
Identity-based Hierarchical Key-insulated Encryption

without Random Oracles∗

Yohei Watanabe1,2,† and Junji Shikata3,4

1 Graduate School of Informatics and Engineering,
The University of Electro-Communications, Tokyo, Japan

2 Information Technology Research Institute (ITRI),
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

3 Graduate School of Environment and Information Sciences,
Yokohama National University, Yokohama, Japan

4 Institute of Advanced Sciences,
Yokohama National University, Yokohama, Japan

watanabe@uec.ac.jp, shikata@ynu.ac.jp

January 5, 2017

Abstract

Key-insulated encryption is one of the effective solutions to a key exposure problem. At Asi-
acrypt’05, Hanaoka et al. proposed an identity-based hierarchical key-insulated encryption (hierarchi-
cal IKE) scheme. Although their scheme is secure in the random oracle model, it has a “hierarchical
key-updating structure,” which is attractive functionality that enhances key exposure resistance.

In this paper, we first propose the hierarchical IKE scheme without random oracles. Our hierarchical
IKE scheme is secure under the symmetric external Diffie–Hellman (SXDH) assumption, which is known
as the simple and static one. Particularly, in the non-hierarchical case, our construction is the first IKE
scheme that achieves constant-size parameters including public parameters, secret keys, and ciphertexts.

Furthermore, we also propose the first public-key-based key-insulated encryption (PK-KIE) in the
hierarchical setting by using our technique.

Keywords: Key-insulated encryption, identity-based hierarchical key-insulated encryption, hierarchical
identity-based encryption, asymmetric pairing.

1 Introduction

1.1 Background

A key exposure problem is unavoidable since human errors cannot seem to be eliminated in the future,
and many researchers have tackled this problem in the modern cryptography area thus far. Key-insulated
encryption, which is introduced by Dodis et al. [14], is one of the effective solutions to the key exposure
problem. Specifically, they proposed public-key encryption (PKE) with the key-insulated property, which
is called public-key-based key-insulated encryption (PK-KIE). In PK-KIE, a receiver has two kinds of secret
keys, so-called a decryption key and a helper key. The decryption key is a short-term key for decrypting
ciphertexts, and is periodically updated by the helper key. More specifically, the lifetime of the system is

∗A preliminary version of this paper appears in PKC 2016 [31]. This is the full version.
†The author is supported by JSPS Research Fellowships for Young Scientists. Part of this work was done while the author

was a Ph.D student at Graduate School of Environment and Information Sciences, Yokohama National University.
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divided into discrete time periods, and the receiver can decrypt the ciphertext encrypted at some time period
t by using a decryption key dkt updated by the helper key at the same time period t. The decryption key
and the helper key are stored in a powerful but insecure device such as laptops and smartphones and in a
physically-secure but computationally-limited device such as USB pen drives, respectively. Traditionally, in
key-insulated cryptography, the following two kinds of security notions are considered:

(a) If a number of decryption keys {dkt1 , dkt2 , . . . , dktq} are exposed, no information on plaintexts en-
crypted at other time periods is leaked.

(b) Even if a helper key is exposed, the security is not compromised unless at least one decryption key is
exposed.

A key-insulated cryptosystem is said to be secure if it satisfies (a); and it is strongly secure if it satisfies both
(a) and (b). As seen above, key-insulated encryption can significantly reduce the impact of the exposure.

Following a seminal work by Dodis et al. [14], many cryptographers have proposed several kinds of key-
insulated cryptographic schemes such as symmetric-key-based key-insulated encryption [16], key-insulated
signatures [15], and parallel key-insulated encryption [19, 20, 25]. In addition to key-insulated cryptography,
researchers have tackled the key exposure problem in various flavors. In forward-secure cryptography [1, 7],
users update their own secret keys at the beginning of each time period. Forward security requires that an
adversary cannot get any information on plaintexts encrypted at previous time periods even if the secret key
for current time period is exposed. Intrusion-resilient cryptography [12, 13, 22] realizes both key-insulated
security and forward security simultaneously at the sacrifice of efficiency and practicality.

In this paper, we focus on the key-insulation paradigm in the identity-based setting. Identity-based
encryption (IBE) has been widely studied thus far, and therefore we believe that the identity-based key-
insulated security has a huge influence on the research on IBE and its applications. Also, developing key-
insulated cryptography in the identity-based area is the first step to consider the key-insulated security in
attribute-based encryption [3, 28] and functional encryption [6], which are expected to be used in cloud
environments. However, in the IBE context, there are only few researches on key-insulation. Hanaoka et
al. [21] introduced a hierarchical key-updating mechanism, and proposed an IBE scheme with hierarchical
key-insulation, which is called an identity-based hierarchical key-insulated encryption (hierarchical IKE for
short) scheme, in the random oracle model. In their hierarchy, helper keys are assigned to each level, and
decryption keys are assigned to the lowest level. Not only decryption keys but also helper keys can be
updated by a higher-level helper key. Since this “hierarchy” is not the same as that of hierarchical IBE
(HIBE) [18], only applying techniques used in the HIBE context is insufficient for constructing secure (in
particular, strongly secure) IKE schemes. The hierarchical property is attractive since it enhances resistance
to key exposure and there seem to be various applications due to progress in information technology (e.g., the
popularization of smartphones). Let us consider an example of 3-level hierarchical key-insulation: Suppose
that each employee has a business smartphone, a laptop, and a PC installed at his office. A decryption
key is stored in the smartphone, and it is updated by a 1-st level helper key stored in his laptop every day.
However, the 1-st level helper key might be leaked since he carries around with the laptop, and connects to
the Internet via the laptop. Thus, the 1-st level helper key is also updated by a 2-nd level helper key stored
in his PC every two–three weeks. Since the PC is not completely isolated from the Internet, his boss updates
the 2-nd level helper key by a 3-rd level helper key stored in an isolated private device every two–three
months. Thus, we believe hierarchical IKE has many potential applications.

After the proposal of hierarchical IKE by Hanaoka et al., two (non-hierarchical) IKE schemes with
additional properties in the standard model were proposed. One is the so-called parallel IKE scheme, which
was proposed by Weng et al. [34]. The other is the so-called threshold IKE scheme, which was proposed
by Weng et al. [35]. These two schemes enhance the resistance to helper key exposure by splitting a helper
key into multiple ones. However, once the (divided) helper key is leaked, the security cannot be recovered.
Again, we emphasize that the hierarchical key-insulated structure is useful since even if some helper key is
exposed, it can be updated. However, there have been no hierarchical IKE schemes without random oracles
thus far.
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1.2 Our Contribution

In this paper, we propose an IBE scheme with ℓ-level hierarchical key-insulation, which is called an ℓ-level
hierarchical IKE scheme, such that: (1) Security is proved under simple computational assumptions in the
standard model; and (2) all parameters including public parameters, secret keys, and ciphertexts achieve
constant size in the non-hierarchical case (i.e., ℓ = 1).

Specifically, The proposed ℓ-level hierarchical IKE scheme is strongly secure against chosen plaintext
attacks (CPA-secure) under the symmetric external Diffie-Hellman (SXDH) assumption, which is a static
and simple one. Our (hierarchical) IKE scheme is based on the Jutla-Roy (H)IBE [24] and its variant [27].
Further, the proposed scheme achieves the constant-size parameters when ℓ = 1, whereas public parameters
of the (not hierarchical) existing scheme [35] depend on sizes of identity spaces (also see Section 4.1 for com-
parison). We can also realize an ℓ-level hierarchical IKE scheme strongly secure against chosen ciphertext
attacks (CCA-secure) based on an well-known transformation [5]. Furthermore, we can extend our tech-
nique to the public-key setting. Namely, we formalize public-key encryption with hierarchical key insulation
(hierarchical PK-KIE for short), and propose a concrete construction of a CCA-secure hierarchical PK-KIE
scheme.

In the following, we explain why a naive solution is insufficient and why achieving (1) and (2) is chal-
lenging.

Why a (trivial) hierarchical IKE scheme from HIBE is insufficient.1 One may think that a hier-
archical IKE scheme can be easily obtained from an arbitrary HIBE scheme. However, the resulting IKE
scheme is insecure in our security model, which was first formalized in [21], since our security model captures
the strong security notion. More specifically, a trivial construction is as follows. Let skI be a secret key for

some identity I in HIBE, and hk
(ℓ)
I be an ℓ-th level helper key for I in ℓ-level hierarchical IKE. We set skI as

hk
(ℓ)
I , and lower-level helper keys and decryption keys can be obtained from skI by regarding time periods

as descendants’ identity. However, it is easy to see that if the ℓ-th level helper key (i.e., skI) is exposed,
then an adversary can obtain all lower-level keys, and thus the resulting scheme does not meet the strong
security. In fact, Bellare and Palacio [2] showed that secure (not strongly secure) PK-KIE is equivalent to
IBE for a similar reason.

Difficulties in constructing a constant-size IKE scheme from simple computational assump-
tions. The main difficulty in constructing an IKE scheme is that an adversary can get various keys for
a target identity I∗, whereas the adversary cannot get a secret key for I∗ in (H)IBE. This point makes a
construction methodology non-trivial. In fact, it seems difficult to apply the Waters dual-system IBE [33]
(and its variant [26]) as the underlying IBE scheme of IKE schemes as follows. Technically, in their scheme
each of secret keys and ciphertexts contains some random element, so-called tagK and tagC , respectively.
In the dual system encryption methodology, the challenge ciphertext and secret keys gradually turn into
semi-functional forms. The tags are used in transition from Gk−1 to Gk, where Gk denotes a security game
that the first k secret keys issued to a secret-key extraction oracle are semi-functional. In the transition,
some pairwise independent function is embedded into public parameters in advance to cancel inconvenient
values to simulate the games. The tag tagK of a secret key for k-th identity Ik issued to the oracle and the
tag tagC of the challenge ciphertext for the target identity I∗ are generated by inputting I into the pairwise
independent function, respectively. Although it holds tagK = tagC if Ik = I∗, the proof works well since it is
enough to generate only tagK for all identities I ̸= I∗ and only tagC for I∗. However, in the IKE setting, not
only tagC but also tagK for I∗ have to be generated since an adversary can get leaked decryption keys and
helper keys for I∗, and hence, the proof does not go well. To overcome this challenging point, we set (the
variant of) the Jutla-Roy IBE [24, 27], which is another type of constant-size IBE schemes, as the underlying
scheme of our IKE scheme, and thus we can realize the first constant-size IKE scheme under the SXDH
assumption. Further, we can also obtain the hierarchical IKE scheme by extending the technique into the
hierarchical setting.

Refinement and improvement from the proceedings version [31]. We modify our main construction
due to a security flaw of the previous construction in the proceeding version. Specifically, the modified
construction provides a correct simulation of a KI oracle, which is an oracle that captures key exposure,

1This fact was also mentioned in [21].
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in transition from Gamek−1 to Gamek, where Gamek denotes a security game in which keys for the first k
identities issued to oracles are semi-functional (for details, see the simulation of the KI oracle in Lemma 2,
which shows the transition). Moreover, we change the statement of Lemma 3, which is the final transition in
the security proof, to make a reduction clearer. More specifically, we make a reduction to a computational
problem in the lemma, whereas we made information-theoretic reduction in the proceedings version.

Further, we newly propose hierarchical PK-KIE, which did not appear in the proceedings version, by
extending our technique.

