
Functional Encryption for Inner Product with Full
Function Privacy∗

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. Functional encryption (FE) supports constrained decryption keys that allow decrypters
to learn specific functions of encrypted messages. In numerous practical applications of FE, con-
fidentiality must be assured not only for the encrypted data but also for the functions for which
functional keys are provided. This paper presents a non-generic simple private key FE scheme for
the inner product functionality, also known as inner product encryption (IPE). In contrast to the
existing similar schemes, our construction achieves the strongest indistinguishability-based notion
of function privacy in the private key setting without employing any computationally expensive
cryptographic tool or non-standard complexity assumption. Our construction is built in the asym-
metric bilinear pairing group setting of prime order. The security of our scheme is based on the
well-studied Symmetric External Diffie-Hellman (SXDH) assumption.

Keywords: functional encryption, inner product, function privacy, asymmetric bilinear group.

1 Introduction
The recent advancement in cloud technology has triggered an emerging trend among individuals and
organizations to outsource potentially sensitive private informations to external untrustworthy servers and
remotely carry out various computations on the outsourced data at some later point in time by querying
the server. Functional encryption (FE) is an ambitious vision of modern cryptography that attempts to
preserve confidentiality of externally stored data while allowing entities to delegate computations on the
outsourced data in such cloud computing platforms. FE supports “restricted” decryption keys, also known
as “functional keys”, that enable decrypters to learn specific functions of the encrypted data and nothing
else. More precisely, in an FE scheme for certain function family F , it is possible to derive functional keys
skf for any function f ∈ F from a master secret key. Any party given such a functional key skf and a
ciphertext ctz encrypting some message z, should be able to learn f(z) and nothing beyond that about
z.

A principle focus of research on FE has been to identify what class of functions F can be supported
and what notion of security can be achieved. In terms of functionality, starting with the seminal notions
of identity-based encryption (IBE) and attribute-based encryption (ABE), FE has progressively evolved
through a series of distinguished works to support more and more expressive function families culminating
into the recent state of the art schemes which are now able to realize computation of arbitrary polynomial-
size circuits [BSW11], [GKP+13], [GGH+13], [GGHZ14], [BCP14]. Regarding security, the vast majority
of research on FE so far has concentrated on protecting privacy of the encrypted contents [BSW11],
[O’N10].

1.1 Function Privacy in Functional Encryption
A wide range of practical applications, however, demands not only privacy of the encrypted messages but
also privacy of the functions for which functional keys are provided. This is especially desirable whenever
the function embedded in the functional key itself contains sensitive informations.

Consider the following motivating scenario: Assume that a health organization subscribes to a cloud
service provider to store medical records of its patients. To ensure confidentiality of informations, the
organization encrypts those records locally using an FE scheme prior to uploading them to the cloud
server. Now, using the inherent feature of FE, later on the organization can request the cloud server
∗ An extended abstract of this paper will appear in the proceedings of PKC 2016. This is the full version.

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

to perform some analysis on the encrypted records by providing the server the functional key for the
respective function. However, if the FE scheme in use does not guarantee any hiding for the functions,
which may include sensitive contents, embedded in the functional keys, then the functional keys might
reveal the functions completely to the cloud, thereby leaking sensitive informations.

Private key vs public key setup: Countless real-life applications have driven the research on func-
tion privacy in the context of FE, using the private key setting first by Shen et al. [SSW09] followed
by the works of [AAB+13], [BS15], while in the public key setting by Boneh et al. [BRS13a], [BRS13b].
Intuitively, function privacy requires that functional keys reveal no unnecessary information on their
functionality. However, the extent to which function privacy can be satisfied differs dramatically between
the private key and public key regimes. Specifically, in the public key domain, where anyone can encrypt
messages, only a limited form of function privacy can be attained. To formulate a meaningful security
definition, a framework must assume that the functions come from a distribution having sufficient entropy
[BRS13a], [BRS13b]. On the contrary, in the private key setting, function privacy has been shown to have
tremendously greater potential compared to the public key domain, both as a stand-alone feature and as
a very useful building block.

Full-hiding security model for private key FE: For private key FE, the strongest (indistinguishability-
based) notion of function privacy, also known as full-hiding security, formulated in [AAB+13], [BS15]
considers both privacy of functional keys and privacy of encrypted data in a perfectly symmetric manner.
More precisely, full-hiding security considers adversaries that interact with

I) a left-or-right functional key generation oracle and
II) a left-or-right encryption oracle,

where both oracles operate using the same bit c ∈ {0, 1}. The adversaries submit a pair of functions
(f (j,0), f (j,1)) to the functional key generation oracle in order to make the j-th functional key query while
they submit a pair of messages (z(`,0), z(`,1)) to the encryption oracle for making the `-th ciphertext query.
Depending on the bit c, the functional key generation oracle returns the functional key skf(j,c) whereas
the encryption oracle sends back the ciphertext ctz(`,c) . The adversaries are allowed to interact with
these oracles for any polynomial number of queries and the adversaries’ goal is to distinguish the cases
c = 0 and c = 1. The constraint on the adversaries is that for all (f (j,0), f (j,1)) and (z(`,0), z(`,1)) with
which they query the functional key generation and encryption oracles respectively, it should hold that
f (j,0)(z(`,0)) = f (j,1)(z(`,1)). This is clearly the minimum necessary restriction as otherwise the adversaries
can trivially determine the bit c used by the oracles.

Regarding the construction of function private FE schemes in the private key setting, recently Brakerski
and Segev [BS15] have presented a generic transformation from any private key (possibly non-function-
private) FE scheme for general polynomial-size circuits into one that achieves function privacy in the
strongest model discussed above. Then by combining [BS15] with the works of [GKP+13], [GGH+13],
or [GGHZ14], one can obtain private key function-private FE scheme supporting general circuits with
strong security guarantee. However, the most significant drawback of the resulting constructions is that
they would employ computationally intensive tools for secure computation such as fully homomorphic
encryption or program obfuscation and their security would rely on strong assumptions such as indis-
tinguishability obfuscation, extractability obfuscation, or polynomial hardness of simple assumptions on
multilinear maps. Consequently, these solutions are far from being practical.

1.2 Inner Product Encryption and Function Privacy
A current motivation of cryptographic research community is to design direct and efficient FE schemes
for functionalities of practical interest which are still expressive enough for real-life applications. As a
first attempt, researchers have focused on the inner product functionality which is an extremely useful
functionality in the context of descriptive statistics, for example, to compute the weighted mean of a
collection of informations. Further, the inner product enables computation of conjunctions, disjunctions,
polynomial evaluations, and exact thresholds.

An inner product function family IPp is parameterized by a prime integer p. A function ip #»y ∈ IPp
is associated with a vector #»y ∈ Znp of length n over the finite field Zp. On a message #»x ∈ Znp , ip #»y (#»x) is
defined to be the inner product 〈 #»x , #»y 〉 modulo p of the vectors #»x and #»y . We stress that this formulation
of inner-product FE, also referred to as inner product encryption (IPE) is distinct from [SSW09], [OT10],
[OT12], [AAB+13] which study inner product in the context of predicate encryption (PE). In inner

Functional Encryption for Inner Product with Full Function Privacy 3

product PE, a message M is encrypted along with a tag #»x ∈ Znp and decryption with a key corresponding
to a vector #»y ∈ Znp yields M if and only if 〈 #»x , #»y 〉 = 0. In contrast, the objective in the IPE formulation
is to learn the actual inner product value in Zp itself.

The first construction of IPE was presented by Abdalla et al. [ABDCP15] who developed a selectively
secure construction in traditional discrete log groups. However, this construction is built in public key
domain and do not support any form of function privacy. Very recently, Bishop et al. [BJK15] have
taken a first step forward towards exploring the possibility of attaining function privacy in the context
of IPE utilizing efficient and well-studied primitives. In fact, they have constructed a function-private
IPE scheme in private key domain that withstands any polynomial number of ciphertext and functional
key queries. Their construction makes use of asymmetric bilinear pairing groups and derives its security
from the well-studied Symmetric External Diffie-Hellman (SXDH) assumption albeit in a rather weak
and unrealistic security model.

1.3 Our Contribution
The current state of the art leaves open the problem of constructing a private key IPE scheme achieving
the strongest practical notion of full-hiding security under standard assumptions without employing any
heavy-duty cryptographic tool. In this paper we provide a positive answer to this challenging problem.
In particular, we develop a simple and efficient private key IPE scheme achieving the strongest notion of
function privacy based on well-studied complexity assumption. As in [BJK15], our construction utilizes
asymmetric bilinear pairing groups of prime order and we are able to establish the stronger form of
security under the SXDH assumption. In order to ensure correctness of our construction, like [ABDCP15],
[BJK15], we assume that the target inner products will be contained within a range of polynomial-size.
As pointed out in [ABDCP15], [BJK15], this assumption is quite reasonable for statistical applications,
where, for instance, the average of some bounded quantity over a polynomial-size database will naturally
be included in a polynomial range.

Although our construction has some resemblance to that of [BJK15], we highlight several differences
below:

– We innovate new technical ideas in order to realize the strongest notion of full-hiding security while
maintaining the simplicity of the scheme. For all (#»y (j,0), #»y (j,1)) and (#»x (`,0), #»x (`,1)) with which the
adversaries query the functional key generation and encryption oracles respectively, the security frame-
work of [BJK15] assumes that

〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,0), #»y (j,1)〉 = 〈 #»x (`,1), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉 (1)

whereas according to the full-hiding security framework of [AAB+13], [BS15], the only constraint
should be

〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉. (2)

The additional restriction in the security model of [BJK15] has not only weakened the security of
their construction significantly but also it has rendered the security model itself rather pathological
and unrealistic. Our security framework is free from any such restriction beyond that specified in Eq.
(2), therefore, much more practical compared to that of [BJK15].

– As in [BJK15], we make use of the concept of dual pairing vector spaces (DPVS) introduced in [OT10],
[OT12] to obtain the features of hidden subspaces in prime order bilinear group setting. However, our
two DPVS have dimensions 4n+ 2 and 6 respectively while those of [BJK15] have dimensions 2n and
2 respectively. Here n is the dimension of vectors for functional keys and ciphertexts. This results in
some loss in efficiency. However, this seems rather unavoidable for strengthening the security both
from theoretical and practical point of view.

– Analogous to [BJK15], we consider two pairs of dual orthonormal bases, one for each of the two dimen-
sions considered. But instead of including the complete bases like [BJK15], we put certain portions
of them in the master secret key while preserve the remaining dimensions for the security reduction.
Specifically, we employ 3n and 3 hidden dimensions of the pairs of bases of dimensions 4n+ 2 and 6
respectively to move things forward in our hybrid security argument.

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

– At a technical level, [BJK15] used each component of the vectors twice while encoding the vectors in
ciphertexts and functional keys by coupling them with the basis vectors included in the master secret
key. On the contrary, in our construction, we utilize the components of these vectors only once in the
process of encoding with the basis vectors of the master secret key.

– Although similar to [BJK15], we treat ciphertexts and functional keys in a symmetric fashion in
our construction, our hybrid security proof does not maintain any such symmetry. Specifically, the
approach of [BJK15] first established the privacy of encrypted messages in the multiple ciphertext
framework and then leveraged the symmetry between the structures of ciphertexts and functional keys
to flip the same reasoning to argue for function privacy. In doing so, they relied on an information
theoretic step that required the additional constraint as in Eq. (1) on the queries of the adversaries. In
order to remove the extra restriction, we face several challenges. For our security analysis, we design
our hybrid argument differently using a different information theoretic property of DPVS proven by
[OT10] in a non-trivial way. We begin our hybrid game transition by changing the form of the queried
ciphertexts and instead of finishing it off completely, at some appropriate point, we initiate change in
the queried functional keys. Since then the transformations of functional keys and ciphertexts proceed
hand in hand.

2 Preliminaries
Throughout this paper we will follow notations presented in Figure 1.

Symbol Explanation

ℵ $←− A ℵ is randomly selected from A according to A’s distribution, when A is a random variable, and ℵ
is uniformly selected from A, when A is a set.

#»v a vector (v1, . . . , vn) ∈ Zn
p of length n for some positive integers p and n.

〈 #»v , #»w〉 the inner product of vectors #»v and #»w ∈ Zn
p , i.e.,

∑n

i=1 viwi mod p.

g
#»v an n-tuple of group elements, (gv1 , . . . , gvn) ∈ Gn for some cyclic group G of order p, where

#»v ∈ Zn
p and g ∈ G.

ga #»v (gav1 , . . . , gavn) ∈ Gn, where a ∈ Zp, #»v ∈ Zn
p , and g ∈ G.

g
#»v + #»w (gv1+w1 , . . . , gvn+wn) ∈ Gn, where #»v , #»w ∈ Zn

p and g ∈ G.

GL(n,Zp) the group of all n× n invertible matrices over Zp.

Fig. 1: Notations

2.1 The Notion of Private Key Function-Private IPE
We adopt the general notion of function-private functional encryption in the private key setting, in-
troduced in [AAB+13], [BS15], to the particular functionality of computing inner products of n-length
vectors over Zp for some prime integer p and some positive integer n. We will consider only non-zero
vectors. Note that this is a reasonable consideration for all practical applications of inner products.

� Syntax: A private key function-private IPE (PKFP-IPE) scheme consists of the following probabilistic
polynomial-time algorithms:

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter 1λ and a positive integer
n (polynomial in λ) specifying the desired length of vectors for the functional keys and ciphertexts. It
generates a master secret key msk for itself while publishes public parameters pp. (Note that we are
not dealing with a public key scheme, so pp are not sufficient to encrypt – those are just parameters
that need not be kept secret.)

Functional Encryption for Inner Product with Full Function Privacy 5

PKFP-IPE.Encrypt(msk,pp, #»x): On input the master secret key msk, the public parameters pp, and a
vector #»x ∈ Znp\{

#»0 }, where #»0 denotes the all zero vector in Znp , the data owner produces a ciphertext
ct #»x .

PKFP-IPE.KeyGen(msk,pp, #»y): Taking as input the master secret key msk, the public parameters pp,
and a vector #»y ∈ Znp\{

#»0 }, the data owner provides a functional key sk #»y to a legitimate decrypter.

PKFP-IPE.Decrypt(pp,ct #»x , sk #»y): A decrypter takes as input the public parameters pp, a ciphertext
ct #»x encrypting some vector #»x , and a functional key sk #»y corresponding to some vector #»y . It outputs
either a value m ∈ Zp or the distinguished symbol ⊥.

� Correctness: The correctness of an PKFP-IPE scheme requires the following: For all #»x , #»y ∈ Znp\{
#»0 },

Pr
[
(msk,pp) $←− PKFP-IPE.Setup(1λ, n); ct #»x

$←− PKFP-IPE.Encrypt(msk,pp, #»x);

sk #»y
$←− PKFP-IPE.KeyGen(msk,pp, #»y) : PKFP-IPE.Decrypt(pp,ct #»x , sk #»y) = 〈 #»x , #»y 〉

]
> 1− ε(λ)

for some negligible function ε. As in [ABDCP15], [BJK15], in our construction as well we would only
require that the above holds when 〈 #»x , #»y 〉 is from a fixed polynomial range of values inside Zp.

� Security: The indistinguishability-based full hiding security notion for a PKFP-IPE scheme is de-
fined by the following game between a probabilistic adversary A and a probabilistic challenger C:

Setup: C generates (msk,pp) $←− PKFP-IPE.Setup(1λ, n). It gives pp to A. It also selects c $←− {0, 1}.

Query Phase: Throughout the game, A may adaptively make any polynomial number of queries of
the following two types:

– Functional key query: To make the j-th functional key query, A submits a pair of vectors (#»y (j,0),
#»y (j,1)) ∈

(
Znp\{

#»0 }
)2 to C. C creates a functional key sk(j) $←− PKFP-IPE.KeyGen(msk, pp, #»y (j,c)) and

hands sk(j) to A.

– Ciphertext query: To make the `-th ciphertext query, A sends a pair of vectors (#»x (`,0), #»x (`,1)) ∈(
Znp\{

#»0 }
)2 to C. C forms ct(`) $←− PKFP-IPE.Encrypt(msk, pp, #»x (`,c)) and returns ct(`) to A.

Suppose that A makes q1 number of functional key queries and q2 number of ciphertext queries dur-
ing the game. The restriction on the queries is that for all j = 1, . . . , q1 and for all ` = 1, . . . , q2,
〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉.

Guess: A eventually outputs a bit c′ ∈ {0, 1}.

