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Abstract

In this paper the Security Evaluated Standardized Password Authenticated Key Ex-
change ( SESPAKE ) protocol is proposed (this protocol is approved in the standardiza-
tion system of the Russian Federation) and its cryptographic properties are analyzed.
The SESPAKE protocol includes a key agreement step and a key authentication step.
We define new indistinguishability-based adversary model with a threat of false au-
thentication that is an extension of the original indistinguishability-based model up to
the case of protocols with authentication step without key diversification. We prove
the protocol security under two types of threats: a classic threat of distinguishing a
generated session key from a random string and a threat of false authentication. This
protocol is the first password authenticated key exchange protocol (PAKE ) protocol
without key diversification for a full version of which a security proof has been obtained.
The paper also contains a brief review of the known results dedicated to analysis of
cryptographic properties of PAKE protocols.
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1 Introduction
The main point of the type of protocols considered in this paper consists in the fact that

parties sharing a weak key (a password) generate a strong common key. The main require-
ment for these protocols implies the active adversary who has an access to a channel isn’t
able to obtain any information that can be used to find a key in «offline» mode, i.e. without
interaction with legitimate participants. Usually such authentication key exchange protocols
are called «EKE» — «Encrypted Key Exchange» or «PAKE» — «Password-Authenticated
Key Exchange».

The first protocol called PAKE was proposed by S. Bellovin and M. Merritt in [19] in
1992 . There are a lot of protocols of this type (e.g. see [12], [13], [15], [18], [17]). In 1993
M. Bellare and P. Rogaway proposed the indistinguishability-based model (see [20]) that was
developed by M. Bellare, D. Pointcheval и P. Rogaway in [11]. This term was introduced by
M. Abdalla in [10]. This model allowed to obtain the security bounds for some protocols of
this type.

The PAKE protocols include a key agreement step and sometimes also key authentication
step. The lower bounds have been obtained as for the protocols without authentication step
(see [2]), as for some protocols that include this step (see [15]). For both cases the security has
been proven under a threat of distinguishing a generated session key from a random string.
But this threat can’t be defined correctly for all protocols with authentication step. In the
case when authentication step uses a generated key, the adversary trivially obtains a criterion
that allows to check whether the target string is random or not. J. Bender, M. Fischlin,
D. Kugler point to it explicitly (see [28]). In the papers where bounds for the protocols with
authentication step were obtained, the problem with a correct definition of a threat is solved
with an additional key diversification. It means that a key for the authentication step is
obtained from the common secret with one one-way function and the main key is obtained
from the same secret with another one-way function.

We stress that consideration of security under another type of threat — the false au-
thentication threat — is also a very significant part of security proofs for protocols with
authentication step. As an example we will consider a protocol PACE (see [28]) which se-
curity proof doesn’t take into account the threat of false authentication. This protocol is
vulnerable to a reflection attack.

It should be noticed also that a commonly considered threat of distinguishing a key may
seem not a quite natural one, as it is defined regardless to a protocol execution context. A
target key is often used in further interaction between subjects, e.g. for organization of a
secure messaging channel. The key exploitation gives a trivial criterion for distinguishing it
from a random string.

In this paper we propose the Security Evaluated Standardized Password Authenticated
Key Exchange ( SESPAKE ) protocol (this protocol is approved in the standardization system
of the Russian Federation (see [8])). There is no key diversification mentioned above, i.e.
the authentication step is processed using a generated key. The key agreement step is a
modification of the protocol proposed in [2], the authentication step is original. A threat of
false authentication is proposed for this protocol and a bound is obtained under this threat
(so this protocol is resistant to a reflection attack mentioned above). The proof is divided
into three parts: the first one is based on the ideas proposed in [2], the second and the third
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steps are original. The protocol proposed in this paper is the first password authenticated
key exchange protocol without key diversification for a full version of which a security proof
has been obtained.

Also there is a review of some PAKE protocols and models used to prove their security.

2 Known models, protocols and bounds
This section contains a brief review of the results that are devoted to analysis of crypto-

graphic properties of PAKE protocols. We focus on adversary models used to prove protocol
security.

In the paper [10] M. Abdalla considers several adversary models: an indistinguishability-
based model, a universal-composable model and a simulation-based model. As we use the
indistinguishability-based model to analyze the security of the proposed protocol, we consider
this adversary model in a more detailed way.

2.1 The indistinguishability-based model

As it has been said above, in 1993 M. Bellare and P. Rogaway proposed the indistinguish-
ability-based model (see [20]) that was later expanded by M. Bellare, D. Pointcheval and
P. Rogaway in [11].

Most results about the PAKE protocol security belong to a sphere of practice oriented
provable security ([25]). A feature of this approach is the fact that it allows to analyze
security of particular protocols that do not have infinite security settings. This approach
uses a technique that is common for the complexity theory that performs reduction of some
task to another one, and the result of this analysis becomes an upper bound of some adversary
abilities (usually, a success probability to realize a threat).

The PAKE protocol assumes an interaction of two parties called protocol users. The user
behavior is modelled by the oracle called user instance. The adversary can interact with the
legitimate users using requests to the special oracles that imitate their possibilities in a real
attack.

There are concurrent and non-concurrent security models. The concurrent model assumes
that several copies of the protocol can be processed concurrently, therefore several instances
can be active simultaneously. For the non-concurrent model at most one user instance can
be active per user.

Denote by U i the i-th user U instance. There are five oracles that are used to model
the abilities of the adversary: Oexec , Osend , Oreveal , Ocorrupt , Otest .

• Oexec . This oracle models a passive attack where the adversary can initiate the inter-
action between two legitimate user instances U i

1 and U j
2 and listen to their protocol

execution making a request (U i
1, U

j
2 ) to this oracle. The oracle returns all messages

sent by users to each other during the protocol execution.

• Osend . This oracle models an active attack where the adversary can intercept mes-
sages, modify them, create new ones and send to other user instances, making requests
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(U i,m) to this oracle. The oracle returns a message that user instance U i sends in
response to the message m .

• Oreveal . This oracle models a case of insecure usage of a session key. This oracle returns
a session key of the user instance U i , if it is defined.

• Otest . By making a request (U i) to this oracle we check the ability of the adversary
to distinguish a session key from a random string. The oracle chooses a bit b ∈R {0, 1}
and returns a session key of the user instance U i if b = 1 , and a random string of the
same length if b = 0 .

Sometimes in addition to the indistinguishability-based model the protocol security is
considered in the random-oracle model or the ideal-cipher model. These models assume ide-
alized properties of some hash-functions and ciphers used in a protocol — a hash-function
is replaced with a random mapping and a cipher is replaced with a random permutation
indexed by a key. In this case the oracles Ohash or Ocipher are additionally introduced. One
of them will be considered more thoroughly in Section 3.

Let us consider the following concepts: Freshness and Partnering.
Partnering. Denote by sidi

U a session identifier that is a concatenation of all messages
sent and received by a user instance during the protocol execution. Denote by pidi

U a
partner identifier that consists of all user instances that U i wants to interact with and itself.
The user instances U i

1 и U j
2 are partners if and only if their session and partner identifiers

are equal.
Freshness. The user instance is fresh if no requests were made to the oracle Oreveal for

it or its partner.

2.2 The Protocols and the threats

In this section we describe two different types of threats and consider some cryptographic
properties of the following protocols:

• One-Encryption Key-Exchange (OEKE/AuthA)

The AuthA protocol was proposed by M. Bellare and P. Rogaway in 2000 in [12]. In
2003 E. Bresson, O. Chevassut and D. Pointcheval analyzed security of the simple
protocol version OEKE (see Table. 1) and the original protocol AuthA in the concur-
rent indistinguishability-based model with ideal-cipher model and random-oracle model
(see [13]). The AuthA protocol is the IEEE standard (P1363.2: Standard Specifications
for Password-Based Public-Key Cryptographic Techniques).

The AuthA protocol includes a key agreement step and a key authentication step.

• Password Authenticated Key Exchange (PAK)

The PAK protocol (see Table. 2) was proposed by V. Boyko, P. MacKenzie and S. Patel
in 2000 in [15]. In 2002 P. MacKenzie analyzed security of the PAK protocol in the
concurrent indistinguishability-based model with random-oracle model (see [16]). The
PAK protocol is used in Lucent Technologies’ Plan9 operation systems. It is the IEEE
standard P1363.2 too.
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The PAK protocol includes a key agreement step and a key authentication step.

• Password Authenticated Connection Establishment (PACE)

The PACE protocol (see Table. 3) was proposed by the German Federal Office for
Information Security (BSI) for the deployment in machine readable travel documents
in 2008 (see [28]). In 2009 J. Bender, M. Fischlin, D. Kugler analyzed protocol security
in the concurrent indistinguishability-based model with random-oracle model and ideal
cipher model (see [21]). The protocol is currently under standardization of ISO/IEC
JTC1/SC17/WG3.

The PACE protocol includes a key agreement step and a key authentication step.

• DragonFly

The Dragonfly protocol (see Table 5) is specified by Dan Harkins for exchanging session
keys with mutual authentication within mesh networks (see [22]). This protocol has
been submitted to the Internet Engineering Task Force as a candidate standard for
general internet use. In 2015 security of a very close variant of DragonFly was analyzed
by J. Lancrenon and M. Scrobot in the standard model with random oracle (see [24]).

The Dragonfly protocol includes a key agreement step and a key authentication step.

• Strong Password-Only Authenticated Key Exchange (SPEKE)

The SPEKE protocol (see Table 8) was proposed by D. Jablon in 1996 (see [26]). In
2001 P. MacKenzie analyzed security of the SPEKE protocol in the indistinguishability-
based model with random-oracle model (see [27]).

The SPEKE protocol includes a key agreement step and a key authentication step.

• Simple Password-Based Encrypted Key Exchange (SPAKE2)

The SPAKE2 protocol (see Table 4) and its analysis were proposed by M. Abdalla
and D. Pointcheval in 2005 (see [2]). They proved protocol security in two models: the
non-concurrent (see protocol SPAKE1 (without pw as input for hash-function)) and
concurrent (see protocol SPAKE2) indistinguishability-based models with random ora-
cle. The work described in [2] has been supported in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

The SPAKE2 protocol includes a key agreement step only.

• Password Authenticated Key Exchange by Juggling (J-PAKE).

The J-PAKE protocol (see Table 6) was proposed by F. Hao and P. Ryan in 2010
(see [33]). In 2015 M. Abdalla, F. Benhamouda, P. MacKenzie analyzed security of the
J-PAKE protocol in the indistinguishability-based model with random-oracle model
(see [34]).

The J-PAKE protocol includes a key agreement step and a key authentication step.

• Augmented Password Authenticated Key Exchange (AugPAKE)

The AugPAKE protocol (see Table 7) was proposed by S. Shin and K. Kobara in 2008
(see [30]). In 2010 the same authors analyzed security of the AugPAKE protocol in
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the indistinguishability-based models with random-oracle model (see [31]). AugPAKE
protocol was proposed as one of the most efficient protocols.

The AugPAKE protocol includes a key agreement step and a key authentication step.

A classic threat for the considered model is a threat of distinguishing a session key from
a random string.

• We consider an adversary who has access to the oracles Oexec , Osend , Oreveal , Otest
( + Ohash , Ocipher ). The adversary can make a single request to the oracle Otest for
fresh user instance which has already generated a session key and outputs a bit b′ .
The adversary abilities are defined by the number of requests to each oracle. Suppose
that passwords are chosen uniformly from the dictionary D . A password-based key
agreement protocol is secure in the indistinguishability-based model if the probability
of the event that occurs if a random bit b chosen by Otest and a bit b′ are equal
negligibly differs from O(q/|Dict|) + 1/2 , where q is a number of user instances the
adversary makes a request to the oracle Osend for.

The protocols are divided into two types by the authentication step format :

Type 1 Generated session key is used to compute some authentication data. In this case the
key that is the target of the adversary is the input of the one-way function used to
obtain the authentication data (e.g. SESPAKE).

