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Abstract. We provide further evidence that implementing software countermeasures against timing attacks
is a non-trivial task and requires domain-specific software development processes: we report an implementation
bug in the S2N library, recently released by AWS Labs. This bug (now fixed) allowed bypassing the balancing
countermeasures against timing attacks deployed in the implementation of the MAC-then-Encode-then-CBC-
Encrypt (MEE-CBC) component, creating a timing side-channel similar to that exploited by Lucky 13.
Although such an attack could only be launched when the MEE-CBC component is used in isolation — Albrecht
and Paterson recently confirmed in independent work that S2N’s second line of defence provides adequate
mitigation — its existence shows that conventional software validation processes are not being effective in this
domain. To solve this problem, we define a methodology for proving security of implementations in the presence
of timing attackers: first, prove black-bozx security of an algorithmic description of a cryptographic construction;
then, establish functional correctness of an implementation with respect to the algorithmic description; and
finally, prove that the implementation is leakage secure.

We present a proof-of-concept application of our methodology to MEE-CBC, bringing together three different
formal verification tools to produce an assembly implementation of this construction that is verifiably secure
against adversaries with access to some timing leakage. Our methodology subsumes previous work connecting
provable security and side-channel analysis at the implementation level, and supports the verification of a
much larger case study. Our case study itself provides the first provable security validation of complex timing
countermeasures deployed, for example, in OpenSSL.

1 Introduction

There is an uncomfortable gap between provable security and practical implementations. Provable se-
curity gives strong guarantees that a cryptographic construction is secure against efficient black-box ad-
versaries. Yet, implementations of provably secure constructions may be vulnerable to practical attacks,
due to implementation errors or side-channels. The tension between provable security and cryptographic
engineering is illustrated by examples such as the MAC-then-Encode-then-CBC-Encrypt construction
(MEE-CBC), which is well-understood from the perspective of provable security [24,29], but whose im-
plementation has been the source of several practical attacks in TLS implementations. These security
breaks are, in the case of MEE-CBC, due to vulnerable implementations providing the adversary with
padding oracles, either through error messages [32], or through non-functional behaviours such as tim-
ing [19,2]. These examples illustrate two shortcomings of provable security when it comes to dealing with
implementations. First, the computational model relies on an idealized execution model, and the algo-
rithmic descriptions used in proofs elide many potentially critical details; these details must be filled by
implementors, who may not have the specialist knowledge required to make the right decision. Second,
attackers targeting real-world platforms may exploit leakage via physical side-channels to break a system,
which is absent in the black-box abstractions in which proofs are obtained.

These shortcomings are addressed independently by real-world cryptography and secure coding method-
ologies, both of which have their own limitations. Real-world cryptography [20] is a branch of provable



security that incorporates lower-level system features in security notions and proofs (for example, precise
error messages or message fragmentation). Real-world cryptography is a valuable tool for analyzing the
security of real-world protocols such as TLS or SSH, but it is still giving its first steps in addressing
side-channels [18] and, until now, it has remained disconnected from actual implementations. Secure
coding methodologies effectively mitigate side-channel leakage; for instance, the constant-time method-
ology [15,23] is consensual among practitioners as a means to ensure a good level of protection against
timing and cache-timing attacks. However, a rigorous justification of such techniques and their appli-
cation is lacking and they are disconnected from provable security, leaving room for subtle undetected
vulnerabilities even in carefully tailored implementations.

In this paper we show how the real-world crypto approach can be extended to formally capture the
guarantees that implementors empirically pursue using secure coding techniques.

1.1 Owur Contributions

Recent high-visibility attacks like Lucky 13 [2] have shown that timing leakage can be exploited in practice
to break the security of pervasively used protocols such as TLS, and have led practitioners to pay renewed
attention to software countermeasures against timing attacks. Two prominent examples of this are the
recent reimplementation of MEE-CBC decryption in OpenSSL [26], which enforces a constant-time coding
policy as mitigation for the Lucky 13 attack, and the defense in depth mitigation strategy adopted by
Amazon Web Services - Labs (AWS-Labs) in a new implementation of TLS (called S2N), where various
fuzzing- and balancing-based timing countermeasures are combined to reduce the amount of information
leaked through timing. However, the secure-coding efforts of cryptography practitioners are validated
using standard software engineering techniques such as testing and code reviews, which are not designed
to enforce provable correctness or security guarantees.

As a first contribution and motivation for our work, we provide new evidence of this latent problem
by recounting the story of Amazon’s recently released S2N library, to which we add a new chapter.

NEW EVIDENCE IN S2N. In June 2015, AWS-Labs made public a new open-source implementation of the
TLS protocol call S2N [31]. The library is designed to be “small, fast, with simplicity as a priority”. By
excluding rarely used options and extensions, the implementation is around only 6K lines of code. The
authors also report extensive validation, including three external security evaluations and penetration
tests. The library’s source code and documentation are all publicly available from the S2N GitHub
repository.®

Very recently, Albrecht and Paterson [1] presented a detailed analysis of the countermeasures against
timing attacks in the original release of S2N, in light of the lessons learned in the aftermath of the Lucky
13 attack [2]. In their study, these authors found that the implementation of the MEE-CBC component
was not properly balanced, and exposed a timing attack vector that was exploitable using Lucky 13-
like techniques. Furthermore, they found that the second layer of countermeasures that randomizes error
reporting delays was insufficient to remove the attack vector. Intuitively, the granularity of the randomized
delays was large enough in comparison to the data-dependent timing variations generated by the MEE-
CBC component that they could be ‘filtered out’ leaving an exploitable side-channel. As a response to
these findings, the S2N implementation was patched,® and both layers of countermeasures were improved
to remove the attack vector.

5 https://github.com/awslabs/s2n
5 See the details of the applied fixes in https://github.com/awslabs/s2n/commit/4d3729.



Unfortunately, this was not the end of the story. In this paper we report an implementation bug in
this “fixed” version of the library, as well as a timing attack akin to Lucky 13 that bypassed once more the
branch-balancing timing countermeasures deployed in the MEE-CBC implementation of this library. This
implementation bug was subtly hidden in the implementation of the timing countermeasures themselves,
which were added as mitigation for the attack reported by Albrecht and Paterson [1]. We show that the
bug rendered the countermeasure code in the MEE-CBC component totally innefective by presenting a
timing attack that breaked the MEE-CBC implementation when no additional timing countermeasures
were present.

The implementation bug and timing attack were reported to AWS-Labs on September 4, 2015. The
problem was promptly acknowledged and the current head revision of the official S2N repository” has been
patched to remove the bug and potential attack vector from the MEE-CBC implementation. Subsequent
discussions with AWS-Labs and the authors of [1] were conducted to assess the impact of our attack
on the full S2N stack. The conclusion was that S2N’s second line of defence (the finer grained error
reporting delay randomization mechanism validated by Albrecht and Paterson) is sufficient to thwart
potential exploits of the timing side-channel that was created by the bug. This means that systems
relying on unpatched but complete versions of the library are safe. On the other hand, any system relying
directly on the unpatched MEE-CBC implementation, without the global randomized delay layer, will
be vulnerable to our attack and should upgrade to the latest version.

THE NEED FOR FORMAL VALIDATION. The sequence of events reported above® shows that timing coun-
termeasures are extremely hard to get right and very hard to validate. Our view is that implementors
currently designing and deploying countermeasures against side-channel attacks face similar problems to
those that were faced by the designers of cryptographic primitives and protocols before the emergence
of provable security. On the one hand, we lack a methodology to rigorously characterize and prove the
soundness of existing designs such as the ones deployed, for example, in openSSL; on the other hand,
we have no way of assessing the soundness of new designs, such as those adopted in S2N, except via
empirical validation and trial-and-error. This leads us to the following natural question: can we bring
the mathematical guarantees of provable security to cryptographic implementations? We take two steps
towards answering this question.

A Case STuDY: CONSTANT-TIME MEE-CBC. Our second and main contribution is the first formal
and machine-checked proof of security for an x86 implementation of MEE-CBC in an attack model
that includes control-flow and cache-timing channels. In particular, our case study validates the style
of countermeasures against timing attacks currently deployed in the OpenSSL implementation of MEE-
CBC. We achieve this result by combining three state-of-the-art formal verification tools: i. we rely on
EasyCrypt [8,7] to formalize a specification of MEE-CBC and some of the known provable security results
for this construction;’ ii. we use Frama-C to establish a functional equivalence result between EasyCrypt
specifications and C implementations; and iii. we apply the CompCert certified compiler [27] and the
certified information-flow type-system from [5] to guarantee that the compiled implementation does not

" https://github.com/awslabs/s2n

8 The very interesting blog post in http://blogs.aws.amazon.com/security/post/TxLZP6HNAYWBQ6/s2n-and-Lucky-13
analyses these events from the perspective of the AWS Labs development team.

