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Abstract. In this paper we prove that there are only differential 4-uniform functions which
are on distance 1 from an APN function. Also we prove that there are no APN functions of
distance 1 from another APN functions up to dimension 5. We determine some properties of
the set of values of an arbitrary vectorial Boolean function from Fn

2 to Fn
2 in connection to the

set of values of its derivatives. These results are connected to several open question concerning
metric properties of APN functions.
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1 Introduction

In this paper we deal with vectorial Boolean functions F : Fn
2 → Fn

2 that are also known as
substitution boxes. Substitution boxes play a central role in the robustness of block ciphers in
symmetric cryptography. The notion of differentially δ-uniform functions was introduced by K.
Nyberg [1] in 1994.

A vectorial Boolean function F : Fn
2 → Fn

2 is called differentially δ-uniform if for any non-
zero a ∈ Fn

2 and for any b ∈ Fn
2 the equation F (x)⊕F (x⊕ a) = b has at most δ solutions, where

δ is a positive integer. An order of differential uniformity of a function F is the minimal possible
δ such that F is differential δ-uniform.

The fewer the order of differential uniformity of substitution box that using in a cipher, the
better the resistance of this cipher to differential attack [2]. The minimal possible value of δ is
two. If δ = 2, then a differentially δ-uniform function is called almost perfect nonlinear (APN)
function. Classification of APN functions up to dimension five is given in [3], constructions
of APN and differentially 4-uniform functions are presented in [4, 5]. Surveys of cryptographic
functions can be found in [6, 7, 8]. In [9, 10] we studied distance between distinct APN functions.

In this paper we prove that there are only differential 4-uniform functions which are on
distance 1 from an APN function and experimentally prove that the minimal distance between
distinct APN functions up to dimestion 5 is equal to 2. Also we determine some properties
of the set of values of an arbitrary vectorial Boolean function from Fn

2 to Fn
2 in connection to

the set of values of its derivatives. The obtained results will help us with respect to metrical
properties of the class of APN functions.

∗The author was supported by the Russian Foundation for Basic Research (project no. 15-31-20635).
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2 Preliminaries

For a vectorial Boolean function F and for any vector a ∈ Fn
2 it is defined the set

Ba(F ) = {F (x)⊕ F (x⊕ a) | x ∈ Fn
2}.

The maximal possible cardinality of the set Ba(F ) is equal to 2n−1. In particular, if it holds
|Ba(F )| = 2n−1 for any non-zero vector a, then the function F is an APN function, but if it
holds |Ba(F )| = 2n−1 − 1 then the function F is a differential 4-uniformity function.

Let the sum of a vector x ∈ Fn
2 and a set A ⊆ Fn

2 be the shift of the set A:

x⊕A = {x⊕ a|a ∈ A}.

Let the sum of two sets A ⊆ Fn
2 and B ⊆ Fn

2 be the set of all pairwise sums of elements of these
sets,

A⊕B = {a⊕ b | a ∈ A, b ∈ B}.
The set of all values of a vectorial Boolean function F : Fn

2 → Fn
2 is the image of the function

F . Denote the image of a function F by im(F ).
A distance between vectorial Boolean functions F and G is called cardinality of the set

{x ∈ Fn
2 | F (x) 6= G(x)}.

3 Vectorial Boolean functions on distance 1 from an APN func-
tion

Statement 1. Let F be APN function of n variables, then on distance one from F there are
only differential 4-uniform functions.

Proof. Let F is APN function. So for all non-zero vector a ∈ Fn
2 we have |Ba(F )| = 2n−1.

Consider the function G which coincide with F in each vectors except one x′ ∈ Fn
2 . Let

Ba(G) = {G(x)⊕G(x⊕ a) | x ∈ Fn
2\{x′, x′ ⊕ a}}.

For all non-zero vector a ∈ Fn
2 the set Ba(F ) coincide with Ba(G) and we have the equation

|Ba(G)| = 2n−1 − 1.
Note that Ba(G) = Ba(G) ∪ {G(x′) ⊕ G(x′ ⊕ a)}. Then for all values G(x′) (including one

non equal to F (x′)) and for all non-zero vector a ∈ Fn
2 we have |Ba(G)| ≥ |Ba(G)| = 2n−1 − 1,

i. e. function G is differentially 4-uniform.

Since APN functions are differentially 4-uniform then statement 1 does not exclude the
possibility of existence of APN functions on distance one from each other. An exception of this
is equal to the fact that all functions distanced one from an APN function possess differentially
uniformity of order 4.