Type 2 Generated session key is not used to compute any authentication data. It means that a
key for the authentication step is obtained from the common secret with one one-way
function and the main key is obtained from the same common secret with another
one-way function (e.g. PACE, AugPAKE).

For protocols of the first type the adversary model considered above is not correct, as
the adversary trivially obtains a criterion that allows to check whether the target string
is random or not by computing authentication data with this key. J. Bender, M. Fischlin,
D. Kugler point to it explicitly (see [28]). There are papers with proved security for the first
step only among such protocols considered by the authors.

For protocols of the second type the adversary model mentioned above is correct. Consider
the theorem on the security under a threat of distinguishing a session key from a random
string for the protocol OEKE.

Denote by Advakeoeke(A) = 2 · Pr [b = b′] − 1 the advantage of the adversary A in the
bit b recognition task. l1 is the length of the hash function H1 output. SuccCDH

G (t′) is
the probability of the event that occurs if the adversary can solve the computational Diffie-
Hellman problem with at most t′ steps.

Theorem 2.1. Let us consider the OEKE protocol, where SK is the session-key space and
Password is a finite dictionary of size N equipped with uniform distribution. Let A be an
adversary against the security under a threat of distinguishing a session key from a random
string of OEKE within a time bound t , with less than qs queries to the oracle Osend ,
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qp queries to the oracle Oexec , and, asking qh hash queries and qe encryption/decryption
queries. Thus we have

Advakeoeke(A) ≤ 3 · qs
N

+ 8qh · SucccdhG (t′) +
(2qe + 3qs + 3qp)

2

q − 1
+
q2h + 4qs

2l1
,

where t′ ≤ t + (qs + qp + qe + 1) · τG , with τG denoting the computational time for an
exponentiation in G , q is the order of G .

This theorem proves that the protocol is secure against a dictionary attack.

Public Information: G, g, p, q

A (Client): pw B (Server): pw

x ∈R {1, . . . , q − 1}, X ≡ gx A,X−−−−→ y ∈R {1, . . . , q − 1}, Y ≡ gy

Y ≡ Dpw(Y
∗)

B, Y ∗←−−−− Y ∗ ≡ Epw(Y )

KA ≡ Y x KB ≡ Xy

TA = H1(A||B||X||Y ||KA)
TA−−→ if TA 6= H1(A||B||X||Y ||KB) reject

skA = H0(A||B||X||Y ||KA) skB = H0(A||B||X||Y ||KB)

Table 1: Protocol OEKE

Also for protocols of the second type the threat of the false authentication is considered
based on the same adversary model.

In the considered papers the analysis of the protocol security under a false authentication
threat is based on the theorems on the security under a threat of key distinguishing. Infor-
mally the theorem on the security under the classic threat that is proved using all protocol
steps assumes that if the adversary can distinguish the key from the random string with
significant probability, then with a significant probability he knows the correct input data
for the function used to compute the final session key. It means that he can use the same
input data to compute the correct authentication information. Therefore, the methods used
in these papers to prove a security under the false authentication threat can be considered as
correct. There are different formal definitions of the false authentication threat in different
papers.

The OEKE protocol.
Advc−authoeke (A) = Pr [Auth0] is the probability of the event that occurs if the adversary

could impersonate a legitimate participant, where Auth0 is defined in the following way: the
event Auth0 occurs if A submits an authenticator Auth that will be accepted by the server
and that has been built by the adversary itself in real attack game in the random oracle and
ideal-cipher models.

The absence of the «built by the adversary itself» formal definition leads to the adversary
model that is defined not quite strictly.

The PAK protocol
The adversary model is defined in the following way: Advma

P (A) is the probability of the
event that occurs if there is a user instance that successfully terminated a protocol execution
and was not corrupted with the request to the oracle Ocorrupt (this oracle returns a password
of the user instance), but he has no partners.
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Public Information: G, g, p, q

A (Client): πA B (Server): πB [A] = 〈(H1(πA))
−1〉

x ∈R Zq, α ≡ gx

γ ≡ H1(π), m ≡ α · γ
A,m−−−−→

Abort if not acceptable(m)

y ∈R Zq, µ ≡ gy

γ′ ≡ πB(A), α ≡ m · γ′

σ ≡ αy

k = H2(A||B||m||µ||σ||γ′)
k′′ = H3(A||B||m||µ||σ||γ′)

µ, k←−−−
σ ≡ µx, γ′ ≡ (γ)−1

Abort if k 6= H2(A||B||m||µ||σ||γ′)
k′ = H3(A||B||m||µ||σ||γ′)

k′−→
Abort if k 6= k′

sk = H4(A||B||m||µ||σ||γ′)

Table 2: The PAK protocol

Theorem 2.2. Let PAK protocol uses group Gq and a password dictionary of size N . Fix
an adversary A that runs in time t and makes qs queries to the oracle Osend , qe queries
to the oracle Oexec , qr queries to the oracle Oreveal , qc queries to the oracles Ocorrupt and
qh hash queries to the random oracle. Then for t′ = O(t+ (q2h + qs + qe) · τG :

Advma
P (A) =

qs
N

+O

(
qs · SuccCDH

G (t′) +
(qs + qe)(qh + qs + qe)

q

)
)

Consideration of the protocol security under the false authentication threat is significant
part of the security proof. In corroboration we consider the PACE protocol that security
proof doesn’t take into account threat of the false authentication.

This protocol is vulnerable to a reflection attack. Indeed, let A and B are the protocol
users. Denote by A′ the active adversary who wants to authenticate on the user B (e.g. on
the server) instead of the honest user A . According to the protocol description user B is
the first who sends informative messages to partner (to be exact values YB and TB ) (see
Table 3). Let A′ intercepts messages of the honest user A and sends modified messages to
user B . Adversary modifies messages by the following way: on the key exchange step A′

sets point YA equal to point YB , on the authentication step A′ sets value TA equal to value
TB . Obviously such adversary A′ successfully authenticates instead of the honest user A .

The protocol proposed in this paper doesn’t have such a vulnerability. Two different
techniques are used to achive it. On the one hand generation of data for the authentication
step require different prefixes for different protocol parties (see Table 9, rows labeled with 4).
On the other hand generation of masked Diffie-Hellman Keys (u1 and u2 ) assumes different
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operations for different sides (−QPW for A , +QPW for B ). So if the adversary B′ sends
u2 = u1 to honest user A , then user A will obtain incorrect value QA = u2 − QA

PW =
αP − 2QA

PW instead of u2 −QA
PW = βP .

Public Information: EC parameters G = {a, b, p, q,G}

A (Client): π B (Server): π
Kπ = H(π ‖ 0) Kπ = H(π ‖ 0)

s ∈R Zq

z = EKπ (s)
G, z−→ abort if G incorrect

s = E−1Kπ (z)

Map2Point(s)
←→

Jointly generate Ĝ

yA ∈R Z∗q , YA = yA · Ĝ
YA−→ yB ∈R Z∗q , YB = yB · Ĝ
YB←−

abort if YB 6∈ 〈G〉\{0} abort if YA 6∈ 〈G〉\{0}
K = yA · YB K = yB · YA

Kenc = H(K‖1) Kenc = H(K‖1)
Kmac = H(K‖2) Kmac = H(K‖2)

TA =MACKmac(YB , Ĝ,G)
TA−→ TB =MACKmac(YA, Ĝ,G)
TB←−

abort if TB invalid abort if TA invalid

Table 3: The PACE protocol

Let’s consider other protocols for their efficiency and security properties.
The SPAKE2 protocol (see Table 4) includes 1 round and 2 flows with complexity 4

exponentiation computations in cyclic group G . According to the Abdalla this protocol is
one of the most efficient PAKE protocols. This protocol doesn’t include a key authentication
step, thus the SPAKE2 protocol is secure under a threat of distinguishing a generated session
key from a random string only. As the first part of the protocol described in current paper
SPAKE2 is a variation of the password-based encrypted key exchange protocol of Bellovin
and Merritt ([19]).

Authors discussed a necessity of using hash functions for protecting against «related
keys attack». The same technique is used for protocol SESPAKE proposed in this paper (see
Table 9, rows labeled with 3).

The Dragonfly protocol (see Table 5) consists of two step: a key generation step and
a key authentication step. This protocols includes 1 round and 4 flows with complexity 6
exponentiation computations in cyclic group G .

In 2013 it was shown by Dylan Clarke, Feng Hao that this protocol is vulnerable to a
small subgroup attack. There is no checking that the received element E (more specifically,
EA for Bob and EB for Alice) is a member of the group being used by the cryptographic
scheme. For more details see [23]. The protocol proposed in current paper doesn’t have such
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Public Information: G, g, p, q,M,N

A (Client): pw ∈ Zq B (Server): pw ∈ Zq
x ∈R Zq, X = gx y ∈R Zq, Y = gy

X∗ = X ·Mpw Y ∗ = Y ·Npw

X∗−→
Y ∗←−

KA = (Y ∗/Npw)x KB = (X∗/Mpw)y

SKA = H(A,B,X∗, Y ∗, pw,KA) SKB = H(A,B,X∗, Y ∗, pw,KB)

Table 4: The SPAKE2 protocol for finite fields

vulnerability as there are verifications of type m
q
QB

?
= 0E (see Table 9, rows labeled with 2)

(more precisely in Section 3.9.2).

Public Information: G, p, q

A (Client): P ∈ G B (Server): P ∈ G
rA,mA ∈R {1, . . . , q} rB ,mB ∈R {1, . . . , q}

sA = rA +mA sB = rB +mB

EA = P−mA EB = P−mB

EA, sA−−−−−→
EB , sB←−−−−−

K = (P sBEB)
rA = P rArB

TA = H(K|EA|sA|EB |sB)
TA−−→ Verify TA

K = (P sAEA)
rB = P rArB

Verify TB
TB←−− TB = H(K|EB |sB |EA|sA)

SK = H(K|EA · EB |(sA + sB) mod q)

Table 5: The DragonFly protocol for finite fields

The J-PAKE protocol (see Table 6) includes the technique of zero-knowledge proof
(PK, VK), thus this protocol is not efficient. During the protocol the server and the client
need to compute 12 modular exponentiations in cyclic group and need to exchange 12
group elements and 6 scalars whereas the protocol SESPAKE needs only 4 computations
of multiple points in the group of elliptic curve points and 2 group elements and 2 hash
values exchanges.

The AugPAKE protocol (see Table 7) was proposed as one of the most efficient pro-
tocols. According to authors, the user needs to compute only 2 modular exponentiation
computations while the server needs to compute 2.17 modular exponentiation computa-
tions. AugPAKE needs to exchange 2 group elements and 2 hash values. This protocol is
augmented (non-balanced). It is claimed that even for corrupted server there is no possibility
to impersonate client without offline dictionary attack.

The fully description of this protocol is got in Internet-Draft (see [32]). But there is no
exhaustive scheme of counters exploitation. The counter management is significant part of
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Public Information: G, g, p, q, σ R← Setup(1κ), s
?← {0, 1}t

A (Client): pw ∈ Zq B (Server): pw ∈ Zq
x1, x2 ∈R Zq x3, x4 ∈R Zq

X1 ≡ gx1 , X2 ≡ gx2 X3 ≡ gx3 , X4 ≡ gx4

π1
R← PK((X1, g), x1, A) π3

R← PK((X3, g), x3, B)

π2
R← PK((X2, g), x2, A) π4

R← PK((X4, g), x4, B)

(A,X1, X2, π1, π2)−−−−−−−−−−−−−−→
(B,X3, X4, π3, π4)←−−−−−−−−−−−−−−

Abort if X4 = 1 Abort if X2 = 1

Abort if VK((X3, g), π3, B) fails Abort if VK((X1, g), π1, A) fails
Abort if VK((X4, g), π4, B) fails Abort if VK((X2, g), π2, A) fails

α ≡ (X1X3X4)
x2pw β ≡ (X1X2X3)

x4pw

πα
R← PK((α,X1X3X4), x2pw,A) πβ

R← PK((α,X1X2X3), x4pw,B)

(α, πα)−−−−−→
(β, πβ)←−−−−−

Abort if VK((β,X1X2X3), πβ , B) fails Abort if VK((α,X1X3X4), πα, A) fails
K = (βX−x2pw

4 )x2 K = (αX−x4pw
4 )x4

SK = H(s||K)

Table 6: The J-PAKE protocol

protocol architecture as it prevents some trivial attack (for more detail see Section 3.9.1).
The protocol SESPAKE proposed in the current paper is balanced.