1.3 Paper Organization

In Section 2, we describe the notation used in this paper, asymmetric pairings, complexity assumptions, and
functions which map time to discrete time periods. In Section 3, we give a model and security definition of
hierarchical IKE. In Section 4, we propose a direct construction of our hierarchical IKE scheme, and give
the efficiency comparison among our scheme and existing schemes. In Section 5, we show the security proof
of our scheme. In Section 6, we show a CCA-secure hierarchical IKE scheme. In Section 7, we formalize and
propose a hierarchical PK-KIE scheme. In Section 8, we conclude this paper.

2 Preliminaries

Notation. In this paper, “probabilistic polynomial-time” is abbreviated as “PPT”. For a prime p, let
Zp := {0, 1, . . . , p− 1} and Z×

p := Zp \ {0}. If we write (y1, y2, . . . , ym)← A(x1, x2, . . . , xn) for an algorithm
A having n inputs and m outputs, it means to input x1, x2, . . . , xn into A and to get the resulting output
y1, y2, . . . , ym. We write (y1, y2, . . . , ym)← AO(x1, x2, . . . , xn) to indicate that an algorithm A that is allowed

to access an oracle O takes x1, x2, . . . , xn as input and outputs (y1, y2, . . . , ym). If X is a set, we write x
$←X

to mean the operation of picking an element x of X uniformly at random. We use λ as a security parameter.
M and I denote sets of plaintexts and IDs, respectively, which are determined by a security parameter λ.

Bilinear Group. A bilinear group generator G is an algorithm that takes a security parameter λ as input
and outputs a bilinear group (p,G1,G2,GT , g1, g2, e), where p is a prime, G1, G2, and GT are multiplicative
cyclic groups of order p, g1 and g2 are (random) generators of G1 and G2, respectively, and e is an efficiently
computable and non-degenerate bilinear map e : G1 × G2 → GT with the following bilinear property: For
any u, u′ ∈ G1 and v, v′ ∈ G2, e(uu

′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′).
A bilinear map e is called symmetric or a “Type-1” pairing if G1 = G2. Otherwise, it is called asymmetric.

In the asymmetric setting, e is called a “Type-2” pairing if there is an efficiently computable isomorphism
either from G1 to G2 or from G2 to G1. If no efficiently computable isomorphisms are known, then it is called
a “Type-3” pairing. In this paper, we focus on the Type-3 pairing, which is the most efficient setting in
terms of group sizes (of G1) and operations. For details, see [9, 17]. Symmetric External Diffie–Hellman

(SXDH) Assumption. We give the definition of the decisional Diffie–Hellman (DDH) assumption in G1

and G2, which are called the DDH1 and DDH2 assumptions, respectively.
Let A be a PPT adversary and we consider A’s advantage against the DDHi problem (i = 1, 2) as follows.

AdvDDHi
G,A (λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

 b′ = b

D := (p,G1,G2,GT , g1, g2, e)← G,
c1, c2

$← Zp, b
$← {0, 1},

if b = 0 then T := gc1c2i ,

else T
$← Gi,

b′ ← A(λ,D, g1, g2, g
c1
i , gc2i , T )

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

Definition 1 (DDHi Assumption). The DDHi assumption relative to a generator G holds if for all PPT
adversaries A, AdvDDHi

G,A (λ) is negligible in λ.

Definition 2 (SXDH Assumption). We say that the SXDH assumption relative to a generator G holds if
both the DDH1 and DDH2 assumptions relative to G hold.
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Figure 1: Intuition of time-period map functions.

Time-period Map Functions. In this paper, we deal with several kinds of time periods since we consider
that update intervals of each level key are different. For example, in some practical applications, it might be
suitable that a decryption key (i.e. 0-th level key) and a 1-st level helper key should be updated every day
and every month, respectively. To describe such different update intervals of each level key, we use a certain
functions, which is so-called time-period map functions. This functions were also used in [21]. Now, let T be
a (possibly countably infinite) set of time, and Tj (0 ≤ j ≤ ℓ− 1) be a finite set of time periods. We assume
|T0| ≥ |T1| ≥ · · · ≥ |Tℓ−1|. This means that a lower-level key is updated more frequently than the higher-level
keys. Then, we assume there exists a function Tj (0 ≤ j ≤ ℓ− 1) which map time time ∈ T to a time period
tj ∈ Tj . For the understanding of readers, by letting time = 9:59/7th/Oct./2016 and ℓ := 4, we give an

example in Figure 1 and below. For example, we have T0(time) = t
(19)
0 = 1st-15th/Oct./2016, T1(time) =

t
(10)
1 = Oct./2016, T2(time) = t

(5)
2 = Sep.-Oct./2016, and T3(time) = t

(2)
3 = Jul.-Dec./2016. Namely,

in this example, it is assumed that the decryption key, and 1-st, 2-nd, and 3-rd helper keys are updated
every half a month, every month, every two months, and every half a year. Further, we can also define a
function Tℓ such that Tℓ(time) = 0 for all time ∈ T .

3 Identity-based Hierarchical Key-insulated Encryption

3.1 The Model

In an ℓ-level hierarchical IKE, a key generation center (KGC) generates an initial decryption key dkI,0 and

ℓ initial helper keys hk
(1)
I,0 , hk

(2)
I,0 , . . . , hk

(ℓ)
I,0 as a secret key for a user I. Suppose that all time-period map

functions T0, T1, . . . , Tℓ−1 are available to all users. The key-updating procedure when the user wants to get
a decryption key at current time time ∈ T from the initial helper keys is as follows. The ℓ-th level helper key

hk
(ℓ)
I,0 is a long-term one and is never updated. First, the user generates key update δ

(ℓ−1)
tℓ−1

for the (ℓ− 1)-th

level helper key from hk
(ℓ)
I,0 and a time period tℓ−1 := Tℓ−1(time) ∈ Tℓ−1. Then, the (ℓ − 1)-th level helper

key hk
(ℓ−1)
I,0 can be updated by the key update δ

(ℓ−1)
tℓ−1

, and the user get the helper key hk
(ℓ−1)
I,tℓ−1

at the time

period tℓ−1. Similarly, the i-th level helper key hk
(i)
I,ti at the time period ti := Ti(time) ∈ Ti can be obtained

from hk
(i)
I,0 and δ

(i)
ti , where δ

(i)
ti is generated from the (i+1)-th level helper key hk

(i+1)
I,ti+1

. The user can finally

get the decryption key dkI,t0 at a time period t0 := T0(time) ∈ T0 from the 1-st level helper key hk
(1)
I,T1(time)

.

Anyone can encrypt a plaintext M with the identity I and current time time∗, and the user can decrypt the
ciphertext C with his decryption key dkI,t0 if and only if t0 = T0(time

∗). At time′ ∈ T , the user can update
the time period of the decryption key from any time period t0 to t′0 := T0(time

′) ∈ T0 by using key update

δ
(0)
T0(time′)

. The key update δ
(0)
T0(time′)

can be obtained from hk
(1)
I,t′1

if and only if t′1 = T1(time
′). If not, it is

necessary to get δ
(1)
T1(time′)

and update hk
(1)
I,t′1

. In this manner, the decryption and helper keys are updated.

An ℓ-level hierarchical IKE scheme ΠIKE consists of six-tuple algorithms (PGen, Gen, ∆-Gen, Upd, Enc,
Dec) defined as follows. For simplicity, we omit a public parameter in the input of all algorithms except for
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the PGen algorithm.

– (pp,mk)← PGen(λ, ℓ): A probabilistic algorithm for parameter generation. It takes a security param-
eter λ and the maximum hierarchy depth ℓ as input, and outputs a public parameter pp and a master
key mk.

– (dkI,0, hk
(1)
I,0 , . . . , hk

(ℓ)
I,0) ← Gen(mk, I): An algorithm for user key generation. It takes mk and an

identity I ∈ I as input, and outputs an initial secret key dkI,0 associated with I and initial helper keys

hk
(1)
I,0 , . . . , hk

(ℓ)
I,0, where hk

(i)
I,0 (1 ≤ i ≤ ℓ) is assumed to be stored user’s i-th level private device.

– δ
(i−1)
Ti−1(time)

or ⊥ ← ∆-Gen(hk
(i)
I,ti , time): An algorithm for key update generation. It takes an i-th helper

key hk
(i)
I,ti at a time period ti ∈ Ti and current time time as input, and outputs key update δ

(i−1)
Ti−1(time)

if ti = Ti(time); otherwise, it outputs ⊥.

– hk
(i)
I,τi ← Upd(hk

(i)
I,ti , δ

(i)
τi ): A probabilistic algorithm for decryption key generation. It takes an i-th

helper key hk
(i)
I,ti at a time period ti ∈ Ti and key update δ

(i)
τi at a time period τ ∈ Ti as input, and

outputs a renewal i-th helper key hk
(i)
I,τi at τ . Note that for any t0 ∈ T0, hk(0)I,t0 means dkI,t0 .

– ⟨C, time⟩ ← Enc(I, time,M): A probabilistic algorithm for encryption. It takes an identity I, current
time time, and a plaintext M ∈ M as input, and outputs a pair of a ciphertext and current time
⟨C, time⟩.

– M or ⊥ ← Dec(dkI,t0 , ⟨C, time⟩): A deterministic algorithm for decryption. It takes dkI,t0 and
⟨C, time⟩ as input, and outputs M or ⊥, where ⊥ indicates decryption failure.

In the above model, we assume that ΠIKE meets the following correctness property: For all security parameter

λ, all ℓ := poly(λ), all (mk, pp) ← PGen(λ, ℓ), all M ∈ M, all (dkI,0, hk
(1)
I,0 , . . . , hk

(ℓ)
I,0) ← Gen(mk, I),

and all time ∈ T , it holds that M ← Dec(dkI,T0(time),Enc(I, time,M)), where dkI,T0(time) is generated as

follows: For i = ℓ, . . . , 1, hk
(i−1)
I,Ti−1(time)

← Upd(hk
(i−1)
I,ti−1

,∆-Gen(hk
(i)
I,Ti(time)

, time)), where some ti ∈ Ti and

hk
(0)
I,T0(time)

:= dkI,T0(time).

3.2 Security Definition

We consider a security notion for indistinguishability against key exposure and chosen plaintext attack for
IKE (IND-KE-CPA). Let A be a PPT adversary, and A’s advantage against IND-KE-CPA security is defined
by

AdvIND-KE-CPA
ΠIKE,A (λ, ℓ) :=

∣∣∣∣∣∣∣∣Pr
 b′ = b

(pp,mk)← PGen(λ, ℓ),
(M∗

0 ,M
∗
1 , I

∗, time∗, state)← AKG(·),KI(·,·,·)(find, pp),

b
$← {0, 1}, C∗ ← Enc(I∗, time∗,M∗

b ),
b′ ← AKG(·),KI(·,·,·)(guess, C∗, state)

− 1

2

∣∣∣∣∣∣∣∣ .
where KG(·) and KI (·, ·, ·) are defined as follows.

KG(·): For a query I ∈ I, it stores and returns (dkI,0, hk
(1)
I,0 , . . . , hk

(ℓ)
I,0) by running Gen(mk, I).

KI (·, ·, ·): For a query (i, I, time) ∈ {0, 1, . . . , ℓ} × I × T , it returns hk
(i)
I,Ti(time)

by running δ
(j−1)
Tj−1(time)

←
∆-Gen(hk

(j)
I,Tj(time)

, time) and hk
(j−1)
I,Tj−1(time)

← Upd(hk
(j−1)
I,t , δ

(j−1)
Tj−1(time)

) for j = ℓ, . . . , i+1 (if (dkI,0, hk
(1)
I,0

. . . , hk
(ℓ)
I,0) is not stored, it first generates and stores them by running Gen).