9 To formalize all known results for MEE-CBC would be beyond the scope of this paper, and we pragmatically assume that
our EasyCrypt specification of the construction inherits all the security properties that have been proved by other authors
in the literature, albeit not machine checked. In other words, in addition to the properties we formalized, we assume that
our MEE-CBC specification satisfies the standard black-box notions of security for authenticated encryption as proved,
for example, in [29]



leak secret information through the channels considered, and that the compiled x86 code is correct with
respect to the EasyCrypt specification proved secure initially.

A FRAMEWORK FOR IMPLEMENTATION SECURITY. To tie these verification results together, we intro-
duce — as our third contribution — a framework of definitions and theorems that abstracts the details of
the case study. This framework yields a general methodology for proving security properties of low-level
implementations in the presence of adversaries that may observe leakage. This methodology relies on
separating three different concerns: 1i. black-box specification security, which establishes the computa-
tional security of a functional specification (here one can adopt the real-world cryptography approach);
ii. implementation correctness, which establishes that the considered implementation behaves, as a black-
box, exactly like its functional specification; and iii. leakage security, which establishes that the leakage
due to the execution of the implementation code in some given leakage model is independent from its
secret inputs. Our main theorem, which is proven using the previous methodology, establishes that our
x86 implementation retains the black-box security properties of the MEE-CBC specification, i.e., it is a
secure authenticated encryption scheme, in the presence of strong timing attacker.

We insist that we do not claim to formally or empirically justify the validity of any particular leakage
model: for this we rely on the wisdom of practitioners. What we do provide is a means to take a well-
accepted leakage model, and separately and formally verify, through leakage security, that a concrete
deployment of a particular countermeasure in a given implementation does in fact guarantee the absence
of leakage in the chosen leakage model.

1.2 Outline

In Section 2, we describe the MEE-CBC construction and informally discuss its security at specification-
and implementation-level. We then present our attack on AWS-Labs” MEE-CBC implementation (Sec-
tion 3), motivating the definitions for implementation-level security notions and the statement of our
main theorem (Section 4). In Section 5, we introduce our methodology, before detailing its application to
MEE-CBC in Section 6. We then present and discuss some benchmarking results in Section 7. Finally,
we discuss potential extensions to our framework not illustrated by our case study (Section 8) and de-
scribe further related work in Section 9. We conclude the paper and discuss directions for future work in
Section 10.

2 Case study: MEE-CBC

MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) is an instance of the MAC-then-Encrypt generic con-
struction that combines a block cipher used in CBC mode with some padding and a MAC scheme in order
to obtain an authenticated encryption scheme. The details of the construction are presented in Figure 1.
We consider the specific instantiation of the construction that is currently most widely used within TLS:
i. A MAC tag of length tlen is computed over the TLS record header hdr, a sequence number seq and the
payload pld. The length of the authenticated string is therefore the length of the payload plus a small
and fixed number of bytes. Several MAC schemes can be used to authenticate this message, but we only
consider HMAC-SHA256. ii. The CBC-encrypted message m comprises the payload pld concatenated with
the MAC tag (the sequence number is not transmitted and the header is transmitted in the clear). iii. The
padding added to m comprises plen bytes of value plen — 1, where plen may be any value in the range
[1..256], such that plen + |m| is a multiple of the cipher’s block size. iv. We use AES-128 as block cipher,
which fixes a 16-byte block size.



B B: aee Brn-1 Bn

V) o) ) ) e

AES AES AES AES AES
v v v
1\ Ci Ce Cr-1 Cn
Enc(hdr, pld, seq, plen, keyg,c, keypmac) Dec(hdr, ¢, seq, keyg,., keypac)
If plen < 1 or plen > 256: return L If |c| mod 16 # 0 return L
If (|pld| + tlen + plen) mod 16 # 0: If |¢| < tlen + 17 return L
return L (co,.-.,cn)  part(c, 16)
tag <— MAC(hdr||pld||seq, keypmac) For i € [1..n]:
m < pld||tag m; + AES ! (c;, keygn) @ Cio1
padb <+ byte(plen — 1) m < mq|[ma||...||my
For i € [1..plen]: (b,...,bg) < part(m,8)
m < m||padb plen < by +1
(m1,...,mp)  part(m, 16) For ¢ € [1..plen — 1]:
iv<s${0,...,255}16 If by_; # by return L
co + iv pld <= my||...|[M¢_plen—tlen
For i € [1"”]: tag « mlfplenftlenJrlH te Hméfplen
c; <= AES(m; @ c;—1, keygpc) tag’ < MAC(hdr||pld||seq, keypac)
c + coller]]---len If tag # tag’ return L
Return ¢ Return pld

Fig. 1. The MEE-CBC construction. Lengths and block sizes are expressed in bytes. byte denotes the encoding of an integer
value into 8 bits. part(m, k) denotes the partitioning of a sequence of bytes m into blocks of k bytes each.

The details of the MAC computation are also important for a clear presentation of our first result, so
we also include a detailed description of the HMAC algorithm in Figure 2. We consider a hash function
such as SHA-256, which follows the Merkle-Damgéard paradigm: a compression function HComp is iterated
to gradually combine the already computed hash value with a new 64-byte message block (hash values
are tlen bytes long). We specify the MAC computation as it is often implemented, with a separate state
initialization algorithm Initialize, a buffering Update routine that iteratively adds data to the initialized
HMAC computation without explicit concatenation, and a Finalize routine that signals the end of data
processing and triggers the final computations that produce the actual tag value. For simplicity, we assume
all strings are byte-aligned and the MAC key is 0-padded to the hash-block length (64-bytes here). At
the high level, the construction computes

H((keymac © opad) || H((keymac © ipad) || hdr [[seq || pld)) .



Signaled in Figure 2 is an important detail at this point of the operation of Finalize: depending on the
length of the data remaining in the buffer from the last Update call, the call to Finalize may trigger
either 1 or 2 calls to the hash compression function to complete the inner hash computation, due to the
HMAC-specific padding format. The HMAC computation is concluded by calculating the outer hash,
which always takes one final compression function invocation.

2 HComp
on Finalize ey | seq| R -

1 HComp ]
on Finalize hdr|seq| pid -

Amm

Initialize(keypac) Finalize(st)

h HComp(iv, keyMAc @ ipad) (buﬂ:er’f7 h’tag) +— st

tag < HComp(iv, keypac @ opad) £ < £+ |buffer| x 8

buffer <— €; £+ 64«8 buffer < buffer||byte(10000000b)

st < (buffer, £, h, tag) While |buffer| mod 64 # 56:

Return st buffer < buffer||byte(0)
buffer « buffer||encode(£)

Update(m, st) (buffery, ..., buffer,) < part(buffer, 64)

(buffer, £, h, tag) < st For i € [1..n]: // n can be 1 or 2

m <+ buffer||m h < HComp(h, buffer;)

(m1,...,myp) < part(m, 64) h < h||byte(10000000b)

If Imy,| < 64: buffer <~ mp; n<+n—1 For i € [1..56 — tlen — 1]:

Else: buffer < ¢ h < h||byte(0)

For i € [1..n]: h <~ HComp(h, m;) h < h|lencode(64 * 8 + tlen * 8)

L+ L+64xn*8 tag + HComp(tag, h)

st « (buffer, £, h, tag) Return tag

Return st

Fig. 2. The HMAC construction. Lengths and block sizes are expressed in bytes. encode denotes the encoding of an integer
value into 8 bytes. opad and ipad denote constant 64-byte strings, whereas iv denotes a constant tlen-byte string, all are fixed
by the HMAC specification.

INFORMAL SECURITY DISCUSSION. The theoretical security of MEE-CBC has received a lot of attention
in the past, due to its high-profile usage in the SSL/TLS protocol. Although it is well-known that the
MAC-then-Encrypt construction does not generically yield a secure authenticated encryption scheme [10],
the particular instantiation used in TLS has been proven secure [24,28,29]. The most relevant result for
this paper is that by Paterson et al. [29]. Crucially, their high-level proof explicitly clarifies the need for
the implementation to not reveal, in any way, which of the padding or MAC check failed on decryption



failures. This is exactly the kind of padding oracles exploited in practical attacks against MEE-CBC such
as Lucky 13 [2].