Public Information: G, g, p, q

A (Client): pw ∈ Zq B (Server): W ≡ gpw

x ∈R Z∗q , X ≡ gx y ∈R Z∗q , K ≡ gy
A,X−−−−→
B, Y←−−−− r = H(A,B,X), Y ≡ (X ·W r)y

r = H(A,B,X), K ′ ≡ Y 1/(x+pw·r)

TA = H1(A||B||X||Y ||K ′)
TA−−→ if TA 6= H1(A||B||X||Y ||K) reject

if TB 6= H2(A||B||X||Y ||K ′) reject TB←−− TB = H2(A||B||X||Y ||K)

SK = H3(A||B||X||Y ||K ′) SK = H3(A||B||X||Y ||K)

Table 7: The AugPAKE protocol

The SPEKE protocol (see Table 8) includes 1 round and 2 flows with complexity
4 exponentiation computations in cyclic group G and 2 verifications of the membership
of a group element to the cyclic group G . This protocol is vulnerable to an impersonation
attack. This attack is realised in concurrent model, when several copies of the protocol can
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be processed concurrently. For more details see [29].
Despite the fact that security of the protocol SESPAKE was analyzed in the non-

concurrent model this protocol doesn’t have such a vulnerability since unique identifiers
are used as input for computing authentication data (see Table 9, rows labeled with 6).

Public Information: G, p, q

A (Client): pw B (Server): pw
g = F (pw) ∈ G g = F (pw) ∈ G

x ∈R {1, . . . , q}, X ≡ gx y ∈R {1, . . . , q}, Y ≡ gy
X−→
Y←−

K = H(x · Y ) K = H(y ·X)

TA = H(H(K))
TA−−→ Verify TA

Verify TB
TB←−− TB = H(K)

Table 8: The SPEKE protocol

Flags zA and zB are used for protocol implementation in constant time. This technique
is used to prevent «side channel attack» (see Table 9, rows labeled by 1).

2.3 Results

The protocol proposed in this paper is the first type protocol, i.e. the generated session
key is used to compute authentication data. In order to analyze the security considering
all the protocol steps we propose to extend the adversary model. The consideration of the
additional oracles Ocheck and Oauth allows to define a new threat of distinguishing the real
authentication data from the random one. The formal definition of the adversary model is
described in Section 3.

3 The proposed password authenticated key exchange
protocol

3.1 Basic concepts and notations

We denote by Vn the set of all strings of length n with elements from the field GF (2) .
All operations with points of an elliptic curve are computed in a subgroup E of the

prime order q in a group of some elliptic curve points. P is a generator of the subgroup E ,
m is the order of the group of used elliptic curve points. A run time for computing multiple
points in the group of elliptic curve points is denoted by τ , 0E is the identity element of
the group E . E∗ is a set E \ {0E} .

F is a function PBKDF2 , defined in [4], H256 is a hash-algorithm GOST R 34.11-2012
[5] with output’s length 256 bits.
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We assume that an adversary is a probabilistic Turing machine. We will call the decisional
problem the task for the adversary that implies a binary answer. It assumes that there is a
random bit b and the adversary does not know its value. A result of the adversary’s attack is
a bit value guess. Here SUCC is an event, that occurs if the result of the adversary’s attack
and the value of the bit b are equal. For the adversary A who solves the decisional problem
Task it is usual to bound not the success probability, but an advantage AdvTask(A) defined
in the following way:

AdvTask(A) = 2 · Pr [SUCC]− 1.

We denote by AdvTask′(A) the success probability for the adversary who solves a compu-
tational problem Task′ .

Depending on the problem the adversary can make requests to some oracles.
A(t, q1, . . . , qk) is a set of the adversaries who work at most t steps and make at most qi

queries to the oracle Oi , for each i = 1, 2, . . . , k . We denote by AdvTask(t, q1, q2, . . . , qk) :

AdvTask(t, q1, q2, . . . , qk) = max
A∈A(t,q1,q2,...,qk)

AdvTask(A).

If it is unnecessary to consider a set of the adversaries bounded by all parameters, unuseful
parameters are not indicated. E.g. A(t) is a set of the adversaries who work at most t steps.

If O is some oracle that accepts the inputs from a set R , then O(r) , r ∈ R is the
output of the oracle O .

3.2 Brief description of the protocol

The protocol assumes an interaction of two participants. Each participant stores some
value of a secret parameter. A client is a participant who stores a password as a secret
parameter, and a server is a participant who stores a password-based computed point of the
elliptic curve. Client and Server are a set of clients and a set of servers correspondingly.

A participant identifier is a byte-string of the constant length N (the length is the same
for all participants of the protocol), ID ( ID = V N

8 ) is a set of all identifiers. If A is the
participant of the protocol, then AID ∈ ID is his identifier.

The client and the server (denote by A and B respectively) store l+1 provable pseudo-
random points Q1, . . . , Ql and P . The provable pseudorandomness ensures that multiplicity
of any point under any other point is unknown (more precisely in Section 3.9.3).

The client additionally stores his secret parameter — a password PW ∈ V k
8 .

The server additionally stores the following parameters (only QPW has to be kept secret):

• a number ind ∈ {1, . . . , l} ;

• salt ∈ V64 ;

• a point QPW = F (PW, salt, 2000) ·Qind .

The parameter l is a random positive integer. Also every client A (server B ) has his
own open constant string TA (TB ). There are detailed comments and explanations about
the parameters and features of the protocol in Section 3.9.
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5 Public Information: l, P,Q1, . . . , Ql,m, q

A [AID, PW ] B [BID, QPW , ind, salt]

AID−−−→

SE
SP

A
K
E

K
A

BID, ind, salt←−−−−−−−−−−
1 zA = 0

QA
PW = F (PW, salt, 2000) ·Qind

α ∈R {1, . . . , q − 1}
4 u1 = α · P −QA

PW

u1−→
if u1 /∈ E ⇒ FINISH

1 zB = 0
QB = u1 +QPW

β ∈R {1, . . . , q − 1}
2 if m

q
QB = 0E ⇒ QB = P , zB = 1

src = (m
q
· β mod q)QB

3 KB = H256(src)
4 u2←− u2 = β · P +QPW

if u2 /∈ E ⇒ FINISH
QA = u2 −QA

PW
2 if m

q
QA = 0E ⇒ QA = P , zA = 1

src = (m
q
· α mod q)QA

3 KA = H256(src)

tagA = TA||AID||ind||salt||u1||u2

SE
SP

A
K
E

K
C

6 MA = HMACKA
(tagA)

MA−−→
tag = TA||AID||ind||salt||u1||u2

M = HMACKB
(tag)

If M 6= MA or zB 6= 0 ⇒ FINISH
tagB = TB||BID||ind||salt||u1||u2

6 MB←−− MB = HMACKB
(tagB)

tag = TB||BID||ind||salt||u1||u2
M = HMACKA

(tag)
If M 6= MB or zA 6= 0 ⇒ FINISH

Table 9: Description of the SESPAKE protocol
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A scheme of the protocol is shown at Table 9.
For convenience we denote by SESPAKEKA a key agreement protocol up to the com-

putation of the function HMAC , SESPAKEKC is the second part of the protocol. This
division is shown at Table 9. SESPAKE is a key agreement protocol SESPAKEKA with the
following key validation step performed by the protocol SESPAKEKC .

The first column of protocol scheme is used to explain some properties. The description
of labels is:

1. Flag zA ( zB ) and assignment QA = P (QB = P ) are used for protocol imple-
mentation in constant time. This property is mentioned as required in Internet-Draft
«Requirements for PAKE scheme» (see [1]). This technique is used to prevent «side
channel attack». For more details about correct using of flags and session counters see
Section 3.9.1.

2. The verifications of points for small order is a significant part of the PAKE protocols
(for the SESPAKE protocol there are verifications of type m

q
QB

?
= 0E ). It helps to avoid

such trivial attacks as a small subgroup attack. For example, the first version of the
DragonFly protocol has such vulnerability (see Section 2.2, the DragonFly protocol).
For more details about processing of the points of the small order see Section 3.9.2.

3. Using a hash-function is required to protect from «related keys attack» of the first type
(see Section 2.2, the SPAKE2 protocol).

4. Different operations for different sides (−QPW for A , +QPW for B ) are used to
prevent reflection attack (see Section 2.2, the PACE protocol).

5. Several group generators with unknown multiplicity under other generators are required
to protect from related keys attack of the second type (see Section 3.9.3).

6. The unique identifiers AID and BID are used as inputs for computing authentication
data for protection against an impersonation attack in the concurrent model when sev-
eral copies of the protocol can be processed concurrently (see Section 2.2, the SPEKE
protocol).

3.3 Employed models

The proof of the protocol security is made in two steps in this paper. First, we will prove
security of the protocol SESPAKEKA under a threat of distinguishing а session key from a
random string. Then we will prove security of the protocol SESPAKE under the decisional
version of the false authentication threat.

In this section we describe the models that are used in our further argumentations:
the model of the network parties interaction and the adversary model for the protocols
SESPAKEKA and SESPAKE .
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3.3.1 Model of network parties interaction

We suggest each participant can take part in an arbitrary large number of the protocol
sessions, but not at the same time — at every instant any participant can take part in one
incomplete session only. We say a session is completed if all the protocol computations and
all the transmissions are finished, or if one of the parties terminates the execution with an
error caused by incorrectness of transmitted data or unsuccessful validation.

The actions of the participant A are modelled with the use of the OiA oracle in each
session, where i is a session number. We assume that a creation of the new session is
permitted only if all oracles OiA of the participant A have either generated session keys
(for SESPAKEKA ) or have terminated with error. After the creation of new i -th protocol
session with A ∈ Client and B ∈ Server the oracle OiA corresponding to the client A
waits for the start request in the form of a special string start . The oracle OiA outputs
the identifier AID in response to this query. The oracle OiB waits for a query in a form
of some client identifier and outputs a pair (ind, salt) in response. Further formats of the
queries to the oracles and their responses to these queries are defined within the protocol.
It should be additionally noted that after processing of each query the oracle moves to a
new state defined by the result of the internal computations (for example, with a result of
pseudorandom number generator execution) and the protocol specification. The correctness
of a query to the oracle is defined with its state and the protocol (for example, if after the
first query (a string start ) to the oracle OiA (A ∈ Client ) not a pair (ind, salt) but a string
start comes again as an input, the oracle thinks that the query is incorrect). If a query is
incorrect the oracle returns nothing and moves in a state FAIL . In this state oracle doesn’t
respond to any query and does not change its state.

During the interaction each oracle forms a string IDS («ID of Session») by adding all
information that was received or was sent according to the protocol. E.g. total values of
IDSA,i and IDSB,j of oracles OiA and OjB are equal AID||ind||salt||u1||u2 after a correct
termination of the protocol SESPAKEKA session.

It should be additionally noted, that these oracles model a participant reaction to the
messages received during the interaction according to the protocol, but the adversary com-
pletely controls communications, so the oracles do not exchange any information. It allows
to model active «man in the middle».

For any oracle OiA the following conditions may be met:

• ACCEPTED — OiA has generated a common key according to the protocol procedure;

• OPENED — the adversary has found out a session key generated by the oracle OiA
with help of the oracle Oreveal (this oracle is described below)

• UNOPENED — for the oracle OiA the condition OPENED is not met.