We consider hypothesis that means that unite of shifted derivatives of an APN function
coincides with the whole space Fn

2 . Further we will prove that this hypothesis is equivalent to
the fact that there is no APN functions on distance 1 from any APN function.

Hypothesis 1. If F is APN function in n variables, then the following expression is true:⋃
a∈Fn

2 ,a6=0

(Ba(F )⊕ F (x′ ⊕ a)) = Fn
2 ∀x′ ∈ Fn

2 . (1)
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Theorem 1. The hypothesis 1 is true if and only if there are only functions with differential
uniformity of order 4 on distance one from APN functions.

Proof. Let a function F is an APN function. According to the statement 1 a function G coin-
ciding with F in each vectors but one x′ ∈ Fn

2 is differentially 4-uniform.
We shall show that if the hypothesis 1 is true, then for any arbitrary value of the function G

on the vector x′, which is not equal to F (x′), function G is of differential uniformity order equals
4. A necessary and sufficient conduction for this to be true is existence of a vector a ∈ Fn

2 for
which the equality |Ba(G)| = |Ba(G)| is true. This requires that there is a sum G(x′)⊕G(x′⊕a)
belonging to the set Ba(G).

Let G(x′) = v. So the theorem is true if and only if the next statement is true:

∀x′ ∈ Fn
2 ∀v ∈ Fn

2\{F (x′)} ∃a ∈ Fn
2\{0} : v ⊕G(x′ ⊕ a) ∈ Ba(G).

Note that Ba(F ) is equal to Ba(G)∪ {F (x′)⊕F (x′⊕ a)} and for any vector v other than F (x′)
the sum v⊕G(x′⊕ a) belongs Ba(G) if and only if v⊕F (x′⊕ a) belongs to Ba(F ). So we shall
prove the next expression:

∀x′ ∈ Fn
2 ∀v ∈ Fn

2\{F (x′)} ∃a ∈ Fn
2\{0} : v ⊕ F (x′ ⊕ a) ∈ Ba(F ).

Since F (x′) ⊕ F (x′ ⊕ a) belongs to the set Ba(F ) by the definition, then the expression above
is always true for any vector v equals to F (x′). So we can represent the statement to prove as
follows:

∀x′ ∈ Fn
2 ∀v ∈ Fn

2 ∃a ∈ Fn
2\{0} : v ⊕ F (x′ ⊕ a) ∈ Ba(F ).

Let us express the vector v

∀x′ ∈ Fn
2 ∀v ∈ Fn

2 ∃a ∈ Fn
2\{0} : v ∈ Ba(F )⊕ F (x′ ⊕ a).

Now we obviously have that the statement to prove is represented in a convenient way:⋃
a∈Fn

2 ,a6=0

(Ba(F )⊕ F (x′ ⊕ a)) = Fn
2 ∀x′ ∈ Fn

2 .

So there is only function with differential uniformity of order 4 on distance 1 from APN
functions if and only if hypothesis 1 is true.

As the corollary the hypothesis 1 is true if and only if there is no APN functions on distance
1 from an APN function.

Note that there are APN functions on distance 2 from an APN function. For instance
functions F = (0, 0, 1, 2, 1, 4, 2, 4) and G = (0, 0, 1, 2, 1, 4, 4, 2) differ in the two last vectors and
both are APN functions. Finally note that there are not only APN functions correspond to
expression (1). For instance function H = (0, 1, 15, 0, 12, 2, 4, 6, 6, 4, 6, 3, 8, 12, 11, 1) is function
with differential uniformity of order 4 and (1) is true for H.

4 Distance between APN functions of small dimensions

Statement 1. If vectorial Boolean functions F and G are EA-equivalent and (1) is true for F
then (1) is true for G.
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Proof. We shall prove that if functions F and G are EA-equivalent then function G = A1 ◦ F ◦
A2 ⊕A satisfies the equation (1) if and only if F satisfies the equation (1). It is known that

Ba(G) = A1(BA2(a)⊕A2(0)(F ))⊕A1(0)⊕A(a)⊕A(0).

Let consider

G(x′ ⊕ a) = A1(F (A2(x
′ ⊕ a))⊕A(x′ ⊕ a)) =

A1(F (A2(x
′)⊕A2(a)⊕A2(0))⊕A(x′)⊕A(a)⊕A(0))).

Summing and reducing like terms we obtain

Ba(G)⊕G(x′ ⊕ a) =

A1(BA2(a)⊕A2(0)(F )⊕ F (A2(x
′)⊕A2(a)⊕A2(0))⊕A1(0)⊕A(x′) =

A1(Bb(F )⊕ F (y′ ⊕ b))⊕ const.

