, pe1 , u1) and (e2, pe2 , u2). If u1 and u2 are not siblings in the tree
T , it sends ⊥ to the adversary. Otherwise, let w be the parent of u1 and u2. It creates
a new handle e′ (sampled uniformly at random from R) and appends (e′, pe1 ∗ pe2 , u1) to
the list.

• Zero Test: The adversary submits element e to the oracle. The oracle tries to locate the
tuple (e, pe, u). If u 6= r, where r is the root of T , then the oracle outputs ⊥. Otherwise,
it checks if pe = 0 (as a formal polynomial) and if so, it sends 0 to the adversary, else it
sends 1.

Remark 13. The above model can be strengthened to also allow for multiplication queries,
where the adversary can submit (e1, u1) and (e2, u2) such that u1 and u2 are not necessarily
siblings. In fact the instantiations of structured multilinear maps (see Section 6.1) does allow
for such types of operations. We do not describe the security analysis in the extended model in
this draft because as we will see later, the analysis for the current model is already quite involved.
However, we note that our analysis for the above model can be extended to the general setting.

Simplification of Notation. An equivalent version of the above model is the setting where
the adversary submits polynomials instead of handles. For instance, for an addition query, it
submits two tuples (p1, u1) and (p2, u2) where p1 and p2 are polynomials (in variables associated
to initial handles). As before, the oracle maintains a list comprising of tuples of the form (p, v).
Similarly, instead of handing out handles in the beginning, the oracle hands out polynomials.

Useful Lemma. We define the following lemma which has been used in the literature to
argue security in generic bilinear maps and multilinear maps.

Lemma 1 (Schwartz-Zippel-DeMillo-Lipton for Rational Polynomials). Consider two rational
polynomials h1 = p1

q1
and h2 = p2

q2
, where p1, q1, p2, q2 ∈ Fp[y1, . . . , yn]. Suppose the maximum

degree of p1, q1, p2, q2 is at most D. If p = 2λ and D = poly(λ) then,

Pr
y1,...,yn

$←−Fp

[h1(y1, . . . , yn) = h2(y1, . . . , yn) : h1 6= h2] ≤ negl(λ)

47

Proof Sketch. We can rewrite h1 6= h2 to be equivalent to p1 · q2 6= p2 · q1. That is, p∗ =
p1 · q2 − p2 · q1 6= 0. We bound the probability that the evaluation of p∗ on a random point is
0. This holds from Schwartz-Zippel-DeMillo-Lipton for (standard) polynomials. Using this, we
argue that h1 and h2 agree with each other only with negligible probability. The only case we
need to be careful is when q1 and q2 are zero polynomials in which case p∗ = 0 but then h1 and
h2 won’t agree with each other. Thus, we need to bound the probability that q1 and q2 are zero
polynomials. Again from Schwartz-Zippel-DeMillo-Lipton for (standard) polynomials, q1 and
q2 are not zero polynomials with overwhelming probability.

8.2 Slotted Encodings: Proof in Ideal MMap Model

We first state a property associated with slotted encodings and then we prove our construction
of slotted encodings (Section 6.5) satisfies this property in the ideal multilinear map model.

At a high level, this property says that the adversary when given slotted encodings gener-
ated as in Section 6.5 can only do “component-wise” operations on the elements. That is, given
encodings of (a1, . . . , aL) and (b1, . . . , bL), the adversary can only obtain (a1 + b1, . . . , aL + bL)
if they both are encoded under the same node or obtain (a1 · b1, . . . , aL · bL) if they both are
encoded under sibling nodes.

Slot Preservation Property: Consider the L-slotted encoding scheme SEnc defined with re-
spect to structured multilinear maps SMMap = (T = (V,E), {Gu}u∈V) (Section 6). Consider
an input distribution D defined over the space FKp , where K = poly(λ). For any sufficiently
large security parameter λ ∈ N, for any PPT adversary A, we define the following experiment:

ExptA(1λ):

1. Adversary first chooses the groups under which the K elements need to be encoded; (u1, . . . ,
uK)← A(1λ)

2. {(zi1, . . . , ziK)}i∈[L]
$←− D(1λ)

3. Generate the secret key sk← Gen(1λ)

4. Generate the encodings Ej =
[
z1
j | · · · |zKj

]
uj
← Encode(sk, z1

j , . . . , z
K
j , uj). The adversary

is given {Ej}j∈[K].