After the disclosure of the Lucky 13 [2] attack, significant effort was invested into identifying all poten-
tial sources of timing leakage in the MEE-CBC decryption algorithm. The implementation subsequently
incorporated into OpenSSL, for example, deploys constant-time countermeasures that guarantee the fol-
lowing behaviours [26]: i. removing the padding and checking its well-formedness occurs in constant-time;
ii. the MAC of the unpadded message is always computed, even for bad padding; iii. the MAC computa-
tion involves the same number of calls to the underlying compression function regardless of the number
of hash input blocks in the decoded message, and regardless of the length of the final hash block (which
may cause an additional block to be computed due to the internal Merkle-Damgérd length padding);
and iv. the transmitted MAC is compared to the computed MAC in constant-time (the transmitted
MAC’s location in memory, which may be leaked through the timing of memory accesses, depends on
the plaintext length). Constant-time, here and in the rest of this paper, is used to mean that the trace of
program points and memory addresses accessed during the execution is independent from the initial value
of secret inputs. In particular, we note that the OpenSSL MEE-CBC implementation is not constant time
following this definition: the underlying AES implementation uses look-up table optimizations that make
secret-dependent data memory accesses and may open the way to cache-timing attacks.

OUR IMPLEMENTATION. The main result of this paper is a security theorem for an x86 assembly imple-
mentation of MEE-CBC (MEE-CBCygg). The implementation is compiled using CompCert from standard
C code that replicates the countermeasures against timing attacks currently implemented in the OpenSSL
library [26]. We do not use the OpenSSL code directly because the code style of the library (and in partic-
ular its lack of modularity) makes it a difficult target for verification. Furthermore, we wish to fully prove
constant-time security, which we have seen is not achieved by OpenSSL. However, a large part of the code
we verify is existing code, taken from the NaCl library [16] without change (for AES, SHA256 and CBC
mode), or modified to include the necessary countermeasures (HMAC, padding and MEE composition).
Our C code is composed of the following modules, explicitly named for later reference: i. AES128nac
contains the NaCl implementation of AES128; ii. HMACSHA256p,¢) contains a version of the NaCl imple-
mentation of HMAC-SHA256 extended with timing countermeasures mimicking those described in [26];
and iii. MEE-CBC¢ contains an implementation of MEE-CBC using AES128y,c) and HMACSHA256p ¢
We do not include the code in the paper due to space constraints. However, we include in Figure 8 (Ap-
pendix A) a representative snippet of the constant-time secure coding style which implements PKCS#7
decoding.

As we prove later in the paper, a strict adherence to this coding style is indeed sufficient to guarantee
security against attackers that, in addition to input/output interaction with the MEE-CBC implementa-
tion, also obtain full traces of program counter and memory accesses performed by the implementation.
However, not all TLS implementations have adopted a strict adherence to constant-time coding policies
in the aftermath of the Lucky 13 attack. We now present the case of Amazon’s S2N library, discussing
their choice of countermeasures, and describing a bug in their implementation that leads to an attack.

3 Breaking the MEE-CBC implementation in S2N

IMPLEMENTATION AND COUNTERMEASURES. The S2N code for MEE-CBC decryption is given in Figure 9
(Appendix B). Although parts of the computation are written in the constant-time style, such as the
padding validation on lines 45 to 49, there are many (intentional) deviations from a strict constant-
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Fig. 3. Verification time (in clock cycles) for successful and unsuccessful verifications, for a record length of 288 and padding
varying from 1 to 255 bytes.

time coding policy. For example, no attempt is made to de-correlate memory accesses from the sensitive
padding_length value. As an alternative, the code includes countermeasures that intend to balance the
execution time of secret-dependent conditional branches that might lead to significant variability in the
execution time. In short, the goal of these countermeasures is to ensure that the total number of calls to
the hash compression function is always the same, independently of the actual padding length. These are
visible in two points in the code where the MAC is being computed: i. line 26 contains a call to a special
Finalize routine and ii. line 31 contains a dummy call to the Update routine.

A BUG. The bug we found resides in the special Finalize routine, which we reproduce in Figure 10
(Appendix B). The comments on lines 19-23 reveal a subtle implementation error: the padding introduced
by SHA-256 includes 8 bytes for length encoding plus one mandatory 10000000b byte that signals the
padding start. This means that at least 9 bytes of space are needed in a hash block to encode the padding,
and not 8 as checked by the implementation. This oversight means that the dummy compression function
invocation on line 30 is invoked unnecessarily for padding values that trigger this corner case (there are
exactly 4 such padding values, which can be easily inferred from the length of the encrypted record).

Figure 3 shows the execution time of S2N’s MEE-CBC decryption routine as a function of padding
length. The timing differences, correspond exacly to one invocation of the compression function (or ~300
clock cycles, 10% variation on a 300-byte record). The leakage the bug produces is similar in size to that
exploited by AlFardan and Paterson [2] to recover plaintexts. We have implemented a padding-oracle-
style attack on the MEE-CBC decryption routine to recover single plaintext bytes from a ciphertext: one
simply measures the decryption time to check if the recovered padding length causes the bug to activate
and proceeds by trial and error.!® The attack can be extended to full plaintext recovery using the same
techniques reported in [2].

DiscussioN. We already discussed the real-world impact of our attack and our disclosure interaction
with AWS-Labs in the introduction of this paper. In short, the bug was promptly patched and it was
found not to represent a risk to S2N users due to the deployment of additional timing countermeasures
at the error reporting stage, elsewhere in the S2N software stack. However, we insist that for the purpose
of this paper it is not the real-world impact of our attack that matters, but the software bug that gave
rise to it in the first place. Indeed the existence of such a programming bug and the fact that it remained
undetected through AWS Labs’ code validation process (and in particular despite unit testing specifically
designed to detect timing side-channels) reveal that there is a need for a formal framework in which to

10 Plaintext recovery is easier than in Lucky 13, because leakage occurs whether or not the padding string is correct. This
is visible in Figure 3 as synchronized spikes on both graphs.



rigorously prove that an implementation is secure against timing attacks. This is what we set out to do
in the rest of the paper.

4 Security definitions and main theorem

After a brief reminder of the syntax and security notions for secret key encryption relevant to our case
study, we introduce and discuss the corresponding implementation-level security notions for the constant-
time leakage model and state our main theorem. Cryptographic implementations are often hardwired at
a particular security level, which means that asymptotic security notions are not adequate to capture
the provided security guarantees. We therefore omit the security parameter in all our definitions. For
simplicity we also keep the running time of algorithms implicit in our notations, although we take care
to account for it in our security proofs and show that there is no hidden slackness in our reductions.

4.1 Secret Key Encryption

We recall that a secret-key encryption scheme N = (Gen, Enc, Dec) is specified as three algorithms: i. a
probabilistic key generation algorithm Gen() that returns a secret key SK; ii. a probabilistic encryption
algorithm Enc(m, SK;r) that returns a ciphertext c on input a message m, the secret key SK, and some
random coins r; and iii. a deterministic decryption algorithm Dec(c, SK) that returns either a message m
or a failure symbol L on input a ciphertext c and secret key SK. We denote the set of valid messages with
MsgSp and adopt standard notions of correctness, confidentiality (IND$-CPA) and integrity (INT-PTXT
and INT-CTXT) for authenticated symmetric encryption schemes. We include formal definitions of these
notions in Appendix D.
Our goal in the rest of this section is to adapt these standard notions to formally capture implementation-

level security. In particular, we wish to give the adversary the ability to observe the leakage produced by
the computation of its oracle queries. We first give generic definitions for some core concepts.

4.2 Implementation: languages, leakage and generation

For the sake of generality, our definitions abstract the concrete implementation languages and leakage
models adopted in our case study. We later instantiate these definitions with a black-box security model
for C implementations and a timing leakage model for x86 assembly implementations.