I∗ is never issued to the KG oracle. A can issue any queries (i, I, time) to the KI oracle if there exists at
least one special level j ∈ {0, 1, . . . , ℓ} such that

1. For any time ∈ T , (j, I∗, time) is never issued to KI.
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time*

: Decryption and  helper keys that A can obtain

1

0

2

3

4

Level

Figure 2: Pictorial representation of secret keys for I∗ that A can obtain by issuing to KI.

2. For any (i, time) ∈ {0, 1, . . . , j − 1} × T such that Ti(time) = Ti(time
∗), (i, I∗, time) is never issued

to KI.

In Figure 2, we give intuition of keys that A can obtain by issuing to the KI oracle. In this example, let
ℓ = 4 and a special level j = 2.

Definition 3 (IND-KE-CPA [21]). An ℓ-level hierarchical IKE scheme ΠIKE is said to be IND-KE-CPA
secure if for all PPT adversaries A, AdvIND-KE-CPA

ΠIKE ,A (λ, ℓ) is negligible in λ.

Remark 1. As also noted in [21], there is no need to consider key update exposure explicitly (i.e. no need
to consider an oracle which returns any key update as much as possible) since in the above definition, A can
get such key update from helper keys obtained from the KI oracle.

Remark 2. As explained in Section 1, in key-insulated cryptography including the public key setting [2, 14,
19] and the identity-based setting [21, 34, 35], two kinds of security notions have been traditionally considered:
standard security and strong security. In most of previous works [2, 14, 19, 20, 21, 25, 34, 35], authors have
considered how their scheme could achieve the strong security. We note that IND-KE-CPA security actually
includes the strong security, and the fact is easily checked by setting ℓ = 1.

By modifying the above IND-KE-CPA game so that A can access to the decryption oracle Dec(·, ·),
which receives (I, ⟨C, time⟩) and returns M or ⊥, we can also define indistinguishability against key exposure
and chosen ciphertext attack for IKE (IND-KE-CCA). A is not allowed to issue (I∗, ⟨C∗, time⟩) such that
T0(time) = T0(time

∗) to Dec. Let AdvIND-KE-CCA
ΠIKE ,A (λ, ℓ) be A’s advantage against IND-KE-CCA security.

Definition 4 (IND-KE-CCA [21]). An ℓ-level hierarchical IKE scheme ΠIKE is said to be IND-KE-CCA
secure if for all PPT adversaries A, AdvIND-KE-CCA

ΠIKE ,A (λ, ℓ) is negligible in λ.

4 Our Construction

Our basic idea is a combination of (the variant of) the Jutla-Roy HIBE [24, 27] and threshold secret sharing
schemes [4, 29]. We prepare two secrets B(x) and B(y). Each secret B(j) (j ∈ {x, y}) is divided into ℓ shares

β
(j)
0 , . . . , β

(j)
ℓ−1, and both the secrets and shares are used in exponent of a generator g2 ∈ G2. B

(x) and B(y)

are embedded into the exponent of a (first-level) secret key for I of the Jutla-Roy HIBE, and the resulting

key is used as an ℓ-th level initial helper key hk
(ℓ)
I,0. Roughly speaking, B(x) and B(y) work as “noises”.

Other initial helper keys hk
(i)
I,0 (1leileell− 1) and an initial decryption key dkI,0 contain (g

−β
(x)
i

2 , g
−β

(y)
i

2 ) and

(g
−β

(x)
0

2 , g
−β

(y)
0

2 ), respectively. As keys are generated for lower levels, shares are eliminated from the noises
B(x) and B(y), respectively, and finally the noises are entirely removed when generating (or updating) a
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decryption key. Intuitively, since there exists at lease one special level j ∈ {0, 1, . . . , ℓ} in which any secret

keys are never exposed, an adversary cannot get all shares (β
(x)
i , β

(y)
i ). Hence, he cannot generate valid

decryption keys that can decrypt the challenge ciphertext for I∗ at time∗.

An ℓ-level hierarchical IKE scheme ΠIKE =(PGen, Gen, ∆-Gen, Upd, Enc, Dec) is constructed as follows.

- PGen(λ, ℓ): It runs (G1,G2,GT , p, g1, g2, e) ← G, and chooses x0, y0, {(x1,j , y1,j)}ℓj=0, x2, y2, x3, y3
$←

Zp and α
$← Z×

p , and sets

z = e(g1, g2)
−x0α+y0 , u1,j := g

−x1,jα+y1,j

1 (0 ≤ j ≤ ℓ), w1 := g−x2α+y2

1 , h1 := g−x3α+y3

1 .

It outputs

pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gx3

2 , gy2

2 , gy3

2 , z),

mk := (x0, y0).

- Gen(mk, I): It chooses β
(x)
0 , . . . , β

(x)
ℓ−1, β

(y)
0 , . . . , β

(y)
ℓ−1, r

$← Zp, and let B(j) :=
∑ℓ−1

i=0 β
(j)
i for j ∈ {x, y}.

It computes

R
(y)
j := g

−β
(y)
j

2 (0 ≤ j ≤ ℓ− 1), R
(x)
j := g

β
(x)
j

2 (0 ≤ j ≤ ℓ− 1),

D1 := (gy2

2 )r, D′
1 := gy0+B(y)

2

(
(g

y1,ℓ

2 )Igy3

2

)r

,

D2 := (gx2
2 )−r, D′

2 := g−x0−B(x)

2

(
(g

x1,ℓ

2 )Igx3
2

)−r

,

D3 := gr2, Kj := (g
y1,j

2 )r (0 ≤ j ≤ ℓ− 1), K ′
j := (g

x1,j

2 )−r (0 ≤ j ≤ ℓ− 1).

It outputs

dkI,0 := (R
(y)
0 , R

(x)
0 ),

hk
(i)
I,0 := (R

(y)
i , R

(x)
i ) (1 ≤ i ≤ ℓ− 1),

hk
(ℓ)
I,0 := (D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}ℓ−1

j=0).

- ∆-Gen(hk
(i)
I,ti , time): If ti ̸= Ti(time), it outputs ⊥. Otherwise, parse hk

(i)
I,ti as (R

(y)
i , R

(x)
i , D1, D

′
1, D2,

D′
2, D3, {(Kj ,K

′
j)}

i−1
j=0).

2 It chooses r̂ ← Zp, and let tj := Tj(time) (i− 1 ≤ j ≤ ℓ− 1). It computes

d̂1 := D1(g
y2

2 )r̂, d̂′1 := D′
1(Ki−1)

ti−1

(
(g

y1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(g

y1,j

2 )tj
)
gy3

2

)r̂

,

d̂2 := D2(g
x2
2 )−r̂, d̂′2 := D′

2(K
′
i−1)

ti−1

(
(g

x1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(g

x1,j

2 )tj
)
gx3
2

)−r̂

,

d̂3 := D3g
r̂
2, k̂j := Kj(g

y1,j

2 )r̂ (0 ≤ j ≤ i− 2), k̂′j := K ′
j(g

x1,j

2 )−r̂ (0 ≤ j ≤ i− 2).

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂′j)}

i−2
j=0).

3

- Upd(hk
(i)
I,ti , δ

(i)
τi ): Parse hk

(i)
I,ti and δ

(i)
τi as (R

(y)
i , R

(x)
i , D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0) and (d̂1, d̂

′
1, d̂2,

d̂′2, d̂3, {(k̂j , k̂′j)}
i−1
j=0), respectively. It outputs hk

(i)
I,τi := (R̂

(y)
i , R̂

(x)
i , D̂1, D̂

′
1, D̂2, D̂

′
2, D̂3, {(K̂j , K̂

′
j)}

i−1
j=0) =

(R
(y)
i , R

(x)
i , d̂1, d̂

′
1R

(y)
i , d̂2, d̂

′
2R

(x)
i , d̂3, {k̂j , k̂′j}

i−1
j=0).

2In the case i = ℓ, R
(y)
i and R

(x)
i mean empty strings, namely we have hk

(ℓ)
I,0 := (D1, D′

1, D2, D′
2, D3, {(Kj ,K

′
j)}

ℓ−1
j=0).

3In the case i = 1, {(k̂j , k̂′j)}
ℓ−1
j=0 means an empty string, namely we have δ

(0)
I,t0

:= (d̂1, . . . , d̂5).
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- Enc(I, time,M): It chooses s, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzs, C1 := gs1, C2 := (gα1 )
s, C3 :=

(ℓ−1∏
j=0

(
u
tj
1,j

)
uI1,ℓw

tag
1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ ℓ− 1). It outputs C := (C0, C1, C2, C3, tag).

- Dec(dkI,t0 , ⟨C, time⟩): If t0 ̸= T0(time), then it outputs⊥. Otherwise, parse dkI,t0 and C as (R
(y)
0 , R

(x)
0 ,

D1, D
′
1, D2, D

′
2, D3) and (C0, C1, C2, C3, tag), respectively. It computes

M =
C0e(C3, D3)

e(C1, D
tag
1 D′

1)e(C2, D
tag
2 D′

2)
.

We show the correctness of our ΠIKE. Suppose that r denotes internal randomness of hk
(ℓ)
I,0, which are

generated when running Gen(mk, I), and r(j) denotes internal randomness of δ
(j−1)
I,tj−1

(1 ≤ j ≤ ℓ), which is

generated when running ∆-Gen(hk
(j)
I,tj , time). Then we can write dkI,τ0 := (R

(y)
0 , R

(x)
0 , D1, D

′
1, D2, D

′
2, D3)

as

D1 := gy2r̃
2 , D′

1 := g
y0+r̃(Iy1,ℓ+

∑ℓ−1
j=0

(
tjy1,j

)
+y3)

2 ,

D2 := gx2r̃
2 , D′

2 := g
−x0−r̃(Ix1,ℓ+

∑ℓ−1
j=0

(
tjx1,j

)
+x3)

2 , D3 := gr̃2,

where r̃ := r +
∑ℓ

i=1 r
(j).

Suppose that dkI,t0 = (R
(y)
0 , R

(x)
0 , D1, D

′
1, D2, D

′
2, D3) and C = (C0, C1, C2, C3, tag) are correctly gener-

ated. Then, we have

C0e(C3, D3)

e(C1, D
tag
1 D′

1)e(C2, D
tag
2 D′

2)

= Me(g1, g2)
(−x0α+y0)s

· e(g
s(
∑ℓ−1

j=0 tj(−x1,jα+y1,j)+I(−x1,ℓα+y1,ℓ)+tag(−x2α+y2)−x3α+y3)

1 , gr̃2)

e(gs1, g
y2r̃tag+y0+r̃(Iy1,ℓ+

∑ℓ−1
j=0

(
tjy1,j

)
+y3)

2 )e(gαs1 , g
−x2r̃tag−x0−r̃(Ix1,ℓ+

∑ℓ−1
j=0

(
tjx1,j

)
+x3)

2 )

= Me(g1, g2)
(−x0α+y0)s

1

e(gs1, g
y0

2 )e(gαs1 , g−x0
2 )

= M.

We obtain the following theorem. The proof is postponed to Section 5.

Theorem 1. If the SXDH assumption holds, then the resulting ℓ-level hierarchical IKE scheme ΠIKE is
IND-KE-CPA secure.