We assume that the oracle uses random analogues of the described cryptographic func-
tions (a hash function and authentication codes) i.e., for example, for a function HMAC
with a key K we use a mapping G(K, ·) : V ∗ → V256 , where G is a family of the random
functions. The family G is chosen in the beginning of the execution by the following way:
a mapping G(K, ·) , K ∈ V256 , is chosen independently and uniformly from the set of all
mappings from V ∗ to V256 .
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3.3.2 Adversary model for the protocol SESPAKEKA

We can informally describe the adversary model by the following way:
Attack. The adversary can initiate any number of sessions between any couple of the

participants. He has a complete access to a transmission channel (an active «man in the
middle»). The adversary can find out the session keys of any initiated connection except for
one (we will call this connection special; the adversary chooses it during his execution).

Threat. The adversary wants to reveal any information about the session key of the special
connection.

It should be noted that the adversary’s ability to reveal the session keys reflects the fact
that these session keys can be used by a participant in a wrong way after its generation (e.g.
as keys of the weak cipher).

It is necessary to define one more property of the oracle OiA before a formal description
of the adversary model .

Let us say that the oracle OiA is fresh if:

1) for OiA conditions ACCEPTED and UNOPENED are satisfied;

2) for any oracle OjB , whose IDS value is equal to IDS value of the oracle OiA , the
condition UNOPENED is satisfied.

We’ll now describe abilities of the adversary using the set of the oracles he can make
requests to:

1. Oexec — in response to request (AID, BID) a new session for the participants A and
B is created (here the oracles OiA and OjB are reserved for unused numbers i and
j ). The oracle Oexec outputs as a result a complete log of the messages that were sent
to each other by A and B during the protocol execution (a consequence of answers
of the oracles OiA and OjB );

2. Osend — in response to the request (A, i,m) the oracle returns message Osend(A, i,m) ,
that the oracle OiA returns at the moment, receiving message m (i.e. Osend(A, i,m) =
OiA(m) for the current state OiA );

3. Oreveal — if for the oracle OiA the condition ACCEPTED is satisfied, then in response
to request (A, i) the oracle Oreveal returns message Oreveal(A, i) , equal to KA,i — a
session key of OiA ;

4. Otest — accepts requests of the form (A, i) . If the oracle OiA is fresh, the oracle Otest
chooses a random bit b ( b ∈R {0, 1} ) and, if b = 0 , outputs a random string as long
as a session key, and if b = 1 , outputs a session key KA,i ;

5. OH is the oracle, computing the same function H used by the participant oracles.

A concept of the fresh oracle is useful for prevention from the considered threat degenera-
tion because of the oracle Oreveal existence. If we don’t limit the access abilities to the oracle
Otest , the adversary can carry out the considered threat trivially: after a legal generation of
the common key by the oracles OA and OB the adversary, using Oreveal , gets a key KA

18



of the oracle OA and then makes a request to the oracle Otest to recognise a key of the
oracle OB , comparing a string received from Otest with KA . The adversary, following this
strategy, can fail with negligible probability.

Procedure 3.1. Let us consider a procedure, where the adversary has access to the oracles
Oexec , Osend , Oreveal , OH and Otest , moreover he can make one request to the oracle Otest
and for a fresh oracle OiA only. The adversary outputs either 0 or 1 as a result. Let SUCC
is an event that occurs if the adversary result is equal to a bit b of the oracle Otest .

Denote by AdvSESPAKEKA(A) an advantage of the adversary A in the experiment de-
scribed above.

3.4 Adversary model for the protocol SESPAKE

We consider the adversary model under some variant of false authentication threat. More
precisely we consider a threat of distinction a string M , that was computed using a real
session key of participant, from a string M ′ , that was computed using a random key.

Let us describe the abilities of the adversary A for the protocol SESPAKE . Besides
the abilities of the adversary for the protocol SESPAKEKA , the adversary A can make
a request to the oracles OHMAC , Ocheck and Oauth . These oracles work according to the
following rules:

• OHMAC : realizes a family of the random mappings {GK : V ∗ → V256}K∈V256 , that are
chosen independently and uniformly before the attack; in response to request (K,T )
the oracle OHMAC returns a value GK(T ) ;

• Ocheck : in response to request (A, i) the oracle returns a value HMACKA,i
(TA||IDSA,i)

(for HMAC we use the same family as for the oracle OHMAC ). The employed key is
a session key generated by the oracle OiA , the argument is a string TA concatenated
with IDSA,i .

• Oauth : we define a threat using this oracle. Oracle Oauth receives as input a pair
(A, i) , chooses b ∈ {0, 1} uniformly and depending on a value b returns either
a pair (MA,M

′) (if b = 0 ), or a pair (MA,M) (if b = 1 ). At that M ′ =
HMACK′(TB||IDSA,i) , where K ′ ∈R V256 , MA = HMACKA,i

(TA||IDSA,i) , and
M = HMACKA,i

(TB||IDSA,i) .

As in the model for the SESPAKEKA protocol, the adversary can make a request to the
oracle Oauth for fresh oracles only. A fresh oracle is such an oracle OiA that there were not
any requests to the oracle Ocheck for it and the adversary did not get a value M by the
trivial way, i. e. he did not make a request to the oracle Ocheck for the oracle sharing with
OiA a common key. Informally the adversary warns which participant and session he will
realize a threat to. Emphasize that the adversary chooses his target not in the beginning of
attack but as the work advances.

The adversary returns a value a ∈ {0, 1} . Denote by SUCCauth an event that occurs if
a = b , where b is a value that was used by the oracle Oauth
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3.4.1 Special case: some standard adversary model

This section is called upon to illustrate the fact that the model described above contains
all the most common practical adversary models. The SESPAKE protocol is intended to be
applied mainly for communications between a key carrier (card) and a client (computer). In
this case the client stores a password, the card stores a point QPW . In this section we will
use the terminology client-card.

Example 3.2. The adversary is a client. Attack: the adversary imitates a client and can
send any message to a card and receive answers. Threat: the adversary successfully authorizes
on the card.

This scenario gets covered with help of the oracles described in Section 3.3.2. In this
case the adversary makes a request to the oracle Osend to send messages to the card on
behalf of the client. The successful authentication of the adversary on the card means that he
has generated a common key with this card. So the adversary solves the problem at least as
complicated as the distinguishing a session key from a random string problem.

Example 3.3. The adversary is a man in the middle. He can intercept any message that
participants send to each other according to the protocol. He has an ability to change, keep,
send arbitrary messages to the arbitrary participant on behalf of the arbitrary participant. A
threat consists in the fact that the adversary knows some information about the key.

The abilities of the adversary to make different manipulations with messages get covered
by his ability to make requests to the oracle Osend described in Section 3.3.2. Thus «man in
the middle» is not stronger than the adversary, who has an access to the oracle Osend in the
sense of its own abilities. To carry out a threat to get some information about the session
key is not easier than to distinguish the session key from a random string.

To complete a picture we should mention the following example.

Example 3.4. The adversary is a card. Suppose the adversary is a fake card that wants to
know the client password (even at least point QPW ).

In this case the adversary can interact with the client as a usual card. This behavior
is completely described by the ability to use the oracle Osend . The client password obtaining
leads to the situation that the keys of all further sessions will be known by the adversary-card.
Thus the adversary-card certainly solves his problem to distinguish the session key from the
random string.

It should be noted that necessity of the oracle Oreveal consideration is conditioned by a
wrong utilization of the session key (e.g. as a key of a weak cryptographic algorithm).

3.5 Accompanying problems and relations between them

In this section we consider some problems that will be used to prove the protocol security.
All these problems are formulated for subgroup E of a elliptic curve points group, more-

over |E| = q , where q is a prime number.
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3.5.1 CDH

We formulate the CDH problem (the computational Diffie-Hellman problem) using an
experiment ExpCDH :

• Choose two numbers x, y ∈ Zq and a point P ∈ E independently at random, P 6= 0E .
Compute X = xP and Y = yP ;

• Send points P , X = xP , Y = yP to the adversary A ;

• The adversary A returns a point Z ;

• If Z = xyP , then a result ExpCDH(A) of this experiment is 1 , else is 0 .

The success probability for the adversary A is:

AdvCDH(A) = Pr
[
ExpCDH(A) = 1

]
.

A characteristic that reflects the complexity of solving the problem CDH is

AdvCDH(t) = max
A∈A(t)

AdvCDH(A).

For X = xP and Y = yP we denote by CDHP (X, Y ) a point xyP . We will simply
write CDH(X, Y ) if it is clear from the context what P is used.

3.5.2 SCDH

The SCDH problem ([3]) differs from the problem CDH in fact that we send to the
adversary points X and P only, and his task is to compute CDHP (X,X) . We denote by
SCDHP (X) , where X = xP , a point x2P .

3.5.3 QCCDH

Now we will describe the following experiment, which will be further denoted as
ExpQCCDH .

• Choose points X,Q, P ∈ E , P 6= 0E independently at random and send them to the
adversary;

• The adversary A returns points Y , U and V ;

• If U = CDHP (X, Y ) and V = CDHP (X −Q, Y −Q) then return 1 else return 0 .

The success probability for the adversary A is:

AdvQCCDH(A) = Pr
[
ExpQCCDH(A) = 1

]
.
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3.5.4 PCCDHD

Denote by D ⊂ Zq a set of passwords. P is a generator of subgroup E .
The experiment ExpPCCDH(A) for the PCCDHD problem consists of two steps, and the

adversary A in this experiment uses two random tapes for the different steps and returns
a content of the first one along with the value of the point Y . The content of the random
tape for the first step can be set before the beginning of the experiment arbitrarily. If it is
not set, then the tape is filled uniformly at random.

The experiment ExpPCCDH(A) is performed as follows:

• Choose points Q1, Q2, X ∈R E ;

• Send Q1, Q2, X to the adversary A ;

• The adversary returns Y ∈ E and u , a content of his random tape used for compu-
tations on the first step;

• Choose a password r ∈R D and send it to the adversary A ;

• The adversary returns K ∈ E ;

• If K = CDHP (X − r ·Q1, Y − r ·Q2) , then return 1 as a result, else return 0 .

Remark 3.5. The adversary, who has guessed the right password r before the returning Y ,
solves this problem guaranteed, returning Y = P + r ·Q2 and K = X − r ·Q1 .

Remark 3.6. Returning the content of the random tape gives an ability to «start up» the
adversary A in such a way that the result of his work for the first step (a point Y ) is not
changed for the same input data. It means that after receiving the point Y we can «start
up» the adversary many times for the second step only.

3.5.5 QPCCDHD

The QPCCDHD problem differs from the PCCDHD problem in fact that points Q1 and
Q2 are the same.

3.5.6 S-PCCDHD,s

The S-PCCDHD,s problem with parameters s ∈ N differs from the problem PCCDHD
in fact that instead of one key K the adversary A can return a set of key K of cardinality s
as a result. We return 1 as a result of the experiment ExpS-PCCDH(A) , if a point CDHP (X−
r ·Q1, Y − r ·Q2) is in a set K .

3.5.7 S-QPCCDHD,s

The S-QPCCDHD,s problem differs from the S-PCCDHD,s problem in fact that in the
experiment ExpS-QPCCDH(A) the points Q1 and Q2 are equal.

Further, if it is clear from the context for what parameters s and D we consider the
problems described above, then their names will be used without indexes.
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3.5.8 Known relations

In this section some statements are proved which estimate the bounds of the success
probability of the S-QPCCDH problem solution through the success probability of the
CDH problem solution.

We have produced a full detailed proof of the first theorem in order to explain the used
methods as well as the used technique.

Theorem 3.7. The following inequalities hold:

Adv2
SCDH(t) 6 AdvCDH(2t+ τ),

AdvCDH(t) 6 AdvSCDH(t+ τ).

Proof. Suppose A is an adversary, who solves the SCDH problem and works at most t
steps. We describe an adversary A′ using A as a black box to solve the CDH problem.
Notice, that

CDH(X, Y ) =
1

4
(SCDH(X + Y )− SCDH(X − Y )) .

For the points X and Y (we want to find the value CDH(X, Y ) for them) A′ firstly sends
X + Y as an input to A and then X − Y . A′ computes с = 1/4 · (a− b) after receiving
answers a and b from A correspondingly and returns c as a result.