Let ViewA(c) denotes the view of A in the above game when the c ∈ {0, 1} is the random bit selected by
C in the setup phase.

Definition 1. A PKFP-IPE is said to achieve (full) indistinguishability-based full hiding security if for
any probabilistic polynomial-time adversary A, for any security parameter λ, the advantage of A in the
above game,

AdvPKFP-IPE
A (λ) =

∣∣Pr
[
A(ViewA(0)) = 1

]
− Pr

[
A(ViewA(1)) = 1

]∣∣ < ε(λ)

for some negligible function ε.

2.2 Asymmetric Bilinear Group and SXDH Assumption
Definition 2 (Asymmetric Bilinear Pairing Group). An asymmetric bilinear pairing group (p,G1,
G2,GT , g1, g2, e) is a tuple of a prime integer p; cyclic multiplicative groups G1,G2,GT of order p each
with polynomial-time computable group operations; generators g1 ∈ G1, g2 ∈ G2; and a polynomial-time
computable non-degenerate bilinear pairing e : G1 ×G2 → GT , i.e., e satisfies

– (bilinearity) e(gs1, gs̆2) = e(g1, g2)ss̆ for all s, s̆ ∈ Zp and

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

– (non-degeneracy) e(g1, g2) 6= 1GT , where 1GT denotes the identity element of the group GT .

Let GABPG be an algorithm that on input the security parameter 1λ, outputs a description (p,G1,G2,GT , g1,
g2, e) of an asymmetric bilinear pairing group.

Assumption 1 (Symmetric External Diffie-Hellman: SXDH). The SXDH problem is to distin-
guish between the distributions %β =

(
(p,G1,G2,GT , g1, g2, e), gµ1 , gν1 ,<β ,

)
for β ∈ {0, 1} such that

(p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ), µ, ν $←− Zp, and <β = gµν+r

1 where r = 0 or r
$←− Zp accord-

ing as β = 0 or 1 respectively.
The SXDH assumption states that for any probabilistic polynomial-time algorithm C, for any security

parameter λ,
AdvSXDH

C (λ) =
∣∣Pr
[
C(%0) = 1

]
− Pr

[
C(%1) = 1

]∣∣ < ε(λ)

for some negligible function ε. It also states that the same is true for the analogous distributions obtained
from switching the roles of G1 and G2, i.e., %̆β =

(
(p,G1,G2,GT , g1, g2, e), gµ̆2 , gν̆2 , <̆β

)
for β ∈ {0, 1} such

that µ̆, ν̆ $←− Zp, and <̆β = gµ̆ν̆+r̆
2 where r̆ = 0 or r̆ $←− Zp according as β = 0 or 1 respectively.

2.3 Dual Pairing Vector Spaces
Definition 3 (Dual Pairing Vector Spaces (DPVS)). A dual pairing vector space (DPVS) (p,V1,V2,
GT ,A1,A2, E) by a direct product of asymmetric pairing groups (p,G1,G2,GT , g1, g2, e) is a tuple of
a prime integer p; n-dimensional vector space Vh = Gnh over Zp under vector addition ⊕ and scalar
multiplication ⊗ defined respectively as g #»v

h ⊕g
#»w
h = g

#»v+ #»w
h and a⊗g #»v

h = ga
#»v

h , for h = 1, 2, where #»v , #»w ∈ Znp ,

and a ∈ Zp; canonical bases Ah = {g
#»e i
h }i=1,...,n of Vh, for h = 1, 2, where #»e i = (

i−1︷ ︸︸ ︷
0, . . . , 0, 1,

n−i︷ ︸︸ ︷
0, . . . , 0) ∈

Znp ; and a pairing E : V1 × V2 → GT . The pairing E is defined by E(g #»v
1 , g

#»w
2) =

n∏
i=1

e(gvi1 , g
wi
2) =

e(g1, g2)〈 #»v , #»w〉 ∈ GT , where #»v , #»w ∈ Znp . Observe that the map E is non-degenerate bilinear, i.e., E
satisfies

– (bilinearity) E(s⊗ g #»v
1 , s̆⊗ g

#»w
2) = E(gs #»v

1 , gs̆
#»w

2) = E(g #»v
1 , g

#»w
2)ss̆ for s, s̆ ∈ Zp, #»v , #»w ∈ Znp and

– (non-degeneracy) if E(g #»v
1 , g

#»w
2) = 1GT for all #»w ∈ Znp , then #»v = #»0 .

When clear from the context, we will often omit the symbols ⊕ and ⊗ for vector addition and scalar
multiplication respectively in DPVS’s. The DPVS generation algorithm GDPVS takes input a positive integer
n together with (p,G1,G2,GT , g1, g2, e)

$←− GABPG(1λ) and outputs a description (p,V1,V2, GT ,A1,A2, E)
of DPVS with n-dimensional vector spaces Vh for h = 1, 2.

In Figure 2 we describe random dual orthonormal basis generator GOB(Znp) for some prime integer p
and positive integer n. This algorithm would be utilized as a subroutine in our PKFP-IPE construction.

GOB(Zn
p): This algorithm performs the following operations:

1. Choose B = (bi,j)i,j=1,...,n
$←− GL(n,Zp).

2. Compute B∗ = (b∗i,j)i,j=1,...,n = (Bᵀ)−1, where Bᵀ denotes transpose of the
matrix B. Let, #»

b i and #»

b ∗i represent the i-th rows of B and B∗ respectively, for
i = 1, . . . , n. Set B = { #»

b 1, . . . ,
#»

b n} and B∗ = { #»

b ∗1, . . . ,
#»

b ∗n}. Note that (B,B∗)
are dual orthonormal in the sense that for i, i′ = 1, . . . , n,

〈 #»

b i,
#»

b ∗i′〉 =
{

1, if i = i′

0, otherwise

3. Return (B,B∗).

Fig. 2: Dual orthonormal basis generator GOB(Znp)

Functional Encryption for Inner Product with Full Function Privacy 7

3 Our PKFP-IPE Scheme
� Construction

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter 1λ and a positive integer
n specifying the desired length of vectors for the keys and ciphertexts. It proceeds as follows:
1. It first generates an asymmetric bilinear group

(p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ).

2. Then it forms

(p,V1,V2,GT ,A1,A2, E) $←− GDPVS
(
4n+ 2, (p,G1,G2,GT , g1, g2, e)

)
and

(p,V′1,V′2,GT ,A′1,A′2, E′)
$←− GDPVS

(
6, (p,G1,G2,GT , g1, g2, e)

)
.

3. Next, it samples dual orthonormal bases(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
) $←− GOB(Z4n+2

p) and(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
) $←− GOB(Z6

p).

It defines B̂ = { #»

b 1, . . . ,
#»

b n,
#»

b 4n+2}, B̂∗ = { #»

b ∗1, . . . ,
#»

b ∗n,
#»

b ∗4n+1}, D̂ = { #»

d 1,
#»

d 6}, and D̂∗ = { #»

d ∗1,
#»

d ∗5}.
4. It keeps the master secret key msk = (B̂, B̂∗, D̂, D̂∗) to itself while publishes the public parameters

pp =
(
p, {Vh,V′h}h=1,2,GT , {Ah,A′h}h=1,2, E,E

′).
PKFP-IPE.Encrypt(msk,pp, #»x): Taking as input the master secret key msk, the public parameters pp,

and a vector #»x ∈ Znp\{
#»0 }, the data owner prepares the ciphertext as follows:

1. It selects α, ξ, ξ0
$←− Zp and computes

c1 = g
α
∑n

i=1
xi

#»
b i+ξ

#»
b 4n+2

1 = g
α
∑

i
xi

#»
b i+ξ

#»
b 4n+2

1 , c2 = gα
#»
d 1+ξ0

#»
d 6

1 (3)

utilizing B̂ and D̂ respectively from msk, where a sum over index i ranges from i = 1 to i = n
unless explicitly specified otherwise. We will follow the same convention in the sequel as well.

2. It outputs the ciphertext ct #»x = (c1, c2).

PKFP-IPE.KeyGen(msk,pp, #»y): On input the master secret key msk, the public parameters pp, and a
vector #»y ∈ Znp\{

#»0 }, the data owner performs the following:
1. It picks γ, η, η0

$←− Zp and computes

k∗1 = g
γ
∑

i
yi

#»
b ∗i+η #»

b ∗4n+1
2 ,k∗2 = g

γ
#»
d ∗1+η0

#»
d ∗5

2 (4)

utilizing B̂∗ and D̂∗ respectively from msk.
2. It provides the functional key sk #»y = (k∗1,k∗2) to a legitimate decrypter.

PKFP-IPE.Decrypt(pp,ct #»x , sk #»y): A decrypter takes as input the public parameters pp, a ciphertext
ct #»x = (c1, c2), and a functional key sk #»y = (k∗1,k∗2). It proceeds as follows:
1. It computes T1 = E(c1,k

∗
1), T2 = E′(c2,k

∗
2).

2. It then attempts to determine a value m ∈ Zp such that Tm2 = T1 as elements of GT by checking a
specified polynomial-size range of possible values. If it is successful, then it outputs m. Otherwise
it outputs ⊥.

We emphasize that the polynomial running time of our decryption algorithm is guaranteed by re-
stricting the output to lie within a fixed polynomial-size range.

� Correctness

The correctness of the above PKFP-IPE construction can be verified as follows: Observe that for any
ciphertext ct #»x = (c1, c2) encrypting some vector #»x and any functional key sk #»y = (k∗1,k∗2) corresponding
to some vector #»y , we have

T1 = E(c1,k
∗
1) = e(g1, g2)αγ〈 #»x , #»y 〉, T2 = E′(c2,k

∗
2) = e(g1, g2)αγ .

This follows from the expressions of c1, c2,k
∗
1,k
∗
2 together with the fact that (B,B∗) and (D,D∗) are dual

orthonormal bases. Thus if 〈 #»x , #»y 〉 is contained in the specified polynomial-size range of possible values
that the decryption algorithm checks, it would output 〈 #»x , #»y 〉 as desired.

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

� Discussion

As discussed earlier in this paper, the only PKFP-IPE scheme available in the literature so far [BJK15]
achieves a rather limited and unrealistic form of function privacy. In particular, for the sake of managing
the hybrid security proof of their construction, they put further restrictions on the queries of the ad-
versaries, as shown in Eq. (1), beyond those specified in the strongest framework of full-hiding security
described in §2.1. This additional constraint not only leads to a weak security but it is also not conformal
with the intuitive spirit of function privacy. With the motivation to remove such a pathological restriction
we recourse to an information theoretic step that uses a nice property of DPVS introduced in [OT10]
that enables to hide a pair of ciphertext and functional key vectors perfectly among all vectors having
the same inner product.

To generate space for our hybrid proof, we consider two pairs of dual orthonormal bases, namely,
(B,B∗) of dimension 4n + 2 and (D,D∗) of dimension 6, where n is the length of vectors for ciphertexts
and functional keys. The n+ 2 dimensions of the first pair of bases and 3 of the second pair are used in
the actual scheme while the remaining dimensions are preserved to move things forward in the security
proof. As displayed in Eq. (3), to encode a vector #»x in the ciphertext, we construct a linear combination
of the first n vectors together with the (4n+2)-th vector of B, where the n components of #»x masked with
a random scalar α are used as coefficients of the first n vectors of B. The resulting vector is then placed in
the exponent of g1 ∈ G1. After that, the randomness α is encoded by forming another linear combination
of the first and sixth members of D in the exponent of g1 using the masking factor α as coefficient of
the first vector of D. The (4n+ 2)-th dimension of B and the sixth dimension of D are utilized to supply
additional randomization for strengthening the security of our ciphertexts. The encoding of a vector for
the functional key is performed in a directly symmetric fashion utilizing bases B∗,D∗, and g2 ∈ G2 in
place of B,D, and g1 respectively, as can be seen from Eq. (4), where the additional randomization is
provided by the (4n+ 1)-th dimension of B∗ and the fifth dimension of D∗.

In contrast, the construction of [BJK15] considers two pairs of dual orthonormal bases, one of dimen-
sion 2n and the other of dimension 2. Moreover, they make use of the complete bases in their construction
itself and employ each component of a vector as coefficient twice during formation of the linear combi-
nations in the process of encoding the vector for ciphertext or functional key, once for basis vectors in
the range 1 to n and again for the basis vectors ranging from n+ 1 to 2n. Further, [BJK15] rely on the
orthogonality of all the queried functional key vectors (respectively all queried ciphertext vectors) to the
difference of a pair of queried ciphertext vectors (respectively a pair of queried functional key vectors) to
simulate a hidden dimension in the bases in the security proof that they employ to switch from one vector
of the pair to the other. However, it is precisely this approach which necessitates the additional constraint
imposed by them on the adversaries’ queries as in Eq. (1). Furthermore, increasing the dimensions of the
DPVS’s in use seems rather unavoidable for managing the security reduction without requiring the extra
restriction. In fact the 3n and 3 hidden dimensions of our two pairs of bases respectively that we keep
aside for the security argument play a vital role to elegantly isolate a pair of ciphertext and functional
key vectors in an n-dimensional hidden subspace in order to apply our information theoretic argument.

In summery, although our construction has some kind of resemblance to that of [BJK15], our proof
idea is widely apart. The most significant contribution of our work lies in a rigorous proof of full-hiding
security of a fairly simple construction. The detail security reduction is presented in the next section.

In terms of communication cum storage complexity, observe that both the ciphertexts and functional
keys of our PKFP-IPE construction consist of 4n+ 8 group elements while our master secret key contains
8n2 + 12n + 28 members of the finite field Zp. In contrast, the ciphertexts and functional keys in the
construction of [BJK15] are comprised of 2n + 2 group elements each whereas the master secret key is
composed of 8n2 + 8 Zp components.

Regarding computation complexity, note that both our encryption and functional key generation
algorithms require 4n+8 exponentiations while the decryption algorithm involves 4n+8 pairing operations
followed by an exhaustive search over a polynomial range of values in order to solve a discrete log. On
the contrary, the encryption and functional key generation algorithms of [BJK15] amount to 2n + 2
exponentiations each. Other than a similar exhaustive search step, their decryption algorithm incurs
2n+ 2 pairings.

It is evident that our scheme loses a constant factor of 2 compared to that of [BJK15] in both
communication cum storage and computation efficiency. However, the additional cost is compensated
with stronger and realistic data as well as function privacy guarantees provided by our construction as
opposed to a rather limited form of security achieved by [BJK15]. Given the rapid advancements in

Functional Encryption for Inner Product with Full Function Privacy 9

computing technology and the growing security breaches that are taking place now a days, high security
is often desirable even at the expense of an admissible increase in complexity.

The ciphertexts and master public key of the only known IPE scheme in public key setup [ABDCP15]
involve n+ 1 and n elements respectively in a discrete log group of prime order p while the master secret
key and functional keys are comprised of n and 1 Zp components respectively. The encryption and de-
cryption algorithms of [ABDCP15] respectively incur 2n+ 1 exponentiations and n+ 1 exponentiations
followed by an analogous exhaustive search step towards determining a discrete log. However, the scheme
of [ABDCP15] offers no function privacy and, moreover, provides only selective data privacy. Hence, this
IPE scheme is not suitable for applications such as secure delegation of computations.

4 Security Analysis
Theorem 1. The PKFP-IPE scheme described in §3 is secure as per the security model of §2.1 under the
SXDH assumption.

Proof. The proof of Theorem 1 is structured as a hybrid argument over a series of games which differ
in the construction of the functional keys and ciphertexts queried by the adversary A in the security
game described in §2.1. In the first game, the queried functional keys and ciphertexts are constructed as
those in the security game of §2.1 where the bit used by the challenger is c = 0. We then progressively
change the functional keys and ciphertexts in multiple hybrid games to those in the security game of
§2.1 where the bit used by the challenger is c = 1. We prove that each game is indistinguishable from
the previous one, thus proving our PKFP-IPE construction to be secure in the security model of §2.1.
Let q1 be the number of A’s functional key queries and q2 the number of A’s ciphertext queries. The
hybrid game transition is described below. In these games, a portion of an exponent framed by a white
box indicates those terms which were added or modified in a transition from the previous game, unless
explicitly specified otherwise, while a part of an exponent which was deleted in the transformation from
the earlier game is highlighted in the text.