4.1 Parameters Evaluation and Comparison

First, we show the parameter sizes and computational costs of our hierarchical IKE scheme in Table 1.
Also, an efficiency comparison between our IKE scheme and the existing IKE schemes [21, 35] is given

in Table 2. In fact, the WLC+08 scheme [35] has the threshold property and does not have a hierarchical
structure, and therefore, we set the threshold value is one in the WLC+08 scheme and the hierarchy depth
is one in the HHSI05 scheme [21] and our scheme for the fair comparison. The HHSI05 scheme meets the
IND-KE-CCA security, however the scheme is secure only in the random oracle model (ROM). Both the
WLC+08 scheme and ours meet the IND-KE-CPA security in the standard model (i.e. without random ora-
cles). Although assumptions behind these schemes (i.e. the computational bilinear Diffie–Hellman (CBDH),
decisional bilinear Diffie–Hellman (DBDH),4 and SXDH assumptions) are different, they all are static and

4The formal definitions of the CBDH and DBDH assumptions are given in Appendix A.
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Table 1: Parameters evaluation of our ℓ-level hierarchical IKE scheme.

#pp #dk #hkℓ #hki #C

(ℓ+ 5)|G1|+ (2ℓ+ 7)|G2|+ |GT | 7|G2| 5|G2| (2i+ 7)|G2| 3|G1|+ |GT |+ |Zp|

Encryption Cost Decryption Cost Assumption

[0, 0, ℓ+ 4, 1] [3, 0, 2, 0] SXDH

G1, G2, and GT are cyclic groups of order p, and |G1|, |G2|, and |GT | denote the bit-length of a group element
in G1, G2, and GT , respectively. |Zp| also denotes the bit-length of an element in Zp. #pp, #dk, #hkℓ,
#hki, and #C denote sizes of public parameters, decryption keys, ℓ-th level helper keys, i-th level helper
keys (1 ≤ i ≤ ℓ−1), and ciphertexts, respectively. In computational cost analysis, [·, ·, ·, ·] means the number
of [pairing, multi-exponentiation, regular exponentiation, fixed-based exponentiation]. For comparison we
mention that relative costs for the various operations are as follows: [pairing≈ 5, multi-exp≈ 1.5, regular-
exp:= 1, fixed-based-exp≪ 0.2].

Table 2: Efficiency comparison between our construction and existing schemes.

Scheme #pp #dk #hk #C

HHSI05 [21] (ℓ = 1) 2|Gp| 3|Gp| |Gp| 3|Gp|+ |M |+ |r|
WLC+08 [35] (2n+ 5)|Gp| 4|Gp| 2|Gp| 3|Gp|+ |GT |
Ours (ℓ = 1) 6|G1|+ 9|G2|+ |GT | 7|G2| 5|G2| 3|G1|+ |GT |+ |Zp|

Scheme Encryption Cost Decryption Cost Assumption

HHSI05 [21] (ℓ = 1) [1, 0, 2, 1] [4, 0, 2, 1] CBDH (in ROM)

WLC+08 [35] [0, 1, 3, 1] [3, 0, 0, 0] DBDH

Ours (ℓ = 1) [0, 0, 5, 1] [3, 0, 2, 0] SXDH

The notation used here is almost the same as that in Table 1. #hk denotes the helper-key size, and |Gp|
denotes the bit-length of a group element in a source group Gp in the symmetric setting. |M | denotes the
bit-length of plaintexts. r is a randomness that depends on the security parameter, and |r| denotes its
bit-length. n denotes the bit-length of identities in the scheme.

simple. We emphasize that the threshold structure does not strengthen the underlying DBDH assumption
of the WLC+08 scheme since the structure was realized via only threshold secret sharing techniques [4, 29].
Note that we do not take into account the parallel IKE scheme [34] since the model of the scheme is slightly
different from those of the above schemes. However, the public-parameter size of the parallel IKE scheme
also depends on the size of its identity space, and we mention that this is due to the underlying Waters
IBE [32], not due to the parallel property.

As can be seen, we first achieve the IKE scheme with constant-size parameters in the standard model.
Again, we also get the first IKE scheme in the hierarchical setting without random oracles.

5 Proof of Security

We describe how semi-functional ciphertexts and secret keys are generated as follows.

Semi-functional Ciphertext: Parse a normal ciphertext C as (C0, C1, C2, C3, tag). A semi-functional

ciphertext C̃ := (C̃0, C̃1, C̃2, C̃3, t̃ag) is computed as follows:

C̃0 := C0e(g1, g2)
−x0µ = Me(g1, g2)

−x0(αs+µ)+y0s,
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C̃1 := C1,

C̃2 := C2g
µ
1 = gαs+µ

1 ,

C̃3 := C3

(
(g

x1,ℓ

1 )I
ℓ−1∏
j=0

(
(g

x1,j

1 )tj
)
(gx2

1 )taggx3
1

)−µ

= C3g
−µ(Ix1,ℓ+

∑ℓ−1
j=0(tjx1,j)+x2tag+x3)

1

= g
−(αs+µ)(Ix1,ℓ+

∑ℓ−1
j=0(tjx1,j)+x2tag+x3)

1 g
s(Iy1,ℓ+

∑ℓ−1
j=0(tjy1,j)+y2tag+y3)

1 ,

and t̃ag := tag, where µ
$← Z∗

p.

Semi-functional Decryption and Helper Key: Parse a normal helper key hk
(i)
I,ti as (Ri, D1, D

′
1, D2, D

′
2,

D3, {(Kj ,K
′
j)}

i−1
j=0). A semi-functional helper key h̃k

(i)

I,ti := (R̃i, D̃1, D̃
′
1, D̃2, D̃

′
2, D̃3, {(K̃j , K̃

′
j)}

i−1
j=0) is

computed as follows: R̃
(y)
i := R

(y)
i , R̃

(x)
i := R

(x)
i ,

D̃1 := D1g
γ
2 = gy2r+γ

2 ,

D̃′
1 := D′

1g
γϕ
2 = g

y0+r(Iy1,ℓ+
∑ℓ−1

j=i (tjy1,j)+y3)+γϕ

2 ,

D̃2 := D2g
− γ

α
2 = g

−rx2− γ
α

2 ,

D̃′
2 := D′

2g
− γϕ

α
2 = g

−x0−r(Ix1,ℓ+
∑ℓ−1

j=i (tjx1,j)+x3)− γϕ
α

2 ,

D̃3 := D3,

K̃j := Kjg
γϕj

2 = g
ry1,j+γϕj

2 (0 ≤ j ≤ i− 1),

K̃ ′
j := K ′

jg
−

γϕj
α

2 = g
−rx1,j−

γϕj
α

2 (0 ≤ j ≤ i− 1),

where ϕ, {ϕj}i−1
j=0

$← Zp and γ
$← Z∗

p. Note that hk
(0)
I,t0 means dkI,t0 for any t0 ∈ T0. In particular,

h̃k
(0)

I,t0 (= d̃kI,t0) is called a semi-functional decryption key. We also note that in order to generate the

semi-functional decryption or helper key, g
1
α
2 is needed in addition to the public parameter.

A semi-functional ciphertext can be decrypted with a normal key. This fact can be easily checked by

e(g1, g2)
−x0µe(g

−µ(Ix1,ℓ+
∑ℓ−1

j=0(tjx1,j)+x2tag+x3)

1 , D3)

e(gµ1 , D
tag
2 D′

2)
= 1.

Also, a normal ciphertext can be decrypted with a semi-functional decryption key since it holds

e(C1, g
γtag
2 gγϕ2 )e(C2, g

− γ
α tag

2 g
− γϕ

α
2 ) = 1.

A helper or decryption key obtained by running the ∆-Gen and Upd algorithms with a semi-functional
helper key is also semi-functional.

Proof of Theorem 1. Based on [24, 27], we prove the theorem through a sequence of games. We first define
the following games:

GameReal: This is the same as the IND-KE-CPA game described in Section 3.

Game0: This is the same as GameReal except that the challenge ciphertext is semi-functional.

Gamek (1 ≤ k ≤ q): This is the same as Game0 except for the following modification: Let q be the maximum
number of identities issued to the KG or KI oracles, and Ii (1 ≤ i ≤ q) be an i-th identity issued to the
oracles. If queries regarding the first k identities I1, . . . , Ik are issued, then semi-functional decryption
and/or helper keys are returned. The rest of keys (i.e., keys regarding Ik+1, . . . , Iq) are normal.
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GameFinal: This is the same as Gameq except that the challenge ciphertext is a semi-functional one of a
random element of GT .

Let SReal, Sk (0 ≤ k ≤ q), and SFinal be the probabilities that the event b′ = b occurs in GameReal, Gamek,
and GameFinal, respectively. Then, we have

AdvIND-KE-CPA
ΠIKE ,A (λ, ℓ) ≤ |SReal − S0|+

q∑
i=1

|Si−1 − Si|+ |Sq − SFinal|+ |SFinal −
1

2
|.

The rest of the proof follows from the following lemmas.

Lemma 1. If the DDH1 assumption holds, then it holds that |SReal − S0| ≤ 2AdvDDH1
G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance (g1, g
c1
1 , gc21 , g2, T ) of the DDH1 problem.

Then, B randomly chooses x0, y0, {(x1,j , y1,j)}ℓj=0, x2, y2, x3, y3
$← Zp, and creates

z := e(gc11 , g2)
−x0e(g1, g2)

y0 , u1,j := (gc11 )−x1,jg
y1,j

1 (0 ≤ j ≤ ℓ), w1 := (gc11 )−x2gy2

1 , h1 := (gc11 )−x3gy3

1 .

B sends pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gx3

2 , gy2

2 , gy3

2 , z) to A. Note that B knows a
master key mk := (x0, y0) and we implicitly set α := c1.

B can simulate the KG and KI oracles since B knows the master key.

In the challenge phase, B receives (M∗
0 ,M

∗
1 , I

∗, time∗) from A. B chooses d
$← {0, 1}. B chooses

tag∗
$← Zp, and let t∗j := Tj(time

∗) (0 ≤ j ≤ ℓ− 1). B computes

C∗
0 := M∗

d e(T, g2)
−x0e(gc21 , g2)

y0 , C∗
1 := gc21 , C∗

2 := T,

C∗
3 := T−I∗x1,ℓ−

∑ℓ−1
j=0(t

∗
jx1,j)−x2tag

∗−x3(gc21 )I
∗y1,ℓ+

∑ℓ−1
j=0(t

∗
j y1,j)+y2tag

∗+y3 .

B sends C∗ := (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , tag

∗) to A.
If b = 0, then the above ciphertext is normal by setting s := c2. If b = 1, then the above ciphertext is

semi-functional since it holds

C∗
0 = M∗

d e(g1, g2)
−x0(c1c2+µ)+y0c2 = M∗

d e(g1, g2)
−x0(αs+µ)+y0s,

C∗
2 = gc1c2+µ

1 = gαs+µ
1 ,

C∗
3 = g

−(c1c2+µ)(I∗x1,ℓ+
∑ℓ−1

j=0(t
∗
jx1,j)+x2tag

∗+x3)

1 g
c2(I

∗y1,ℓ+
∑ℓ−1

j=0(t
∗
j y1,j)+y2tag

∗+y3)

1

= g
−(αs+µ)(I∗x1,ℓ+

∑ℓ−1
j=0(t

∗
jx1,j)+x2tag

∗+x3)

1 g
s(I∗y1,ℓ+

∑ℓ−1
j=0(t

∗
j y1,j)+y2tag

∗+y3)

1 .

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH1 problem if d′ = d. Otherwise, B
sends b′ = 0 to the challenger.