Let bound the run time and the success probability for the adversary A′ . The run time
of A′ is bounded in the following way: the adversary A works at most 2t steps (two starts),
we need 3 additive and 1 multiplicative operations for the computation c from a and b .
We neglect the run time of additive operations and thus we can deduce that A′ ∈ A(2t+τ) .

The success probability AdvCDH(A′) for the adversary A′ is bounded below by a value
(AdvSCDH(A))2 , so if A solves his problem SCDH for both X+Y and X−Y successfully,
then the adversary A′ finds CDH(X, Y ) .

As the adversary A is arbitrarily selected we can choose such A that AdvSCDH(A) =
AdvSCDH(t) . The first statement of theorem is followed from the chain of relations:

AdvCDH(2t+ τ) > AdvCDH(A′) > Adv2
SCDH(A) = Adv2

SCDH(t).

Let consider the second inequality. Now suppose A is an adversary, who solves the CDH
problem and works at most t steps. We describe an adversary A′ using A as a black box
to solve the SCDH problem for point X .

Firstly A′ chooses y ∈R Zq\{0} and set Y = X + yP . Notice, that

CDH(X, Y ) = CDH(X,X + yP ) = CDH(X,X) + y · CDH(X,P ) = SCDH(X) + yX.

Then A′ sends X, Y as an input to A , receives a point a and returns b = a− yX as
a result. Similarly to proof of the previous inequality we get

AdvSCDH(t+ τ) > AdvSCDH(A′) > AdvCDH(A) = AdvCDH(t).
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Theorem 3.8. The following inequality holds:

AdvQCCDH(t) 6 AdvSCDH(t+ 4τ) 6
√
AdvCDH(2t+ 9τ).

Proof. Suppose A ∈ A(t) is an adversary who solves the QCCDH problem with the success
probability ε . For the points Q ∈ E , P ∈ E\{0E} we choose a number b ∈ {0, 1, . . . , q−1}
randomly and independently of points Q and P . Let Y, U, V is a triple of numbers that the
adversary A outputs as a result, when he received (X,Q) , where X = b · Q . If he solves
the QCCDH problem successfully, thus

U = CDH(b ·Q, Y ) = b · CDH(Q, Y ),

V = CDH((b− 1) ·Q, Y −Q) = (b− 1) · (CDH(Q, Y )− SCDH(Q)).

A point

R =

(
1

b
mod q

)
· U −

(
1

b− 1
mod q

)
· V

will be a solution of the SCDH problem for the pair Q,P with probability at least ε .
The second inequality is a corollary of the first one and the theorem 3.7.

Theorem 3.9. The following inequality holds:

AdvQPCCDHD(t) 6
1

|D|
+
√
AdvQCCDH(2t+ 2τ).

Proof. Suppose A ∈ A(t) is an adversary, who solves the QPCCDHD problem with the
success probability δ . Put n = |D| and ε = AdvQCCDH(2t+ 2τ) .

Suppose Q,X ∈ E are independently chosen random points, we need to solve the
QCCDH problem for. We will use the adversary A to solve this problem.

Choose a random and uniform content u of a random tape for the first work step of A
(notice that it is sufficient to consider a tape of the finite length). Choose random r 6= r′ ∈ D
and compute γ = r′ − r .

Compute Q′ = 1
γ
Q and X ′ = X + rQ′ . Then use A twice to solve the QPCCDH

problem for the same input parameters for the first step and the different input parameters
for the second step.

Give to the adversary A a pair Q′, X ′ as an input, recording a value u on his random
tape of the first step. Let Y ′ is a result that the adversary returns on the first step (the
content of the random tape on the first step returned by A is equal to u ). Give to A a
number r′ as an input for the second step. Let K ′ is a value that the adversary returns as
a result.

Use A again, giving to him the same pair Q′, X ′ and recording u on the his random
tape of the first step. The adversary A returns the same value Y ′ . Give to A a number r
as an input for the second step. Let K is a value that the adversary returns as a result on
the second step.

If the adversary A solves both problems correctly, thus K ′ = CDH(X ′−r′Q′, Y ′−r′Q′) ,
and K = CDH(X ′ − rQ′, Y ′ − rQ′) . Let Y = Y ′ − rQ′ , then a triple Y,K,K ′ will be the
solution of the QCCDH problem for the input parameters X,Q . Indeed,

K = CDH( X ′︸︷︷︸
X+rQ′

−rQ′, Y ′ − rQ′︸ ︷︷ ︸
Y

) = CDH(X, Y ),
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K ′ = CDH(X ′ − r′Q′, Y ′ − r′Q′) = CDH(X + rQ′ − r′Q′, Y + rQ′ − r′Q) =

= CDH(X − (r′ − r)Q′, Y − (r′ − r)Q′) = CDH(X −Q, Y −Q),

as Q′ = 1
r′−rQ .

Thus the probability to solve the QCCDH problem for the pair X,Q (we denote this
event as SUCCX,Q ) for the adversary working this way is not smaller than the probability
that A successfully solves both problems at the same time for the inputs X ′, Q′ (the prob-
ability is determined by values r, r′, u and the random content of tape for the second step)
(event SUCCX′,Q′ ):

Pr [SUCCX,Q] > Prr,r′,u,v [SUCCX′,Q′ ] =
∑
u

Pr [u]
∑
r 6=r′

Pr [r, r′] Pr [SUCCX′,Q′,r,r′,u] ,

where SUCCX′,Q′,r,r′,u is an event that occurs if A solves both problems with parameters
X ′, Q′, r, r′ and the content u recorded on the tape of the first step. Let bound the average
success probability to solve the QCCDH problem by the way described above.

EX,QPr [SUCCX,Q] >
∑
X,Q

Pr [X,Q]
∑
u

Pr [u]
∑
r 6=r′

Pr [r, r′] Pr [SUCCX′,Q′,r,r′,u] >

>
∑
u

Pr [u]
∑
r 6=r′

Pr [r, r′]
∑
X,Q

Pr [X,Q] Pr [SUCCX′,Q′,r,r′,u] >

>
∑
u

Pr [u]
∑
r 6=r′

Pr [r, r′]
∑
A,B

Pr [A,B] Pr [SUCCA,B,r,r′,u] .

The last inequality follows from the fact that mapping (X,Q) → (X ′, Q′) is bijective, and
the distribution of pairs A,B ∈ E × E is uniform. The probability Pr [SUCCA,B,r,r′,u]
is a probability of the fact that the adversary A correctly solves the QPCCDH problem
firstly for inputs A,B (the first step) and r (the second step) with u as a content of
the random tape for the first step, and then the same problem but for parameter r′ as
an input for the second step. Here parameters A,B, r, r′ and u are independent, thus
Pr [SUCCA,B,r,r′,u] = Pr [SUCCA,B,r,u] · Pr [SUCCA,B,r′,u] . Here SUCCA,B,r,u is an event
that occurs if the adversary A solves the QPCCDH problem for input parameters A,B
and r with u as a content of random tape for the first step. For shot, denote by πr the
probability Pr [SUCCA,B,r,u] , and by πr′ the probability Pr [SUCCA,B,r′,u] . Then

EX,QPr [SUCCX,Q] >
∑
A,B

Pr [A,B]
∑
u

Pr [u]
∑
r 6=r′

Pr [r, r′] πrπr′ . (3.1)

Consider the sum
∑

r 6=r′ Pr [r, r′] πrπr′ . A probability Pr [r, r′] is equal to 1
n(n−1) . Thus

the next relation holds ∑
r 6=r′

πrπr′ = n2

(∑
r

1

n
πr

)2

−
∑
r

π2
r .

Use the result to bound the EX,QPr [SUCCX,Q] (we use the Jensen’s inequality to bound
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the first sum).

1

n(n− 1)

n
2
∑
A,B,u

Pr [A,B, u]

(∑
r

1

n
πr

)2

︸ ︷︷ ︸
>(

∑
A,B,u,r Pr[A,B,u,r]πr)

2
=δ2

−n
∑
A,B,u

Pr [A,B, u]
∑
r

1

n
π2
r︸︷︷︸

6πr

 >

>
n

n− 1
δ2 − 1

n
δ.

We have ε > EX,QPr [SUCCX,Q] > n
n−1δ

2 − 1
n
δ as a result. It is easy to show that the

next relations hold as a corollary:

δ 6
1 +

√
1 + 4εn(n− 1)

2n
6

1

2n
+

√
1

4n2
+ ε 6

1

n
+
√
ε. (3.2)

We got the required inequality.

Theorem 3.10. The following relation holds:

AdvS-QPCCDHs,D(t) 6
1

|D|
+ 4

√
AdvSCDH(4t+ Θ +O(sτ)) +

2s4

q
,

where Θ is a run time of finding a pair of identical elements in two sets of cardinality s2 .

Proof. Suppose A ∈ A(t) is an adversary who solves the problem S-QPCCDHs,D problem
with the success probability δ . Put n = |D| .

Suppose Q ∈ E and P ∈ E \ {0E} are points that we need to solve the SCDH problem
for. We will use the adversary A to solve this problem.

Choose numbers x1, x2, q1, q2 ∈ Zq independently at random. Compute the points Xi =
xiQ and Qi = Q + qiP . Choose the independent contents u1 and u2 of the random tape
for the adversary A at random. Then we use A as a black box in the same way as was
described for proof of theorem 3.9 for the pair X1, Q1 and the content u1 firstly and then
for the pair Q2, X2 and the content u2 . These experiments are independent because of the
choice parameters bi , qi and ui . We get four sets with s points in each as a result of this
procedure.

The probability of finding the solutions of the S-QPCCDHs,D problem in both sets got
in one procedure as a result is bounded below by the value n

n−1δ
2− 1

n−1δ (argumentations is
the same as in the proof for the theorem 3.9). As we choose the parameters for the procedures
independently, the probability that there will be a correct solution in each of four sets is at
least ( n

n−1δ
2 − 1

n−1δ)
2 .

We denote by S1 , S ′1 , S2 a S ′2 the sets got in mentioned procedures as a result.
If the adversary A solves both problems in one of the procedures, then there are such

multiple points Ki and K ′i in sets Si and S ′i that the following equalities hold:

Ki = CDH(Xi, Yi) = xiCDH(Q, Yi),

26



K ′i = CDH(Xi −Qi, Yi −Qi) =

= CDH(Xi, Yi) + CDH(Qi, Qi)− CDH(Xi, Qi)− CDH(Yi, Qi) =

= xiCDH(Q, Yi) + CDH(Q+ qiP,Q+ qiP )− CDH(xiQ,Q+ qiP )− CDH(Q+ qiP, Yi) =

= xiCDH(Q, Yi) + SCDH(Q) + 2qiQ+ q2i P − xiSCDH(Q)− xiqiQ− CDH(Q, Yi)− qiYi =

= (xi − 1)CDH(Q, Yi)− (xi − 1)SCDH(Q) + 2qiQ+ q2i P − xiqiQ− qiYi︸ ︷︷ ︸
C

.

We deduce from here that

SCDH(Q) =
1

xi − 1

(
xi − 1

xi
Ki −K ′i + C

)
=

1

xi
Ki −

1

xi − 1
K ′i +

1

xi − 1
C. (3.3)

A point 1
xi−1C is computed once for each of two procedures. s points 1

xi
Ki or 1

xi−1K
′
i

(depending on the considered set) are computed for each of four sets. Then we form two sets
with s2 elements in each using the relation 3.3. The first element of the first set we found the
same element in the second set is returned as supposed value SCDH(Q) . The probability of
the accidental coincidence is bounded by the value 2s4

q
.

Thus the mentioned algorithm solves the SCDH problem with probability at least(
n
n−1δ

2 − 1
n−1δ

)2 − s4

2q
. Therefore,

AdvSCDH(4t+ Θ +O(sτ)) >

(
n

n− 1
δ2 − 1

n− 1
δ

)2

− 2s4

q
.

From it we have

δ 6
1

|D|
+ 4

√
AdvSCDH(4t+ Θ +O(sτ)) +

2s4

q
.