5. Adversary outputs E∗ encoded at the final level.

6. Output 1 if ZeroTest(E∗) = 0.

Let r be the root of the tree T . We have,

Pr
[
∃C : 0← ZeroTest(Encode(sk, C({z1

j})), . . . , C({zKj })), r) | 1
$←− ExptA(1λ)

]
≥ 1− negl(λ),

where negl is a negligible function.

Remark 14. If A is an ideal multilinear map adversary then we say that the slotted encoding
scheme SEnc satisfies slot preservation property in the ideal multilinear map model.

8.2.1 Slot Preservation Property in Ideal MMap Model

We show the following,

Theorem 15. L-slotted encodings implemented in Section 6.2 from prime order multilinear
maps satisfies the slot preservation property in the ideal mmap model.

48

We associate with the vector βiu (described in Section 6.2) the variables Y[βiu, j] for the jth

element of βiu, with u ∈ V and i ∈ [L]. Depending on whether u is a left child or not, Y[βiu, j]
is either a variable or a polynomial:

• If u is a left child, i.e., lc(u) = 0 then Y[βiu, j] is a variable.

• If u is a right child then Y[βiu, j] is a polynomial. Let v be the sibling of u. Then, Y[βiu, j]
is a polynomial in the variables {Y[βi

′

v , j
′]}i′∈[L],j′∈[n·L] defined by the following conditions:

– If i′ = i,
∑n·L
j′=1 Y[βiu, j

′] ·Y[βiv, j
′] = 1

– If i′ 6= i,
∑n·L
j′=1 Y[βiu, j

′] ·Y[βiv, j
′] = 0

Note that for the case when u is a right child, Y[βiu, j] could potentially be a rational
polynomial. And the only variables it depends on are the ones associated with its sibling.

We associate with zic (as in the description of slot preservation property) the variables Y[zic] for
every c ∈ [K] and i ∈ [L].

We introduce the following notation:

Definition 20 (Zero Test Circuits/ Polynomials). Consider a circuit C (resp., polynomial p)
computed by the ideal mmap adversary that leads to a successful zero test query. We call C
(resp., p) a zero test circuit (resp., zero test polynomial).

We also recall a standard definition:

Definition 21 (Sub-circuit/ Sub-polynomial). A circuit C ′ is said to be a sub-circuit of another
circuit C if C ′ is a sub-graph of C and if C ′ is not empty. In particular, if C and C ′ are written
as polynomials p and p′ respectively, then the co-efficient of p′ in the computation of p is non
zero. Here, p′ will be called sub-polynomial of p.

Definition 22 (Polynomial computed at a Node). A polynomial p is said to be computed at
node u by the adversary if (p, u) is a valid tuple in the list maintained by the oracle.

We prove the following lemma that proves the security of slotted preservation property in the
ideal mmap model.

Theorem 16. Consider a node u ∈ V . Consider a polynomial pu created by the adversary at
node u. Then one of the following conditions will hold:

1. Let p∗ be a zero-test polynomial such that pu is a sub-polynomial of p∗. Then,

• All the sub-polynomials of p∗ computed at node u are of the following form: Let u0 = u,
for every ~j = (j0, . . . , jk+1), j0, . . . , jk+1 ∈ [n · L],

p
~j
u =

L∑
i=1

Cu({Y[zic]}) ·
k+1∏
l=0

Y[βiu`
, jl]

for LPth(u) = (u1, . . . , uk+1) and u0 = u.

• There exists ~j∗ ∈ [n · L]k+2 such that pu = p
~j∗
u .

2. pu is not of the above form then pu is not a sub-polynomial of any zero test polynomial.

Proof. Consider a zero test polynomial p∗ computed by adversary. We prove this by induction.