Lemma 2. For every k ∈ {1, 2, . . . , q}, if the DDH2 assumption holds, then it holds that |Sk−1 − Sk| ≤
2AdvDDH2

G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance (g1, g2, g
c1
2 , gc22 , T ) of the DDH2 problem.

Then, B randomly chooses x′
0, y0, {(x′

1,j , y
′
1,j , y

′′
1,j)}ℓj=0, x

′
2, x

′
3, y

′
3, y

′′
3

$← Zp and α
$← Z×

p , and (implicitly) sets

x0 :=
x′
0 + y0
α

, x1,j :=
x′
1,j + y1,j

α
, where y1,j := y′1,j + c2y

′′
1,j (0 ≤ j ≤ ℓ),

x2 :=
x′
2 + c2
α

, y2 := c2, x3 :=
x′
3 + y3
α

, where y3 := y′3 + c2y
′′
3 .

B creates

z := e(g1, g2)
−x′

0 , u1,j := g
−x′

1,j

1 (0 ≤ j ≤ ℓ), w1 := g
−x′

2
1 , h1 := g

−x′
3

1 ,

12



g
x1,j

2 := g
x′
1,j+y′

1,j
α

2 (gc22 )
y′′
1,j
α (0 ≤ j ≤ ℓ), g

y1,j

2 := g
y′
1,j

2 (gc22 )y
′′
1,j (0 ≤ j ≤ ℓ),

gx2
2 := g

x′
2
α
2 (gc22 )

1
α , gy2

2 := gc22 , gx3
2 := g

x′
3+y′

3
α

2 (gc22 )
y′′
3
α , gy3

2 := g
y′
3

2 (gc22 )y
′′
3 .

B sends pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gy2

2 , gx3
2 , gy3

2 , z) to A. Note that B knows a
master key mk := (x0, y0).

We show how B simulates the KG and KI oracles. Let Ii (1 ≤ i ≤ q) be an i-th identity issued to the
oracles. Without loss of generality, we consider A issues all identities Ii ̸= I∗ to the KG oracle, and issues
only queries regarding I∗ to the KI oracle.

KG oracle. B creates k− 1 semi-functional decryption and helper keys, and embeds T into the k-th keys.
The rest of keys are normal.

Case i < k: After receiving Ii, B creates and returns semi-functional keys. Since B knows the master key
and α, B can create both normal and semi-functional keys.

Case i = k: After receiving Ik, B creates semi functional keys by embedding T as follows: B chooses

β
(y)
0 , . . . , β

(y)
ℓ−1, β

(x)
0 , . . . , β

(x)
ℓ−1

$← Zp, and sets B(y) :=
∑ℓ−1

j=0 β
(y)
j and B(x) :=

∑ℓ−1
j=0 β

(x)
j . B computes

R
(y)
j := g

−β
(y)
j

2 (0 ≤ j ≤ ℓ− 1),

R
(x)
j := g

−β
(x)
j

2 (0 ≤ j ≤ ℓ− 1),

D1 := T,

D′
1 := gy0+B(y)

2 (gc12 )Iky
′
1,ℓ+y′

3T Iky
′′
1,ℓ+y′′

3 ,

D2 :=
(
(gc12 )x

′
2T

)− 1
α

,

D′
2 := g

− x′
0
α −B(x)

2 (gc12 )−
Ik(x′

1,ℓ+y′
1,ℓ)+x′

3+y′
3

α g
− y0

α
2 T−

Iky′′
1,ℓ+y′′

3
α ,

D3 := gc12 ,

Kj := (gc12 )y
′
1,j (T )y

′′
1,j (0 ≤ j ≤ ℓ− 1),

K ′
j := (gc12 )−

x′
1,j+y′

1,j
α T−

y′′
1,j
α (0 ≤ j ≤ ℓ− 1).

B sets dkI,0 := (R
(y)
0 , R

(x)
0 ), hk

(i)
I,0 := (R

(y)
i , R

(x)
i ) (1 ≤ i ≤ ℓ−1), hk(ℓ)I,0 := (D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

ℓ−1
j=0).

If b = 0, then it is easy to see that the above keys are normal by setting r := c1. If b = 1, then the
above ciphertext is semi-functional since it holds

D1 :=T = gc1c2+γ
2 = gy2r+γ

2 ,

D′
1 :=gy0+B(y)

2 (gc12 )Iky
′
1,ℓ+y′

3T Iky
′′
1,ℓ+y′′

3

=g
y0+B(y)+c1(Ik(y

′
1,ℓ+c2y

′′
1,ℓ)+y′

3+c2y
′′
3 )

2 g
γ(Iky

′′
1,ℓ+y′′

3 )

2 = g
y0+B(y)+r(Iky1,ℓ+y3)
2 gγϕ2 ,

D2 :=
(
(gc12 )x

′
2T

)− 1
α

= g
− c1(x′

2+c2)

α
2 g

− γ
α

2 = g−rx2
2 g

− γ
α

2 ,

D′
2 :=g

− x′
0
α −B(x)

2 (gc12 )−
Ik(x′

1,ℓ+y′
1,ℓ)+x′

3+y′
3

α g
− y0

α
2 T−

Iky′′
1,ℓ+y′′

3
α

=g
−B(x)−

(x′
0+y0)+c1(Ik(x′

1,ℓ+y′
1,ℓ+c2y′′

1,ℓ)+(x′
3+y′

3+c2y′′
3 ))

α
2 g

−
γ(Iky′′

1,ℓ+y′′
3 )

α
2

=g
−x0−B(x)−r(Ikx1,ℓ+x3)
2 g

− γϕ
α

2 ,

Kj :=(gc12 )y
′
1,j (T )y

′′
1,j = g

c1(y
′
1,j+c2y

′′
1,j)

2 g
γy′′

1,j

2 = g
ry1,j

2 g
γϕj

2 (0 ≤ j ≤ ℓ− 1),

K ′
j :=(gc12 )−

x′
1,j+y′

1,j
α T−

y′′
1,j
α

13



=g
−

c1(x′
1,j+y′

1,j+c2y′′
1,j)

α
2 g

−
γy′′

1,j
α

2 = g
−rx1,j

2 g
−

γϕj
α

2 (0 ≤ j ≤ ℓ− 1),

where T := gc1c2+γ
2 , r := c1, ϕ := Iky

′′
1,ℓ + y′′3 , and ϕj := y′′1,j (0 ≤ j ≤ ℓ − 1). Since y′′1,j and y′′3 are

chosen uniformly at random, ϕ and ϕj are also uniformly distributed.

Case i > k: After receiving Ii, B creates and returns normal keys by using the master key.

KI oracle Without loss of generality, suppose that A issues k − 1 identities I1, . . . , Ik−1 to the KG
oracle, and then issues a query (i, I∗, time) (i.e., I∗ = Ik) to the KI oracle. Note that for some spe-
cial level j ∈ {0, . . . , ℓ}, A cannot issue time such that Ti(time) = Ti(time

∗) if i < j (B does not
need to know which level would be the special one in advance). B creates and stores decryption and

helper keys (dkI∗,0, hk
(1)
I∗,0, . . . , hk

(ℓ)
I∗,0) as in the case i = k of the KG oracle. Then, B repeatedly runs

δ
(k−1)
tk−1

← ∆-Gen(hk
(k)
I∗,tk

, time∗) and hk
(k−1)
I∗,t∗k−1

Upd(hk
(k−1)
I∗,0 , δ

(k−1)
tk−1

) for k = ℓ, . . . , i + 1, where tℓ := 0 and

tk := Tk(time) (i ≤ k ≤ ℓ− 1). B returns hk
(i)
I∗,ti to A. Note that from the second query for I∗, B answers

queries by using the stored keys.
It is obvious that the returned key is an well-formed normal key if b = 0. We show that the returned

key is semi-functional if b = 1. Since (dkI∗,0, hk
(1)
I∗,0, . . . , hk

(ℓ)
I∗,0) is generated as in the case i = k of the KG

oracle, the forms of hkI∗,ti = (R
(y)
i , R

(x)
i , D1, D

′
1, D2, D

′
2, D3, {Kk,K

′
k}

i−1
k=0) are as follows.

R
(y)
i =g

−β
(y)
i

2 , R
(x)
i = g

β
(x)
i

2 ,

D1 =g
(c1+r̂)c2+γ
2 = gy2r+γ

2 ,

D′
1 =g

y0+
∑i−1

k=0 β
(y)
k +(c1+r̂)(I∗(y′

1,ℓ+c2y
′′
1,ℓ)+

∑ℓ−1
k=i−1 tk(y

′
1,k+c2y

′′
1,k)+y′

3+c2y
′′
3 )

2

· gγ(I
∗y′′

1,ℓ+
∑ℓ−1

k=i−1 tky
′′
1,k+y′′

3 )

2

=g
y0+

∑i−1
k=0 β

(y)
k +r(I∗y1,ℓ+

∑ℓ−1
k=i−1 tky1,k+y3)

2 gγϕ2 ,

D2 =g
− (c1+r̂)(x′

2+c2)

α
2 g

− γ
α

2 = g−rx2
2 g

− γ
α

2 ,

D′
2 =g

− x′
0+y0
α −

∑i−1
k=0 β

(x)
k −

(c1+r̂)(I∗(x′
1,ℓ+y′

1,ℓ+c2y′′
1,ℓ)+

∑ℓ−1
k=i−1

tk(x′
1,k+y′

1,k+c2y′′
1,k)+(x′

3+y′
3+c2y′′

3 ))

α
2 g

−
γ(I∗y′′

1,ℓ+
∑ℓ−1

k=i−1
tky′′

1,k+y′′
3 )

α
2

=g
−x0−

∑i−1
k=0 β

(x)
k −r(I∗x1,ℓ+

∑ℓ−1
k=i−1 tkx1,k+x3)

2 g
− γϕ

α
2 ,

Kk =g
(c1+r̂)(y′

1,k+c2y
′′
1,k)

2 g
γy′′

1,k

2 = g
ry1,k

2 gγϕk

2 (0 ≤ k ≤ i− 1),

K ′
k =g

−
(c1+r̂)(x′

1,k+y′
1,k+c2y′′

1,k)

α
2 g

−
γy′′

1,k
α

2 = g
−rx1,k

2 g
− γϕk

α
2 (0 ≤ k ≤ i− 1),

where γ comes from T = gc1c2+γ
2 , r̂ is randomness due to the re-randomization procedure in the ∆-Gen

algorithm, r := c1 + r̂, ϕ := I∗y′′1,ℓ +
∑ℓ−1

k=i−1 tky
′′
1,k + y′′3 , and ϕj := y′′1,k (i− 1 ≤ k ≤ ℓ− 1).

We have to pay attention to a query (i, I∗, time) such that i > j and Ti(time) = Tj(time
∗). In the case

above, A can derive

dkI∗,T0(time∗) = (R
(y)
0 , R

(x)
0 , D1, D′

1 · g
β
(y)
j

2 , D2, D′
2 · g

−β
(x)
j

2 , D3),

from hkI∗,Ti(time). Namely, A can obtain a decryption key for I∗ and time∗ with noises β
(y)
j and β

(x)
j . Then,

we have ϕ = I∗y′′1,ℓ+
∑ℓ−1

k=0(t
∗
ky

′′
1,k)+ y′′3 . This ϕ is the same as t̃ag

∗
, which is defined in the challenge phase.