� Sequence of Hybrid Games

I〉 Game 0 : This game corresponds to the real security game of §2.1 where the bit used by the challenger
to generate queried functional keys and ciphertexts is c = 0. More precisely, for j = 1, . . . , q1, the response
to the j-th functional key query corresponding to vectors (#»y (j,0), #»y (j,1)) is created as sk(j) = (k∗(j)1 ,k

∗(j)
2)

such that

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,

 (5)

where γj , ηj , ηj,0
$←− Zp. On the other hand, for ` = 1, . . . , q2, the reply to the `-th ciphertext query of A

for vectors (#»x (`,0), #»x (`,1)) is generated as ct(`) = (c(`)
1 , c

(`)
2) such that

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+ξ`,0

#»
d 6

1 ,

 (6)

where α`, ξ`, ξ`,0
$←− Zp.

II〉 Game 1 Sequence
[
Game 1-κ-1, . . . , Game 1-κ-4 (κ = 1, . . . , q2)

]
Game 1-κ-1: Game 1-0-4 coincides with Game 0. Game 1-κ-1 is the same as Game 1-(κ− 1)-4 except that
the components of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+ α′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i +ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ α′′κ

#»
d 3 +ξκ,0

#»
d 6

1 ,

 (7)

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

where ακ
$←− Zp and all the other variables are generated as in Game 1-(κ− 1)-4.

Game 1-κ-2: This game is identical to Game 1-κ-1 with the only exception that the components of
the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (8)

where all the variables are generated as in Game 1-κ-1.

Game 1-κ-3: This game is analogous to Game 1-κ-2 except that the components of the κ-th queried
ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+ α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i +ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ α′′′κ

#»
d 4 +ξκ,0

#»
d 6

1 ,

 (9)

where α′′′κ
$←− Zp and all the other variables are generated as in Game 1-κ-2.

Game 1-κ-4: This game is the same as Game 1-κ-3 except that the components of the κ-th queried
ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (10)

where all the variables are generated as in Game 1-κ-3, i.e., in this game c(κ)
1 and c(κ)

2 are modified from
those in the last game by dropping the terms involving α′′κ in the exponent of g1.

III〉 Game 2 Sequence
[
Game 2-ω-1, . . . , Game 2-ω-6 (ω = 1, . . . , q1)

]
Game 2-ω-1: Game 2-0-6 coincides with Game 1-q2-4. Game 2-ω-1 is the similar to Game 2-(ω − 1)-6
except that the components of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1))
are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+ γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i + γ′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i +ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ γ′ω

#»
d ∗2 + γ′′ω

#»
d ∗3 +ηω,0

#»
d ∗5

2 ,

 (11)

where γ′ω, γ′′ω
$←− Zp, and all the other variables are generated as in Game 2-(ω − 1)-6.

Sequence of Subgames of Game 2-ω-2
[
Game 2-ω-2-κ-1, . . . , Game 2-ω-2-κ-5 (κ = 1, . . . , q2)

]
Game 2-ω-2-κ-1: Game 2-ω-2-0-5 coincides with Game 2-ω-1. Game 2-ω-2-κ-1 is analogous to Game
2-ω-2-(κ − 1)-5 with the only exception that the components of the ω-th queried functional key corre-
sponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (12)

where all the variables are generated as in Game 2-ω-2-(κ−1)-5. Here a part of the exponent framed by a
white box (respectively light gray box) indicates those terms which were changed in the transition from
the previous game when κ ≥ 2 (respectively κ = 1). More specifically, when κ = 1, k∗(ω)

1 in Eq. (12) is
transformed from that in Eq. (11), which is the form of k∗(ω)

1 in Game 2-ω-2-0-5, by changing the portion

Functional Encryption for Inner Product with Full Function Privacy 11

of the exponent framed by a light gray box. On the other hand, when κ ≥ 2, k∗(ω)
1 in Eq. (12) is obtained

from that in Eq. (14), which is the form of k∗(ω)
1 in Game 2-ω-2-(κ − 1)-5, by applying modification in

the portion of the exponent framed by a white box.

Game 2-ω-2-κ-2: This game is identical to Game 2-ω-2-κ-1 except that the components of the κ-th
queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+ α′κ

∑
i
x

(κ,0)
i

#»
b n+i +α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ α′κ

#»
d 2 +α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (13)

where α′κ
$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-1.

Game 2-ω-2-κ-3: This game is similar to Game 2-ω-2-κ-2 with the only exception that the components
of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (14)

while the components of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are created
as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′κ

∑
i
x

(κ,1)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (15)

where all the variables are generated as in Game 2-ω-2-κ-2.

Game 2-ω-2-κ-4: This game is the same as Game 2-ω-2-κ-3 except that the components of the κ-th
queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

∑
i
(ακx(κ,0)

i

#»
b i+α′κx

(κ,1)
i

#»
b n+i+ ᾰ′′κx

(κ,1)
i

#»
b 2n+i +α′′′κ x

(κ,1)
i

#»
b 3n+i)+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+ ᾰ′′κ

#»
d 3 +α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (16)

where ᾰ′′κ
$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-3.

Game 2-ω-2-κ-5: This game is analogous to Game 2-ω-2-κ-4 with the only exception that the com-
ponents of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+ᾰ′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ᾰ′′κ

#»
d 3+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (17)

where all the variables are generated as in Game 2-ω-2-κ-4, i.e., in this game c(κ)
1 and c(κ)

2 are transformed
from those in the earlier game by removing the terms involving α′κ in the exponent of g1.

Game 2-ω-3: This game is identical to Game 2-ω-2-q2-5 with the only exception that the components of
the ω-th queried functional key for vectors (#»y (ω,0), #»y (ω,1)) are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (18)

where all the variables are generated as in Game 2-ω-2-q2-5, i.e., in this game k∗(ω)
1 and k∗(ω)

2 are changed
from those in the last game by deleting the terms involving γ′ω in the exponent of g2.

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Game 2-ω-4: This game is the same as Game 2-ω-3 except that the components of the ω-th queried
functional key for vectors (#»y (ω,0), #»y (ω,1)) are created as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ γ′′′ω

∑
i
y

(ω,1)
i

#»
b ∗3n+i +ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′′ω

#»
d ∗3+ γ′′′ω

#»
d ∗4 +ηω,0

#»
d ∗5

2 ,

 (19)

where γ′′′ω
$←− Zp and all the other variables are generated as in Game 2-ω-3.

Game 2-ω-5: This game is similar to Game 2-ω-4 with the only exception that for ` = 1, . . . , q2, the
components of the `-th queried ciphertext for vectors (#»x (`,0), #»x (`,1)) are computed as

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

 (20)

where all the variables are generated as in Game 2-ω-4, i.e., Eq. (20) resets c(`)
1 and c(`)

2 , for ` = 1, . . . , q2,
as those in Eq. (10) by dropping the terms involving ᾰ′′` in the exponent of g1.

Game 2-ω-6: This game is the same as Game 2-ω-5 except that the components of the ω-th queried
functional key for vectors (#»y (ω,0), #»y (ω,1)) are created as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′′ω

∑
i
y

(ω,1)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′′′ω

#»
d ∗4+ηω,0

#»
d ∗5

2 ,

 (21)

where all the variables are generated as in Game 2-ω-5, i.e., in this game k∗(ω)
1 and k∗(ω)

2 are changed
from those in the earlier game by deleting the terms involving γ′′ω in the exponent of g2.

IV〉 Game 3 : This game is analogous to Game 2-q1-6 except that for j = 1, . . . , q1, the components
of the j-th queried functional key corresponding to vectors (#»y (j,0), #»y (j,1)) are computed as

k
∗(j)
1 = g

γj
∑

i
y

(j,1)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,0)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,

 (22)

while for ` = 1, . . . , q2, the components of the `-th queried ciphertext for vectors (#»x (`,0), #»x (`,1)) are
computed as

c
(`)
1 = g

α`
∑

i
x

(`,1)
i

#»
b i+α′′′`

∑
i
x

(`,0)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

 (23)

where all the variables are generated as in Game 2-q1-6.

V〉 Game 4 Sequence
[
Game 4-ω-1, . . . , Game 4-ω-6 (ω = 1, . . . , q1)

]
Game 4-ω-1: Game 4-0-6 coincides with Game 3. Game 4-ω-1 is the same as Game 4-(ω−1)-6 except that
the components of the ω-th queried functional key for vectors (#»y (ω,0), #»y (ω,1)) are created as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+ γ̆′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i +γ′′′ω

∑
i
y

(ω,0)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ γ̆′′ω

#»
d ∗3 +γ′′′ω

#»
d ∗4+ηω,0

#»
d ∗5

2 ,

 (24)

where γ̆′′ω
$←− Zp and all the other variables are generated as in Game 4-(ω − 1)-6.

Functional Encryption for Inner Product with Full Function Privacy 13

Game 4-ω-2: This game is identical to Game 4-ω-1 with the only exception that for ` = 1, . . . , q2,
the components of the `-th queried ciphertext corresponding to vectors (#»x (`,0), #»x (`,1)) are computed as

c
(`)
1 = g

α`
∑

i
x

(`,1)
i

#»
b i+ α̌′′`

∑
i
x

(`,0)
i

#»
b 2n+i +α′′′`

∑
i
x

(`,0)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+ α̌′′`

#»
d 3 +α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

 (25)

where α̌′′`
$←− Zp and all the other variables are generated as in Game 4-ω-1.

Game 4-ω-3: This game is the same as Game 4-ω-2 with the only exception that the components of
the ω-th queried functional key for vectors (#»y (ω,0), #»y (ω,1)) are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (26)

where all the variables are generated as in Game 4-ω-2, i.e., in this game k∗(ω)
1 and k∗(ω)

2 are transformed
from those in the previous game by dropping the terms involving γ′′′ω in the exponent of g2.

Game 4-ω-4: This game is analogous to Game 4-ω-3 except that the components of the ω-th queried
functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+ γ̆′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i +γ̆′′ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ γ̆′ω

#»
d ∗2 +γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (27)

where γ̆′ω
$←− Zp and all the other variables are generated as in Game 4-ω-3.

Sequence of Subgames of Game 4-ω-5
[
Game 4-ω-5-κ-1, . . . , Game 4-ω-5-κ-5 (κ = 1, . . . , q2)

]
Game 4-ω-5-κ-1: Game 4-ω-5-0-5 coincides with Game 4-ω-4. Game 4-ω-5-κ-1 is identical to Game
4-ω-5-(κ − 1)-5 except that the components of the κ-th queried ciphertext corresponding to vectors
(#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

∑
i
(ακx(κ,1)

i

#»
b i+ ᾰ′κx

(κ,0)
i

#»
b n+i +α̌′′κx

(κ,0)
i

#»
b 2n+i+α′′′κ x

(κ,0)
i

#»
b 3n+i)+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ ᾰ′κ

#»
d 2 +α̌′′κ

#»
d 3+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (28)

where ᾰ′κ
$←− Zp and all the other variables are generated as in Game 4-ω-5-(κ− 1)-5.

Game 4-ω-5-κ-2: This game is the same as Game 4-ω-5-κ-1 except that the components of the κ-th
queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ᾰ′κ

∑
i
x

(κ,0)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ᾰ′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (29)

where all the variables are generated as in Game 4-ω-5-κ-1, i.e., in this game c(κ)
1 and c(κ)

2 are changed
from those in the last game by deleting the terms involving α̌′′κ in the exponent of g1.

Game 4-ω-5-κ-3: This game is similar to Game 4-ω-5-κ-2 with the only exception that the components
of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ̆

′′
ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ̆′ω

#»
d ∗2+γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (30)

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

while the components of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are created
as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ᾰ′κ

∑
i
x

(κ,1)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ᾰ′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (31)

where all the variables are generated as in Game 4-ω-5-κ-2.

Game 4-ω-5-κ-4: This game is the same as Game 4-ω-5-κ-3 except that the components of the κ-th
queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (32)

where all the variables are generated as in Game 4-ω-5-κ-3, i.e., in this game c(κ)
1 and c(κ)

2 are transformed
from those in the earlier game by removing the terms involving ᾰ′κ in the exponent of g1.

Game 4-ω-5-κ-5: This game is analogous to Game 4-ω-5-κ-4 with the only exception that the com-
ponents of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 =

g
γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ̆

′′
ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

if κ ≤ q2 − 1

g
γω
∑

i
y

(ω,1)
i

#»
b ∗i+γ̆′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ̆

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

if κ = q2

(33a)

(33b)

k
∗(ω)
2 = g

γω
#»
d ∗1+γ̆′ω

#»
d ∗2+γ̆′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 (33c)
where all the variables are generated as in Game 4-ω-5-κ-4. Here a part of the exponent framed by a
white box (respectively light gray box) indicates those terms which were changed from the previous game
when κ ≤ q2 − 1 (respectively κ = q2). More precisely, for κ ≤ q2 − 1, Eq. (33a) resets k∗(ω)

1 as in Eq.
(27) by changing the portion of the exponent framed by a white box before executing the sequence of
subgames Game 4-ω-5-κ-1 – Game 4-ω-5-κ-5 for the next value of κ. Eq. (33b) modifies k∗(ω)

1 only once
for κ = q2 by applying change in the portion of the exponent framed by a light gray box and comes out
of the sequence of subgames of Game 4-ω-5.

Game 4-ω-6: This game is the same as Game 4-ω-5-q2-5 with the only exception that the components of
the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,1)
i

#»
b ∗i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+ηω,0

#»
d ∗5

2 ,

 (34)

where all the variables are generated as in Game 4-ω-5-q2-5, i.e., in this game k∗(ω)
1 and k∗(ω)

2 are changed
from those in the previous game by deleting the terms involving γ̆′ω and γ̆′′ω in the exponent of g2.

VI〉 Game 5 Sequence
[
Game 5-κ-1, . . . , Game 5-κ-4 (κ = 1, . . . , q2)

]
Game 5-κ-1: Game 5-0-4 coincides with Game 4-q1-6. Game 5-κ-1 is similar to Game 5-(κ − 1)-4 ex-
cept that the components of the κ-th queried ciphertext for vectors (#»x (κ,0), #»x (κ,1)) are created as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ ὰ′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i +α′′′κ

∑
i
x

(κ,0)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ ὰ′′κ

#»
d 3 +α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (35)

where ὰ′′κ
$←− Zp and all the other variables are generated as in Game 5-(κ− 1)-4.

Functional Encryption for Inner Product with Full Function Privacy 15

Game 5-κ-2: This game is analogous to Game 5-κ-1 with the only exception that the components of
the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ὰ′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ὰ′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (36)

where all the variables are generated as in Game 5-κ-1, i.e., in this game c(κ)
1 and c(κ)

2 are modified from
those in the last game by dropping the terms involving α′′′κ in the exponent of g1.

Game 5-κ-3: This game is identical to Game 5-κ-2 except that the components of the κ-th queried
ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ὰ′′κ

∑
i
x

(κ,1)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ὰ′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (37)

where all the variables are generated as in Game 5-κ-2.

Game 5-κ-4: This game is similar to Game 5-κ-3 with the only exception that the components of the
κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are computed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,1)
i

#»
b i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+ξκ,0

#»
d 6

1 ,

 (38)

where all the variables are generated as in Game 5-κ-3, i.e., in this game c(κ)
1 and c(κ)

2 are changed from
those in the earlier game by deleting the terms involving ὰ′′κ in the exponent of g1. Note that in the final
game, i.e., Game 5-q2-4, all the queried functional keys sk(j) = (k∗(j)1 ,k

∗(j)
2), for j = 1, . . . , q1, and all the

queried ciphertexts ct(`) = (c(`)
1 , c

(`)
2), for ` = 1, . . . , q2, corresponds to functional keys and ciphertexts

in the real security game of §2.1 where the bit used by the challenger is c = 1.