Base Case: Initially, the adversary is only given handles associated with polynomials of the
form Y[zic] ·

∏k+1
l=0 Y[βiu`

, jl] associated with leaf node node u.

Induction Hypothesis: Consider a non leaf node w and let u and v be its left child and right
child respectively. Let us assume the following:

49

• All the sub-polynomials computed at u is of the following form: Let u0 = u, for every
~j = (j0, . . . , jk+1), j0, . . . , jk+1 ∈ [n · L],

p
~j
u =

L∑
i=1

Cu({Y[zic]}) ·
k+1∏
l=0

Y[βiu0
, jl]

for LPth(u) = (u1, . . . , uk).

• All the sub-polynomials computed at v is of the following form: Let v0 = v, for every
~j = (j0, . . . , jk+1), j0, . . . , jk+1 ∈ [n · L],

p
~j
v =

L∑
i=1

Cv({Y[zic]}) ·
k+1∏
l=0

Y[βiv0 , jl]

for LPth(v) = (v1, . . . , vk).

Remark 15. Note that when v is the right child then LPth(v) = ⊥. That is, Y[βivl , jl] = 1 for
l ∈ {1, . . . , k}.

We claim the following:

Lemma 2. The only sub-polynomials of p∗ computed at node w are of the following form: for
every ~ji = (i, j1, . . . , jk+1), where i, j1, . . . , jk+1 ∈ [n · L],

p
~j
w =

n·L∑
i=1

p
~ji
u · p

~ji
v

To prove the above lemma, we first prove the following useful claim.

Claim 13. Consider a polynomial q in variables y1, . . . ,ym. Consider I ⊆ [m]. Let yI =
{yi}i/∈I and yU = {y1, . . . ,ym}. Suppose the following holds:

• q can be written as q = q1(q2(yU),yI). That is, q2(yU) is a polynomial in variables in the
set yU and q1 is a polynomial in q2(yU) and variables in yI .

• The co-efficient of q2(yU) is non-zero in the polynomial q1. That is, q2 is the sub-
polynomial of q1.

• The polynomial q2 is non-zero in the variables in the set yI . That is, at least one term in
the expansion of q2 contains at least one variable in the set yI .

Then, the polynomial q is non-zero polynomial.

Proof. Let t be a term in q2 that contains one of the variables in yI . Since term cannot be
canceled by any of the variables in yI , q1 will contain a term of the form t · t′, where t′ is a term
in variables in yI – here we are using the fact that the co-efficient of q2 in q1 is non zero. Thus,
q1 is a non-zero polynomial.

Proof of Lemma 2. We first observe that every sub-polynomial p
~j
w computed according to the

theorem statement, does not contain any of the variables Y[βiu0
, jl] or Y[βiv0 , jl], for any i ∈

[L], l ∈ [n · L]. Suppose p
~j
w is a polynomial computed at node w and is not of the form as

described in the theorem statement. Then there are two possibilities:

• p
~j
w does not contain variables Y[βiu0

, jl] or Y[βiv0 , jl], for any i ∈ [L], l ∈ [n·L]: This means
that there are two distinct polynomials in variables {Y[βiv0 , jl]} of small degree such that
they both are zero polynomials. But by Schwartz-Zippel-DeMillo-Lipton theorem, this is
not possible.

50

• p
~j
w contains variables Y[βiu0

, jl] or Y[βiv0 , jl], for some i ∈ [L], l ∈ [n · L]: We invoke

Claim 13: the variables {Y[βiu0
, jl]}, {Y[βiv0 , jl]} are in the set I and furthermore, p

~j
w is a

sub-polynomial of p∗. From Claim 13, that p∗ is a non zero polynomial. This contradicts
the hypothesis that p∗ is a zero test polynomial.

8.3 Security of Assumptions in Ideal Multilinear Map Model

We now use the slot preservation property proved in the previous section to justify the security
of assumptions stated in Section 7 in the ideal multilinear map model. Before that, we prove
a general theorem about the scheme that will be useful to state. We begin by setting up some
notation.