Therefore, ϕ is not uniformly distributed from the viewpoint of A, and the proof seem to fail. However,
the simulation actually works well since we can observe the above simulation from another perspective: We

regard (β
(y)
j , β

(x)
j ) as (β′(y)

j + χ, β′(x)
j + χ

α ). The above ϕ then turns to I∗y′′1,ℓ +
∑ℓ−1

k=0(t
∗
ky

′′
1,k) + y′′3 + χ (and

the noises turns to β′(y)
j and β′(x)

j ), and therefore such a collision of randomness never occurs since A never

knows the values of (β
(y)
j , β

(x)
j ).
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In the challenge phase, B receives (M∗
0 ,M

∗
1 , I

∗, time∗) from A. B chooses d
$← {0, 1}, and sets t∗j :=

Tj(time
∗) (0 ≤ j ≤ ℓ−1). However, B cannot create the semi-functional ciphertext for I∗ without knowledge

of c2 (and hence y1,j (0 ≤ j ≤ ℓ) and y3). To generate the semi-functional ciphertext without the knowledge,
B sets

t̃ag
∗
:=−

ℓ−1∑
j=0

(t∗jy
′′
1,j)− I∗y′′1,ℓ − y′′3 .

Since y′′1,0, . . . , y
′′
1,ℓ and y′′3 are chosen uniformly at random, probability distribution of t̃ag

∗
is also uniformly

at random from A’s view.5 Then, B chooses s
$← Zp and µ

$← Z∗
p, and computes

C̃∗
0 :=M∗

d z
se(g1, g2)

−x0µ = M∗
d e(g1, g2)

−x0(αs+µ)+y0s,

C̃∗
1 :=gs1,

C̃∗
2 :=gαs+µ

1

C̃∗
3 :=

(ℓ−1∏
j=0

(
u
t∗j
1,j

)
uI

∗

1,ℓw
t̃ag

∗

1 h1

)s

g
− µ

α (
∑ℓ−1

j=0(t
∗
j (x

′
1,j+y′

1,j))+I∗(x′
1,ℓ+y′

1,ℓ)+x′
2t̃ag

∗
+x′

3+y′
3)

1

=
(ℓ−1∏
j=0

(
u
t∗j
1,j

)
uI

∗

1,ℓw
t̃ag

∗

1 h1

)s

· g−
µ
α (

∑ℓ−1
j=0(t

∗
j (x

′
1,j+y′

1,j))+I∗(x′
1,ℓ+y′

1,ℓ)+x′
2t̃ag

∗
+x′

3+y′
3)

1 g
− c2µ

α (
∑ℓ−1

j=0(t
∗
j y

′′
1,j)+I∗y′′

1,ℓ+t̃ag
∗
+y′′

3 )

1

=
(ℓ−1∏
j=0

(
u
t∗j
1,j

)
uI

∗

1,ℓw
t̃ag

∗

1 h1

)s

g
µ(

∑ℓ−1
j=0(t

∗
jx1,j)+I∗x1,ℓ+x2t̃ag

∗
+x3)

1 .

B sends C̃∗ := (C̃∗
0 , C̃

∗
1 , C̃

∗
2 , C̃

∗
3 , t̃ag

∗
) to A.

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH2 problem if d′ = d. Otherwise, B
sends b′ = 0 to the challenger.

Lemma 3. |Sq − SFinal| ≤ 2AdvDDH1
G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance (g1, g
c1
1 , gc21 , g2, T ) of the DDH1 problem.

Then, B randomly chooses {(x1,j , y
′
1,j)}ℓj=0, x2, y

′
2, x3, y

′
3

$← Zp and α
$← Z∗

p, and (implicitly) sets

x0 := c1, y0 := x0α+ y′0, y1,j := x1,jα+ y′1,j (0 ≤ j ≤ ℓ), y2 := x2α+ y′2, y3 := x3α+ y′3.

Then, B creates

z := e(g1, g2)
y′
0 , u1,j := g

y′
1,j

1 (0 ≤ j ≤ ℓ), w1 := g
y′
2

1 , h1 := g
y′
3

1 .

B sends pp := (g1, g
α
1 , {u1,j}ℓj=0, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x2
2 , gx3

2 , gy2

2 , gy3

2 , z) to A. Note that B does not
know a master key mk := (x0, y0).

KG oracle. When receiving I from A, B first generates (initial) semi-functional keys as follows. B chooses

β
(y)
0 , . . . , β

(y)
ℓ−1, β

(x)
0 , . . . , β

(x)
ℓ−1, r, ϕ

′, ϕ′
0, . . . , ϕ

′
ℓ−1

$← Zp and γ
$← Z∗

p, and (implicitly) set B(y) :=
∑ℓ−1

j=0 β
(y)
j ,

B(x) :=
∑ℓ−1

j=0 β
(x)
j , ϕ′ := x0 + r(Ix1,ℓ + x3) +

γϕ
α , and ϕ′

j := rx1,j +
γϕj

α (0 ≤ j ≤ ℓ− 1). We compute

R̃
(y)
j :=g

−β
(y)
j

2 (0 ≤ j ≤ ℓ− 1),

5The fact that the formula in such a form is uniformly distributed was traditionally studied in the context of unconditionally
secure authentication protocols (e.g., [11, 23, 30]).
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R̃
(x)
j :=g

β
(x)
j

2 (0 ≤ j ≤ ℓ− 1),

D̃1 :=gy2r+γ
2 ,

D̃′
1 :=g

y′
0+r(Iy′

1,ℓ+y′
3)+αϕ′

2 = g
x0α+y′

0+r((x1,ℓα+y1,ℓ)I+x3+y′
3)+γϕ

2 = g
y0+r(y1,ℓI+y3)+γϕ
2 ,

D̃2 :=g
−rx2− γ

α
2

D̃′
2 :=g−ϕ′

2 = g
−x0−r(Ix1,ℓ+x3)− γϕ

α
2 ,

D̃3 :=gr+B
2 ,

K̃j :=g
ry′

1,j+αϕ′
j

2 = g
r(y′

1,j+αx1,j)+γϕj

2 = g
ry1,j+γϕj

2 (0 ≤ j ≤ ℓ− 1),

K̃ ′
j :=g

−ϕ′
j

2 = g
−rx1,j−

γϕj
α

2 (0 ≤ j ≤ ℓ− 1).

B sets and returns dkI,0 := (R̃
(y)
0 , R̃

(x)
0 ), hk

(j)
I,0 := (R̃

(y)
j , R̃

(x)
j ) (1 ≤ j ≤ ℓ−1), and hk

(ℓ)
I,0 := (D̃1, D̃

′
1, D̃2, D̃

′
2, D̃3, {(K̃j , K̃

′
j)}

ℓ−1
j=0).

KI oracle. Without loss of generality, we fix any j ∈ {0, 1, . . . , ℓ} as a special level, and suppose that B
receives a query (i, I∗, time) such that i ̸= j and Ti(time) ̸= Ti(time

∗) if i < j, where I∗ and time∗ are the
target identity and target time, respectively. Then, B can generate initial semi-functional keys for I∗ as in
the KG oracle. Therefore, B can return any i-th semi-functional key for I∗ at time.

In the challenge phase, B receives (M∗
0 ,M

∗
1 , I

∗, time∗) from A. B chooses d
$← {0, 1}. B chooses

s, tag∗
$← Zp and computes

C̃∗
0 := M∗

d · e(g1, g2)y
′
0se(T, g2)

−1, C̃∗
1 := gs1, C̃∗

2 := gαs1 gc21 ,

C̃∗
3 := (

ℓ−1∏
j=0

(u
t∗j
1,j)u

I∗

1,ℓw
tag∗

1 h1)
s(gc21 )−

∑ℓ−1
j=0(x1,jt

∗
j )−x1I

∗−x2tag
∗−x3 .

B sends C∗ := (C̃∗
0 , C̃

∗
1 , C̃

∗
2 , C̃

∗
3 , tag

∗) to A.
If b = 0, then the above ciphertext is semi-functional one of M∗

d by setting µ := c2. If b = 1, then the
above ciphertext is semi-functional one of a random element of GT since it holds

C̃∗
0 = M∗

d · e(g1, g2)y
′
0s−x0µ−η

= M∗
d · e(g1, g2)−x0αs+y0s−x0µ−η

= M∗
d · e(g1, g2)−x0(αs+µ)+y0se(g1, g2)

−η

= R · e(g1, g2)−x0(αs+µ)+y0s,

where R = M∗
d · e(g1, g2)−η.

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH1 problem if d′ = d. Otherwise, B
sends b′ = 0 to the challenger.

Proof of Theorem 1. From Lemmas 1, 2, and 3, we have

AdvIND-KE-CPA
ΠIKE ,A (λ, ℓ) ≤ |SReal − S0|+

q∑
i=1

|Si−1 − Si|+ |Sq − SFinal|+ |SFinal −
1

2
|

≤ 4AdvDDH1
G,B (λ) + 2q ·AdvDDH2

G,B (λ).

6 Chosen-Ciphertext Security

Boneh et al. [5] proposed an well-known transformation from (ℓ + 1)-level CPA-secure HIBE (and one-
time signature (OTS)) to ℓ-level CCA-secure HIBE. We cannot apply this transformation to a hierarchical
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IKE scheme in a generic way since it does not have delegating functionality. However, we can apply their
techniques to the underlying Jutla-Roy HIBE of our hierarchical IKE, and therefore we obtain CCA-secure
scheme. We show the detailed construction as follows. We assume a verification key vk is appropriately
encoded as an element of Zp when it is used in exponent of ciphertexts.

Let ΠOTS = (KGen,Sign,Ver) be an OTS scheme.6 An ℓ-level hierarchical IKE scheme ΠIKE =(PGen,
Gen, ∆-Gen, Upd, Enc, Dec) is constructed as follows.

- PGen(λ, ℓ): It runs (G1,G2,GT , p, g1, g2, e)← G. It chooses x0, y0, {(x1,j , y1,j)}ℓj=0, x̂1, ŷ1, x2, y2, x3, y3
$←

Zp and α
$← Z×

p , and sets

z = e(g1, g2)
−x0α+y0 , u1,j := g

−x1,jα+y1,j

1 (0 ≤ j ≤ ℓ),

û1 := g−x̂1α+ŷ1

1 , w1 := g−x2α+y2

1 , h1 := g−x3α+y3

1 .

It outputs

pp := (g1, g
α
1 , {u1,j}ℓj=0, û1, w1, h1, g2, {(g

x1,j

2 , g
y1,j

2 )}ℓj=0, g
x̂1
2 , gŷ1

2 , gx2
2 , gx3

2 , gy2

2 , gy3

2 , z),

mk := (x0, y0).

- Gen(mk, ID): It chooses β
(x)
0 , . . . , β

(x)
ℓ−1, β

(y)
0 , . . . , β

(y)
ℓ−1, r

$← Zp, and let B(j) :=
∑ℓ−1

i=0 β
(j)
i for j ∈ {x, y}.

It computes

R
(y)
j := g

−β
(y)
j

2 (0 ≤ j ≤ ℓ− 1), R
(x)
j := g

β
(x)
j

2 (0 ≤ j ≤ ℓ− 1),

D1 := (gy2

2 )r, D′
1 := gy0+B(y)

2

(
(g

y1,ℓ

2 )Igy3

2

)r

,

D2 := (gx2
2 )−r, D′

2 := g−x0−B(x)

2

(
(g

x1,ℓ

2 )Igx3
2

)−r

,

D3 := gr2, Kj := (g
y1,j

2 )r (0 ≤ j ≤ ℓ− 1), K ′
j := (g

x1,j

2 )−r (0 ≤ j ≤ ℓ− 1),

Kvk := (gŷ1

2 )r, K ′
vk := (gx̂1

2 )−r.