LANGUAGE, LEAKAGE AND MACHINE. Given an implementation language £, we consider a machine M
that animates its semantics. Such a machine takes as input a program P written in £, an input ¢ for P,
and some randomness r and outputs both the result o of evaluating P with ¢ and r, and the leakage ¢
produced by the evaluation. We use the following notation for this operation o <— M(P,i;r)..,. We make
the assumption that the machine is deterministic, so that all randomness required to execute programs
is given by the input r. However, our security experiments are probabilistic, and we write 0 <—s M(P,7).. ¢
to denote the probabilistic computation that first samples the random coins r that must be passed as
randomness input of P, and then runs M(P,;r). This approach agrees with the view that the problem
of randomness generation is orthogonal to the one of secure implementation [16]. We discuss this further
in Section 8.

We note that the definition of Ml makes three implicit assumptions. First, the semantics of a program
must always be defined, since M always returns a result; termination issues can be resolved easily by
aborting computations after a fixed number of steps. Second, our view of Ml does not allow an adversary



to influence a program’s execution other than through its queries. Finally, our model implies that the
semantics of £ can be equipped with meaningful notions of leakage. In the context of our use case, we adopt
the common view of practical cryptography that timing leakage can be captured via the code-memory
and data-memory accesses performed while executing a program. These can be sensibly formalized over
assembly implementations, but not over higher-level implementations (e.g., over C implementations), not
least because there is no guarantee that optimizing compilers do not introduce leakage. For this reason,
in our case study, we consider the following two implementation models:
— a C-level model using a machine M% (or simply M) that animates the C language semantics with
no leakage;
— an assembly-level model using a machine M)EJG that animates (a subset of) x86 assembly language,
and produces leakage traces in the constant-time leakage model as detailed below.
In both languages, we adopt the semantic definitions as formalized in the CompCert certified compiler.

CONSTANT-TIME LEAKAGE TRACES. Formally, we capture the constant-time leakage model by assuming
that each semantic step extends the (initially empty) leakage trace with a pair containing: i. the program
point corresponding to the statement being executed; and ii. the (ordered) sequence of memory accesses
performed during the execution step. We specify when this particular leakage model is used by annotating
the corresponding notion with the symbol CT.

4.3 Authenticated encryption in the implementation model

Given a language £ and a (potentially leaking) machine M animating its semantics, we now define M-
correctness, M-IND$-CPA and M-INT-PTXT security for £-implementations of SKE schemes in the leakage
model defined by M. In what follows, we will let 1* = (Gen*, Enc*, Dec*) be an SKE implementation in
language L.

SKE IMPLEMENTATION CORRECTNESS. We say that [M* is M-correct if, for all m € MsgSp, random coins
Fgens enc, and SK = M(Gen™;rgen), we have that

M(Dec*, M(Enc*, m, SK; fenc), SK) = m.

SKE IMPLEMENTATION SECURITY. The M-IND$-CPA advantage of an adversary A against [1* and public
length function ¢ as the following (concrete) probability

AdvTITP = |pr [MEINDS-CPAZ. ,(Real) = true] — Pr[M-IND$-CPA7. ,(Ideal) = true]|,

where implementation-level game M-IND$-CPA is shown in Figure 4. Here, public length function ¢ is
used to capture the fact that SKEs may partially hide the length of a message. If ¢ is the identity function
or is efficiently invertible, then the message length is trivially leaked by the ciphertext. In the case of our
MEE-CBC specification, for example, the message length is revealed only up to AES block alignment.
We observe that in this refinement of the IND$-CPA security notion for implementations, the adversary
may learn information about the secrets via the leakage produced by the decryption oracle Dec*, even
if its functional input-output behaviour reveals nothing. In particular, in a black-box adversary model
where leakage traces are always empty, the Dec® oracle can be perfeclty implemented by the procedure
that ignores its argument and returns (L, €), allowing us to recover the standard computational security
experiment for IND$-CPA. On the other hand, in models where leakage traces are not always empty, the



Game M—IND$—CPA|-|A*A¢(I;): proc. RoR(m): proc. Dec(c):

SK s M(Gen™)..¢, W(Enc*m SK) e, m < M(Dec*, ¢, SK)-.¢,
b s AReR.Dec(g) If (b = Ideal) Then c <3 {0,1}¢(mD Return (L, £q)
Return (V' =b) Return (c, 4c)

Fig. 4. M-IND$-CPA experiment.

Game M-INT-PTXTH.: proc. Enc(m): proc. Ver(c):

List < [J; win < L c<+3$ M(Enc*, m,SK)..p, m < M(Dec*, c, SK)..¢,

SK s M(Gen™)..p, List <— m : List win <— win vV (m # L A m ¢ List)
AFEne,Ver(y ) Return (c, £e) Return (m # L,¢4)

Return win

Fig. 5. M-INT-PTXT experiment.

adversary is given the ability to use the decryption oracle with invalid ciphertexts and recover information
through its leakage output.

We extend the standard INT-PTXT security experiment in a similar way and define the M-INT-PTXT
advantage of an adversary A against N* as the following (concrete) probability:

Advpo P = pr [MEINT-PTXTA. () = true]

where implementation-level game M-INT-PTXT is shown in Figure 5.
We similarly “lift” INT-CTXT, PRP (pseudorandomness of a permutation) and UF-CMA (existential

MAC unforgeability) security (as shown in Appendix D) experiments and advantages to implementations.
This allows us to state our main theorem.

4.4 Main Theorem

The proof of Theorem 1 is fully machine-checked. However, foregoing machine-checking of the specifica-
tion’s security theorems allow us to strengthen the results we obtain on the final implementations. We
discuss this further after we present our proof strategy.

Theorem 1 (CT security of MEE-CBCys6). MEE-CBCysg is MSgg-correct and provides MS3s-IND$-CPA

and M 6-INT-PTXT security if the underlying components AES128naci and HMACSHA256N,c) are black-

boz secure as a PRP and a MAC, respectively. More precisely, let ¢(i) = [(i +1)/16] + 3, then

— For any MSJ-IND$-CPA adversary AP? that makes at most q queries to its RoR oracle, each of
length at most n octets, there exists an (explicitly constructed) M%—IND$—CPA adversary BP'P that
makes at most [(n+ 1)/16] + 2 queries to its forward oracle and such that

+1
86 -ind$-cpa -prp (q : ([n -‘ + 2))
Adv MESEO CBC o, APs = AdVAIECSlZSN e T2 2128

— For any M 6-INT-PTXT adversary AP™* that makes at most q querzes to its Enc oracle and qy
queries to zts Ver oracle, there exists an (explicitly constructed) M -UF-CMA adversary B™ that
makes at most qp queries to its Tag oracle and qy queries to its Ver oracle and such that

XSG -int-ptxt -uf-cma
AdvEE. CBCgg, APDE = AdVHMACSHA256Nac|,BC'"a ‘



In addition, the running time of our constructed adversaries is essentially that of running the orig-
inal adversary plus the time it takes to emulate the leakage of the x86 implementations using dummy
executions in machine Mygg. Under reasonable assumptions on the efficiency of Mygg, this will corre-
spond to an overhead that is linear in the combined inputs provided by an adversary to its oracles (the
implementations are proven to run in constant time under the semantics of £ when these inputs are
fixed).

Note that the security assumptions we make are on C implementations of AES (AES128y,c)) and
HMAC-SHA256 (HMACSHA256N4¢). More importantly, they are made in a black-box model of security
where the adversary gets empty leakage traces.

The proof of Theorem 1 is detailed in Section 6 and relies on the general framework we now intro-
duce. Rather than reasoning directly on the semantics of the executable x86 program (and placing our
assumptions on objects that may not be amenable to inspection), we choose to prove complex security
properties on a clear and simple functional specification, and show that each of the refinement steps on
the way to an x86 assembly executable preserves this property, or even augments it in some way.

5 Formal framework and connection to PL techniques

Our formal proof of implementation security follows from a set of conditions on the software development
process. We therefore introduce the notion of an implementation generation procedure.

IMPLEMENTATION GENERATION. An implementation generation procedure C¥17%2 is a mapping from
specifications in language £; to implementations in language Lo. For example, in our use case, the top-
level specification language is the expression language Lyc of EasyCrypt (a polymorphic and higher-order
A-calculus) and the overall implementation generation procedure CXc=£x86 is performed by a verified
manual refinement of the specification into C followed by compilation to x86 assembly using CompCert
(here, Lyg6 is the subset of x86 assembly supported by CompCert).