Consider an adversary A in the ideal multilinear map model. Let A have access to the oracleM.
The adversary initially receives the handles to the encodings corresponding to the ciphertexts
and the functional keys. That is, it receives handles to the slotted encodings

{[
z1
k|z2

k|z3
k

]
u

}
j,u

.

Here,
[
z1
k|z2

k|z3
k

]
u

is one of the following forms:

•
[
xji |γi · αi,u|0

]
u
. Here, xji is the jth bit of input xi. The value γi is the randomness

associated with the ith ciphertext. In the indistinguishability of semi-functional ciphertexts
game, xji will be set to 0.

•
[
0|γDi · S−1|bi

]
u
. The value bi is set to 0, if this encoding corresponds to honestly generated

ciphertexts, otherwise bi = 1.

• [0|∆ · S|b′i]u. The value b′i is set to 0, if this encoding to honestly generated functional key,
otherwise if it is associated with the semi-functional key we have b′i = v where v is the
hardwired value corresponding to the semi-functional key.

For each of the above elements, the oracle uses this formal variable Y[·] to associate with that
particular element. For example, the element γi is associated with the variable Y[γi].

It then executes the addition/ subtraction, multiplication queries to the oracle. In the end, it
submits a handle to the zero test query.

Let us consider the case when the zero test query was successful, i.e., the oracle returns
1. From the slot preservation assumption, we have that there exists a circuit C such that the
encoding

[
C({z1

j})| · · · |C({zKj })
]
r
, encoded at Gr, is actually an encoding of zero. We now

make some structural observations about the polynomial QC corresponding to the arithmetic
circuit C.

Theorem 17. With probability negligibly close to 1, the polynomial QC is of the form: here,
`x, `f ∈ N. Let Ix ⊆ [`x] and If ⊆ [`f].

QC =
∑
i∈Ix

∑
j∈If

(Y[γi])
D ·
(
ci,j · pj({Y[αk,u]}) + c′i,j ·Y[∆j]

)
,

where ci,j , c
′
i,j ∈ Fp and c′i,j = −ci,j.

Proof. We first observe that in the expansion of QC , if the term Y[∆j]·Y[S] is multiplied with a
term t, for some j ∈ [`f], then t has to be of the form Y[γi]

D ·Y[S]−1 for some i ∈ [`x]. Suppose
not: there exists j ∈ [`f] such that there is a term Y[∆j] ·Y[S] · t in the expansion of QC such
that t 6= Y[γi]

D ·Y[S]−1 for any i ∈ [`x]. But note that Y[S]−1 always appears together with

51

Y[γi]
D and thus, t does not contain the variable Y[S]−1. Thus, the term Y[∆j] ·Y[S] · t has

degree at least 1 in the variable Y[S]. Thus, QC can be viewed as a polynomial in Y[S]. Since
we assign a random field element to Y[S] in the real experiment, the probability that QC eval-
uates to 0 is negligible. This follows from Schwartz-Zippel-DeMillo-Lipton lemma for rational
polynomials (Lemma 1). For the same reason, if the term Y[γi]

D ·Y[S]−1, for some i ∈ [`x] is
multiplied with a term t in the expansion of QC then t has to be of the form Y[∆j] ·Y[S] for
some j ∈ [`f].

We then consider terms involving variables Y[γi] and Y[αk,u]. We can rewrite polynomial QC

such that it is in turn the sum of the following types of polynomials:

• The first type of polynomials is of the form c ·Y[γi]
d1 ·Y[γi′]

d2 · (polynomial in Y[αk,u]),
where c ∈ Fp. Also, either d1 + d2 < D or d1 + d2 > D.

• The second type is the same as the first type except d1 + d2 = D and both d1 6= 0 and
d2 6= 0.

• The third type is of the form c ·Y[γi]
D · (polynomial in Y[αk,u]), where c ∈ Fp.

We consider the above type of polynomials one by one.

• The first type of polynomials cannot exist, i.e., the co-efficient c has to be zero. This is
because if d1 + d2 < D then this cannot be the encoding at the final level. Similarly,
d1 + d2 > D is not possible since the multilinear map model only allows for evaluations
upto degree D.