3.6 A proof of security of the SESPAKEKA protocol

In this section we prove the lower bound of the advantage of some adversary in distin-
guishing a session key from a random string for the SESPAKEKA protocol.

Theorem 3.11. For qsend > 2 and some t required for the interaction according to the
protocol by one client the following inequality holds:

AdvSESPAKEKA(t, qsend) >
1

|D|
− 1

q
.

Proof. We will instance an adversary who solves a task of distinguishing а session key from
a random string for the SESPAKEKA protocol. The adversary sends some AID to the
participant B using the oracle Osend and receives (ind, salt) in response. The adversary
chooses a password PW ′ from the dictionary D uniformly and computes QPW ′ . Also
he chooses an element α from the set {1, . . . , q − 1} uniformly. Then he computes u1
according to the specification of the protocol (as if he were the participant A ) and sends
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u1 to participant B using a query to the oracle Osend . Receiving his key the adversary
computes a session key k′ according to the specification of the protocol using PW ′ as a
password.

Then the adversary makes a request to the oracle Otest to distinguish this key, that
has just been generated by the participant B . After receiving some string k the adversary
compares this string with k′ and outputs b′ = 1 as a result if they are equal and b′ = 0
otherwise.

If k is the key that was generated by the participant B during the interaction with the
adversary, then Pr [k′ = k] > 1

|D| (we neglect the probability of collision for hash-function
during a key generation and for the function F during generation of the QPW ′ value). Let
b is a random bit of the oracle Otest . The following relation holds:

Pr [b′ = b] = Pr [b′ = 0|b = 0] Pr [b = 0] + Pr [b′ = 1|b = 1] · Pr [b = 1] =

=
1

2

(
(1− 1

q
) + Pr [b = 1|b′ = 1]

)
>

1

2

(
(1− 1

q
) +

1

|D|

)
=

1

2
+

1

2|D|
− 1

2q
.

Thus AdvSESPAKEKA(t, qsend) > 1
|D| −

1
q
.

Taking into account that |D| � q the advantage of the adversary described above is a
value of the order 1

|D| .
A proof of the SESPAKEKA protocol security (with some parameters) is made in the

model with a random oracle OH (we suggest that the hash-function H used in the pro-
tocol acts as a random function). Finally the security is based on the complexity of the
computational Diffie-Hellman problem (CDH ) in the corresponding group.

Remark 3.12. Here we present some comments about the concept of the random oracle
used to improve the understanding of some steps of the proofs. The term «random oracle»
is widely used in papers about the mathematic cryptography. In our case the modelling of a
function H : A→ B using the random oracle means that computation of the function H is
realized with some computer OH whose input is an element from the set A and output is an
element from the set B (oracle is an accepted definition for this computer). A «randomness»
of the oracle OH consists in the way he chooses a value from the set B that oracle outputs
in response to a value-request from A . When processing the first request the oracle OH
chooses uniformly at random a function from the set of all functions which are defined on
the set A and have values from the set B , returns a value of the chosen function for the
input argument. For all next requests the oracle OH returns the corresponding values of the
chosen function.

It is more convenient to interpret the definition of oracle behavior mentioned above by
the following way. The oracle stores a table T of size |A| indexed with the elements from
A , all values are not defined before the first query. For input a ∈ A the oracle OH either
returns value T (a) if it has already been defined or chooses b ∈ B uniformly at random,
sets T (a) = b and returns b in response. So in fact the oracle defines his function at the
work advances.

Consider a task to distinguish two scenarios in the following experiment. Let O1 and O2

are the random oracles which realize a mapping A → B . The adversary can make requests
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of the form (i, a) , i ∈ {1, 2} , a ∈ A , to the oracle O that returns an element from B
using the oracles O1 and O2 . In the beginning of the work the oracle O chooses uniformly
at random a value β ∈ {1, 2} . The oracle O stores a table T that is initially empty. In
response to the request (i, a) the oracle O acts by the following way:

• if β = 1 , then O(i, a) = O1(a) ;

• if β = 2 , then, if T (a) is not defined, then O(i, a) = Oi(a) and T (a) = Oi(a) , else
O(i, a) = T (a) .

The adversary needs to solve a task to distinguish two scenarios: β = 1 or β = 2 .
Such a detailed description was made for the strictness. Informally the adversary should

define whether he receives answers from one random oracle or he receives the answers from
two random oracles. Moreover he has no opportunity to make requests with identical second
argument a to two different oracles (to compare the function results by coordinates).

It is clear that for every β the adversary makes requests to one random oracle (for the
second case the oracle is defined non-typically). So he can obtain no information about β .
The advantage of the adversary to solve this task is equal to 0 independent of the computing
resources.

Further qexec , qsend , qH are the numbers of queries to the oracles Oexec , Osend , OH
correspondingly that the adversary ASESPAKEKA makes. In the theorem formulated below
the values of these parameters can be arbitrary. In practice the limitation of these values
is a very important condition for the protocol security. There are detailed comments in
Section 3.9.1.

Theorem 3.13. The following inequality holds:

AdvSESPAKEKA(t, qH , qsend, qexec, qreveal) 6

6
(2qexec + qsend)

2

q
+ 2qHAdvCDH(t+ 2τqexec) + 2qsendAdvS-QPCCDHD,2qH

(t+ qS1τ + C),

where C is some constant, τ is a run time for computing a multiple point in the group E ,
and qS1 is a number of queries to the oracle Osend of the form (ind, salt) .

A proof structure. Let ASESPAKEKA is an adversary, Pr [SUCC] is his success proba-
bility in Procedure 3.1. We will use the adversary ASESPAKEKA as a black box, intercept his
queries to the oracles Oexec , Osend , Oreveal and Otest and model the work of the partici-
pants according to the protocol. Then step-by-step we will disable the adversary to get true
answers from the oracles. At that we will consider the difference of the success probability for
the adversary ASESPAKEKA in the step-by-step modified experiments. After some numbers of
modifications we will get an experiment where the success probability is 1

2
. Thus a deviation

of the success probability in the «clear» experiment from 1
2
can be majorized by the sum of

all bounds obtained in each experiment modification.
Describe a qualitative structure of the bound obtained in a such way. By modifying the

conditions of the experiment in fact we disable the adversaries by some definite way and
exclude from consideration some group of adversaries who can not be successful under new
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conditions (i.e. who use locked abilities essentially). A group excluded with randomization
the oracle Oexec answers consists of the passive adversaries who listen to the channel. The
main argumentations are assigned to bound an advantage of excluded adversaries. Then the
obtained bound joins as a summand to the total one. Totally if a set of the adversaries is
divided into appropriate groups, e.g. into groups B1 , B2 and B3 , then the total bound has
the following form:

Adv(A) = max{Adv(B1),Adv(B2),Adv(B3)} 6 C1 + C2 + C3,

where Ci is an upper bound for Adv(Bi) .

Proof. Let Pr [SUCC0] is the success probability for the adversary ASESPAKEKA . We will
use the adversary ASESPAKEKA as a black box and intercept his queries to the oracles. At
that we have interest in the success probability for the adversary ASESPAKEKA in modified
experiment. To process his queries to the oracles we will model a behavior of all participants:
choosing a random password for each participant, generating random points on the genera-
tion key step and so on. In this case a modelled set of the participants and the set used in
the «clear» experiment are the same for the adversary. Thus the probability Pr [SUCC1] is
exactly equal to Pr [SUCC0] .

Then we will use the adversary ASESPAKEKA as a black box in experiment that differs
from the previous one with the valid network model. The difference is in fact that we will
finish the work and return a random bit if there are the same values among the points {u1}
and {u2} obtained as a result of queries made by adversary ASESPAKEKA to the oracles
Osend and Oexec (modelled by us). The success probability is at most (2qexec+qsend)

2

2q
. Thus

the success probability Pr [SUCC2] in this experiment differs from Pr [SUCC1] at most by
(2qexec+qsend)

2

2q
. This experiment is used to consider no more the adversaries, who, for example,

send the queries with the same u1 to participant B , getting a key KB with help of the
oracle Oreveal until the value u2 appears twice. If this happens, then the key KA for the
last session with u2 should be set equal to the key KB that corresponds to the first session
with u2 .

In the next experiment modification (denote by Exp3 ) we will output in response to
query to the oracle Oexec as a session key not V KO(α, β, 1) but a value of the random
function H ′(u1, u2) unknown and inaccessible for computing by the adversary ASESPAKEKA .
Let the success probability in this experiment differs from the success probability in the pre-
vious one on 4P , i.e. 4P = |Pr [SUCC2]− Pr [SUCC1]| . As the function H used for key
generation is random the differences between the adversary behaviors in present and previous
experiments can be noticed only if he made a request UKM ·m

q
·CDH (u1 +QPW , u2 −QPW )

to the oracle OH . I.e. in fact with probability ∆P there is a solution of the CDH prob-
lem for the pair (u1 +QPW , u2 −QPW ) among qH requests to the oracle OH . We can use
it to solve the CDH problem for any points Q1 and Q2 . To do that we will use points
(Q1 +αP )−QPW and (Q2 +βP )+QPW as u1 and u2 in response to requests to the oracle
Oexec . If there is a value CDH(u1 +QPW , u2 −QPW ) among the requests to the oracle OH
(altogether qH requests), then

CDH(Q1, Q2) = CDH(u1 +QPW , u2 −QPW )− βQ1 − αQ2 − αβP.
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So we can conclude, that ∆P is at most qH ·AdvCDH(t+2τqexec+3τ) . It means that for
passively listening to channel adversary the task to distinguish a session key from a random
string is not easier than the CDH problem.

On the next step the previous experiment Exp3 is modified with the randomization of the
oracle Osend : we will return random points in response to the queries that request informal
cryptographic answers and form the session keys using the function H ′ described above
(denote by Exp4 the new experiment). So in the new experiment the adversary obtains no
information from the queries to the oracles. Thus the success probability Pr [SUCC4] in this
experiment is 1

2
.

Lemma 3.14. The following inequality holds:

|Pr [SUCC3]− Pr [SUCC4]︸ ︷︷ ︸
=1/2

| 6 qsend ·AdvS-QPCCDH
|D|,2qH (t+ qS1τ + C).

Proof. In order to bound the difference between the success probabilities in Exp3 and
Exp4 we will construct a special consequence of qu = qu1 + qu2 + 1 ( qu1 , qu2 are the
numbers of queries to the oracle Osend with arguments u1 and u2 respectively) experiments
Hyb0, . . . ,Hybqu1+qu2 , each of them will slightly more differ from the experiment Exp3 and
will be little more similar to the experiment Exp4 :

Exp3 = Hyb0  Hyb1  · · · Hybqu1+qu2 = Exp4. (3.4)

Further in the experiments Hybj we will denote by i the number of such a query to the
oracle Osend that parameter is either u1 or (u2, UKM) (i.e. this number takes into account
such queries only).

The description of the experiment Hybj : queries to all oracles except Osend are pro-
cessed by the same way as in Exp3 . Queries to the oracle Osend are processed in the
following way:

• A query with number 1 6 i 6 j to the oracle Osend is processed as in the experiment
Exp4 ;

• A query with number i > j to the oracle Osend is processed as in the experiment
Exp3 .

If Pj is the success probability of the adversary ASESPAKEKA in the experiment Hybj ,
then

|Pr [SUCC3]− Pr [SUCC4] | 6
qu∑
j=1

|Pj − Pj−1| .

Now we describe a set of the adversaries Dj and D′j , j = 1, . . . , qu , we will bound
the difference |Pj − Pj−1| using it. We will use these adversaries to solve the S-QPCCDH
problem with some modifications. In particular for description of Dj we suggest that the
multiplicity of the input points W and Qs under P is known: W = wP and Qs = zP .
For D′j such a modification is not considered (we do not use w and z for the algorithm
description).

The adversary Dj
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We will denote by i the number of the next query to the oracle OSend with parameter
u1 (sending from A to B , a pair (u2, UKM) is returned in response to this sending under
the correct state) or with parameter (u2, UKM) (sending from A to B that A forms a
key KA under the correct state after). We will denote these queries by S2 and S3 . Also
Dj will process queries with parameters (ind, salt) (denoted by S1 ) by the special way.