We now introduce two key notions for proving our main result: correct implementation generation
and leakage security, which we relate to standard notions in the domain of programming language theory.
This enables us to rely on existing formal verification methods and tools to derive intermediate results
that are sufficient to prove our main theorem. In our definitions we consider two arbitrary languages £
and L9, a (potentially leaking) machine M animating the semantics of the latter, and an implementation
generation procedure C£1 %2, In this section, £; and Ly are omitted when denoting the implementation
generation procedure (simply writing C instead). In the rest of the paper, we also omit them when clear
from context.

CORRECT IMPLEMENTATION GENERATION. Intuitively, the minimum requirement for an implementation
generation procedure is that it preserves the input-output functionality of the specification. We capture
this in the following definition.

Definition 1 (Correct implementation generation). The implementation generation procedure C is
correct if, for every adversary A and primitive specification M, the game in Figure 6 always returns true.

For the programming languages we are considering (deterministic, I/O-free languages) this notion of
implementation generation correctness is equivalent to the standard language-based notion of simulation,
and its specialization as semantic preservation when associated with general-purpose compilers. A notable
case of this is CompCert [27] for which this property is formally proven in Coq. Similarly, as we discuss in
Section 6, a manual refinement process can be turned into a correct implementation generation process



Game Corrifnc(): proc. Eval(k,i,r):

bad « false o < N[k](3;r)
n* « c(n) o'« M(M*[k],4;1)we
AEval(I—I*) If o # 0/ then bad = true

Return — bad

Fig. 6. Game defining correct implementation generation. For compactness, we use notation M[k] (resp. M*[k]) for k € {1, 2,3}
to denote the k-th algorithm in scheme N (resp. implementation M*), corresponding to key generation (1), encryption (2)
and decryption (3).

by requiring a total functional correctness proof. This is sufficient to guarantee black-bor implementation
security. However, it is not sufficient in general to guarantee implementation security in the presence of
leakage.

LEAKAGE SECURITY. In order to relate the security of implementations to that of black-box specifications,
we establish that leakage does not depend on secret inputs. We capture this intuition via the notion of
leakage security, which imposes that all the leakage produced by the machine M for an implementation
is benign.

Interestingly from the point of view of formal verification, leakage security is naturally related to the
standard notion of non-interference [21]. In its simplest form, non-interference is formulated by partition-
ing the memory of a program into high-security (or secret) and low-security (or public) parts and stating
that two executions that start in states that agree on their low-security partitions end in states that agree
on their low-security partitions. Formally, we only consider the information-flow into the leakage due to
each algorithm, which leads to the following non-interference notion, where 7 is used to define the public
part of the inputs.'!

Definition 2 ((M, 7)-non-interference). Let P be a program in Lo and T be a projection function
on P’s inputs. Then, P is (M, T)-non-interferent if, for any two executions o < M(P,i;r)..; and o' +
M(P,i';t") . ¢, we have 7(P,i) =7(P,i') = £=1".

Intuitively, (M, 7)-non-interference labels the leakage ¢ as a public output (which must be proved inde-
pendent of secret information), whereas 7 is used to specify which inputs of P are considered public.
By extension, those inputs that are not revealed by 7 are considered secret, and are not constrained in
any way during either executions. Note that the leakage produced by a (M, 7)-non-interferent program
for some input 7 can be predicted given only the public information revealed by 7(P,4): one can simply
choose the remaining part of the input arbitrarily, constructing some input ¢’ such that 7(P,i) = 7(P, ).
In this case, (M, 7)-non-interference guarantees that the leakage traces produced by M when executing
P on i and 7' are equal.

We now specialize this notion of leakage security to symmetric encryption, in particular specializing 7
to capture as public the inputs to the algorithms she has control over through its various oracle interfaces
(in INDS$-CPA, INT-PTXT and INT-CTXT).

Definition 3 (Leakage-secure implementation generation for SKE). Let 7skg be the projection
function defined as follows:

Tske(Gen) = ¢ 7ske(Enc, key, m) = ([key|, [m]) 7ske(Dec, key, ¢) = (|key|, c)

' For simplicity, the length of random input is assumed to be given by the implementation itself.



Then, implementation generation procedure C produces M-leakage-secure implementations for SKE if, for
all SKE specifications I written in L1, we have that the generated Lo implementation (Gen™, Enc*, Dec*) =
C(IT) is (M, Tskg)-non-interferent.

PUTTING THE PIECES TOGETHER. The following lemma, shows that applying a correct and leakage secure
implementation generation procedure to a black-box secure SKE specification is sufficient to guarantee
implementation security.

Theorem 2. Let C be correct and produce M-leakage-secure implementations. Then, for all SKE scheme
M that is correct, IND$-CPA-, INT-PTXT- and INT-CTXT-secure, the implementation IM* = C(I) is M-
correct, MI-IND$-CPA-, M-INT-PTXT- and M-INT-CTXT -secure with the same advantages.

Proof. Correctness of IN* follows directly from that of C and 1. The security proofs are direct reduc-
tions. We only detail the proof of M-IND$-CPA, but note that a similar proof can be constructed for
M-INT-PTXT and M-INT-CTXT. Given an implementation adversary A, we construct an adversary B
against I as follows. Adversary B runs Gen* on an arbitrary randomness of appropriate size to obtain the
leakage fcen associated with key generation and runs adversary A on fgen. Oracle queries made by A are
simulated by using B’s specification oracles to obtain outputs, and the same leakage simulation strategy
to present a perfect view of the implementation leakage to .A. When A outputs its guess, B forwards it
as its own guess. We now argue that B’s simulation is perfect. The first part of the argument relies on
the correctness of the implementation generation procedure, which guarantees that the values obtained
by B from its oracles in the CPA-game are identically distributed to those that A would have received
in the implementation game. The second part of the argument relies on the fact that leakage-secure
implementation generation guarantees that B knows enough about the (unknown) inputs to the black-
box algorithms (the information specified by 7skg) to predict the exact leakage that such inputs would
produce in the implementation model. Observe for example that, in the case of decryption leakage, the
adversary B only needs the input ciphertext c to be able to exactly reproduce the leakage ¢pec. Finally,
note that the running time of the constructed adversary B is that of adversary A where each oracle query
A introduces an overhead of one execution of the implementation in machine M (which can reasonably
be assumed to be close to that of the specification). O

6 Implementation security of MEE-CBC

We now return to our case study, and explain how to use the methodology from Section 5, instantiated with
existing verification and compilation tools, to derive assembly-level correctness and security properties
for MEE—CBCXgﬁ.

PROOF STRATEGY. We first go briefly over each of the steps in our proof strategy, and then detail each of
them in turn in the remainder of this section. In the first step, we specify and verify the correctness and
black-box computational security of the MEE-CBC construction using EasyCrypt. We include the speci-
fication in Appendix C, Figure 11. In a second step, we use Frama-C to prove the functional correctness
of program MEE-CBC¢ with respect to the EasyCrypt specification. Finally, we focus on the x86 assembly
code generated by CompCert (MEE-CBCys6), and prove: i. its functional correctness with respect to the
C code (and thus the top-level EasyCrypt specification); and ii. its leakage security. An instantiation of
Theorem 2 allow us to conclude the proof of Theorem 1.



BLACK-BOX SPECIFICATION SECURITY. We use EasyCrypt to prove that the MEE-CBC construction
provides IND$-CPA security (when used with freshly and uniformly sampled IVs for each query) and

INT-PTXT security.

Lemma 1 (Machine-chekced MEE-CBC security). The following two results hold:

— For all legitimate IND$-CPA adversary AP? that makes at most q queries, each of length at most
n octets, to its RoR oracle, there exists an explicitly constructed PRP adversary BPP that makes
[(n4+1) / X] + 2 queries to its forward oracle and such that:

n+1 2
ind$- r (q divuli 2)
[Advp 3P < 2- (JAdvpE (BPP)| +2- { le

Perm

),

where ¢(i) = [(i+ 1) / X] + 3 reveals only the number of blocks in the plaintext (and adds to it the
fized number of blocks due to IV and MAC tag).

— For all PTXT adversary A that makes qy queries to its Dec oracle, there exists an explicitly con-
structed SUF-CMA adversary B°™ that makes exactly qy queries to its Ver oracle and such that:

AV < |Adviizem (5)|.