• The second type of polynomials also cannot exist, i.e., their co-efficients has to be zero.
Suppose not, we can express QC as:

QC = c ·Y[γi]
d∗1 ·Y[γi′]

d∗2 · (polynomial in Y[αk,u])

+
∑

d1 6=d∗1 or d2 6=d∗2

·Y[γi]
d∗1 ·Y[γi′]

d∗2 · (polynomial in αk,u)

+ polynomial inY[γi],Y[S],Y[∆]

We can view QC as a polynomial in variables {Y[γi]}. Since Y[γi] is substituted with
random values in the real experiment, by Schwartz-Zippel lemma, this polynomial would
evaluate to zero only with negligible probability. This contradicts the hypothesis that QC

is a zero-test polynomial.

This means that only the third type of polynomials survive in the expansion of QC . Now we
can rewrite QC as:

QC =
∑
i∈Ix

Y[γi]
D · (polynomial in αk,u) +

∑
i∈Ix

∑
j∈If

c′i,j ·Y[∆j] ·Y[γi]
D

We now zoom in on polynomials of the form Y[γi]
D · (polynomial in αk,u). We claim that for

every i ∈ Ix, this polynomial should be of the form Y[γi]
D · (

∑
j∈If pj({Y[αk,u]})). Suppose

not: that is there exists a polynomial h such that Y[γi]
D · h({Y[αk,u]}) is a sub-polynomial in

QC and h 6= pj for every j ∈ [`x]. It is easy to see that this term can never get canceled with
any of the other terms. This proves that every i ∈ Ix, this polynomial should be of the form
Y[γi]

D · (
∑
j∈If pj({Y[αk,u]})).

Summarising all the observations we have,

QC =
∑
i∈Ix

∑
j∈If

(Y[γi])
D ·
(
ci,j · pj({Y[αk,u]}) + c′i,j ·Y[∆j]

)
Now that we have ascertained the structure of QC , we now use this to justify both assump-

tions #1 and #2.

52

Justifying Assumption #1. We consider two cases:

• In the first case, the third slot in the functional key corresponds to 0 (honestly generated
functional key). In this case, evaluating the polynomial QC on all the elements in the
third slot that are part of the encodings issued in the security game yield a value 0.

• In the second case, the third slot in the functional key corresponds to θ (semi-functional
key). However, handles corresponding to encodings

[
0|γDi · S−1|0

]
u

and [0|∆ · S|v]u are

paired with each other in the computation of QC for every ith ciphertext. This is because
the term Y[γi]

D ·Y[∆] is present in QC .

Justifying Assumption #2. We consider two cases:

• In the first case, the third slot in the (honestly generated) functional key corresponds to θ
. However, the third slot is not activated. From the structure of QC , the value obtained
by computing QC in the first slot is θ. Similarly, the computation of QC on the third slot
yields the value 0.

• In the second case, the third slot in the functional key corresponds to θ (semi-functional
key). Since the third slot in the ciphertext is activated, evaluating the polynomial QC on
all the elements in the third slot that are part of the encodings issued in the security game
yield the value θ. This is again by observing the above structure of QC . Furthermore, in
the first slot, the evaluation of QC yields value 0.

References

[AAB+15] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumara-
subramanian, Manoj Prabhakaran, and Amit Sahai. On the practical security of
inner product functional encryption. In PKC, pages 777–798, 2015.

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In TCC, pages 528–556, 2015.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In PKC, pages 733–751, 2015.

[ABCP16] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better
security for functional encryption for inner product evaluations. IACR Cryptology
ePrint Archive, 2016:11, 2016.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive functional encryption. In CRYPTO, 2015.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. Computational Complexity,
15(2):115–162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–
326. Springer, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness
generically: Indistinguishability obfuscation from non-compact functional encryp-
tion. IACR Cryptology ePrint Archive, 2015:730, 2015.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local
functions and their countermeasures. In STOC, pages 1087–1100, 2016.