The adversary Dj processes the queries to all oracles as in Exp3 except the queries to
the oracle Osend . Queries to the oracle Osend are processed by the following way.

• Query S1 :

– If i 6 j , then it chooses a random x∗ , returns W + x∗ · P as an answer.

– If i > j , then it processes the query as in Exp3 .

• Query S2 (with parameter (u1) ):

– If i < j , the query is processed as in Exp4 .

– If i = j , then it returns (B, u2 = W ) in response. It returns (st, Y = u1) as an
answer on the first step of the S-QPCCDH problem, receiving a password (st, PW ′)
in response. It sets the password, shared by A and B , equal to PW ′ , generates UKM
and sets a key

KB = H256((UKM ·
m

q
· (w − z · r′) mod q) · (u1 − r′ ·Qs)),

where r′ = F (PW ′, salt, 2000) .

– If i > j , the query is processed as in Exp3 .

• A query S3 (with parameter (u2, UKM) ):

– If i < j , the query is processed as in Exp4 .

– If i = j , then it returns (st, Y = u2) as an answer on the first step of the S-QPCCDH
problem. Receives an answer (st, PW ′) . Sets PW ′ as a password, shared by A and
B . Sets a key

KA = H256((UKM ·
m

q
· (w + x∗ − z · r′) mod q) · (u2 − r′ ·Qs)),

where r′ = F (PW ′, salt, 2000) .

– If i > j , the query is processed as in Exp3 .

The adversary Dj extracts keys K (i.e. a point multiplied by UKM · m
q
) from the

queries to the oracle OH . He forms two points K ′ = K and K ′′ = K − x∗ · (Y − r ·Qs) for
each point K . Then he returns a list of 2qH points {K ′1, K ′′1 , K ′2, K ′′2 , . . . , K ′qH , K

′′
qH
} as an

answer.
The adversary D′j differs from Dj in fact that he uses an inaccessible for the adversary

ASESPAKEKA function H ′ to generate a key during the queries S2 and S3 processing.
We will note the important facts that allow us to bound the difference |Pj − Pj−1| .
From the point of ASESPAKEKA the behavior of the adversary D′j , i.e. the way of process-

ing the queries to the oracles Osend , Oexec and so on, totally coincides with the experiment
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Hybj because the «honest» processing the queries to the oracle Osend starts with j + 1 -th
query. For the adversary Dj the «honest» processing starts with j -th query. For example,
independently on parameter u1 in query S2 a multiplier for a point u1− r′ ·Qs is equal to
multiplicity of the point returned as an answer, i. e. W after deleting a «mask» r′Qs . So
A , receiving this answers, gets the same key as B gets if A was initially modelled according
to the protocol (i.e. from the query S1 ).

The adversary behavior in experiments Dj and D′j will be different if he makes a query
to the oracle OH with parameters among which there is a value CDH(u1− r′Qs, u2− r′Qs)
where one of the values u1 and u2 was in j -th query S2 or S3 . If there was such a
parameter among the queries to OH , then we can find CDH(W − r′Qs, Y − r′Qs) , as

KA = CDH(u2 − r′Qs,W + x∗P − r′Qs) = CDH(W − r′Qs, Y − r′Qs) + x∗ · (Y − r′Qs),

KB = CDH(u1 − r′Qs,W − r′Qs) = CDH(W − r′Qs, Y − r′Qs).

Taking into account the way we form the list with 2qH points of the adversary D′j
we can conclude that there is a required value in it. Thus the probability that there will be
CDH(u1−r′Qs, u2−r′Qs) with u1, u2 from the j -th query S2 or S3 among the parameters
of queries to the oracle OH can be majorized with the highest success probability of solving
the S-QPCCDH problem by the adversary running in t+qS1τ+C , where qS1 is the number
of queries S1 to participant A , C is some constant

So the following inequality holds:

|Pr [SUCC3]− Pr [SUCC4]︸ ︷︷ ︸
=1/2

| 6
qu∑
j=1

|Pj − Pj−1| 6 qsend ·AdvS-QPCCDH
|D|,2qH (t+ qS1τ + C).

Taking into account all bounds obtained above, we can conclude, that the following
inequality holds:

|Pr [SUCC0]−
1

2
| 6 (2qexec + qsend)

2

2q
+qHAdvCDH(t+2τqexec)+qsend·AdvS-QPCCDH

|D|,2qH (t+qS1τ+C).

The final inequality for AdvSESPAKE(t, qH , qsend, qexec, qreveal) directly follows from this
relation.

3.7 A proof of security of the SESPAKE protocol

3.7.1 Used subtasks

For argumentations of the SESPAKE protocol security besides the model described in
Section 3.4 a few additional tasks are introduced as intermediate. The difference between
the models consists in the way the oracle Oauth works.

One specification of these tasks should be noticed. The oracles used for a threat formula-
tion for SESPAKEKA and SESPAKE return the «honest» data if b = 1 and random data
if b = 0 . For tasks 1HMAC and 2HMAC we changed the meaning of value returned by
the oracle Oauth . Here «more honest» data is returned if b = 0 not if b = 1 . It was done
to bound the main parameters.
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3.7.2 A task 1HMAC

In this task the adversary has an access to all oracles as in the model for the protocol
SESPAKE . The difference consists in fact that the oracle Oauth returns not a pair of strings
but either M ′

A (if b = 1 ) or MA (if b = 0 ) only.

3.7.3 A task 2HMAC

In task 2HMAC the oracle Oauth returns in response to the adversary either strings
(M ′

A,M
′) (if b = 1 ) or strings (MA,M

′′) (if b = 0 ). The strings are defined in the following
way:

1. MA = HMACKA,i
(TA||IDSA,i) ,

2. M ′
A = HMACK′(TA||IDSA,i) and M ′ = HMACK′(TB||IDSA,i) , where K ′ ∈R V256 .

3. M ′′ = HMACK′′(TB||IDSA,i) , where K ′′ ∈R V256 ,

3.7.4 The bounds of security

It should be noticed that the advantage Adv(A) of some adversary who solves a task
of a bit b recognition can be modified by the following way:

Adv(A) = 2Pr [SUCC]− 1 = 2

[
1

2
Pr [A = 1|b = 1] +

1

2
(1− Pr [A = 1|b = 0])

]
− 1 =

= Pr [A = 1|b = 1]− Pr [A = 1|b = 0] .

Further we will bound the value modified by this way in our argumentations.

Theorem 3.15. The following relation holds:

Adv1HMAC(t, qexec, qsend, qH , qHMAC, qcheck) 6

6 AdvSESPAKEKA(t+ qHMAC + qcheck, qexec, qsend, qH) +O

(
1

2n

)
.

Proof. Suppose A is an adversary who solves a task 1HMAC . We will describe an adversary
A′ who realises a threat to distinguish a key for the protocol SESPAKEKA and uses A as
a black box. A′ transmits all queries to the available for him oracles (Oexec , Osend , Oreveal
and OH ) and their answers without changes. For the query to the oracle Ocheck the adversary
A′ makes a request to the oracle Oreveal , obtaining a key for the oracle that the adversary
A wants to get authentication data for. Then A′ returns to A the «honest» required data,
using the obtained key and the oracle OHMAC . For the query to the oracle Oauth A′ makes
a request to the oracle Otest , obtaining either a random key K ′ or the real key K stored
by the testing oracle. Then A′ transmits to A a value HMAC computed with an obtained
key. A′ returns a value converse to A result.

From the description of the experiment we can see that A′ models the experiment con-
ditions of the adversary A perfectly. The advantage AdvSESPAKEKA(A′) differs from the
advantage Adv1HMAC(A) at most by value of order 2−n explained that a value HMAC
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computed on a random key can coincide with a value HMAC computed on the session key
of the attacked oracle. Thus

AdvSESPAKEKA(A′) > Adv1HMAC(A)−O
(

1

2n

)
.

As AdvSESPAKEKA(t+ qHMAC + qcheck, qexec, qsend, qH) > AdvSESPAKEKA(A′) , then

Adv1HMAC(A) = Adv1HMAC(t, qexec, qsend, qH , qHMAC, qcheck) 6

6 AdvSESPAKEKA(t+ qHMAC + qcheck, qexec, qsend, qH) +O

(
1

2n

)
.

Theorem 3.16. The following relation holds:

Adv2HMAC(t, qexec, qsend, qH , qHMAC, qcheck) 6

6 Adv1HMAC(t+ 1, qexec, qsend, qH , qHMAC, qcheck + 1) +
qHMAC

2n−1
.

Proof. Suppose A ∈ A(t, qexec, qsend, qH , qHMAC, qcheck) is an adversary who solves the task
2HMAC with an advantage Adv2HMAC(t, qexec, qsend, qH , qHMAC, qcheck) . We will now con-
struct an adversary A′ who uses A as a black box and solves the task 1HMAC .
A′ changes nothing in the interactions of A with all available for him oracles except for

Oauth . If A makes a request to the oracle Oauth , then A′ makes a request to his oracle Oauth
and transmits to A its answer and a value M ′′ of the HMAC function computed with a
random key K ′′ . As a result the adversary A distinguishes the following situations: he has
received a pair (MA,M

′′) or a pair (M ′
A,M

′′) . The difference between the «honest» and
current experiments consists in fact that a pair (M ′

A,M
′′) is generated with two independent

random keys.
The following relation holds:

Adv1HMAC(A′) = Pr [A = 1|A ← (M ′
A,M

′′)]− Pr [A = 1|A ← (MA,M
′′)] =

= Pr [A = 1|A ← (M ′
A,M

′′)]− Pr [A = 1|A ← (M ′
A,M

′)] +

+ Pr [A = 1|A ← (M ′
A,M

′)]− Pr [A = 1|A ← (MA,M
′′)]︸ ︷︷ ︸

=Adv2HMAC(A)

>

> −2qHMAC

2n
+ Adv2HMAC(A).

Indeed, the first difference is not greater than the advantage of the best adversary who
works with parameters of the adversary A and solves a task to distinguish a pair of random
function outputs obtained with one random key from the pair obtained with two random
keys. The adversary A can do it only if there is a key K ′ or a key K ′′ of the oracle Oauth
among his queries to OHMAC . As both keys are chosen at random the probability of such
event is at most 2qHMAC/2

n .
Also notice that the adversary A′ generates a key K ′′ additionally and makes an addi-

tional request to OHMAC .
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As a result we have

Adv2HMAC(A′) 6 Adv1HMAC(A′) +
qHMAC

2n−1
=

= Adv1HMAC(t+ 1, qexec, qsend, qH , qHMAC, qcheck + 1) +
qHMAC

2n−1
.

Theorem 3.17. The following relation holds:

AdvSESPAKE(t, qexec, qsend, qcheck, qH , qHMAC) 6

6 2AdvSESPAKEKA(t+ qHMAC + qcheck + 2, qexec, qsend, qH) +
qHMAC

2n−1
+O

(
1

2n

)
.

Proof. Suppose A ∈ A(t, qexec, qsend, qcheck, qH , qHMAC) is an arbitrary adversary who real-
izes a threat for the SESPAKE protocol with the advantage AdvSESPAKE(A) . We will
describe an adversary A′ who uses A to realize a threat for the SESPAKEKA proto-
col. A′ uses A by the way described in the theorem 3.15. So if the oracle Otest re-
turns a random key K ′ , then the adversary A gets in response to query to Oauth a
pair (M ′

A,M
′) = (HMACK′(TA||IDSA,i),HMACK′(TB||IDSA,i)) , otherwise the adversary

A gets a pair (MA,M) = (HMACKA,i
(TA||IDSA,i),HMACKA,i

(TB||IDSA,i)) . Since A′ re-
turns in response that the adversary A returns, hence for the advantage Adv(A′) the
following relation holds:

Adv(A′) = Pr [A = 1|(MA,M)]− Pr [A = 1|(M ′
A,M

′)] =

= Pr [A = 1|(MA,M)]− Pr [A = 1|(MA,M
′′)]︸ ︷︷ ︸

S

+

+ Pr [A = 1|(MA,M
′′)]− Pr [A = 1|(M ′

A,M
′)]︸ ︷︷ ︸

T

,

where M ′′ = HMACK′′(TB||IDSA,i) and K ′′ ∈R V256 . Notice, that S is exactly equal to
AdvSESPAKE(A) .