Our EasyCrypt specification (Figure 11) relies on abstract algorithms for the primitives. More precisely,
it is parameterized by an abstract, stateless and deterministic block cipher Perm with block size A octets,
and by an abstract, stateless and deterministic MAC scheme Mac producing tags of length 2 - X\.'2 The
proofs, formalized in EasyCrypt, are fairly standard and account for all details of padding and message
formatting in order to obtain the weak length-hiding property shown in this lemma. Running times for
BPP and B™M are as usual.

We note that, although we have not formalized in EasyCrypt the proof of INT-CTXT security (this
would imply a significant increase in interactive theorem proving effort) the known security results for
MEE-CBC also apply to this specification and, in particular, it follows from [29] that it also achieves
this stronger level of security when the underlying MAC and cipher satisfy slightly stronger security
requirements.

IMPLEMENTATION GENERATION. Using Frama-C, a verification platform for C programs,'® we prove func-

tional equivalence between the EasyCrypt specification and our C implementation. Specifically, we use
the deductive verification (WP) plugin to check that our C code fully and faithfully implements a func-
tionality described in the ANSI/ISO C Specification Language (ACSL). To make sure that the ACSL
specification precisely corresponds to the EasyCrypt specification on which black-box security is formally
proved, we rely on Frama-C’s ability to link ACSL logical constructs at the C annotation level to specific
operators in underlying Why3 theories, which we formally relate to those used in the EasyCrypt proof.
This closes the gap between the tools allowing us to refer to a common specification. Note that, since the
abstract block cipher Perm and MAC scheme Mac are concretely instantiated in the C implementation,
we instantiate A = 128 (the AES block length) in this common specification and lift the assumptions on
Perm and Mac to the C implementation of their chosen instantiation. Figure 8 illustrates the format of
contracts and general shape of obligations we verify in Frama-C. The challenges faced during this step of
the proof are discussed in Appendix A. We then use the CompCert certified compiler [27] to produce our
final x86 assembly implementation.

12 This is only for convenience in these definitions.
3 http://frama-c.com/



To prove leakage security, we use the certifying information-flow type system for x86 built on top
of CompCert [5], marking as public those inputs that correspond to values revealed by 7skg. Obtaining
this proof does not put any additional burden on the user—except for marking program inputs as secret
or public. However, the original C code must satisfy a number of restrictions in order to be analyzed
using the dataflow analysis from [5]. Our C implementations were constructed to meet these restrictions,
and lifting them to permit a wider applicability of our techniques is an important challenge for further
work.14

PROOF OF THEOREM 1. Let us denote by C*ec=*86 the implementation generation procedure that consists
of hand-crafting a C implementation (annotated with 7skg consistent security types), equivalence-checking
it with an EasyCrypt specification using Frama-C, and then compiling it to assembly using CompCert
(accepting only assembly implementations that type-check under the embedded secure information-flow
type system), as we have done for our use case. We formalize the guarantees provided by this procedure
in the following lemma.

Lemma 2 (Implementation generation). C~ec=*86 s g Mgg—()a-correct implementation generation pro-
cedure that produces M)C(é%—leakage secure SKE implementations.

Proof. Correctness follows from the combination of the Frama-C functional correctness proof and the
semantic preservation guarantees provided by CompCert. CompCert’s semantics preservation theorem
implies that the input/output behaviour of the assembly program exactly matches that of the C program.
Functional equivalence checking using Frama-C yields that the C implementation has an input/output
behaviour that is consistent with that of the EasyCrypt specification (under the C semantics adopted
by Frama-C). Finally, under the reasonable assumption that the CompCert semantics of C are a sound
refinement of those used in Frama-C, we obtain functional correctness of the assembly implementation
with respect to the EasyCrypt specification. For leakage security, we rely on the fact that the information-
flow type system of [5] enforces Tskg-non-interference and therefore only accepts (MS$Js, Tske)-leakage
secure implementations. O

Theorem 1 follows immediately from the application of Theorem 2 instantiated with Lemmas 1 and 2.
Furthermore, foregoing machine-checking the black-box specification security proof and simply accepting
known results on MEE-TLS-CBC [29], we can also show that MEE-CBCyss is MSJINT-CTXT-secure
under slightly stronger black-box assumptions on AES128ya.c) and HMACSHA256N¢-

7 Performance Comparison

We now characterize the different assurance/performance trade-offs of the timing mitigation strategies
discussed in this paper. Figure 7 shows the time taken by 5 different implementations of MEE-CBC (one of
them compiled in three different ways) when decrypting a 1.5KB TLS1.2 record using the AES128-SHA 256
ciphersuite.!> More specifically, we consider code from S2N (#1) and OpenSSL (#2), and three different
compilations of our formally verified MEE-CBC implementation (#3-7), focusing on raw invocations of
MEE-CBC.

14 In a recent development in this direction, Almeida et al. [4] describe a method, based on limited product programs, for
verifying constant-time properties of LLVM code. Their method and the implementation they describe can deal with
many examples that the type system from [5] cannot handle, including some of the OpenSSL code for MEE-CBC, whilst
preserving a high degree of automation. In addition, their construction easily extends to situations where declassification
is needed.

5 The numbers were obtained in a virtualized Intel x86-64 Linux machine with 4 GB RAM.



# | Implementation Compiler Clock Cycles | Time
1 S2N GCC x86-64 -02 14K Sus
2 | OpenSSL GCC x86-64 -O2 23K Ius
3 | MEE-CBC¢ (AES-NI) | CompCert x86-32 51K 21us
4 | MEE-CBCc GCC x86-64 -O2 59M 25ms
5 MEE-CBCc GCC x86-64 -O1 62M 26ms
6 MEE-CBCys¢ CompCert x86-32 101M 42ms
7 | MEE-CBC¢ GCC x86-64 -O0 23T 99ms

Fig. 7. Performance comparison of various MEE-CBC implementations. (Median over 500 runs.)

It is clear that the S2N code (#1) benefits from its less strict timing countermeasures, gaining roughly
1.8x performance over OpenSSL’s (semi-)constant-time implementation approach (#2). The figures for
our verified implementation of MEE-CBC show both the cost of formal verification and the cost of full
constant-time guarantees. Indeed, the least efficient results are obtained when imposing full code and
data memory access independence from secret data (#4-6).

The assembly implementation produced using the constant-time version of CompCert (#6), is roughly
8400x slower than S2N, but still over twice as fast as unoptimized GCC. However, the fact that the same C
code compile with GCC -02 (#4) is only 1.7x faster than the fully verified CompCert-generated code shows
that the bottleneck does not reside in verification, but in the constant-time countermeasures. Profiling
reveals that NaCl’s constant-time AES accounts for 97% of the execution time. These results confirm the
observations in [14] as to the difficulties of reconciling resistance against cache attacks and efficiency in
AES implementations. To further illustrate that point, we also include measurements corresponding to
a modification of our MEE-CBC implementation that uses hardware-backed AES (#3). This cannot, in
fairness, be compared to the other implementations, but it does demonstrate that, with current verifica-
tion technology, the performance cost of a fully verified constant-time MEE-CBC implementation is not
prohibitive.

8 Discussion

ON RANDOMNESS. Restricting our study to deterministic programs with an argument containing random
coins does not exclude the analysis of real-world systems. There, randomness is typically scarce and
pseudorandom generators are used to expand short raw high-entropy bitstrings into larger random-looking
strings that are fed to deterministic algorithms, and it is common to assume that the small original seed
comes from an ideal randomness source, as is done in this paper. Our approach could therefore be
used to analyze the entire pseudorandom generation implementation, including potential leakage-related
vulnerabilities therein.

ON LENGTH-HIDING SECURITY. We note that existing implementations of MEE-TLS-CBC (and indeed
our own implementation of MEE-CBC) are not length-hiding as defined in [29] in the presence of leakage.
Indeed, the constant-time countermeasures are only applied in the decryption oracle and precise infor-
mation about plaintext lengths may be leaked during the execution of the encryption oracle. Carrying
length-hiding properties down to the level of those implementations may therefore require them to be
modified (and the Frama-C equivalence proof adapted accordingly). However, Lemma 1 does capture the
length-hiding property given by our choice of minimal padding.