� Advantages of Adversary in Hybrid Games

Denote View(0)
A ; View(1-κ-h)

A , for h = 1, . . . , 4; View(2-ω-h)
A , for h = 1, 3, . . . , 6; View(2-ω-2-κ-h)

A , for h =
1, . . . , 5; View(3)

A ; View(4-ω-h)
A , for h = 1, . . . , 4, 6; View(4-ω-5-κ-h)

A , for h = 1, . . . , 5; and View(5-κ-h)
A , for

h = 1, . . . , 4 to be the views of the adversary A in Game 0; Game 1-κ-h, for h = 1, . . . , 4; Game 2-ω-h, for
h = 1, 3, . . . , 6; Game 2-ω-2-κ-h, for h = 1, . . . , 5; Game 3; Game 4-ω-h, for h = 1, . . . , 4, 6; Game 4-ω-5-κ-h,
for h = 1, . . . , 5; and Game 5-κ-h, for h = 1, . . . , 4 respectively. We define the advantage of A in Game ι
as

Adv(ι)
A (λ) = Pr

[
A(View(ι)

A) = 1
]
,

for ι ∈ {0, 1-κ-h (h = 1, . . . , 4), 2-ω-h (h = 1, 3, . . . , 6), 2-ω-2-κ-h (h = 1, . . . , 5), 3, 4-ω-h (h =
1, . . . , 4, 6), 4-ω-5-κ-h (h = 1, . . . , 5), 5-κ-h (h = 1, . . . , 4)}. Lemmas 1 – 16 provided below will evalu-
ate the gap in the advantage of the adversary A between the neighboring games from Game 0 to Game
3. Further, observe that the transition from Game 3 to Game 5-q2-4 is actually the reverse of the trans-
formation from Game 0 to Game 2-q1-6 with the roles of (#»x

(0)
` , #»y

(0)
j) exchanged with that of (#»x

(1)
` , #»y

(1)
j),

for j = 1, . . . , q1; ` = 1, . . . , q2. Hence, the gap in the advantage of A between neighboring games from
Game 3 to Game 5-q2-4 can be determined analogously as that of Lemmas 1–15 in the reverse order. From
these results it follows that

AdvPKFP-IPE
A (λ) =

∣∣Adv(0)
A (λ)− Adv(5-q2-4)

A (λ)
∣∣

is negligible under the SXDH assumption.
Hence the theorem. ut

Lemma 1. For any probabilistic adversary A, there exists a probabilistic algorithm C1-1, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(1-(κ−1)-4)

A (λ)− Adv(1-κ-1)
A (λ)

∣∣ ≤ AdvSXDH
C1-κ-1

(λ),

where C1-κ-1(·) = C1-1(κ, ·).

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof. Suppose that there is a probabilistic adversary A that achieves a non-negligible difference in ad-
vantage between Game 1-(κ − 1)-4 and Game 1-κ-1. We construct a probabilistic algorithm C1-1 that
attempts to decide the SXDH problem using A as a subroutine. C1-1 is given a positive integer κ and an
instance of the SXDH problem %β =

(
(p,G1,G2,GT , g1, g2, e), gµ1 , gν1 ,<β = gµν+r

1
)
, where µ, ν $←− Zp, and

r = 0 or r $←− Zp according as β = 0 or 1. C1-1 plays the role of the challenger in the security game of §2.1
and interacts with A as follows:

• C1-1 forms (p,V1,V2,GT ,A1,A2, E) $←− GDPVS
(
4n+2, (p,G1,G2,GT , g1, g2, e)

)
and (p,V′1,V′2,GT ,A′1,A′2,

E′) $←− GDPVS
(
6, (p,G1,G2,GT , g1, g2, e)

)
. Next, it samples dual orthonormal bases

(
F = { #»

f 1, . . . ,
#»

f 4n+2},
F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←− GOB(Z4n+2

p) and
(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p). It im-
plicitly defines

#»

b i = #»

f i + µ
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = n+ 1, . . . , 4n+ 2),
#»

b ∗2n+i = #»

f ∗2n+i − µ
#»

f ∗i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 1 = #»

h 1 + µ
#»

h 3,
#»

d i = #»

h i (i = 2, . . . , 6),
#»

d ∗3 = #»

h ∗3 − µ
#»

h ∗1,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

It implicitly sets B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2},D = { #»

d 1, . . . ,
#»

d 6}, and D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}.
Note that (B,B∗) and (D,D∗) are dual orthonormal bases since those are obtained by applying an invert-
ible linear transformation to the output of GOB(Z4n+2

p) and GOB(Z6
p) respectively. For instance, observe

that for i = 1, . . . , n,

〈 #»

b i,
#»

b ∗2n+i〉 =
0

〈 #»

f i,
#»

f ∗2n+i〉 −µ
1

〈 #»

f i,
#»

f ∗i 〉 +µ
1

〈 #»

f 2n+i,
#»

f ∗2n+i〉 −µ2
0

〈 #»

f 2n+i,
#»

f ∗i 〉= 0,

〈 #»

b i,
#»

b ∗i 〉 =
1

〈 #»

f i,
#»

f ∗i 〉 +µ
0

〈 #»

f 2n+i,
#»

f ∗i 〉= 1, etc.

It hands the public parameters pp =
(
p, {Vh,V′h}h=1,2,GT , {Ah,A′h}h=1,2, E,E

′) to A.

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), for j =
1, . . . , q1, C1-1 chooses γj , ηj , ηj,0

$←− Zp, computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+ηj

#»
f ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+ηj,0

#»
h ∗5

2 = g
γj

#»
d ∗1+ηj,0

#»
d ∗5

2 ,

and gives the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to A’s `-th ciphertext query corresponding to vectors (#»x (`,0), #»x (`,1)), C1-1 proceeds as fol-
lows:

a) (` < κ) C1-1 picks α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1 (gµ1)α`
∑

i
x

(`,0)
i

#»
f 2n+i

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 (gµ1)α`
#»
h 3 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

b) (` = κ) C1-1 selects ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = (gν1)

∑
i
x

(κ,0)
i

#»
f i(<β)

∑
i
x

(κ,0)
i

#»
f 2n+ig

ξκ
#»
f 4n+2

1

= g
ν
∑

i
x

(κ,0)
i

(#»
f i+µ

#»
f 2n+i)+r

∑
i
x

(κ,0)
i

#»
f 2n+i+ξκ

#»
f 4n+2

1

= g
ν
∑

i
x

(κ,0)
i

#»
b i+r

∑
i
x

(κ,0)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = (gν1)

#»
h 1(<β)

#»
h 3g

ξκ,0
#»
h 6

1 = g
ν(#»
h 1+µ #»

h 3)+r #»
h 3+ξκ,0

#»
h 6

1 = g
ν

#»
d 1+r #»

d 3+ξκ,0
#»
d 6

1 .

Functional Encryption for Inner Product with Full Function Privacy 17

c) (` > κ) C1-1 chooses α`, ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+ξ`

#»
f 4n+2

1 (gµ1)α`
∑

i
x

(`,0)
i

#»
f 2n+i = g

α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ξ`,0

#»
h 6

1 (gµ1)α`
#»
h 3 = g

α`
#»
d 1+ξ`,0

#»
d 6

1 .

C1-1 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Finally, A outputs a bit c′. C1-1 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form (6), as in Game 1-(κ−1)-4,
where ακ = ν. On the other hand, if β = 1, i.e., r $←− Zp, the κ-th answered ciphertext is of the form (7),
as in Game 1-κ-1, where ακ = ν and α′′κ = r. Further, for ` < κ, the `-th answered ciphertext is of the
form (10) corresponding to Game 1-`-4, which is its proper form in both Game 1-(κ−1)-4 and Game 1-κ-1
since the full sequence of transformations Game 1-`-1 – Game 1-`-4 has already been executed, whereas for
` > κ, the `-th answered ciphertext is of the form (6) corresponding to Game 0, which is its proper form
since the sequence of transitions Game 1-`-1 – Game 1-`-4 has not yet been taken place. Additionally, for
j = 1, . . . , q1, the j-th answered functional key is of the form (5) corresponding to Game 0, which is its
proper form since in the game transition so far no change is made in the form of the queried functional
keys. Thus the view of A simulated by C1-1 is distributed as in Game 1-(κ− 1)-4 or Game 1-κ-1 according
as β = 0 or 1. This completes the proof of Lemma 1. ut

Lemma 2. For any probabilistic adversary A, for any security parameter λ,

Adv(1-κ-1)
A (λ) = Adv(1-κ-2)

A (λ).

Proof. In order to prove Lemma 2, we define an intermediate game, namely, Game 1-κ-1’ as follows and
show the equivalence of the distributions of the views of the adversary A in Game 1-κ-1 and that in Game
1-κ-1’ (Claim 1) as well as those in Game 1-κ-2 and in Game 1-κ-1’ (Claim 2).

Game 1-κ-1’ (κ = 1, . . . , q2): This game is identical to Game 1-κ-1 with the only exception that
the components of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are formed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
θ

(κ)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (39)

where #»

θ (κ) $←− Znp\{
#»0 } and all the other variables are generated as in Game 1-κ-1.

Claim 1 The distribution of the view of the adversary A in Game 1-κ-1 and that in Game 1-κ-1’ are
equivalent.

Proof. Consider the distribution of the view of A in Game 1-κ-1. We define new dual orthonormal bases
(U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p) below. We generate M $←− GL(n,Zp) and define

#»u 2n+1
...

#»u 3n

 = M−1 ·

#»

b 2n+1
...

#»

b 3n

 ,

#»u ∗2n+1

...
#»u ∗3n

 = Mᵀ ·

#»

b ∗2n+1
...

#»

b ∗3n

 ,

#»u i = #»

b i,
#»u ∗i = #»

b ∗i ,
(i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2).

(40)

We set U = { #»u 1, . . . ,
#»u 4n+2},U∗ = { #»u ∗1, . . . ,

#»u ∗4n+2}. Note that (U,U∗) are indeed dual orthonormal
bases since those are obtained from the dual orthonormal bases (B,B∗) by applying an invertible linear
transformation. The components of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1))
are expressed as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′′κ

∑
i
x

(κ,0)
i

#»
b 2n+i+ξκ

#»
b 4n+2

1

= g
ακ
∑

i
x

(κ,0)
i

#»u i+α′′κ
∑

i
θ

(κ)
i

#»u 2n+i+ξκ #»u 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′′κ

#»
d 3+ξκ,0

#»
d 6

1 ,

 (41)

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

where ακ, α′′κ, ξκ, ξκ,0
$←− Zp, and #»

θ (κ) = #»x (κ,0) ·M .

Since #»x (κ,0) 6= #»0 andM is uniformly selected from GL(n,Zp),
#»

θ (κ) is uniformly distributed in Znp\{
#»0 }

and it is independent from all the other variables. The components of any other `-th queried ciphertext
corresponding to vectors (#»x (`,0), #»x (`,1)) are expressed as
a) (` < κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

b) (` > κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 = g
α`
∑

i
x

(`,0)
i

#»u i+ξ` #»u 4n+2

1 , c
(`)
2 = g

α`
#»
d 1+ξ`,0

#»
d 6

1 ,

and for all j = 1, . . . , q1, the components of the j-th queried functional key for vectors (#»y (j,0), #»y (j,1)) are
expressed as

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»u ∗i+ηj #»u ∗4n+1
2 ,k

∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,

where all the variables are generated as in Game 1-κ-1.

Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗) are consistent with
respect to pp. Also, this transformation of bases maintains the form (5) of the j-th answered functional
key sk(j) = (k∗(j)1 ,k

∗(j)
2) corresponding to Game 0, for j = 1, . . . , q1. Additionally, for ` < κ, the `-th

answered ciphertext ct(`) = (c(`)
1 , c

(`)
2) preserves its form as in Eq. (10) corresponding to Game 1-`-4

while for ` > κ, ct(`) = (c(`)
1 , c

(`)
2) remains the same as in Eq. (6) corresponding to Game 0 under the

basis transformation. Moreover, since the RHS of Eq. (41) and that of Eq. (39) are of the same form,
the answered ciphertext ct(κ) = (c(κ)

1 , c
(κ)
2) is Game 1-κ-1 can be conceptually changed to that in Game

1-κ-1’. ut

Claim 2 The distribution of the view of adversary A in Game 1-κ-2 and that in Game 1-κ-1’ are equiv-
alent.

Proof. Claim 2 is proven in a similar manner to Claim 1, using new dual orthonormal bases (U,U∗) as
in Eq. (40). ut

From Claims 1 and 2, it follows that adversary A’s view in Game 1-κ-1 can be conceptually changed to
that in Game 1-κ-2. This completes the proof of Lemma 2. ut

Lemma 3. For any probabilistic adversary A, there exists a probabilistic algorithm C1-2, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(1-κ-2)

A (λ)− Adv(1-κ-3)
A (λ)

∣∣ ≤ AdvSXDH
C1-κ-2

(λ),

where C1-κ-2(·) = C1-2(κ, ·).

Proof. We construct the probabilistic algorithm C1-2 that given an integer κ together with an instance
of the SXDH problem similar to that in the proof of Lemma 1, attempts to decide that instance by
interacting with a probabilistic adversary A achieving a non-negligible difference in advantage between
Game 1-κ-2 and Game 1-κ-3 as follows:

• The setup phase is run by C1-2 in an analogous fashion as that performed by C1-1 in the proof of Lemma
1 except that C1-2 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
)

$←− GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:
#»

b 2n+i = #»

f 2n+i + µ
#»

f 3n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

b ∗3n+i = #»

f ∗3n+i − µ
#»

f ∗2n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 3n, 4n+ 1, 4n+ 2),
#»

d 3 = #»

h 3 + µ
#»

h 4,
#»

d i = #»

h i (i = 1, 2, 4, . . . , 6),
#»

d ∗4 = #»

h ∗4 − µ
#»

h ∗3,
#»

d ∗i = #»

h ∗i (i = 1, . . . , 3, 5, 6).

Functional Encryption for Inner Product with Full Function Privacy 19

• C1-2 answers the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), for j = 1, . . . , q1,
in exactly the same manner as that of C1-1 in the proof of Lemma 1.

• In reply to A’s `-th ciphertext query corresponding to vectors (#»x (`,0), #»x (`,1)), C1-2 proceeds as fol-
lows:

a) (` < κ) C1-2 picks α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

b) (` = κ) C1-2 selects ακ, ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
f i+ξκ

#»
f 4n+2

1 (gν1)
∑

i
x

(κ,1)
i

#»
f 2n+i(<β)

∑
i
x

(κ,1)
i

#»
f 3n+i

= g
ακ
∑

i
x

(κ,0)
i

#»
f i+ν

∑
i
x

(κ,1)
i

(#»
f 2n+i+µ

#»
f 3n+i)+r

∑
i
x

(κ,1)
i

#»
f 3n+i+ξκ

#»
f 4n+2

1

= g
ακ
∑

i
x

(κ,0)
i

#»
b i+ν

∑
i
x

(κ,1)
i

#»
b 2n+i+r

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
h 1+ξκ,0

#»
h 6

1 (gν1)
#»
h 3(<β)

#»
h 4 = g

ακ
#»
h 1+ν(#»

h 3+µ #»
h 4)+r #»

h 4+ξκ,0
#»
h 6

1

= g
ακ

#»
d 1+ν #»

d 3+r #»
d 4+ξκ,0

#»
d 6

1 .

c) (` > κ) C1-2 chooses α`, ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+ξ`

#»
f 4n+2

1 = g
α`
∑

i
x

(`,0)
i

#»
b i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+ξ`,0

#»
d 6

1 .

C1-2 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Eventually, A outputs a bit c′. C1-2 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form (8) which corresponds
to Game 1-κ-2, where α′′κ = ν. On the other hand, if β = 1, i.e., r $←− Zp, the κ-th answered ciphertext is
of the form (9) which corresponds to Game 1-κ-3, where α′′κ = ν and α′′′κ = r. Further, for ` < κ, the `-th
answered ciphertext is of the form (10) as in Game 1-`-4 whereas for ` > κ, the `-th answered ciphertext
is of the form (6) corresponding to Game 0. Additionally, for j = 1, . . . , q1, the j-th answered functional
key is of the form (5) corresponding to Game 0. Thus the view of A simulated by C1-2 is distributed as in
Game 1-κ-2 or Game 1-κ-3 according as β = 0 or 1. This completes the proof of Lemma 3. ut

Lemma 4. For any probabilistic adversary A, there exists a probabilistic algorithm C1-3, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(1-κ-3)

A (λ)− Adv(1-κ-4)
A (λ)

∣∣ ≤ AdvSXDH
C1-κ-3

(λ),

where C1-κ-3(·) = C1-3(κ, ·).

Proof. We construct the probabilistic algorithm C1-3 that given an integer κ together with an instance
of the SXDH problem similar to that in the proof of Lemma 1, attempts to decide that instance by
interacting with a probabilistic adversary A achieving a non-negligible difference in advantage between
Game 1-κ-3 and Game 1-κ-4 as follows:

• C1-3 runs the setup phase in an analogous fashion as that executed by C1-1 in the proof of Lemma 1 except
that C1-3 defines the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D =

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

{ #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:

#»

b 3n+i = #»

f 3n+i + µ
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , 3n, 4n+ 1, 4n+ 2),
#»

b ∗2n+i = #»

f ∗2n+i − µ
#»

f ∗3n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 4 = #»

h 4 + µ
#»

h 3,
#»

d i = #»

h i (i = 1, . . . , 3, 5, 6),
#»

d ∗3 = #»

h ∗3 − µ
#»

h ∗4,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

• C1-3 responds to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), for
j = 1, . . . , q1, in a similar way as that of C1-1 in the proof of Lemma 1.