53

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, pages 533–556, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
CRYPTO, pages 1–18, 2001.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
ITCS, 2016.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In EUROCRYPT, pages 221–238,
2014.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In ASIACRYPT,
pages 134–153, 2012.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In ASIACRYPT, pages 470–491, 2015.

[BLP16] Nir Bitansky, Huijia Lin, and Omer Paneth. On removing graded encodings from
functional encryption. Cryptology ePrint Archive, Report 2016/962, 2016. http:

//eprint.iacr.org/2016/962.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. Cryptology ePrint
Archive, Report 2016/558, 2016. http://eprint.iacr.org/2016/558.

[BNS13] Dan Boneh, Valeria Nikolaenko, and Gil Segev. Attribute-based encryption for
arithmetic circuits. IACR Cryptology ePrint Archive, 2013:669, 2013.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In TCC, 2015.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In FOCS, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In TCC, pages 1–25, 2014.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. In TCC, 2015.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In IEEE (S&P 2007), pages 321–334, 2007.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS. IEEE, 2015.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In CRYPTO,
pages 247–266, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, pages
3–12, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

54

http://eprint.iacr.org/2016/962
http://eprint.iacr.org/2016/962
http://eprint.iacr.org/2016/558

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In CRYPTO, pages 519–535, 2013.

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilin-
ear maps over the integers. In CRYPTO, pages 476–493. Springer, 2013.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In EUROCRYPT, pages
45–64, 2002.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption
for inner product with full function privacy. In PKC, pages 164–195, 2016.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In EUROCRYPT, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, pages 40–49, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC, pages 498–527. Springer, 2015.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, 2014.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure at-
tribute based encryption from multilinear maps. IACR Cryptology ePrint Archive,
2014:622, 2014.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistin-
guishability obfuscation from the multilinear subgroup elimination assumption. In
FOCS, pages 151–170, 2015.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. Cryptol-
ogy ePrint Archive, Report 2016/817, 2016. http://eprint.iacr.org/2016/817.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gol11] Oded Goldreich. Candidate one-way functions based on expander graphs. In Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 76–87. Springer, 2011.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM CCS, 2006.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In EUROCRYPT, pages 415–432, 2008.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle:
Full domain hash from indistinguishability obfuscation. In EUROCRYPT, 2014.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304,
2000.

55

http://eprint.iacr.org/2016/817

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In EUROCRYPT, pages 28–57, 2016.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability
obfuscation with non-trivial efficiency. In PKC, pages 447–462, 2016.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-
like assumptions on constant-degree graded encodings. In FOCS, 2016.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In CRYPTO,
pages 629–658, 2016.

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and sig-
natures from vector decomposition. In International Conference on Pairing-Based
Cryptography, pages 57–74. Springer, 2008.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption
for inner-products. In EUROCRYPT, pages 214–231. Springer, 2009.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In CCC, pages 1–12, 2014.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[SW08] Amit Sahai and Brent Waters. Slides on functional encryption, powerpoint presen-
tation. 2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In STOC, pages 475–484, 2014.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Advances in Cryptology – CRYPTO ’09, pages 619–636,
2009.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT, pages
439–467, 2015.

A Implication of Sub-Linear FE to XiO

We show how to obtain XiO (Definition 5) starting from 1-key ε-sub-linear FE (Definition 4).
We denote a 1-key sub-linear FE by 1SLSKFE.

Suppose there exists a 1SLSKFE with the following structure:

• The size of a functional key of f has size |f | · poly(λ, `), where ` is the input length of f .

• The running time of encryption algorithm, on input message of length `, is: |f |1−εpoly(λ, `),
where ε is a constant associated with the description of the scheme.

56

We will call such a 1SLSKFE scheme as poly-overhead ε-1SLSKFE. Our construction of 1SLSK-
FEsatisfies the above properties.

Theorem 18. Assuming the existence of poly-overhead ε-1SLSKFE for constant ε < 1, there
exists a ε′-XiO scheme, where ε′ < 1 is a constant.

Proof Sketch. The construction of XiO follows along the same lines as the transformation from
1-key compact secret key FE to XiO, due to Bitansky et al. [BNPW16].