LEAKAGE SIMULATION AND WEAKER NON-INTERFERENCE NOTIONS. Our use of leakage security in prov-
ing that leakage is not useful to an adversary naturally generalizes to a notion of leakage simulation,



whereby an implementation is secure as long as its leakage can be efficiently and perfectly simulated from
its public I/O behaviour, including its public outputs. For example, an implementation of Encrypt-then-
MAC that aborts as soon as MAC verification fails, but is otherwise fully constant-time should naturally
be considered secure, since the information gained through the leakage traces is less than that gained
by observing the output of the Ver oracle. The more general notion of leakage simulation informally de-
scribed here would capture this and can be related to weaker notions of non-interference, where equality
on low outputs is only required on those traces that agree on the value of some declassified outputs. The-
orem 2 can be easily modified to replace leakage security with the (potentially weaker) leakage simulation
hypothesis.

9 Further related work

There is a large body of work that applies formal tools for reasoning about cryptographic implementations.
However, we are not aware of any other work that combines relatively abstract and spearate notions of
functional correctness, leakage security, and black-box security for achieving provable security in presence
of implementation leakage.

The work that stands closest to ours is the provable security analysis of an assembly implementation
of PKCS in the program counter model [3]. Their analysis uses 3 ingredients: 1i. security of a C imple-
mentation in the program counter model, using EasyCrypt; ii. functional correctness of assembly, using
CompCert; and iii. an assembly-level static analysis that justifies that the compiler did not introduce
additional leakage.

Leakage of assembly-level implementations is also considered in [5]. They propose a formally veri-
fied, fine-grained information-flow analysis for checking that assembly programs generated by CompCert
execute in constant-time (which we use here). Moreover, they prove that constant-time programs are
leakage-secure in a stronger adversary model than the one we consider, in which the adversary is co-
located on a virtualization platform with the victim program, and controls the scheduler and the cache.
This proof brings significant strength to the guarantees delivered by constant-time cryptography, indepen-
dently of the method used to enforce it. However, they do not establish any connection between leakage
security and provable security.

Another relevant work is [12], which shows functional correctness of an HMAC implementation and
provable security (based on the earliest proof of HMAC); their proof of functional correctness is split
in two parts: they use the VST program logic to show functional correctness of a C implementation
with respect to a functional specification, and they derive implementation correctness using CompCert.
However, they do not consider leakage and do not prove any result for carrying the security proof to the
assembly implementation.

One popular approach for reasoning about the security of cryptographic implementations is to use
standard program verification—typically at source code level. This approach has been used to carry out
a security analysis of miTLS [17], an implementation of TLS written in the F# language. The CVJ
framework [25] (Cryptographic Verification of Java-like programs) is another instance of approach based
on program verification; the approach reduces security of an implementation to provable security of the
underlying primitives and information flow properties of implementation. A similar approach [9] uses
the KeY prover for proving information-flow properties. While source code implementations are more
precise than algorithmic descriptions used in security proofs, approaches based on source verification
cannot precisely model side-channels. In addition, these methods are based on general-purpose program



verification tools that do not support reasoning about probabilistic computations; therefore, the validity
of such approaches relies on a soundness proof, which is carried out with pen and paper.

10 Conclusions and directions for future work

Our proposed methodology allows deriving guarantees on assembly implementations from more focused
and tractable verification tasks. Each of these more specialized tasks additionally carries its own chal-
lenges.

Proving security in lower-level leakage models for assembly involves considering architectural details
such as memory management, scheduling and data-dependent leakage sources. Automatically relating
source and existing assembly implementations requires developing innovative methods for checking (pos-
sibly conditional or approximate) equivalence between low-level probabilistic programs. Finally, obtaining
formal proofs of computational security and functional correctness in general both remain important bot-
tlenecks, requiring high levels of both expertise and effort. However, combining formal and generic compo-
sition principles (such as those used in our case study) with techniques that automate these two tasks for
restricted application domains [6,22,13] should enable the formal verification of extensive cryptographic
libraries, in the presence of leakage. We believe that this goal is now within reach.

On the cryptographic side, the study of computational security notions that allow the adversary to
tamper with the oracle implementation [11] may lead to relaxed functional correctness requirements that
may be easier to check. Extensions of our framework to settings where the adversary has the ability
to tamper with the execution of the oracle are possible, and would allow it to capture recent formal
treatments of countermeasures against fault injection attacks [30].
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A C implementation with ACSL annotations

The unpad function shown in Figure 8 is a good example of classic constant-time implementation tech-
niques: one ensures that all loops have a number of iterations that depends only on public data, and
that no secret-dependent branching is used. When implementing non straight-line code, all conditional
branches that depend on secrets are replaced with code that executes all branches and selects (in constant-
time, using bitmasks) the correct result. In this case, the loop is always iterating for the maximum number
of padding bytes, and constructs a mask that accumulates the result of the padding check only for those
positions that are part of the padding.

/*Q@
requires len%16 == 0;
requires \valid(out_len) && \valid_read(in+(0..len—1));
assigns xout_len;
behavior failure:
assumes unpad(mem_blocks(in,len/16)) == none;
ensures \result == 0;
behavior success:
assumes is_some(unpad(mem_blocks(in,len/16)));
ensures \result == 1;
ensures unpad(mem_blocks(in,len/16))
== some(mem-bytes(in,*out_len/16),mem_tag(in+s*out_len));
complete behaviors; disjoint behaviors;
*/
int crypto_pad_remove(unsigned long *out_len,
const unsigned char *in,
unsigned long len)

unsigned padding_length, good, i;

if (len < 3xOUTPUTBYTES) return 0;

padding_length = in[len — 1J;

good = constant_time_ge(OUTPUTBYTES, padding_length);

good &= constant_time_1t(0, padding_length);

for (i = 0; i < OUTPUTBYTES; i++) {
unsigned char mask = constant_time_lt(i,padding_length);
good &= "(mask & (padding_length " in[len — 1 — i]));

good = constant_time_eq(0xff, good & 0xff);

padding_length = good & (2*OUTPUTBYTES+padding_length);
xout_len = len — padding_length;

return constant_time_select(good, 1, 0);

Fig. 8. Unpad operation in constant time (with ACSL contract).

B Snippets from the S2N implementation
The code snippets in Figures 9 and 10 show the code for functions s2n_verify_cbc (from file t1s/s2n _cbc.c)

and s2n_hmac_digest (from file crypto/s2n_hmac.c) that contain the implementation bug we have re-
ported.

C EasyCrypt specification of MEE-CBC

Figure 11 shows the formal specification of the construction, parameterized by: i. a family of permutations
PeK.— 0= O where O = {0,1}8 is the type of octets, K, C O* is the type of encryption keys,



int s2n_verify_cbc (struct s2n_connection *conn, struct s2n_hmac_state *hmac, struct s2n_blob *decrypted)
struct s2n_hmac_state copy;
int mac_digest_size = s2n_hmac_digest_size(hmac— alg);

/* The record has to be at least big enough to contain the MAC, plus the padding length byte x/
gt_check(decrypted— size, mac_digest_size);

int payload_and_padding_size = decrypted— size — mac_digest_size;

/* Determine what the padding length is x/
uint8_t padding_length = decrypted— data[decrypted— size — 1J;

int payload_length = payload_-and_padding-size — padding_length — 1;
if (payload_length < 0) {

payload_length = 0;
}

/x Update the MAC */
GUARD(s2n_hmac_update(hmac, decrypted— data, payload_length));
GUARD(s2n_hmac_copy(&copy, hmac));

/* Check the MAC x/

uint8_t check_digest | S2N_MAX_DIGEST_LEN];

Ite_check (mac_digest_size, sizeof (check_digest));
GUARD(s2n_hmac_digest_two_compression_rounds(hmac, check_digest, mac_digest_size));

int mismatches = s2n_constant_time_equals(decrypted— data + payload_length, check_digest, mac_digest_size) " 1;

/x Compute a MAC on the rest of the data so that we perform the same number of hash operations */
GUARD(s2n_hmac_update(&copy, decrypted— data + payload_length + mac_digest_size,
decrypted— size — payload_length — mac_digest_size — 1));

/* SSLv8 doesn’t specify what the padding should actualy be */
if (conn— actual_protocol_version == S2N_SSLv3) {

return 0 — mismatches;
}

/* Check the padding */

int check = 255;

if (check > payload-and_padding_ size) {
check = payload_and_padding_size;

}

int cutoff = check — padding_length;

for (int i =0, j = decrypted— size — check; i < check && j < decrypted— size; i++, j++) {
uint8_t mask = “(0xff << ((i > cutoff) * 8));
mismatches |= (decrypted— data[j] ~ padding-length) & mask;