• In order to answer the `-th ciphertext query of A corresponding to vectors (#»x (`,0), #»x (`,1)), C1-3 proceeds
as follows:

a) (` < κ) C1-3 picks α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1 (gµ1)α
′′′
`

∑
i
x

(`,1)
i

#»
f 2n+i

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 (gµ1)α
′′′
`

#»
h 3 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

b) (` = κ) C1-3 selects ακ, ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
f i+ξκ

#»
f 4n+2

1 (<β)
∑

i
x

(κ,1)
i

#»
f 2n+i(gν1)

∑
i
x

(κ,1)
i

#»
f 3n+i

= g
ακ
∑

i
x

(κ,0)
i

#»
f i+r

∑
i
x

(κ,1)
i

#»
f 2n+i+ν

∑
i
x

(κ,1)
i

(#»
f 3n+i+µ

#»
f 2n+i)+ξκ

#»
f 4n+2

1

= g
ακ
∑

i
x

(κ,0)
i

#»
b i+r

∑
i
x

(κ,1)
i

#»
b 2n+i+ν

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
h 1+ξκ,0

#»
h 6

1 (<β)
#»
h 3(gν1)

#»
h 4 = g

ακ
#»
h 1+r #»

h 3+ν(#»
h 4+µ #»

h 3)+ξκ,0
#»
h 6

1

= g
ακ

#»
d 1+r #»

d 3+ν #»
d 4+ξκ,0

#»
d 6

1 .

c) (` > κ) C1-3 forms c(`)
1 and c(`)

2 in a similar way as those are simulated by C1-2 in this case in the proof
of Lemma 3.

C1-3 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• At the end, A outputs a bit c′. C1-3 outputs β′ = c′.

Observe that if β = 1, i.e., r $←− Zp, the κ-th answered ciphertext is of the form (9) which corresponds
to Game 1-κ-3, where α′′κ = r and α′′′κ = ν. On the other hand, if β = 0, i.e., r = 0, the κ-th answered
ciphertext is of the form (10) which corresponds to Game 1-κ-4, where α′′′κ = ν. Further, for ` < κ, the `-th
answered ciphertext is of the form (10) as in Game 1-`-4 whereas for ` > κ, the `-th answered ciphertext
is of the form (6) corresponding to Game 0. Additionally, for j = 1, . . . , q1, the j-th answered functional
key is of the form (5) corresponding to Game 0. Thus the view of A simulated by C1-3 is distributed as in
Game 1-κ-3 or Game 1-κ-4 according as β = 1 or 0. This completes the proof of Lemma 4. ut

Lemma 5. For any probabilistic adversary A, there exists a probabilistic algorithm C2-1, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-(ω−1)-6)

A (λ)− Adv(2-ω-1)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-1

(λ),

where C2-ω-1(·) = C2-1(ω, ·).

Proof. Suppose that there is a probabilistic adversary A that achieves a non-negligible difference in ad-
vantage between Game 2-(ω − 1)-6 and Game 2-ω-1. We construct a probabilistic algorithm C2-1 that
attempts to decide the SXDH problem using A as a subroutine. C2-1 is given a positive integer ω and an

Functional Encryption for Inner Product with Full Function Privacy 21

instance of the SXDH problem %̆β =
(
(p,G1,G2,GT , g1, g2, e), gµ̆2 , gν̆2 , <̆β = gµ̆ν̆+r̆

2
)
, where µ̆, ν̆ $←− Zp, and

r̆ = 0 or r̆ $←− Zp according as β = 0 or 1. C2-1 plays the role of the challenger in the security game of §2.1
and interacts with A as follows:

• The setup phase is run by C2-1 in an similar fashion as that performed by C1-1 in the proof of Lemma
1 except that C2-1 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
)

$←− GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively by selecting
δ, σ

$←− Zp and implicitly defining the following:

#»

b n+i = #»

f n+i − δµ̆
#»

f i (i = 1, . . . , n), #»

b 2n+i = #»

f 2n+i − σµ̆
#»

f i (i = 1, . . . , n),
#»

b i = #»

f i (i = 1, . . . , n, 3n+ 1, . . . , 4n+ 2),
#»

b ∗i = #»

f ∗i + δµ̆
#»

f ∗n+i + σµ̆
#»

f ∗2n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = n+ 1, . . . , 4n+ 2),
#»

d 2 = #»

h 2 − δµ̆
#»

h 1,
#»

d 3 = #»

h 3 − σµ̆
#»

h 1,
#»

d i = #»

h i (i = 1, 4, . . . , 6),
#»

d ∗1 = #»

h ∗1 + δµ̆
#»

h ∗2 + σµ̆
#»

h ∗3,
#»

d ∗i = #»

h ∗i (i = 2, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), C2-1 proceeds
as follows:

a) (j < ω) C2-1 picks γj , γ′′′j , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

∑
i
(γjy(j,0)

i

#»
f ∗i+γ′′′j y

(j,1)
i

#»
f ∗3n+i)+ηj

#»
f ∗4n+1

2 (gµ̆2)
∑

i
(δγjy(j,0)

i

#»
f ∗n+i+σγjy

(j,0)
i

#»
f ∗2n+i)

= g
γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+γ′′′j

#»
h ∗4+ηj,0

#»
h ∗5

2 (gµ̆2)δγj
#»
h ∗2+σγj

#»
h ∗3 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 .

b) (j = ω) C2-1 chooses ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = (gν̆2)

∑
i
y

(ω,0)
i

#»
f ∗i (<̆β)

∑
i
(δy(ω,0)

i

#»
f ∗n+i+σy

(ω,0)
i

#»
f ∗2n+i)g

ηω
#»
f ∗4n+1

2

= g

∑
i

(
ν̆y

(ω,0)
i

(#»
f ∗i+δµ̆ #»

f ∗n+i+σµ̆
#»
f ∗2n+i)+δr̆y

(ω,0)
i

#»
f ∗n+i+σr̆y

(ω,0)
i

#»
f ∗2n+i

)
+ηω

#»
f ∗4n+1

2

= g
ν̆
∑

i
y

(ω,0)
i

#»
b ∗i+δr̆

∑
i
y

(ω,0)
i

#»
b ∗n+i+σr̆

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = (gν̆2)

#»
h ∗1 (<̆β)δ

#»
h ∗2+σ #»

h ∗3g
ηω,0

#»
h ∗5

2 = g
ν̆(#»
h ∗1+δµ̆ #»

h ∗2+σµ̆ #»
h ∗3)+δr̆ #»

h ∗2+σr̆ #»
h ∗3+ηω,0

#»
h ∗5

2

= g
ν̆

#»
d ∗1+δr̆ #»

d ∗2+σr̆ #»
d ∗3+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-1 selects γj , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+ηj

#»
f ∗4n+1

2 (gµ̆2)δγj
∑

i
y

(j,0)
i

#»
f ∗n+i+σγj

∑
i
y

(j,0)
i

#»
f ∗2n+i

= g
γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+ηj,0

#»
h ∗5

2 (gµ̆2)δγj
#»
h ∗2+σγj

#»
h ∗3 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 .

C2-1 hands the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to the `-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)), for ` = 1, . . . , q2, C2-1 selects
α`, α

′′′
` , ξ`, ξ`,0

$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

and provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Finally, A outputs a bit c′. C2-1 outputs β′ = c′.

Observe that if β = 0, i.e., r̆ = 0, the ω-th answered functional key is of the form (5), as in Game
2-(ω − 1)-6, where γω = ν̆. On the other hand, if β = 1, i.e., r̆ $←− Zp, the ω-th answered functional key
is of the form (11), as in Game 2-ω-1, where γω = ν̆, γ′ω = δr̆, and γ′′ω = σr̆. Further, for j < ω, the
j-th answered functional key is of the form (21) as in Game 2-j-6, which is its proper form in both Game
2-(ω − 1)-6 and Game 2-ω-1 since the sequence of transitions Game 2-j-1 – Game 2-j-6 has already been
completed, whereas for j > ω, the j-th answered functional key is of the form (5) corresponding to Game
0, which is its proper form since during Game 1 sequence of transformations no change was made to the
queried functional keys and the sequence of hybrids Game 2-j-1 – Game 2-j-6 has not yet been executed.
Additionally, for ` = 1, . . . , q2, the `-th answered ciphertext is of the form (10) as in Game 1-q2-4, which
is the proper form since for ω = 1, no more alteration in the form of these ciphertexts has occurred after
Game 1-q2-4 and for ω ≥ 2, these ciphertexts have been reset to this form by Eq. (20) in Game 2-(ω−1)-5.
Thus the view of A simulated by C2-1 is distributed as in Game 2-(ω − 1)-6 or Game 2-ω-1 according as
β = 0 or 1. This completes the proof of Lemma 5. ut

Lemma 6. For any probabilistic adversary A, for any security parameter λ,

Adv(2-ω-2-(κ−1)-5)
A (λ) = Adv(2-ω-2-κ-1)

A (λ).

Proof. We first consider the case κ = 1. Then Game 2-ω-2-0-5 is Game 2-ω-1. In order to prove Lemma
6, we define an intermediate game, namely, Game 2-ω-1’ and show the equivalence of the distributions
of the views of adversary A is Game 2-ω-1 and that in Game 2-ω-1’ (Claim 3) as well as those in Game
2-ω-2-1-1 and in Game 2-ω-1’ (Claim 4).

Game 2-ω-1’ (ω = 1, . . . , q1): This game is analogous to Game 2-ω-1 except that the components
of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are computed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
ϕ

(ω)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (42)

where #»ϕ(ω) $←− Znp\{
#»0 } and the other variables are generated as in Game 2-ω-1.

Claim 3 The distribution of the view of adversary A in game 2-ω-1 and that in Game 2-ω-1’ are equiv-
alent.

Proof. Consider the distribution of the view of A in Game 2-ω-1. We define new dual orthonormal
bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p) by generating M $←− GL(n,Zp) as in Eq. (40). The

components of the ω-th queried functional key corresponding to vectors (#»y (ω,0), #»y (ω,1)) are expressed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,0)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»u ∗i+γ′ω
∑

i
y

(ω,0)
i

#»u ∗n+i+γ
′′
ω

∑
i
ϕ

(ω)
i

#»u ∗2n+i+ηω #»u ∗4n+1
2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (43)

where γω, γ′ω, γ′′ω, ηω, ηω,0
$←− Zp, and #»ϕ(ω) = #»y (ω,0) · (Mᵀ)−1.

Since #»y (ω,0) 6= #»0 and M is uniformly chosen from GL(n,Zp), #»ϕ(ω) is uniformly distributed in Znp\{
#»0 }

and it is independent from all the other variables. The components of any other queried functional key
corresponding to vectors (#»y (j,0), #»y (j,1)) are expressed as

a) (j < ω)

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2

= g
γj
∑

i
y

(j,0)
i

#»u ∗i+γ′′′j
∑

i
y

(j,1)
i

#»u ∗3n+i+ηj #»u ∗4n+1
2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,

Functional Encryption for Inner Product with Full Function Privacy 23

b) (j > ω)

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»u ∗i+ηj #»u ∗4n+1
2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,

and for ` = 1, . . . , q2, the components of the `-th queried ciphertext ct(`) corresponding to vectors
(#»x (`,0), #»x (`,1)) are expressed as

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

where all the variables are generated as in Game 2-ω-1.
Observe that in the light of the adversaryA’s view, both (B,B∗) and (U,U∗) are consistent with respect

to pp. Also, this transformation of bases maintains the form of the `-th answered ciphertext ct(`) =
(c(`)

1 , c
(`)
2) as in Eq. (10) corresponding to Game 1-q2-4 (or equivalently as in Eq. (20) corresponding to

Game 2-(ω − 1)-5, for ω ≥ 2), for ` = 1, . . . , q2. Additionally, for j < ω, the j-th answered functional key
sk(j) = (k∗(j)1 ,k

∗(j)
2) preserves its form as in Eq. (21) corresponding to Game 2-j-6 while for j > ω, sk(j) =

(k∗(j)1 ,k
∗(j)
2) remains the same as in Eq. (5) corresponding to Game 0 under the basis transformation.

moreover, since the RHS of Eq. (43) and that of Eq. (42) are of the same form, the queried functional
key sk(ω) = (k∗(ω)

1 ,k
∗(ω)
2) in Game 2-ω-1 can be conceptually changed to that in Game 2-ω-1’. ut

Claim 4 The distribution of the view of adversary A in Game 2-ω-2-1-1 and that in Game 2-ω-1’ are
equivalent.

Proof. Claim 4 is proven in a similar manner to Claim 3 using new dual orthonormal bases (U,U∗) as in
Eq. (40). ut

From Claims 3 and 4 it follows that adversary A’s view in Game 2-ω-1 can be conceptually changed to
that in Game 2-ω-2-1-1. When κ ≥ 2, the above proof can be applied by introducing #»ϕω

$←− Znp\{
#»0 } to

the second block associated to γ′ω instead of the third block corresponding to γ′′ω of the exponent in Eq.
(42). Therefore, when κ ≥ 2, Lemma 6 is proven in a similar way to the case κ = 1. This completes the
proof of Lemma 6. ut

Lemma 7. For any probabilistic adversary A, there exists a probabilistic algorithm C2-2, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-2-κ-1)

A (λ)− Adv(2-ω-2-κ-2)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-2-κ

(λ),

where C2-ω-2-κ(·) = C2-2(ω, κ, ·).

Proof. We construct the probabilistic algorithm C2-2 that given integers ω and κ together with an in-
stance of the SXDH problem similar to that in the proof of Lemma 1, attempts to decide that instance by
interacting with a probabilistic adversary A achieving a non-negligible difference in advantage between
Game 2-ω-2-κ-1 and Game 2-ω-2-κ-2 as follows:

• The setup phase is run by C2-2 in an analogous fashion as that performed by C1-1 in the proof of Lemma
1 except that C2-2 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
)

$←− GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:
#»

b i = #»

f i + µ
#»

f n+i (i = 1, . . . , n), #»

b i = #»

f i (i = n+ 1, . . . , 4n+ 2),
#»

b ∗n+i = #»

f ∗n+i − µ
#»

f ∗i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , n, 2n+ 1, . . . , 4n+ 2),
#»

d 1 = #»

h 1 + µ
#»

h 2,
#»

d i = #»

h i (i = 2, . . . , 6),
#»

d ∗2 = #»

h ∗2 − µ
#»

h ∗1,
#»

d ∗i = #»

h ∗i (i = 1, 3, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), C2-2 proceeds
as follows:

24 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

a) (j < ω) C2-2 selects γj , γ′′′j , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
f ∗3n+i+ηj

#»
f ∗4n+1

2

= g
γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+γ′′′j

#»
h ∗4+ηj,0

#»
h ∗5

2 = g
γj

#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 .

b) (j = ω) C2-2 picks γ̂ω, γ′ω, γ′′ω, ηω, ηω,0
$←− Zp, implicitly sets γω = γ̂ω + µγ′ω, and computes

k
∗(ω)
1 = g

∑
i
(γ̂ωy(ω,0)

i

#»
f ∗i+γ′ωy

(ω,0)
i

#»
f ∗n+i+γ

′′
ωy

(ω,1)
i

#»
f ∗2n+i)+ηω

#»
f ∗4n+1

2

= g

∑
i

(
(γ̂ω+µγ′ω)y(ω,0)

i

#»
f ∗i+γ′ωy

(ω,0)
i

(#»
f ∗n+i−µ

#»
f ∗i)+γ′′ωy

(ω,1)
i

#»
f ∗2n+i

)
+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γ̂ω
#»
h ∗1+γ′ω

#»
h ∗2+γ′′ω

#»
h ∗3+ηω,0

#»
h ∗5

2 = g
(γ̂ω+µγ′ω) #»

h ∗1+γ′ω(#»
h ∗2−µ

#»
h ∗1)+γ′′ω

#»
h ∗3+ηω,0

#»
h ∗5

2

= g
γω

#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-2 chooses γj , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+ηj

#»
f ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+ηj,0

#»
h ∗5

2 = g
γj

#»
d ∗1+ηj,0

#»
d ∗5

2 .