It outputs

dkI,0 := (R
(y)
0 , R

(x)
0 ),

hk
(i)
I,0 := (R

(y)
i , R

(x)
i ) (1 ≤ i ≤ ℓ− 1),

hk
(ℓ)
I,0 := (D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}ℓ−1

j=0,Kvk,K
′
vk).

- ∆-Gen(hk
(i)
I,ti , time): If ti ̸= Ti(time), it outputs ⊥. Otherwise, parse hk

(i)
I,ti as (R

(y)
i , R

(x)
i , D1, D

′
1, D2,

D′
2, D3, {(Kj ,K

′
j)}

i−1
j=0,Kvk,K

′
vk). It chooses r̂ ← Zp, and let tj := Tj(time) (i − 1 ≤ j ≤ ℓ − 1). It

computes

d̂1 := D1(g
y2

2 )r̂, d̂′1 := D′
1(Ki−1)

ti−1

(
(g

y1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(g

y1,j

2 )tj
)
gy3

2

)r̂

,

d̂2 := D2(g
x2
2 )−r̂, d̂′2 := D′

2(K
′
i−1)

ti−1

(
(g

x1,ℓ

2 )I
ℓ−1∏

j=i−1

(
(g

x1,j

2 )tj
)
gx3
2

)−r̂

,

d̂3 := D3g
r̂
2, k̂j := Kj(g

y1,j

2 )r̂ (0 ≤ j ≤ i− 2), k̂′j := K ′
j(g

x1,j

2 )−r̂ (0 ≤ j ≤ i− 2),

k̂vk := Kvk(g
ŷ1

2 )r̂, k̂′vk := K ′
vk(g

x̂1
2 )r̂.

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂′j)}

i−2
j=0, k̂vk, k̂

′
vk).

6The formal description of the OTS is given in A.
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- Upd(hk
(i)
I,ti , δ

(i)
τi ): Parse hk

(i)
I,ti and δ

(i)
τi as (R

(y)
i , R

(x)
i , D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0,Kvk,K

′
vk) and

(d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂′j)}

i−1
j=0, k̂vk, k̂

′
vk), respectively. It outputs hk

(i)
I,τi := (R̂

(y)
i , R̂

(x)
i , D̂1, D̂

′
1, D̂2, D̂

′
2,

D̂3, {(K̂j , K̂
′
j)}

i−1
j=0, K̂vk, K̂

′
vk) = (R

(y)
i , R

(x)
i , d̂1, d̂

′
1R

(y)
i , d̂2, d̂

′
2R

(x)
i , d̂3, {k̂j , k̂′j}

i−1
j=0, k̂vk, k̂

′
vk).

- Enc(I, time,M): It first runs (vk, sk)← KGen(λ). It chooses s, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzs, C1 := gs1, C2 := (gα1 )
s, C3 :=

(ℓ−1∏
j=0

(
u
tj
1,j

)
uI1,ℓû

vk
1 wtag

1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ ℓ − 1). It also runs σ ← Sign(sk, (C0, C1, C2, C3, tag)), and outputs
C := (vk, C0, C1, C2, C3, tag, σ).

- Dec(dkI,t0 , ⟨C, time⟩): If t0 ̸= T0(time), then it outputs⊥. Otherwise, parse dkI,t0 and C as (R
(y)
0 , R

(x)
0 , D1, D

′
1,

D2, D
′
2, D3,Kvk,K

′
vk) and (vk, C0, C1, C2, C3, tag, σ), respectively. If Ver(vk, C0, C1, C2, C3, tag, σ)→

0, then it outputs ⊥. Otherwise, it computes

D̂′
1 := D′

1(Kvk)
vk, D̂′

2 := D′
2(K

′
vk)

vk.

Finally, it outputs

M =
C0e(C3, D3)

e(C1, D
tag
1 D̂′

1)e(C2, D
tag
2 D̂′

2)
.

The correctness of the above IKE scheme ΠIKE can be checked as in our CPA-secure IKE scheme described
in Section 4.

For the security of our construction above, we obtain the following theorem. The proof is omitted since
this theorem can be easily proved by combining Boneh et al.’s techniques [5] and our proof techniques of
Theorem 1.

Theorem 2. If the underlying OTS scheme ΠOTS is sUF-OT secure and the SXDH assumption holds, then
the resulting ℓ-level hierarchical IKE scheme ΠIKE is IND-KE-CCA secure.

7 Public-key Encryption with Hierarchical Key Insulation

In this section, we consider the hierarchical key insulation structure in the public-key-encryption setting.
Specifically, we newly formalize ℓ-level hierarchical public-key-based key-insulated encryption (PK-KIE), and
propose a concrete construction for it. This proposal is the first realization of PK-KIE in the hierarchical
setting.

7.1 Model and Security Definition

ℓ-level hierarchical PK-KIE takes almost the same procedure as ℓ-level hierarchical IKE. A receiver generates

a public key pk and initial secret keys dk0, hk
(1)
0 , . . . , hk

(ℓ)
0 , where dk0 is an initial decryption key and hk

(i)
0

is an initial i-th helper key. Each helper key is stored in different devices. A sender encrypts a plaintext M
with the public key pk and current time time. The key-updating procedure is the same as that in ℓ-level
hierarchical IKE. After receiving ⟨C, time⟩, the receiver can decrypt a ciphertext C with dkt0 if t0 = T0(time).

An ℓ-level hierarchical PK-KIE scheme ΠPKIE consists of five-tuple algorithms (Setup, ∆-Gen, Upd, Enc,
Dec) defined as follows.

– (pk, dk0, hk
(1)
0 , . . . , hk

(ℓ)
0 )← Setup(λ, ℓ): An algorithm for key generation. It takes a security parameter

λ and the maximum hierarchy depth ℓ as input, and outputs a public key pk, an initial secret key dk0,

and initial helper keys hk
(1)
0 , . . . , hk

(ℓ)
0 , where hk

(i)
0 (1 ≤ i ≤ ℓ) is assumed to be stored user’s i-th level

private device.
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– δ
(i−1)
Ti−1(time)

or ⊥ ← ∆-Gen(hk
(i)
ti , time): An algorithm for key update generation. It takes an i-th helper

key hk
(i)
ti at a time period ti ∈ Ti and current time time as input, and outputs key update δ

(i−1)
Ti−1(time)

if ti = Ti(time); otherwise, it outputs ⊥.

– hk
(i)
τi ← Upd(hk

(i)
ti , δ

(i)
τi ): A probabilistic algorithm for decryption key generation. It takes an i-th

helper key hk
(i)
ti at a time period ti ∈ Ti and key update δ

(i)
τi at a time period τ ∈ Ti as input, and

outputs a renewal i-th helper key hk
(i)
τi at τ . Note that for any t0 ∈ T0, hk(0)t0 means dkt0 .

– ⟨C, time⟩ ← Enc(pk, time,M): A probabilistic algorithm for encryption. It takes a public key pk,
current time time, and a plaintext M ∈ M as input, and outputs a pair of a ciphertext and current
time ⟨C, time⟩.

– M or ⊥ ← Dec(dkt0 , ⟨C, time⟩): A deterministic algorithm for decryption. It takes dkt0 and ⟨C, time⟩
as input, and outputs M or ⊥, where ⊥ indicates decryption failure.

In the above model, we assume that ΠPKIE meets the following correctness property: For all security

parameter λ, all ℓ := poly(λ), all (pk, dk0, hk
(1)
0 , . . . , hk

(ℓ)
0 ) ← Setup(λ, ℓ), all M ∈ M, and all time ∈ T , it

holds that M ← Dec(dkT0(time),Enc(pk, time,M)), where dkT0(time) is generated as follows: For i = ℓ, . . . , 1,

hk
(i−1)
Ti−1(time)

← Upd(hk
(i−1)
ti−1

,∆-Gen(hk
(i)
Ti(time)

, time)), where some ti ∈ Ti and hk
(0)
T0(time)

:= dkT0(time).

We consider the strong security for (hierarchical) PK-KIE, i.e., indistinguishability against key exposure
and chosen ciphertext attack for PK-KIE (IND-KE-CCA). Let A be a PPT adversary, and A’s advantage
against IND-KE-CCA security is defined by

AdvIND-KE-CCA
ΠPKIE,A (λ, ℓ) :=

∣∣∣∣∣∣∣∣∣Pr
 b′ = b

(pp, dk0, hk
(1)
0 , . . . , hk

(ℓ)
0 )← Setup(λ, ℓ),

(M∗
0 ,M

∗
1 , time

∗, state)← AKI(·,·),Dec(·)(find, pk),

b
$← {0, 1}, C∗ ← Enc(pk, time∗,M∗

b ),
b′ ← AKI(·,·),Dec(·)(guess, C∗, state)

− 1

2

∣∣∣∣∣∣∣∣∣ .
where KI (·, ·) and Dec(·) are defined as follows.

KI (·, ·): For a query (i, time) ∈ {0, 1, . . . , ℓ}×T , it returns hk(i)Ti(time)
by running δ

(j−1)
Tj−1(time)

← ∆-Gen(hk
(j)
Tj(time)

, time)

and hk
(j−1)
Tj−1(time)

← Upd(hk
(j−1)
t , δ

(j−1)
Tj−1(time)

) for j = ℓ, . . . , i+ 1.

Dec(·): For a query ⟨C, time⟩, it returns Dec(dkT0(time), ⟨C, time⟩).

A can issue any queries (i, time) to the KI oracle if there exists at least one special level j ∈ {0, 1, . . . , ℓ}
such that

1. For any time ∈ T , (j, time) is never issued to KI.

2. (i, time) ∈ {0, 1, . . . , j − 1} × T such that Ti(time) = Ti(time
∗) is never issued to KI.

A is not allowed to issue ⟨C∗, time⟩ such that T0(time) = T0(time
∗) to Dec.

Definition 5 (IND-KE-CCA). An ℓ-level hierarchical PK-KIE scheme ΠPKIE is said to be IND-KE-CCA
secure if for all PPT adversaries A, AdvIND-KE-CCA

ΠPKIE ,A (λ, ℓ) is negligible in λ.

Remark 3. The above security definition captures strong security. In particular, the above definition is
equivalent to traditonal definition of PK-KIE [2, 14] when ℓ = 1.

7.2 Construction

We construct an ℓ-level hierarcical PK-KIE scheme based on our CPA-secure hierarchical IKE construction
and an well-known transformation from any CPA-secure IBE scheme and any OTS scheme to a CCA-secure
PKE scheme [5, 8]. Therefore, this construction is similar to a CCA-secure hierarchical IKE construction
proposed in Section 6. The main difference between them is that in this construction, the master key of the
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Jutla-Roy HIBE scheme is used as an ℓ-th level helper key as in the existing construction of PK-KIE from
an IBE scheme [2], whereas it is used as the master key in the CCA-secure hierarchical IKE construction.

An ℓ-level hierarchical PK-KIE scheme ΠPKIE =(Setup, ∆-Gen, Upd, Enc, Dec) is constructed as follows.