We describe at a high level how the construction works: an (XiO) obfuscation of C :
{0, 1}n → {0, 1} consists of a 1SLSKFE key of function G and ciphertexts CT1, . . . ,CTL with
L = 2(1−c)n − 1, where c is a constant that we will fix soon. Here, G takes as input (C, y) and
outputs C(0||y), . . . , C(2cn − 1||y). The ciphertext CTi is an encryption of (C, i), for 0 ≤ i ≤ L.
This completes the description of the obfuscation algorithm. The evaluation of the obfuscated
circuit is straightforward.

The size of obfuscated circuit is 2cn · poly(n, λ) + 2(1−c)n · (2cnε · poly(n, λ)). Fix c = 1
2 . We

have the size of obfuscated circuit to be ≤ 2
n
2 (1+ε) · poly(n, λ). Since ε is a constant < 1, we

have (1 + ε) < 2 and hence the above quantity is at most 2nε
′ · poly(n, λ) for some constant

ε′ < 1.

We can also show that poly-overhead 1SLSKFE for NC1 implies 1SLSKFE for all P .

Theorem 19. Poly-overhead ε-1SLSKFE for NC1 implies poly-overhead ε-1SLSKFE for all
P , where ε < 1 is a constant.

Proof Sketch. This transformation follows along the same lines as in prior bootstrapping theo-
rems [ABSV15]: the functional key of f w.r.t 1SLSKFE for P scheme is essentially the functional
key of Gτ w.r.t 1SLSKFE for NC1 where Gτ takes as input (x,K,⊥) and outputs a randomized
encoding of f(x) w.r.t randomness derived from PRF(K, τ).

We now argue about the efficiency of the resulting scheme.

• The size of the functional key of Gτ is |Gτ | · poly(λ, `), where ` is the input length of f .
This follows from the poly-overhead property of the underlying FE scheme. Furthermore,
by using a suitable randomized encodings scheme such as Yao’s garbled circuits, we have
|Gτ | = |f | ·poly(λ). This proves that the resulting scheme for P satisfies the poly-overhead
property.

• Now, lets analyze the size of the ciphertext in the resulting scheme. The size of an en-
cryption of message x of length ` is |Gτ |ε · poly(λ, `). From the previous bullet, |Gτ | =
|f | · poly(λ). Thus, the size of the ciphertext is |f |ε · poly(λ, `).

Combining Theorems 18 and 19, we have the following corollary.

Corollary 1. Assuming poly-overhead ε-1SLSKFE for NC1, there exists a ε′-XiO, where ε, ε′ <
1 are constants.

When the above corollary is combined with [LPST16] and [AJ15, BV15], we get

Corollary 2. Assuming poly-overhead ε-1SLSKFE for NC1 that is sub-exponentially secure
and sub-exponentially secure learning with errors, there exists an indistinguishability obfuscation
scheme.

Remarks about Theorem 19. In the proof of Theorem 19, we prove that ε-1SLSKFE for
C ∈ NC1 implies ε-1SLSKFE for arbitrary class of polynomial-sized circuits. Here, C consists of
circuits that compute the encode algorithm of a randomized encoding scheme. More specifically,
we can use Yao’s garbling schemes.

We claim that every circuit C ∈ C of output length N is of the form C = (C1, . . . , CN),
where:

57

- Ci outputs the ith output bit of C,

- Depth of Ci is c · log(λ), where c is a constant independent of C,

- |Ci| = poly(λ) for a fixed polynomial poly and,

- Ci for every i ∈ [N] have the same topology. That is, every Ci can be written as Ĉ[Vi],
where Ĉ is a circuit and Vi are the constants on a subset of its wires.

To see this, we can view Ci as computing the garbled table associated with the ith gate. The
circuit computing a single garbled table has size fixed polynomial in security parameter and also
its depth is c · log(λ), where c is independent of the circuit being garbled. Every circuit Ci can

be written as Ĉ[Vi] with the constants Vi corresponding to the description of ith gate.