C2-2 gives the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to A’s `-th ciphertext query corresponding to vectors (#»x (`,0), #»x (`,1)), C2-2 proceeds as fol-
lows:

a) (` < κ) C2-2 picks α`, ᾰ′′` , α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

∑
i
(α`x(`,0)

i

#»
f i+ᾰ′′` x

(`,1)
i

#»
f 2n+i+α′′′` x

(`,1)
i

#»
f 3n+i)+ξ`

#»
f 4n+2

1 (gµ1)α`
∑

i
x

(`,0)
i

#»
f n+i

= g
α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ᾰ′′`

#»
h 3+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 (gµ1)α`
#»
h 2 = g

α`
#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

b) (` = κ) C2-2 selects α′′′κ , ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = (gν1)

∑
i
x

(κ,0)
i

#»
f i(<β)

∑
i
x

(κ,0)
i

#»
f n+ig

α′′′κ

∑
i
x

(κ,1)
i

#»
f 3n+i+ξκ

#»
f 4n+2

1

= g
ν
∑

i
x

(κ,0)
i

(#»
f i+µ

#»
f n+i)+r

∑
i
x

(κ,0)
i

#»
f n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
f 3n+i+ξκ

#»
f 4n+2

1

= g
ν
∑

i
x

(κ,0)
i

#»
b i+r

∑
i
x

(κ,0)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = (gν1)

#»
h 1(<β)

#»
h 2g

α′′′κ
#»
h 4+ξκ,0

#»
h 6

1 = g
ν(#»
h 1+µ #»

h 2)+r #»
h 2+α′′′κ

#»
h 4+ξκ,0

#»
h 6

1

= g
ν

#»
d 1+r #»

d 2+α′′′κ
#»
d 4+ξκ,0

#»
d 6

1 .

c) (` > κ) C2-2 chooses α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1 (gµ1)α`
∑

i
x

(`,0)
i

#»
f n+i

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 (gµ1)α`
#»
h 2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

Functional Encryption for Inner Product with Full Function Privacy 25

C2-2 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Eventually, A outputs a bit c′. C2-2 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form (10), as in Game 2-ω-2-κ-1,
where ακ = ν. On the other hand, if β = 1, i.e., r $←− Zp, the κ-th answered ciphertext is of the form
(13), as in Game 2-ω-2-κ-2, where ακ = ν and α′κ = r. Further, for ` < κ, the `-th answered ciphertext
is of the form (17) corresponding to Game 2-ω-2-`-5 while for ` > κ, the `-th answered ciphertext if of
the form (10) corresponding to Game 1-q2-4 (or equivalently of the form (20) as in Game 2-(ω − 1)-5, for
ω ≥ 2). Moreover, the j-th answered functional key is of the form (21) as in Game 2-j-6, (12) as in Game
2-ω-2-κ-1, or (5) as in Game 0 respectively according as j < ω, j = ω, or j > ω. Thus the view of A
simulated by C2-2 is distributed as in Game 2-ω-2-κ-1 or Game 2-ω-2-κ-2 according as β = 0 or 1. This
completes the proof of Lemma 7. ut

Lemma 8. For any probabilistic adversary A, for any security parameter λ,

Adv(2-ω-2-κ-2)
A (λ) = Adv(2-ω-2-κ-3)

A (λ).

Proof. The proof of Lemma 8 utilizes the following result:

Lemma 9 (Lemma 3 in [OT10]). For τ ∈ Zp, let Sτ = {(#»χ,
#»

ϑ) | 〈 #»χ,
#»

ϑ 〉 = τ} ⊂ Znp × Znp , where p is
a prime integer and n is some positive integer. For all (#»χ,

#»

ϑ) ∈ Sτ , for all (#»

ζ , #»υ) ∈ Sτ ,

Pr
[

#»χ · F = #»

ζ
∧

#»

ϑ · F ∗ = #»υ
]

= Pr
[

#»χ · F ∗ = #»

ζ
∧

#»

ϑ · F = #»υ
]

= 1/]Sτ ,

where F $←− GL(n,Zp),F ∗ = (F ᵀ)−1, and for any set A,]A denotes the cardinality of the set A.

In order to prove Lemma 8, we define an intermediate game, namely, Game 2-ω-2-κ-2’ and show the equiv-
alence of the distribution of the view of the adversary A in Game 2-ω-2-κ-2 and that in Game 2-ω-2-κ-2’
(Claim 5) as well as those in Game 2-ω-2-κ-3 and in Game 2-ω-2-κ-2’ (Claim 6).

Game 2-ω-2-κ-2’ (ω = 1, . . . , q1; κ = 1, . . . , q2): This game is similar to Game 2-ω-2-κ-2 with
the only exception that the components of the ω-th queried functional key corresponding to vectors
(#»y (ω,0), #»y (ω,1)) are formed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
ϑ

(ω)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (44)

while the components of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are created
as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′κ

∑
i
χ

(κ)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (45)

such that (#»χ (κ),
#»

ϑ (ω)) $←− Sτω,κ = {(#»χ,
#»

ϑ) | 〈 #»χ,
#»

ϑ 〉 = τω,κ} ⊂ Znp × Znp , where τω,κ = 〈 #»x (κ,0), #»y (ω,0)〉(
= 〈 #»x (κ,1), #»y (ω,1)〉 according to the restriction of the security game

)
, and all the other variables are

generated as in Game 2-ω-2-κ-2.

Claim 5 The distribution of the view of adversary A in Game 2-ω-2-κ-2 and that in Game 2-ω-2-κ-2’
are equivalent.

Proof. Consider the distribution of the view of A in Game 2-ω-2-κ-2. We define new dual orthonormal
bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p) below. We generate W $←− GL(n,Zp) and set

#»un+1
...

#»u 2n

 = W−1 ·

#»

b n+1
...

#»

b 2n

 ,

#»u ∗n+1

...
#»u ∗2n

 = W ᵀ ·

#»

b ∗n+1
...

#»

b ∗2n

 ,

#»u i = #»

b i,
#»u ∗i = #»

b ∗i ,
(i = 1, . . . , n, 2n+ 1, . . . , 4n+ 2).

(46)

26 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

We define U = { #»u 1, . . . ,
#»u 4n+2},U∗ = { #»u ∗1, . . . ,

#»u ∗4n+2}. Note that (U,U∗) are indeed dual orthonor-
mal bases since those are obtained from the dual orthonormal bases (B,B∗) by applying an invert-
ible linear transformation. The components of the ω-th queried functional key corresponding to vectors
(#»y (ω,0), #»y (ω,1)) are expressed as

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,0)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»u ∗i+γ′ω
∑

i
ϑ

(ω)
i

#»u ∗n+i+γ
′′
ω

∑
i
y

(ω,1)
i

#»u ∗2n+i+ηω #»u ∗4n+1
2 ,

k
∗(ω)
2 = g

γω
#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 ,

 (47)

while the components of the κ-th queried ciphertext corresponding to vectors (#»x (κ,0), #»x (κ,1)) are expressed
as

c
(κ)
1 = g

ακ
∑

i
x

(κ,0)
i

#»
b i+α′κ

∑
i
x

(κ,0)
i

#»
b n+i+α′′′κ

∑
i
x

(κ,1)
i

#»
b 3n+i+ξκ

#»
b 4n+2

1

= g
ακ
∑

i
x

(κ,0)
i

#»u i+α′κ
∑

i
χ

(κ)
i

#»un+i+α′′′κ
∑

i
x

(κ,1)
i

#»u 3n+i+ξκ #»u 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
d 1+α′κ

#»
d 2+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 ,

 (48)

where γω, γ′ω, γ′′ω, ηω, ηω,0, ακ, α′κ, α′′′κ , ξκ, ξκ,0
$←− Zp, and #»

ϑω = #»y (ω,0) · (W ᵀ)−1, #»χ (κ) = #»x (κ,0) ·W .
From Lemma 9 it follows that (#»χ (κ),

#»

ϑ (ω)) are uniformly distributed in Sτω,κ , where 〈 #»x (κ,0), #»y (ω,0)〉 =
τω,κ, and are independent from all the other variables.

The components of any other j-th queried functional key corresponding to vectors (#»y (j,0), #»y (j,1)) are
expressed as follows
a) (j < ω)

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2

= g
γj
∑

i
y

(j,0)
i

#»u ∗i+γ′′′j
∑

i
y

(j,1)
i

#»u ∗3n+i+ηj #»u ∗4n+1
2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,

b) (j > ω)

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+ηj

#»
b ∗4n+1

2 = g
γj
∑

i
y

(j,0)
i

#»u ∗i+ηj #»u ∗4n+1
2 ,

k
∗(j)
2 = g

γj
#»
d ∗1+ηj,0

#»
d ∗5

2 ,

while the components of any other `-th queried ciphertext corresponding to vectors (#»x (`,0), #»x (`,1)) are
expressed as
a) (` < κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+ᾰ′′`
∑

i
x

(`,1)
i

#»u 2n+i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

b) (` > κ)

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»u i+α′′′`
∑

i
x

(`,1)
i

#»u 3n+i+ξ` #»u 4n+2

1 ,

c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

where all the variables are generated as in Game 2-ω-2-κ-2.

Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗) are consistent with
respect to pp. Also, for j < ω, the j-th answered functional key sk(j) = (k∗(j)1 ,k

∗(j)
2) preserves its form

as in Eq. (21) corresponding to Game 2-j-6 while for j > ω, sk(j) = (k∗(j)1 ,k
∗(j)
2) remains the same

as in Eq. (5) corresponding to Game 0, and for ` < κ, the `-th answered ciphertext ct(`) = (c(`)
1 , c

(`)
2)

preserves its form as in Eq. (17) corresponding to Game 2-ω-2-`-5 while for ` > κ, ct(`) = (c(`)
1 , c

(`)
2)

remains the same as in Eq. (10) corresponding to Game 1-q2-4 (or equivalently of the form (20) as in Game
2-(ω− 1)-5, for ω ≥ 2) under the basis transformation. Moreover, since the RHS of Eq. (47) (respectively
Eq. (48)) and that of Eq. (44) (respectively Eq. (45)) are of the same form, the ω-th queried functional
key sk(ω) = (k∗(ω)

1 ,k
∗(ω)
2) and the κ-th queried ciphertext ct(κ) = (c(κ)

1 , c
(κ)
2) in Game 2-ω-2-κ-2 can be

conceptually changed to those in Game 2-ω-2-κ-2’. ut

Functional Encryption for Inner Product with Full Function Privacy 27

Claim 6 The distribution of the view of the adversary A in Game 2-ω-2-κ-3 and that in Game 2-ω-2-κ-2’
are equivalent.

Proof. Claim 6 is proven in an analogous manner to Claim 5 using new dual orthonormal bases (U,U∗)
as in Eq. (46). ut

From Claims 5 and 6 it follows that adversary A’s view in Game 2-ω-2-κ-2 can be conceptually changed
to that in Game 2-ω-2-κ-3. This completes the proof of Lemma 8. ut

Lemma 10. For any probabilistic adversary A, there exists a probabilistic algorithm C2-3, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-2-κ-3)

A (λ)− Adv(2-ω-2-κ-4)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-3-κ

(λ),

where C2-ω-3-κ(·) = C2-3(ω, κ, ·).

Proof. We construct the probabilistic algorithm C2-3 that given integers ω and κ together with an in-
stance of the SXDH problem similar to that in the proof of Lemma 1, attempts to decide that instance by
interacting with a probabilistic adversary A achieving a non-negligible difference in advantage between
Game 2-ω-2-κ-3 and Game 2-ω-2-κ-4 as follows:

• C2-3 runs the setup phase in an analogous fashion as that executed by C1-1 in the proof of Lemma 1 ex-
cept that C2-3 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D =

{ #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:
#»

b n+i = #»

f n+i + µ
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , n, 2n+ 1, . . . , 4n+ 2),
#»

b ∗2n+i = #»

f ∗2n+i − µ
#»

f ∗n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 2 = #»

h 2 + µ
#»

h 3,
#»

d i = #»

h i (i = 1, 3, . . . , 6),
#»

d ∗3 = #»

h ∗3 − µ
#»

h ∗2,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

• To answer the j-th functional key query of A for vectors (#»y (j,0), #»y (j,1)), C2-3 proceeds as follows:

a) (j < ω) C2-3 computes k∗(j)1 and k∗(j)2 in the same way as those are generated by C2-2 in this case in
the proof of Lemma 7.

b) (j = ω) C2-3 picks γω, γ̂′ω, γ′′ω, ηω, ηω,0
$←− Zp, implicitly sets γ′ω = γ̂′ω + µγ′′ω, and computes

k
∗(ω)
1 = g

∑
i
(γωy(ω,0)

i

#»
f ∗i+γ̂′ωy

(ω,1)
i

#»
f ∗n+i+γ

′′
ωy

(ω,1)
i

#»
f ∗2n+i)+ηω

#»
f ∗4n+1

2

= g

∑
i

(
γωy

(ω,0)
i

#»
f ∗i+(γ̂′ω+µγ′′ω)y(ω,1)

i

#»
f ∗n+i+γ

′′
ωy

(ω,1)
i

(#»
f ∗2n+i−µ

#»
f ∗n+i)

)
+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
h ∗1+γ̂′ω

#»
h ∗2+γ′′ω

#»
h ∗3+ηω,0

#»
h ∗5

2 = g
γω

#»
h ∗1+(γ̂′ω+µγ′′ω) #»

h ∗2+γ′′ω(#»
h ∗3−µ

#»
h ∗2)+ηω,0

#»
h ∗5

2

= g
γω

#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-3 simulates k∗(j)1 and k∗(j)2 in a similar manner to that of C2-2 in this case in the proof of
Lemma 7.

C2-3 gives the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to A’s `-th ciphertext query corresponding to vectors (#»x (`,0), #»x (`,1)), C2-3 proceeds as fol-
lows:

a) (` < κ) C2-3 picks α`, ᾰ′′` , α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+ᾰ′′`

∑
i
x

(`,1)
i

#»
f 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ᾰ′′`

#»
h 3+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

28 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

b) (` = κ) C2-3 selects ακ, α′′′κ , ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = g

∑
i
(ακx(κ,0)

i

#»
f i+α′′′κ x

(κ,1)
i

#»
f 3n+i)+ξκ

#»
f 4n+2

1 (gν1)
∑

i
x

(κ,1)
i

#»
f n+i(<β)

∑
i
x

(κ,1)
i

#»
f 2n+i

= g

∑
i

(
ακx

(κ,0)
i

#»
f i+νx(κ,1)

i
(#»
f n+i+µ

#»
f 2n+i)+rx(κ,1)

i

#»
f 2n+i+α′′′κ x

(κ,1)
i

#»
f 3n+i

)
+ξκ

#»
f 4n+2

1

= g

∑
i
(ακx(κ,0)

i

#»
b i+νx(κ,1)

i

#»
b n+i+rx(κ,1)

i

#»
b 2n+i+α′′′κ x

(κ,1)
i

#»
b 3n+i)+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
h 1+α′′′κ

#»
h 4+ξκ,0

#»
h 6

1 (gν1)
#»
h 2(<β)

#»
h 3

= g
ακ

#»
h 1+ν(#»

h 2+µ #»
h 3)+r #»

h 3+α′′′κ
#»
h 4+ξκ,0

#»
h 6

1 = g
ακ

#»
d 1+ν #»

d 2+r #»
d 3+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 .

c) (` > κ) C2-3 chooses α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

C2-3 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• At the end, A outputs a bit c′. C2-3 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form (15) which corresponds
to Game 2-ω-2-κ-3, where α′κ = ν. On the other hand, if β = 1, i.e., r $←− Zp, the κ-th answered ciphertext
is of the form (16) which corresponds to Game 2-ω-2-κ-4, where α′κ = ν and ᾰ′′κ = r. Further, for ` < κ,
the `-th answered ciphertext is of the form (17) as in Game 2-ω-2-`-5 while for ` > κ, the `-th answered
ciphertxt if of the form (10) as in Game 1-q2-4 (or equivalently of the form (20) as in Game 2-(ω − 1)-5,
for ω ≥ 2). Moreover, the j-th answered functional key is of the form (21) as in Game 2-j-6, (14) as in
Game 2-ω-2-κ-3, or (5) as in Game 0 respectively according as j < ω, j = ω, or j > ω. Thus the view of
A simulated by C2-3 is distributed as in Game 2-ω-2-κ-3 or Game 2-ω-2-κ-4 according as β = 0 or 1. This
completes the proof of Lemma 10. ut

Lemma 11. For any probabilistic adversary A, there exists a probabilistic algorithm C2-4, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-2-κ-4)

A (λ)− Adv(2-ω-2-κ-5)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-4-κ

(λ),

where C2-ω-4-κ(·) = C2-4(ω, κ, ·).