}

if (mismatches) {
S2N_ERROR(S2N_ERR_CBC_VERIFY);
}

return O;

Fig. 9. The MEE-CBC verification code in S2N.



int s2n_hmac_digest(struct s2n_hmac_state *state, void xout, uint32_t size )

{
if (state— alg == S2N_HMAC_SSLv3_SHA1 || state— alg == S2N_HMAC_SSLv3_-MD5) {

return s2n_sslv3_mac_digest(state, out, size );
}

GUARD(s2n_hash_digest(&state— inner, state— digest_pad, state— digest_size));
GUARD(s2n_hash_reset(&state— outer));

GUARD(s2n_hash_update(&state— outer, state— xor_pad, state— block_size));
GUARD(s2n_hash_update(&state— outer, state— digest_pad, state— digest_size));

return s2n_hash_digest(&state— outer, out, size);

int s2n_hmac_digest_two_compression_rounds(struct s2n_hmac_state *state, void *out, uint32_t size )
GUARD(s2n_hmac_digest(state, out, size));

/% If there were 8 or more bytes of space left in the current hash block
x then the serialized length will have fit in that block. If there were
x fewer than 8 then adding the length will have caused an extra compression
x block round. This digest function always does two compression rounds,
x even if there is mo meed for the second.
*
/
if (state— currently_in_hash_block > (state— hash_block_size — 8))

{
}

return s2n_hash_update(&state— inner, state— xor_pad, state— hash_block_size);

return 0;

Fig. 10. The HMAC finalization funtion in S2N.



and A is the block length, which we identify with the security parameter; and ii. a family of functions
M e K, = OF = 0>, where K, C O* is the type of MAC keys.!6

We use to; to denote conversion to type 7 (for example from lists of blocks to lists of octets, or from
octets to unsigned integers), and use standard list operations to manipulate lists:

— [] denotes the empty list;

— = denotes the construction of list by prepending a single element to an existing list;

— create x | constructs the list that contains | copies of elements x;

— ++ concatenates two lists;

— take | xs denotes the truncated list containing only the first | elements of list xs;

— drop | xs denotes the truncated list containing only the last size xs — | elements of list xs; and
— last xs is the last element of list xs.

We write @ to denote the bitwise exclusive-or of two blocks (in O?).
We let P = (Gen.,P,P~!) be a PRP on O indexed by K. (such that P and P~! are stateless and
deterministic), and Mac = (Gen,,, M) be a (stateless and deterministic) MAC scheme on O*, with tags

A2 : N P,M P-1M .
in O** and indexed by K,,. Let N1 = (Gen, x Gen,,, MEE MEE ) be the secret key encryption

$-enc’ $-dec
scheme that samples a fresh and uniform random IV for each encryption query and prepends it to the

ciphertext, and uses the first block of ciphertext as IV on decryption queries.

D Security models for specification security

Definition 4 (Secrecy). We define the advantage of an adversary A against the IND$-CPA security of
SKE scheme I as .
Advi% =2 Pr[IND$-CPAA() = true] — 1,

where game IND$-CPA is shown in Figure 12.

Note that we give the adversary access to a dummy decryption oracle that performs the decryption but
always returns L. This formulation and the more standard one where the adversary does not have access
to the decryption oracle are equivalent in the (black-box) computational model, but importantly not in
the presence of leakage, as we have seen in Section 4.

Definition 5 (Plaintext integrity). We define the advantage of an adversary A against the INT-PTXT
security of SKE scheme 1 as

AdviP®t = Pr [INT-PTXTH() = true]
where game INT-PTXT is shown in Figure 15.
Definition 6 (Ciphertext integrity). We define the advantage of an adversary A against the INT-CTXT
security of SKE scheme I as

Advii® == pr [INT-CTXTH() = true]

where game INT-CTXT is shown in Figure 14.

16 We only require that the MAC’s tag size be a multiple of the block size for simplicity of this description. This matches
our particular case study, but the formal security proof itself applies more generally.



(% Encryption )
op CBCP _ (k € Ke) (ive O (p e O) =
with p = [] = ]
with p =pi: p= let ci =Pk (st @ pi) in
ci :: (CBCE. kcip).

op pad (m € O*) (t € 0?*) =
let 1 =X —sizem % X\ in
let p = create (top 1) 1in
toprx (m ++ topx t +4 p).

let MEEGM ((ek,mk) € Ke X Km) (iv € O*) (m € O*) =
let t =M mk m in
let p=padmtin
CBCP,. ek iv p.

(#* Decryption ssx)
op CBCP " (k € K.) (iv € O}) (c € ON) =

dec
with ¢ =[] =
withc=ci: ¢ = letpi=Pikciin
(pi @ st) = (CBCE;I k ci ¢).

op unpad (bs € O*") =

let os = topax bsin

let 1 = toy (last os) in

let m = take (size o0s —1 — 2-X) os in

let t =toyz.x (take (2-X) (drop (size os — 1 — 2-X) 0s)) in

let p = drop (size os — 1) os in

if  (3< sizebsAh 1< 1< AA p=create (top 1) 1)
then (m,t)

else L.

op MEE? M ((ek,mk) € Ke X Km) (iv € O*) (c € OM) =

dec 7

let p = CBCSec ek iv ¢ in
let (m,t); = unpad p in
it (). £ L)
then if Mmkm=t

then m

else L
else L.

Fig. 11. A specification of MEE-CBC.



Game IND$-CPAY ,(): proc. RoR(m):

b+s{0,1} If (b = Ideal)

SK «—s Gen() Then c <3 Enc(my, SK)

b s ARORDec() Else c+s{0,1}*™)  proc. Dec(c):
Return (' = b) Return ¢

m < Dec(c, SK)
Return L

Fig. 12. Game defining specification-level indistinguishability under chosen-plaintext attacks.

Game INT-PTXT{(): proc. Enc(m):

List < ] c s Enc(m, SK)

win < false List < m: List

SK <s Gen() Return ¢

b s AEneVer(y proc. Ver(c):

Return win m <—s Dec(c, SK)
win < winV (m # L Am ¢ List)
Return m # L

Fig. 13. Game defining specification-level plaintext integrity.

MESSAGE AUTHENTICATION CODE: SYNTAX AND SECURITY.. We recall that a (deterministic) message
authentication code MAC = (Gen, Tag, Ver) is specified as three algorithms:
— A probabilistic key generation algorithm Gen() that returns a secret key SK;

— a deterministic tag algorithm Tag(m,SK) that returns a tag t on input a message m and the secret
key SK; and

— a deterministic verification algorithm Ver(m,t, SK) that returns a boolean on input message m, tag t
and secret key SK.

Such that, for every key SK and message m, Ver(m, Tag(m, SK)), SK) = true.

Definition 7 (Existential Unforgeability under Chosen Message Attack). We define the advan-
tage of an adversary A against the UF-CMA security of MAC scheme MAC as

Advii = Pr[UF-CMAfiAC() = true] |

where implementation-level game UF-CMA is shown in Figure 15.

Definition 8 (Pseudo-Random Permutation.). We define the advantage of an adversary A against
the PRP security of cipher I as

AdvlP, := |Pr[PRP{(Real) = true] — Pr [ PRPj(Ideal) = true]|,

where specification-level game PRP is shown in Figure 16.



Game INT-CTXT#():
List < ||

win < false

SK <—s Gen()

b/ g AEnc,Ver()
Return win

proc. Enc(m):

c<s Enc(m, SK)

List <— c : List

Return c

proc. Ver(c):

m <s Dec(c, SK)

win < win V (m # L Ac ¢ List)
Return m # L

Fig. 14. Game defining specification-level ciphertext integrity.

Game UF-CMAR():
List < []

win < false

SK <—s Gen()

b/ 3 AEnc,Ver()
Return win

proc. Tag(m):
t<s Tag(m, SK)
List <— m : List
Return t

proc. Ver(m,t):

b + Ver(m, t, SK)
win <— win V (b A m ¢ List)
Return b

Fig. 15. Game defining specification-level existential unforgeability under chosen message attack

map < ]
v s ARR()
Return (b' = b)

Game PRP{ (b):
SK <—s Gen()

proc. RoR(m):
c<+s Enc(m, SK)
If (b = Ideal) Then
If (m ¢ Dom(map))
Then
c+s{0,1}
map < map U (m — c)
Else
¢ < map(m)
Return c

Fig. 16. Game defining specification-level pseudo-random permutation security.