- Setup(λ, ℓ): It runs (G1,G2,GT , p, g1, g2, e)← G. It chooses x0, y0, {(x1,j , y1,j)}ℓ−1
j=0, x̂1, ŷ1, x2, y2, x3, y3,

$←
Zp and α

$← Z×
p , and sets

z = e(g1, g2)
−x0α+y0 , u1,j := g

−x1,jα+y1,j

1 (0 ≤ j ≤ ℓ− 1),

û1 := g−x̂1α+ŷ1

1 , w1 := g−x2α+y2

1 , h1 := g−x3α+y3

1 .

It chooses β
(x)
0 , . . . , β

(x)
ℓ−1, β

(y)
0 , . . . , β

(y)
ℓ−1

$← Zp, computes

B(y) :=

ℓ−1∑
i=0

β
(y)
i , B(x) :=

ℓ−1∑
i=0

β
(x)
i , D′

1 := gy0+B(y)

2 , D′
2 := g−x0−B(x)

2 ,

R
(y)
j := g

−β
(y)
j

2 (0 ≤ j ≤ ℓ− 1), R
(x)
j := g

β
(x)
j

2 (0 ≤ j ≤ ℓ− 1).

It outputs

pk := (g1, g
α
1 , {u1,j}ℓ−1

j=0, û1, w1, h1, g2, {(g
x1,j

2 , g
y1,j

2 )}ℓ−1
j=0, g

x2
2 , gx3

2 , gy2

2 , gy3

2 , z),

dk0 := (R
(y)
0 , R

(x)
0 ) hk

(i)
0 := (R

(y)
i , R

(x)
i ) (1 ≤ i ≤ ℓ− 1), hk

(ℓ)
0 := (D′

1, D
′
2).

- ∆-Gen(hk
(i)
ti , time): If ti ̸= Ti(time), it outputs⊥. Otherwise, parse hk

(i)
ti as (R

(y)
i , R

(x)
i , D1, D

′
1, D2, D

′
2,

D3, {(Kj ,K
′
j)}

i−1
j=0,Kvk,K

′
vk).

7 It chooses r ← Zp, and let tj := Tj(time) (i− 1 ≤ j ≤ ℓ− 1). It com-
putes

d̂1 := D1(g
y2

2 )r, d̂′1 := D′
1(Ki−1)

ti−1

( ℓ−1∏
j=i−1

(
(g

y1,j

2 )tj
)
gy3

2

)r

,

d̂2 := D2(g
x2
2 )−r, d̂′2 := D′

2(K
′
i−1)

ti−1

( ℓ−1∏
j=i−1

(
(g

x1,j

2 )tj
)
gx3
2

)−r

,

d̂3 := D3g
r
2, k̂j := Kj(g

y1,j

2 )r (0 ≤ j ≤ i− 2), k̂′j := K ′
j(g

x1,j

2 )−r (0 ≤ j ≤ i− 2),

k̂vk := Kvk(g
ŷ1

2 )r, k̂′vk := K ′
vk(g

x̂1
2 )−r.

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂′j)}

i−2
j=0, k̂vk, k̂

′
vk).

8

- Upd(hk
(i)
ti , δ

(i)
τi ): Parse hk

(i)
ti and δ

(i)
τi as (R

(y)
i , R

(x)
i , D1, D

′
1, D2, D

′
2, D3, {(Kj ,K

′
j)}

i−1
j=0,Kvk,K

′
vk) and

(d̂1, d̂
′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂′j)}

i−1
j=0, k̂vk, k̂

′
vk), respectively. It outputs hk

(i)
τi := (R̂

(y)
i , R̂

(x)
i , D̂1, D̂

′
1, D̂2, D̂

′
2, D̂3, {(K̂j , K̂

′
j)}

i−1
j=0,

K̂vk, K̂
′
vk) = (R

(y)
i , R

(x)
i , d̂1, d̂

′
1R

(y)
i , d̂2, d̂

′
2R

(x)
i , d̂3, {k̂j , k̂′j}

i−1
j=0, k̂vk, k̂

′
vk).

- Enc(pk, time,M): It chooses s, tag
$← Zp, and runs (vk, sk)← KGen(λ). For M ∈ GT , it computes

C0 := Mzs, C1 := gs1, C2 := (gα1 )
s, C3 :=

(ℓ−1∏
j=0

(
u
tj
1,j

)
ûvk
1 wtag

1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ ℓ − 1). It runs σ ← Sign(sk, (C0, C1, C2, C3, tag)), and outputs
C := (vk, C0, C1, C2, C3, tag, σ).

7In the case i = ℓ, Rℓ, D1, D2, D3, and {(Kj ,K
′
j)}

i−1
j=0 mean empty strings, and we consider these as identity elements in

G2 when these elements are used in operations.
8In the case i = 1, {(k̂j , k̂′j)}

ℓ−1
j=0 means an empty string, namely we have δ

(0)
t0

:= (d̂1, . . . , d̂5, k̂vk, k̂
′
vk).
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Table 3: Parameters evaluation of our ℓ-level hierarchical PK-KIE scheme.

#pk #dk #hkℓ #hki

(ℓ+ 5)|G1|+ (2ℓ+ 5)|G2|+ |GT | 7|G2| 2|G2| (2i+ 9)|G2|

#C Enc. Cost Dec. Cost Assumption

3|G1|+ |GT |+ |Zp| [0, 0, ℓ+ 5, 1] [3, 0, 2, 0] SXDH

#pk, #hk(ℓ), #hk(i), #dk, and #C denote the sizes of public keys, ℓ-th level helper keys, i-th level helper
keys (0 ≤ i ≤ ℓ− 1), decryption keys, and ciphertexts. k denotes the number of allowable leaked decryption
keys in the scheme.

- Dec(dkt0 , ⟨C, time⟩): If t0 ̸= T0(time), then it outputs⊥. Otherwise, parse dkt0 and C as (R
(y)
0 , R

(x)
0 , D1, D

′
1, D2, D

′
2, D3,Kvk,K

′
vk)

and (C0, C1, C2, C3, tag), respectively. If Ver(vk, C0, C1, C2, C3, tag, σ) → 0, then it outputs ⊥. Oth-
erwise, it computes

D̂′
1 := D′

1(Kvk)
vk, D̂′

2 := D′
2(K

′
vk)

vk.

Finally, it outputs

M =
C0e(C3, D3)

e(C1, D
tag
1 D̂′

1)e(C2, D
tag
2 D̂′

2)
.

We can easily check the correctness in a way similar to our hierarchical IKE scheme.

For the security of the above construction, we obtain the following theorem. This theorem can be also
easily proved by combining existing techniques [5, 8] and our proof techniques of Theorem 1. Therefore, we
omit the proof.

Theorem 3. If the SXDH assumption holds and ΠOTS is sUF-OT secure, then the resulting ℓ-level hierar-
chical PK-KIE scheme ΠPKIE is IND-KE-CCA secure.

7.3 Parameter Evaluation and Discussion

We give a parameter evaluation of our scheme in Table 3. Again, the proposed construction is the first
PK-KIE scheme in the hierarchical setting.

We compare our scheme in the non-hierarchical case with existing PK-KIE schemes. Dodis et al. [14]
(strongly) CCA-secure (non-hierarchical) PK-KIE scheme under decisional Diffie-Hellman (DDH) assump-
tion. Namely, this scheme can be realized without pairings, though it does not satisfy optimal threshold
property, which means that the scheme is secure even if any polynomially many decryption keys are leaked.
As a result, the number of allowable leaked decryption keys q has to be determined in the setup algorithm
of their scheme, and its parameter sizes depend on q. On the other hand, our scheme satisfies the optimal
threshold property, and achieves constant-size parameters when ℓ = 1. Bellare and Palacio [2] showed a
generic transformation from any CCA-secure IBE scheme to CCA-secure PK-KIE scheme. However, the
resulting scheme does not meet strong security. Cheon et al. [10] showed a generic transformation from
any timed-release encryption (TRE) scheme to strongly CCA-secure PK-KIE scheme. However, the re-
sulting scheme seems less efficient than ours since the currently-known, most efficient construction of TRE
scheme [?] needs a CPA-secure identity-based key-encapsulation system, a CCA-secure PKE scheme, and an
OTS scheme, whereas our scheme is based on a specific CPA-secure IBE scheme (i.e., the Jutla-Roy IBE)
and an OTS scheme.

8 Conclusion

In this paper, we first proposed an ℓ-level hierarchical key-insulated encryption without random oracles
in both the identity-based and public-key setting. When ℓ = 1, our construction achieves constant-size
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parameters including public parameters, decryption and helper keys, and ciphertexts, and hence our IKE
scheme is more efficient than the existing scheme [35] in the sense of parameter sizes. Our IKE scheme is based
on the Jutla-Roy HIBE [24] (and its variant [27]) and techniques of threshold secret sharing schemes [4, 29].
Furthermore, we realized a hierarchical PK-KIE scheme based on our hierarchical IKE construction through
the transformation techniques [5, 8].
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A Definitions

We give the formal definitions of the CBDH and DBDH assumptions and OTS. In the following, we assume
the Type-1 pairing (i.e., G := G1 = G2).

Computational Bilinear Diffie–Hellman (CBDH) Assumption. Let A be a PPT adversary and we
consider A’s advantage against the CBDH problem as follows.

AdvCBDH
G,A (λ) := Pr

 T = e(g, g)c1c2c3
(p,G,GT , g, e)← G,
c1, c2, c3

$← Zp,
T ← A(λ, g, gc1 , gc2 , gc3)

 .

Definition 6. The CBDH assumption relative to a generator G holds if for all PPT adversaries A, AdvCBDH
G,A (λ)

is negligible in λ.

Decisional Bilinear Diffie–Hellman (DBDH) Assumption. LetA be a PPT adversary and we consider
A’s advantage against the DBDH problem as follows.

AdvDBDH
G,A (λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b′ = b

(p,G,GT , g, e)← G,
c1, c2, c3

$← Zp,

b
$← {0, 1},

if b = 1 then T := ê(g, g)c1c2c3 ,

else T
$← GT ,

b′ ← A(λ, g, gc1 , gc2 , gc3 , T )


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Definition 7. The DBDH assumption relative to a generator G holds if for all PPT adversaries A, AdvDBDH
G,A (λ)

is negligible in λ.

One-time signature. An OTS scheme ΠOTS consists of three-tuple algorithms (KGen, Sign, Ver) defined
as follows.

– (vk, sk) ← KGen(λ): It takes a security parameter λ and outputs a pair of a public key and a secret
key (vk, sk).

– σ ← Sign(sk,m): It takes the secret key sk and a message m ∈M and outputs a signature σ.

– 1 or 0← Ver(vk,m, σ): It takes the public key vk and a pair of a message and a signature (m,σ), and
then outputs 1 or 0.

We assume that ΠOTS meets the following correctness property: For all λ ∈ N, all (vk, sk)← KGen(λ), and
all m ∈M, it holds that 1← Ver(vk, (m,Sign(sk,m))).

We describe the notion of strong unforgeability against one-time attack (sUF-OT). Let A be a PPT
adversary, and A’s advantage against sUF-OT security is defined by

AdvsUF-OT
ΠOTS,A (λ) := Pr

[
1← Ver(vk,m∗, σ∗) ∧ (m∗, σ∗) ̸= (m,σ)

(vk, sk)← KGen(λ),
(m∗, σ∗)← ASign(·)(vk)

]
.

Sign(·) is a signing oracle which takes a message m as input, and then returns σ by running Sign(sk,m). A
is allowed to access to the above oracle only once.

Definition 8. An OTS scheme ΠOTS is said to be sUF-OT secure if for all PPT adversaries A, AdvsUF-OT
ΠOTS ,A(λ)

is negligible in λ.
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