Proof. We construct the probabilistic algorithm C2-4 that given integers ω and κ together with an in-
stance of the SXDH problem similar to that in the proof of Lemma 1, attempts to decide that instance by
interacting with a probabilistic adversary A attaining a non-negligible difference in advantage between
Game 2-ω-2-κ-4 and Game 2-ω-2-κ-5 as follows:

• C2-4 executes the setup phase in an identical fashion as that performed by C1-1 in the proof of Lemma 1
except that C2-4 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D =

{ #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:

#»

b 2n+i = #»

f 2n+i + µ
#»

f n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

b ∗n+i = #»

f ∗n+i − µ
#»

f ∗2n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , n, 2n+ 1, . . . , 4n+ 2),
#»

d 3 = #»

h 3 + µ
#»

h 2,
#»

d i = #»

h i (i = 1, 2, 4, . . . , 6),
#»

d ∗2 = #»

h ∗2 − µ
#»

h ∗3,
#»

d ∗i = #»

h ∗i (i = 1, 3, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), C2-4 proceeds
as follows:

Functional Encryption for Inner Product with Full Function Privacy 29

a) (j < ω) C2-4 simulates k∗(j)1 and k∗(j)2 in a similar manner to that of C2-2 in this case in the proof of
Lemma 7.

b) (j = ω) C2-4 picks γω, γ′ω, γ̂′′ω, ηω, ηω,0
$←− Zp, implicitly sets γ′′ω = γ̂′′ω + µγ′ω, and computes

k
∗(ω)
1 = g

∑
i
(γωy(ω,0)

i

#»
f ∗i+γ′ωy

(ω,1)
i

#»
f ∗n+i+γ̂

′′
ωy

(ω,1)
i

#»
f ∗2n+i)+ηω

#»
f ∗4n+1

2

= g

∑
i

(
γωy

(ω,0)
i

#»
f ∗i+γ′ωy

(ω,1)
i

(#»
f ∗n+i−µ

#»
f ∗2n+i)+(γ̂′′ω+µγ′ω)y(ω,1)

i

#»
f ∗2n+i

)
+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′ω

∑
i
y

(ω,1)
i

#»
b ∗n+i+γ

′′
ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
h ∗1+γ′ω

#»
h ∗2+γ̂′′ω

#»
h ∗3+ηω,0

#»
h ∗5

2 = g
γω

#»
h ∗1+γ′ω(#»

h ∗2−µ
#»
h ∗3)+(γ̂′′ω+µγ′ω) #»

h ∗3+ηω,0
#»
h ∗5

2

= g
γω

#»
d ∗1+γ′ω

#»
d ∗2+γ′′ω

#»
d ∗3+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-4 computes k∗(j)1 and k∗(j)2 in the same way as those are generated by C2-2 in this case in
the proof of Lemma 7.

C2-4 gives the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• To answer A’s `-th ciphertext query corresponding to vectors (#»x (`,0), #»x (`,1)), C2-4 proceeds as follows:

a) (` < κ) C2-4 picks α`, ᾰ′′` , α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

∑
i
(α`x(`,0)

i

#»
f i+ᾰ′′` x

(`,1)
i

#»
f 2n+i+α′′′` x

(`,1)
i

#»
f 3n+i)+ξ`

#»
f 4n+2

1 (gµ1)ᾰ
′′
`

∑
i
x

(`,1)
i

#»
f n+i

= g
α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ᾰ′′`

#»
h 3+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 (gµ1)ᾰ
′′
`

#»
h 2 = g

α`
#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

b) (` = κ) C2-4 selects ακ, α′′′κ , ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = g

∑
i
(ακx(κ,0)

i

#»
f i+α′′′κ x

(κ,1)
i

#»
f 3n+i)+ξκ

#»
f 4n+2

1 (<β)
∑

i
x

(κ,1)
i

#»
f n+i(gν1)

∑
i
x

(κ,1)
i

#»
f 2n+i

= g

∑
i

(
ακx

(κ,0)
i

#»
f i+rx(κ,1)

i

#»
f n+i+νx(κ,1)

i
(#»
f 2n+i+µ

#»
f n+i)+α′′′κ x

(κ,1)
i

#»
f 3n+i

)
+ξκ

#»
f 4n+2

1

= g

∑
i
(ακx(κ,0)

i

#»
b i+rx(κ,1)

i

#»
b n+i+νx(κ,1)

i

#»
b 2n+i+α′′′κ x

(κ,1)
i

#»
b 3n+i)+ξκ

#»
b 4n+2

1 ,

c
(κ)
2 = g

ακ
#»
h 1+α′′′κ

#»
h 4+ξκ,0

#»
h 6

1 (<β)
#»
h 2(gν1)

#»
h 3

= g
ακ

#»
h 1+r #»

h 2+ν(#»
h 3+µ #»

h 2)+α′′′κ
#»
h 4+ξκ,0

#»
h 6

1 = g
ακ

#»
d 1+r #»

d 2+ν #»
d 3+α′′′κ

#»
d 4+ξκ,0

#»
d 6

1 .

c) (` > κ) C2-4 chooses α`, α′′′` , ξ`, ξ`,0
$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 .

C2-4 provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Finally, A outputs a bit c′. C2-4 outputs β′ = c′.
Observe that if β = 1, i.e., r $←− Zp, the κ-th answered ciphertext is of the form (16), as in Game

2-ω-2-κ-4, where α′κ = r and ᾰ′′κ = ν. On the other hand, if β = 0, i.e., r = 0, the κ-th answered ciphertext
is of the form (17), as in Game 2-ω-2-κ-5, where ᾰ′′κ = ν. Further, for ` < κ, the `-th answered ciphertext
is of the form (17) corresponding to Game 2-ω-2-`-5 while for ` > κ, the `-th answered ciphertxt if of
the form (10) corresponding to Game 1-q2-4 (or equivalently of the form (20) as in Game 2-(ω − 1)-5, for
ω ≥ 2). Moreover, the j-th answered functional key is of the form (21) as in Game 2-j-6, (14) as in Game
2-ω-2-κ-3, or (5) as in Game 0 respectively according as j < ω, j = ω, or j > ω. Thus the view of A
simulated by C2-4 is distributed as in Game 2-ω-2-κ-4 or Game 2-ω-2-κ-5 according as β = 1 or 0. This
completes the proof of Lemma 11. ut

30 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Lemma 12. For any probabilistic adversary A, there exists a probabilistic algorithm C2-5, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-2-q2-5)

A (λ)− Adv(2-ω-3)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-5

(λ),

where C2-ω-5(·) = C2-5(ω, ·).

Proof. We construct the probabilistic algorithm C2-5 that given an integer ω along with an instance of
the SXDH problem similar to that in the proof of Lemma 5, attempts to decide that instance by inter-
acting with a probabilistic adversary A achieving a non-negligible difference in advantage between Game
2-ω-2-q2-5 and Game 2-ω-3 as follows:

• C2-5 executes the setup phase in an analogous fashion as that performed by C1-1 in the proof of
Lemma 1 with the only exception that C2-5 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ =
{ #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ =
{ #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←− GOB(Z4n+2

p) and
(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively
as follows:

#»

b n+i = #»

f n+i − µ̆
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , n, 2n+ 1, . . . , 4n+ 2)
#»

b ∗2n+i = #»

f ∗2n+i + µ̆
#»

f ∗n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 2 = #»

h 2 − µ̆
#»

h 3,
#»

d i = #»

h i (i = 1, 3, . . . , 6)
#»

d ∗3 = #»

h ∗3 + µ̆
#»

h ∗2,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

• To answer the j-th functional key query of A for vectors (#»y (j,0), #»y (j,1)), C2-5 proceeds as follows:

a) (j < ω) C2-5 generates k∗(j)1 and k∗(j)2 in a similar manner to that of C2-2 in this case in the proof of
Lemma 7.

b) (j = ω) C2-5 chooses γω, ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
f ∗i+ηω

#»
f ∗4n+1

2 (<̆β)
∑

i
y

(ω,1)
i

#»
f ∗n+i(gν̆2)

∑
i
y

(ω,1)
i

#»
f ∗2n+i

= g
γω
∑

i
y

(ω,0)
i

#»
f ∗i+r̆

∑
i
y

(ω,1)
i

#»
f ∗n+i+ν̆

∑
i
y

(ω,1)
i

(#»
f ∗2n+i+µ̆

#»
f ∗n+i)+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+r̆

∑
i
y

(ω,1)
i

#»
b ∗n+i+ν̆

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
h ∗1+ηω,0

#»
h ∗5

2 (<̆β)
#»
h ∗2 (gν̆2)

#»
h ∗3 = g

γω
#»
h ∗1+r̆ #»

h ∗2+ν̆(#»
h ∗3+µ̆ #»

h ∗2)+ηω,0
#»
h ∗5

2

= g
γω

#»
d ∗1+r̆ #»

d ∗2+ν̆ #»
d ∗3+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-5 computes k∗(j)1 and k∗(j)2 in the same way as those are simulated by C2-2 in this case in
the proof of Lemma 7.

C2-5 hands the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In reply to the `-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)), for ` = 1, . . . , q2, C2-5 selects
α`, ᾰ

′′
` , α

′′′
` , ξ`, ξ`,0

$←− Zp and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+ᾰ′′`

∑
i
x

(`,1)
i

#»
f 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+ᾰ′′`

#»
h 3+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

and provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• At the end, A outputs a bit c′. C2-5 outputs β′ = c′.
Observe that if β = 1, i.e., r̆ $←− Zp, the ω-th answered functional key is of the form (14), as in Game

2-ω-2-q2-5, where γ′ω = r̆ and γ′′ω = ν̆. On the other hand, if β = 0, i.e., r̆ = 0, the ω-th answered functional
key is of the form (18), as in Game 2-ω-3, where γ′′ω = ν̆. Further, for j < ω, the j-th answered functional

Functional Encryption for Inner Product with Full Function Privacy 31

key is of the form (21) corresponding to Game 2-j-6 whereas for j > ω, the j-th answered functional key
is of the form (5) corresponding to Game 0. Additionally, for ` = 1, . . . , q2, the `-th answered ciphertext
is of the form (17), as in Game 2-ω-2-q2-5. Thus the view of A simulated by C2-5 is distributed as in Game
2-ω-2-q2-5 or Game 2-ω-3 according as β = 1 or 0. This completes the proof of Lemma 12. ut

Lemma 13. For any probabilistic adversary A, there exists a probabilistic algorithm C2-6, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-3)

A (λ)− Adv(2-ω-4)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-6

(λ),

where C2-ω-6(·) = C2-6(ω, ·).

Proof. We construct the probabilistic algorithm C2-6 that given an integer ω along with an instance of the
SXDH problem similar to that in the proof of Lemma 5, attempts to decide that instance by interacting
with a probabilistic adversary A achieving a non-negligible difference in advantage between Game 2-ω-3
and Game 2-ω-4 as follows:

• C2-6 runs the setup phase in an analogous fashion as that executed by C1-1 in the proof of Lemma 1 ex-
cept that C2-6 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D =

{ #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:
#»

b 3n+i = #»

f 3n+i − µ̆
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , 3n, 4n+ 1, 4n+ 2)
#»

b ∗2n+i = #»

f ∗2n+i + µ̆
#»

f ∗3n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 4 = #»

h 4 − µ̆
#»

h 3,
#»

d i = #»

h i (1, . . . , 3, 5, 6)
#»

d ∗3 = #»

h ∗3 + µ̆
#»

h ∗4,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), C2-6 proceeds
as follows:

a) (j < ω) C2-6 computes k∗(j)1 and k∗(j)2 in the same way as those are simulated by C2-2 in this case in
the proof of Lemma 7.

b) (j = ω) C2-6 chooses γω, ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
f ∗i+ηω

#»
f ∗4n+1

2 (gν̆2)
∑

i
y

(ω,1)
i

#»
f ∗2n+i(<̆β)

∑
i
y

(ω,1)
i

#»
f ∗3n+i

= g
γω
∑

i
y

(ω,0)
i

#»
f ∗i+ν̆

∑
i
y

(ω,1)
i

(#»
f ∗2n+i+µ̆

#»
f ∗3n+i)+r̆

∑
i
y

(ω,1)
i

#»
f ∗3n+i+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+ν̆

∑
i
y

(ω,1)
i

#»
b ∗2n+i+r̆

∑
i
y

(ω,1)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
h ∗1+ηω,0

#»
h ∗5

2 (gν̆2)
#»
h ∗3 (<̆β)

#»
h ∗4 = g

γω
#»
h ∗1+ν̆(#»

h ∗3+µ̆ #»
h ∗4)+r̆ #»

h ∗4+ηω,0
#»
h ∗5

2

= g
γω

#»
d ∗1+ν̆ #»

d ∗3+r̆ #»
d ∗4+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-6 generates k∗(j)1 and k∗(j)2 in a similar manner to that of C2-2 in this case in the proof of
Lemma 7.

C2-6 hands the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• To answer the `-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)), for ` = 1, . . . , q2, C2-6 selects
α`, α̂

′′
` , α

′′′
` , ξ`, ξ`,0

$←− Zp, implicitly sets ᾰ′′` = α̂′′` + µ̃α′′′` , and computes

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
f i+α̂′′`

∑
i
x

(`,1)
i

#»
f 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
f 3n+i+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
f i+(α̂′′` +µ̆α′′′`)

∑
i
x

(`,1)
i

#»
f 2n+i+α′′′`

∑
i
x

(`,1)
i

(#»
f 3n+i−µ̆

#»
f 2n+i)+ξ`

#»
f 4n+2

1

= g
α`
∑

i
x

(`,0)
i

#»
b i+ᾰ′′`

∑
i
x

(`,1)
i

#»
b 2n+i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 = g

α`
#»
h 1+α̂′′`

#»
h 3+α′′′`

#»
h 4+ξ`,0

#»
h 6

1 = g
α`

#»
h 1+(α̂′′` +µ̆α′′′`) #»

h 3+α′′′` (#»
h 4−µ̆

#»
h 3)+ξ`,0

#»
h 6

1

= g
α`

#»
d 1+ᾰ′′`

#»
d 3+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

32 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

and provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• Eventually, A outputs a bit c′. C2-6 outputs β′ = c′.

Observe that if β = 0, i.e., r̆ = 0, the ω-th answered functional key is of the form (18) which
corresponds to Game 2-ω-3, where γ′′ω = ν̆. On the other hand, if β = 1, i.e., r̆ $←− Zp, the ω-th answered
functional key is of the form (19) which corresponds to Game 2-ω-4, where γ′′ω = ν̆ and γ′′′ω = r̆. Further,
for j < ω, the j-th answered functional key is of the form (21) as in Game 2-j-6 whereas for j > ω, the
j-th answered functional key is of the form (5) corresponding to Game 0. Additionally, for ` = 1, . . . , q2,
the `-th answered ciphertext is of the form (17), as in Game 2-ω-2-q2-5. Thus the view of A simulated by
C2-6 is distributed as in Game 2-ω-3 or Game 2-ω-4 according as β = 0 or 1. This completes the proof of
Lemma 13. ut

Lemma 14. For any probabilistic adversary A, there exists a probabilistic algorithm C2-7, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-4)

A (λ)− Adv(2-ω-5)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-7

(λ),

where C2-ω-7(·) = C2-7(ω, ·).