Remark that since A2 is a permutation we have y′ = A2(x
′) and b = A2(a) ⊕ A2(0) take any

value from Fn
2 if x′ and a take any value from Fn

2 . Also we see that b is equal to zero if and only
if a is equal to zero. Since A1 is a permutation we see that for any y′ of the set Fn

2 we have⋃
b∈Fn

2 ,b 6=0

(Bb(G)⊕ F (y′ ⊕ b)) =
⋃

b∈Fn
2 ,b 6=0

(A1(Bb(F )⊕ F (y′ ⊕ b))⊕ const) =

const⊕
⋃

b∈Fn
2 ,b 6=0

(A1(Bb(F )⊕ F (y′ ⊕ b))) = Fn
2 .

Since by [3] classes of EA-equivalence of APN functions that cover all APN functions up to
dimension 5 and classes of EA-equivalence that cover all quadratic APN functions in dimen-
sion 6 are known, we experimentally obtain the next statement by checking representatives of
corresponding EA-equivalence classes:

Statement 2. Hypothesis 1 is true for APN functions up to dimension 5, for all quadratic APN
functions of dimension 6 and some EA-equivalence classes of APN functions in dimension 7 and
8 from the article [5].

As the corollary there are no APN functions on distance 1 from an another APN function
up to dimension 5.

5 Sum of vectorial Boolean function’s values

In this section we determine requirements for an image of vectorial Boolean function which it
should requires to the set of all derivatives coincides with the whole space Fn

2 .

Lemma 1. Let A,B ⊆ Fn
2 , |A| ≥ 2n−1 and |B| ≥ 2n−1 + 1. Then A⊕B = Fn

2 .

Proof. Since |A| ≥ 2n−1, for all x ∈ Fn
2 it holds |x⊕A| ≥ 2n−1. Suppose (x⊕A)∩B = ∅. Hence

x ⊕ A ⊆ Fn
2\B but |Fn

2\B| ≤ 2n−1 − 1. We obtain a contradiction, therefore for any x ∈ Fn
2 it

holds that (x⊕ A) ∩B 6= ∅ hence for any x ∈ Fn
2 there exist a ∈ A, b ∈ B such that x⊕ a = b,

in other words, x = a⊕ b.
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Theorem 2. Let F : Fn
2 → Fn

2 be a vectorial Boolean function,
1. If 2n−1 < |im(F )| < 2n, then ⋃

a∈Fn
2 ,a 6=0

Ba(F ) = Fn
2 .

2. If |im(F )| = 2n, i.e. F is one-to-one function, then⋃
a∈Fn

2 ,a6=0

Ba(F ) = Fn
2\{0}.

Proof. Let ⋃
a∈Fn

2 ,a 6=0

Ba(F ) = M.

Firstly prove that it holds the equality
⋃

a∈Fn
2
Ba(F ) = Fn

2 and then consider the union without

B0(F ). By the definition,

M ∪B0(F ) =
⋃

a∈Fn
2

Ba(F ) =
⋃

x,a∈Fn
2

{F (x)⊕ F (x⊕ a)}.

Since the union over all x, a ∈ Fn
2 is considered, then for every x sum x⊕ a can take any value

from Fn
2 and that is why this union is equal to the sum of function’s images, and by the Lemma

is equal to Fn
2 : ⋃

x,a∈Fn
2

{F (x)⊕ F (x⊕ a)} = im(F )⊕ im(F ) = Fn
2 .

Now we remove B0(F ) from the union. We can do it because B0(F ) = F (x) ⊕ F (x ⊕ 0) is
zero for all x. The set M does not contain zero if and only if for any x, a ∈ Fn

2 such that a is
not equal to zero, it follows that F (x) 6= F (x ⊕ a), which is equivalent that F is a one-to-one
function. From the other hand, if F is not one-to-one function then for any x ∈ Fn

2 there exists
non-zero vector a ∈ Fn

2 such that F (x) = F (x⊕ a) and zero is contained in M .

The following example shows us that the condition on cardinality of function’s image cannot
be reduced. There is a function F such that |im(F )| = 2n−1 and

⋃
a∈Fn

2 ,a6=0Ba(F ) 6= Fn
2 . For

example APN function F : F3
2 → F3

2 given by the following vector of values (0, 0, 1, 2, 1, 4, 2, 4).
In this case |im(F )| = 22 and ⋃

a∈Fn
2 ,a 6=0

Ba(F ) = Fn
2\{7}.
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