B Conversion of Polynomials: From F2 to Fp

We recall the conversion of polynomials from F2 to polynomials over Fp. The same conversion
when applied to (T,Φ)-respecting polynomials over F2 yields (T,Φ)-respecting polynomials over
Fp – that is, the associated tree T and set of maps Φ remains unchanged.

Transformation ConvPoly. Consider a polynomial p1 ∈ F2[y1, . . . , yn] and let the function
computed by the polynomial be F : {0, 1}n → {0, 1} i.e., p(x) = F (x). We construct another
polynomial p2 ∈ Fp[y1, . . . , yn] associated with the same function F i.e., p2(x) = F (x). We
denote p2 = ConvPoly(p1, 2,p).

The transformation inductively proceeds as follows:

Base Case: If p1 = yi for some i ∈ [n] then p2 = yi.

Recursion Step: There are two cases to consider here:

• If p1 is of the form p′1 +p′′1 . Let p′2 ∈ Fp[y1, . . . , yn] (resp., p′′2) be obtained by transforming
p′1 ∈ F2[y1, . . . , yn] (resp., p′′1). Then, we construct p2 = (1− p′2)p′′2 + (1− p′′2)p′2.

Explanation: Let p′1(y) = 0 and p′′1(y) = 0. This means that p1(y) = 0. Then by
hypothesis, p′2(y) = 0 and p′′2(y) = 0. Now, by definition, p2(y) = 0. The same argument
can be applied to the case when p′1(y) = 1 and p′′1(y) = 1. The remaining case is when
p′1(y) 6= p′′1(y). In this case, p1(y) = 1. Then by hypothesis, p′2(y) 6= p′′2(y). By definition,
this means that p2(y) = 1.

• If p1 is of the form p′1p
′′
1 . Let p′2 ∈ Fp[y1, . . . , yn] (resp., p′′2) be obtained by transforming

p′1 ∈ F2[y1, . . . , yn] (resp., p′′1). Then we construct p2 = p′2p
′′
2 .

Explanation: p2(y) = 1 if and only if p′2(y) = 1 ∧ p′′2(y) = 1 which in turn is true if and
only if p′1(y) = 1 and p′′1(y) = 1.

Note that the degree of the resulting polynomial p2 is exponential in the number of addition
and multiplication operations (over F2) required to compute p1.

Theorem 20. Consider a polynomial p1 ∈ F2[y1, . . . , yn]. Let the number of addition and
multiplication operations, over F2, required to compute p1 be D. Let p2 = ConvPoly(p1, 2,p).
We have deg[p](p2) = O(2D).

58

	Introduction
	Our Contributions
	Technical Overview
	Organization

	Preliminaries
	Indistinguishability Obfuscation (iO)
	Secret-Key Functional Encryption
	Exponentially-Efficient iO (XiO)

	Projective Arithmetic Functional Encryption
	Definition
	Semi-Functional Security
	Other Notions

	(T,)-Randomizing Polynomials
	(T,)-Respecting Polynomials
	Definition of (T,)-Randomizing Polynomials
	(T,)-RP with Sub-linear Randomness: General Approach
	Tools to Instantiate General Approach
	Instantiations: (T,)-RP with Sub-linear Randomness
	Via Randomizing Polynomials over F2
	Via Randomizing Polynomials over Fp
	Ensuring Homogeneity

	iO from Constant Degree PAFE
	Security

	Slotted Encodings
	Structured (Asymmetric) Multilinear Maps
	Instantiations of Structured Multilinear Maps
	Definition
	Evaluation of Polynomials on Slotted Encodings
	Implementation: Constant Degree Case

	Projective Arithmetic FE from Slotted Encodings
	Construction
	Proof of Security
	Assumptions

	Justifying Assumptions in Ideal MMap Model
	Ideal Multilinear Map Model
	Slotted Encodings: Proof in Ideal MMap Model
	Slot Preservation Property in Ideal MMap Model

	Security of Assumptions in Ideal Multilinear Map Model

	Implication of Sub-Linear FE to XiO
	Conversion of Polynomials: From F2 to Fp