Proof. We construct the probabilistic algorithm C2-7 that given an integer ω together with an instance
of the SXDH problem similar to that in the proof of Lemma 1, attempts to decide that instance by
interacting with a probabilistic adversary A attaining a non-negligible difference in advantage between
Game 2-ω-4 and Game 2-ω-5 as follows:

• C2-7 executes the setup phase in an identical fashion as that performed by C1-1 in the proof of Lemma 1
except that C2-7 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and
(
D =

{ #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
) $←−

GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:

#»

b 3n+i = #»

f 3n+i + µ
#»

f 2n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , 3n, 4n+ 1, 4n+ 2),
#»

b ∗2n+i = #»

f ∗2n+i − µ
#»

f ∗3n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

d 4 = #»

h 4 + µ
#»

h 3,
#»

d i = #»

h i (i = 1, . . . , 3, 5, 6),
#»

d ∗3 = #»

h ∗3 − µ
#»

h ∗4,
#»

d ∗i = #»

h ∗i (i = 1, 2, 4, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), C2-7 proceeds
as follows:

a) (j < ω) C2-7 simulates k∗(j)1 and k∗(j)2 in a similar manner to that of C2-2 in this case in the proof of
Lemma 7.

b) (j = ω) C2-7 picks γω, γ′′ω, γ̂′′′ω , ηω, ηω,0
$←− Zp, implicitly sets γ′′′ω = γ̂′′′ω + µγ′′ω, and computes

k
∗(ω)
1 = g

∑
i
(γωy(ω,0)

i

#»
f ∗i+γ′′ωy

(ω,1)
i

#»
f ∗2n+i+γ̂

′′′
ω y

(ω,1)
i

#»
f ∗3n+i)+ηω

#»
f ∗4n+1

2

= g

∑
i

(
γωy

(ω,0)
i

#»
f ∗i+γ′′ωy

(ω,1)
i

(#»
f ∗2n+i−µ

#»
f ∗3n+i)+(γ̂′′′ω +µγ′′ω)y(ω,1)

i

#»
f ∗3n+i

)
+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+γ′′ω

∑
i
y

(ω,1)
i

#»
b ∗2n+i+γ

′′′
ω

∑
i
y

(ω,1)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
h ∗1+γ′′ω

#»
h ∗3+γ̂′′′ω

#»
h ∗4+ηω,0

#»
h ∗5

2

= g
γω

#»
h ∗1+γ′′ω(#»

h ∗3−µ
#»
h ∗4)+(γ̂′′′ω +µγ′′ω) #»

h ∗4+ηω,0
#»
h ∗5

2 = g
γω

#»
d ∗1+γ′′ω

#»
d ∗3+γ′′′ω

#»
d ∗4+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-7 computes k∗(j)1 and k∗(j)2 in the same way as those are generated by C2-2 in this case in
the proof of Lemma 7.

C2-7 hands the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

Functional Encryption for Inner Product with Full Function Privacy 33

• In reply to the `-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)), for ` = 1, . . . , q2, C2-7 selects
α`, ψ`, ψ

′
`, ξ`, ξ`,0

$←− Zp and computes

c
(`)
1 =g

α`
∑

i
x

(`,0)
i

#»
f i+ξ`

#»
f 4n+2

1 (<β)ψ`
∑

i
x

(`,1)
i

#»
f 2n+i(gν1)ψ`

∑
i
x

(`,1)
i

#»
f 3n+i(gµ1)ψ

′
`

∑
i
x

(`,1)
i

#»
f 2n+ig

ψ′`

∑
i
x

(`,1)
i

#»
f 3n+i

1

=g
∑

i

(
α`x

(`,0)
i

#»
f i+rψ`x(`,1)

i

#»
f 2n+i+(νψ`+ψ′`)x

(`,1)
i

(#»
f 3n+i+µ

#»
f 2n+i)

)
+ξ`

#»
f 4n+2

1

=g
α`
∑

i
x

(`,0)
i

#»
b i+rψ`

∑
i
x

(`,1)
i

#»
b 2n+i+(νψ`+ψ′`)

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 ,

c
(`)
2 =gα`

#»
h 1+ξ`,0

#»
h 6

1 (<β)ψ`
#»
h 3(gν1)ψ`

#»
h 4(gµ1)ψ

′
`

#»
h 3g

ψ′`
#»
h 4

1

=gα`
#»
h 1+rψ`

#»
h 3+(νψ`+ψ′`)(

#»
h 4+µ #»

h 3)+ξ`,0
#»
h 6

1 = g
α`

#»
d 1+rψ`

#»
d 3+(νψ`+ψ′`)

#»
d 4+ξ`,0

#»
d 6

1 ,

and provides the ciphertext ct(`) = (c(`)
1 , c

(`)
2) to A.

• At the end, A outputs a bit c′. C2-7 outputs β′ = c′.
Observe that if β = 1, i.e., r $←− Zp, the `-th answered ciphertext is of the form (17), as in Game

2-ω-4, where ᾰ′′` = rψ` and α′′′` = νψ` + ψ′`, for ` = 1, . . . , q2. On the other hand, if β = 0, i.e., r = 0, the
`-th answered ciphertext is of the form (20) which corresponds to Game 2-ω-5, where α′′′` = νψ` +ψ′`, for
` = 1, . . . , q2. Moreover, the j-th answered functional key is of the form (21) as in Game 2-j-6, (19) as in
Game 2-ω-4, or (5) as in Game 0 respectively according as j < ω, j = ω, or j > ω. Thus the view of A
simulated by C2-7 is distributed as in Game 2-ω-4 or Game 2-ω-5 according as β = 1 or 0. This completes
the proof of Lemma 14. ut

Lemma 15. For any probabilistic adversary A, there exists a probabilistic algorithm C2-8, whose running
time is essentially the same as that of A, such that for any security parameter λ,∣∣Adv(2-ω-5)

A (λ)− Adv(2-ω-6)
A (λ)

∣∣ ≤ AdvSXDH
C2-ω-8

(λ),

where C2-ω-8(·) = C2-8(ω, ·).

Proof. We construct the probabilistic algorithm C2-8 that given an integer ω along with an instance of the
SXDH problem similar to that in the proof of Lemma 5, attempts to decide that instance by interacting
with a probabilistic adversary A achieving a non-negligible difference in advantage between Game 2-ω-5
and Game 2-ω-6 as follows:

• C2-8 runs the setup phase in a similar manner as that executed by C1-1 in the proof of Lemma 1
except that C2-8 sets the dual orthonormal bases

(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
)

and(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
)

implicitly from
(
F = { #»

f 1, . . . ,
#»

f 4n+2},F∗ = { #»

f ∗1, . . . ,
#»

f ∗4n+2}
)

$←− GOB(Z4n+2
p) and

(
H = { #»

h 1, . . . ,
#»

h 6},H∗ = { #»

h ∗1, . . . ,
#»

h ∗6}
) $←− GOB(Z6

p) respectively as follows:

#»

b 2n+i = #»

f 2n+i − µ̆
#»

f 3n+i (i = 1, . . . , n), #»

b i = #»

f i (i = 1, . . . , 2n, 3n+ 1, . . . , 4n+ 2),
#»

b ∗3n+i = #»

f ∗3n+i + µ̆
#»

f ∗2n+i (i = 1, . . . , n), #»

b ∗i = #»

f ∗i (i = 1, . . . , 3n, 4n+ 1, 4n+ 2),
#»

d 3 = #»

h 3 − µ̆
#»

h 4,
#»

d i = #»

h i (i = 1, 2, 4, . . . , 6)
#»

d ∗4 = #»

h ∗4 + µ̆
#»

h ∗3,
#»

d ∗i = #»

h ∗i (i = 1, . . . , 3, 5, 6).

• In response to the j-th functional key query of A corresponding to vectors (#»y (j,0), #»y (j,1)), C2-8 proceeds
as follows:

a) (j < ω) C2-8 picks γj , γ′′′j , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
f ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
f ∗3n+i+ηj

#»
f ∗4n+1

2 (gµ̆2)γ
′′′
j

∑
i
y

(j,1)
i

#»
f ∗2n+i

= g
γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,

k
∗(j)
2 = g

γj
#»
h ∗1+γ′′′j

#»
h ∗4+ηj,0

#»
h ∗5

2 (gµ̆2)γ
′′′
j

#»
h ∗3 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 .

34 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

b) (j = ω) C2-8 chooses γω, ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = g

γω
∑

i
y

(ω,0)
i

#»
f ∗i+ηω

#»
f ∗4n+1

2 (<̆β)
∑

i
y

(ω,1)
i

#»
f ∗2n+i(gν̆2)

∑
i
y

(ω,1)
i

#»
f ∗3n+i

= g
γω
∑

i
y

(ω,0)
i

#»
f ∗i+r̆

∑
i
y

(ω,1)
i

#»
f ∗2n+i+ν̆

∑
i
y

(ω,1)
i

(#»
f ∗3n+i+µ̆

#»
f ∗2n+i)+ηω

#»
f ∗4n+1

2

= g
γω
∑

i
y

(ω,0)
i

#»
b ∗i+r̆

∑
i
y

(ω,1)
i

#»
b ∗2n+i+ν̆

∑
i
y

(ω,1)
i

#»
b ∗3n+i+ηω

#»
b ∗4n+1

2 ,

k
∗(ω)
2 = g

γω
#»
h ∗1+ηω,0

#»
h ∗5

2 (<̆β)
#»
h ∗3 (gν̆2)

#»
h ∗4 = g

γω
#»
h ∗1+r̆ #»

h ∗3+ν̆(#»
h ∗4+µ̆ #»

h ∗3)+ηω,0
#»
h ∗5

2

= g
γω

#»
d ∗1+r̆ #»

d ∗3+ν̆ #»
d ∗4+ηω,0

#»
d ∗5

2 .

c) (j > ω) C2-8 simulates k∗(j)1 and k∗(j)2 in the same way as those are generated by C2-2 in this case in
the proof of Lemma 7.

C2-8 hands the functional key sk(j) = (k∗(j)1 ,k
∗(j)
2) to A.

• In order to answer the `-th ciphertext query of A for vectors (#»x (`,0), #»x (`,1)), for ` = 1, . . . , q2, C2-8

computes c(`)
1 and c(`)

2 in an analogous manner as those are generated by C2-1 in the proof of Lemma 5
and provides the ciphertext ct(`) = (c(`)

1 , c
(`)
2) to A.

• Finally, A outputs a bit c′. C2-8 outputs β′ = c′.

Observe that if β = 1, i.e., r̆ $←− Zp, the ω-th answered functional key is of the form (19), as in Game
2-ω-5, where γ′′ω = r̆ and γ′′′ω = ν̆. On the other hand, if β = 0, i.e., r̆ = 0, the ω-th answered functional key
is of the form (21) which corresponds to Game 2-ω-6, where γ′′′ω = ν̆. Further, for j < ω, the j-th answered
functional key is of the form (21) as in Game 2-j-6 whereas for j > ω, the j-th answered functional key is
of the form (5) corresponding to Game 0. Additionally, for ` = 1, . . . , q2, the `-th answered ciphertext is
of the form (20), as in Game 2-ω-5. Thus the view of A simulated by C2-8 is distributed as in Game 2-ω-5
or Game 2-ω-6 according as β = 1 or 0. This completes the proof of Lemma 15. ut

Lemma 16. For any probabilistic adversary A, for any security parameter λ,

Adv(2-q1-6)
A (λ) = Adv(3)

A (λ).

Proof. In Game 2-q1-6, for j = 1, . . . , q1, the components of the j-th queried functional key corresponding
to vectors (#»y (j,0), #»y (j,1)) have the form

k
∗(j)
1 = g

γj
∑

i
y

(j,0)
i

#»
b ∗i+γ′′′j

∑
i
y

(j,1)
i

#»
b ∗3n+i+ηj

#»
b ∗4n+1

2 ,k
∗(j)
2 = g

γj
#»
d ∗1+γ′′′j

#»
d ∗4+ηj,0

#»
d ∗5

2 ,

as in Eq. (21), where γj , γ′′′j , ηj , ηj,0
$←− Zp, while for ` = 1, . . . , q2, the components of the `-th queried

ciphertext for vectors (#»x (`,0), #»x (`,1)) of the form

c
(`)
1 = g

α`
∑

i
x

(`,0)
i

#»
b i+α′′′`

∑
i
x

(`,1)
i

#»
b 3n+i+ξ`

#»
b 4n+2

1 , c
(`)
2 = g

α`
#»
d 1+α′′′`

#»
d 4+ξ`,0

#»
d 6

1 ,

as in Eq. (20), where α`, α′′′` , ξ`, ξ`,0
$←− Zp.

Therefore, by swapping the components of the dual orthonormal bases
(
B = { #»

b 1, . . . ,
#»

b 4n+2},B∗ =
{ #»

b ∗1, . . . ,
#»

b ∗4n+2}
) (

respectively
(
D = { #»

d 1, . . . ,
#»

d 6},D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
))

in the first block, i.e., in the
range i = 1, . . . , n (respectively i = 1) and in the fourth block, i.e., in the range i = 3n+1, . . . , 4n (respec-
tively i = 4), we obtain the distribution in Game 3. More precisely, we define new dual orthonormal bases
(U,U∗) of Z4n+2

p and (W,W∗) of Z6
p using (B,B∗) $←− GOB(Z4n+2

p) and (D,D∗) $←− GOB(Z6
p) as follows: We

set

#»u 3n+i = #»

b i,
#»u ∗3n+i = #»

b ∗i (i = 1, . . . , n),
#»u i = #»

b 3n+i,
#»u ∗i = #»

b ∗3n+i (i = 1, . . . n),
#»u i = #»

b i,
#»u ∗i = #»

b ∗i (i = n+ 1, . . . , 3n, 4n+ 1, 4n+ 2),
#»w4 = #»

d 1,
#»w∗4 = #»

d ∗1,
#»w1 = #»

d 4,
#»w∗1 = #»

d ∗4,
#»wi = #»

d i,
#»w∗i = #»

d ∗i (i = 2, 3, 5, 6).

Functional Encryption for Inner Product with Full Function Privacy 35

We define U = { #»u 1, . . . ,
#»u 4n+2},U∗ = { #»u ∗1, . . . ,

#»u ∗4n+2},W = { #»w1, . . . ,
#»w6}, W∗ = { #»w∗1, . . . ,

#»w∗6}. It is
clear that (U,U∗) and (W,W∗) are indeed dual orthonormal bases since those are obtained from the dual
orthonormal bases (B,B∗) and (D,D∗) respectively by means of invertible linear transformations.

Observe that in light of the adversary A’s view, both (B,B∗) (respectively (D,D∗)) and (U,U∗)
(respectively (W,W∗)) are consistent with respect to pp. Moreover, it readily follows that the components
of the queried functional keys and ciphertexts in Game 2-q1-6 over bases (B,B∗) and (D,D∗) are expressed
as those in Eq. (22) and Eq. (23) of Game 3 over bases (U,U∗) and (W,W∗). This completes the proof
of Lemma 16. ut

5 Conclusion
In view of the growing demand of securely delegating confidential computations on sensitive data to third
party servers, function privacy has become an important requirement of FE schemes to be used in prac-
tice. Designing efficient function-private FE constructions for various practically relevant functionalities
without employing expensive cryptographic building blocks is a significant research priority of present
times. In this paper, we have presented the first non-generic private key FE scheme for the inner product
functionality achieving the strongest realistic notion of function privacy, namely, the full-hiding security
[AAB+13], [BS15]. Our construction has utilized the standard asymmetric bilinear pairing group of prime
order and has derived its security from the SXDH assumption.

References
AAB+13. Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasubramanian,

Manoj Prabhakaran, and Amit Sahai. Function private functional encryption and property preserv-
ing encryption: New definitions and positive results. Technical report, Cryptology ePrint Archive,
Report 2013/744, 2013.

ABDCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryp-
tion schemes for inner products. In Public-Key Cryptography–PKC 2015, pages 733–751. Springer,
2015.

BCP14. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Theory of Cryp-
tography, pages 52–73. Springer, 2014.

BJK15. Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product encryption.
Technical report, Cryptology ePrint Archive, Report 2015/672, 2015.

BRS13a. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based encryption: Hiding
the function in functional encryption. In Advances in Cryptology–CRYPTO 2013, pages 461–478.
Springer, 2013.

BRS13b. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-membership encryption
and its applications. In Advances in Cryptology-ASIACRYPT 2013, pages 255–275. Springer, 2013.

BS15. Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting. In
Theory of Cryptography, pages 306–324. Springer, 2015.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Theory of Cryptography, pages 253–273. Springer, 2011.

GGH+13. Shelly Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Anant Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49. IEEE, 2013.

GGHZ14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption
without obfuscation. Technical report, Cryptology ePrint Archive, Report 2014/666, 2014.

GKP+13. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 555–564. ACM, 2013.

O’N10. Adam O’Neill. Definitional issues in functional encryption. Technical report, Cryptology ePrint
Archive, Report 2010/556, 2010.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general re-
lations from the decisional linear assumption. In Advances in Cryptology–CRYPTO 2010, pages
191–208. Springer, 2010.

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In Advances in Cryptology–ASIACRYPT 2012, pages 349–366. Springer, 2012.

SSW09. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Theory of
Cryptography, pages 457–473. Springer, 2009.

	Functional Encryption for Inner Product with Full Function Privacy
	Introduction
	Function Privacy in Functional Encryption
	Inner Product Encryption and Function Privacy
	Our Contribution

	Preliminaries
	The Notion of Private Key Function-Private IPE
	Asymmetric Bilinear Group and SXDH Assumption
	Dual Pairing Vector Spaces

	Our PKFP-IPE Scheme
	 Construction
	 Correctness
	 Discussion

	Security Analysis
	 Sequence of Hybrid Games
	 Advantages of Adversary in Hybrid Games

	Conclusion