Let us bound value T , i.e. the advantage of the adversary A for the task to distin-
guish the following answers of the oracle Oauth : (MA,M

′′) and (M ′
A,M

′) . We will majorize
the value −T getting the lower bound for T . The relation −T = Pr [A = 1|(M ′

A,M
′)] −

Pr [A = 1|(MA,M
′′)] 6 Adv2HMAC(t, qexec, qsend, qcheck, qH , qHMAC) holds because A is a par-

ticular adversary from the set A(t, qexec, qsend, qcheck, qH , qHMAC) , and the advantage in the
right part of the inequality specifies the most successful adversary from this set for the task
2HMAC . Using the theorem 3.15 and the theorem 3.16, we obtain the inequality

T > −AdvSESPAKEKA(t+ qHMAC + qcheck + 2, qexec, qsend, qH)− qHMAC

2n−1
−O

(
1

2n

)
.

As a result we obtain the inequality:

AdvSESPAKEKA(t+ qHMAC + qcheck, qexec, qsend, qH) > AdvSESPAKEKA(A′) >

> AdvSESPAKE(A)−AdvSESPAKEKA(t+qHMAC+qcheck+2, qexec, qsend, qH)−qHMAC

2n−1
−O

(
1

2n

)
.
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Thus

AdvSESPAKE(A) = AdvSESPAKE(t, qexec, qsend, qcheck, qH , qHMAC) 6

6 2AdvSESPAKEKA(t+ qHMAC + qcheck + 2, qexec, qsend, qH) +
qHMAC

2n−1
+O

(
1

2n

)
.

The main point of the bound proved in theorem 3.17 is in fact that adding an authen-
tication step to the protocol SESPAKEKA gives to the adversary just a criterion to check
a session key, but does not give any new abilities for the password-revealing attacks. So the
best way to reveal the password is to guess it with an active involvement in the channel
interaction.

3.8 The adversary model «without warning»

Previously we have considered the advantage AdvSESPAKE of the adversary ASESPAKE

who uses the queries to the oracle Ocheck to warn which session he will not try to realize a
threat to. The theorem proved above refers to this particular adversary model. Denote his
advantage by AdvSESPAKE,w .

Now we consider the advantage AdvSESPAKE of the adversary ASESPAKE who can make
a request to the oracle Oauth for any protocol participant no matter whether there was a
request to the oracle Ocheck or not. This adversary works under the same conditions except
for the response form of query to the oracle Oauth :

• The oracle Oauth receives as an input a pair (A, i) , chooses a value b ∈ {0, 1}
uniformly at random and returns either M ′ (if b = 0 ) or MB (if b = 1 ). Here
M ′ = HMACK′(TB||IDSA,i) , where K ′ ∈R V256 , MB = HMACKA,i

(TB||IDSA,i) .

The adversary can make a request to the oracle Oauth for fresh oracles only. A fresh oracle
is such an oracle OiA for which the value MB has not been got yet by the adversary in the
trivial way, i. e. he has not made a request to the oracle Ocheck for the oracle sharing with
OiA a common key.

Let bound the advantage AdvSESPAKE .

Theorem 3.18. The following relation holds:

AdvSESPAKE(t, qexec, qsend, qH , qHMAC) 6

6 qsend ·AdvSESPAKE,w(t, qexec, qsend, qH , qHMAC)+

+ 2qH ·AdvCDH(t+ τ(2qexec + qsend)) +O

(
qH + qHMAC

2n

)
.

Proof. Suppose ASESPAKE is an adversary in the model described above with parameters
t, qexec, qsend, qH , qHMAC and the advantage AdvSESPAKE(t, qexec, qsend, qH , qHMAC) .

Consider two auxiliary adversaries ASESPAKEsend
and ASESPAKEexec based on the adver-

sary ASESPAKE .
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We will say that a session is a Send-session if it was initiated with a query to the oracle
Osend and Exec-session if it was initiated with a query to the oracle Oexec . Denote by sauth
a session for which the adversary made a request to the oracle Oauth . A fact that the session
sauth is a Send-session (Exec-session) will be denoted by sauth ∈ Send ( sauth ∈ Exec ).

The adversary ASESPAKEsend
uses the adversary ASESPAKE as a black box and works as

translator between him and the oracles up to request to the oracle Oauth . If for the adver-
sary ASESPAKE the request to the oracle Oauth was made for Send-session ( sauth ∈ Send ),
then ASESPAKEsend

outputs the same bit as ASESPAKE outputs. If the request was made for
Exec-session ( sauth ∈ Exec ), then ASESPAKEsend

outputs a random bit independently of the
oracle Oauth response. Denote by SUCCSESPAKE , SUCCSESPAKEsend

and SUCCSESPAKEexec

the events that occur if a task of the false authentication was solved successfully by the
adversaries ASESPAKE , ASESPAKEsend

and ASESPAKEexec respectively.
We have:

Pr [ SUCCSESPAKEsend
] =

= Pr [ SUCCSESPAKE | sauth ∈ Send ] · Pr [ sauth ∈ Send ] +

+
1

2
· Pr [ sauth ∈ Exec ] , (3.5)

where Pr [ sauth ∈ Send ] (Pr [ sauth ∈ Exec ] ) is the probability for the adversary to make
a request to the oracle Oauth for Send-session (Exec-session).

Remember that Pr [ sauth ∈ Send ] + Pr [ sauth ∈ Exec ] = 1.
The adversary ASESPAKEexec works in the same way but he outputs the same bit as

ASESPAKE outputs if there was a request for Exec-session, and outputs a random bit if
there was a request for Send-session:

Pr [ SUCCSESPAKEexec ] =

= Pr [ SUCCSESPAKE | sauth ∈ Exec ] · Pr [ sauth ∈ Exec ] +

+
1

2
· Pr [ sauth ∈ Send ] , (3.6)

Let us bound the advantage for the adversary ASESPAKEexec .

Lemma 3.19. The following inequality holds:

Adv (ASESPAKEexec) 6 2qH ·AdvCDH(t+ τ(2qexec + qsend) + 3τ) +O

(
qH + qHMAC

2n

)
.

Proof. Suppose ASESPAKEexec is an adversary with parameters t, qexec, qsend, qH , qHMAC who
solves the task of the false authentication with the advantage Adv (ASESPAKEexec) . We will
construct an adversary ACDH solving the computational Diffie-Hellman problem based on
the adversary ASESPAKEexec and will bound his success probability Adv (ACDH) .

Suppose the adversary ACDH needs to solve the CDH problem for the arbitrary points
Q1 and Q2 . We will use the adversary ASESPAKEexec as a black box.

The adversary ACDH starts up the adversary ASESPAKEexec and simulates a protocol
execution, where he uses as u1 and u2 (a response to query to the oracle Oexec ) the points
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(Q1 + αP ) − QPW и (Q2 + βP ) + QPW , where α and β are random values. Here the
adversary uses as a session key the value of the random function H ′(u1, u2) unknown and
inaccessible for computing by the adversary ASESPAKEKA for queries to the oracles Ocheck
and Oauth . Then he chooses one of the qH queries to the oracle OH (denote this query by
R ) made by the adversary ASESPAKEexec and computes the value T by the following way:

T = R− βQ1 − αQ2 − αβP,

where the corresponding α and β are chosen using the values u1 and u2 from the queries
to the oracle OHMAC and from the responses of the oracle OH . The probability that there
will be the same keys for different α and β is O

(
1
2n

)
.

If the adversary ASESPAKEexec computes athe value R = CDH(u1 + QPW , u2 − QPW )
correctly, then T is required value of CDH(Q1, Q2) . Thus the advantage for the constructed
adversary Adv (ACDH) is Pr [T = CDH(Q1, Q2)] .

Denote by A an event that occurs if there is a value used to compute the required
CDH(Q1, Q2) among the queries to the oracle OH .

Then we have:

AdvCDH(t+ τ(2qexec + qsend) + 3τ) > Adv (ACDH) =
1

qH
· Pr [ A ] .

Consider the advantage Adv (ASESPAKEexec) = 2 · Pr [ SUCCSESPAKEexec ]− 1 of the ad-
versary ASESPAKEexec .

Pr [ SUCCSESPAKEexec ] = Pr [ SUCCSESPAKEexec | A ]︸ ︷︷ ︸
61

·Pr [ A ] +

+ Pr
[
SUCCSESPAKEexec | A

]
· (1− Pr [ A ])︸ ︷︷ ︸

61

6

6 Pr [ A ] + Pr
[
SUCCSESPAKEexec | A

]
. (3.7)

Consider the case when the adversary needs to guess a bit b upon the condition that
there is no value CDH(u1 + QPW , u2 − QPW ) among the queries to the oracle OH , and
bound his success probability Pr

[
SUCCSESPAKEexec | A

]
.

Due to randomness of the H function, data obtained in response to the query to the
oracle OH with the values that are not equal to CDH(u1 + QPW , u2 − QPW ) are random
and thus consist no information about the session keys. So the adversary needs to solve the
following task: to define using the responses of the oracles Ocheck and Oauth only what key
was used to compute the HMAC value. As for the adversary keys seem equal for cases b = 0
and b = 1 , he can guess the right bit value with probability close to 1 to an accuracy of
O
(

1
2n

)
using the following strategy only: choose a random key, compute HMAC using this

key and compare obtained values with responses of the oracles Ocheck and Oauth . I.e. if
HMAC is computed with the chosen key is equal to responses of both oracles Ocheck and
Oauth , then the adversary outputs b′ = 1 , and vice versa, if HMAC is computed with chosen
key is equal to the responses of either oracle Ocheck or the oracle Oauth , then the adversary
outputs b′ = 0 .
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Approximate success probability is explained with the probability to mistake because of
the function H randomness.

Then

Pr
[
SUCCSESPAKEexec | A

]
=

1

2
+O

(
qH + qHMAC

2n

)
.

Taking into account (3.7), we have

2 · Pr [ A ] > Adv (ASESPAKEexec)−O
(qH + qHMAC

2n

)
.

Thus

AdvCDH(t+ τ(2qexec + qsend) + 3τ) >
1

2qH
·
(
Adv (ASESPAKEexec)−O

(qH + qHMAC

2n

))
.

By the law of total probability we have

Pr [ SUCCSESPAKE ] =

= Pr [ SUCCSESPAKE | sauth ∈ Send ] · Pr [ sauth ∈ Send ] +

+ Pr [ SUCCSESPAKE | sauth ∈ Exec ] · Pr [ sauth ∈ Exec ] . (3.8)

Transform (3.5) и (3.6):

Pr [ SUCCSESPAKE | sauth ∈ Send ] · Pr [ sauth ∈ Send ] =

= Pr [ SUCCSESPAKEsend
]− 1

2
· Pr [ sauth ∈ Exec ] , (3.9)

Pr [ SUCCSESPAKE | sauth ∈ Exec ] · Pr [ sauth ∈ Exec ] =

= Pr [ SUCCSESPAKEexec ]− 1

2
· Pr [ sauth ∈ Send ] . (3.10)

Using (3.9) and (3.10) in the right of the expression (3.8), we get finally:

Pr [ SUCCSESPAKEsend
] = Pr [ SUCCSESPAKE ]− Pr [ SUCCSESPAKEexec ] +

1

2
.

or

AdvSESPAKEsend
(t, qexec, qsend, qH , qHMAC) =

= AdvSESPAKE(t, qexec, qsend, qH , qHMAC)−
−AdvSESPAKEexec(t, qexec, qsend, qH , qHMAC).
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Using the lemma we get the following inequality:

AdvSESPAKEsend
(t, qexec, qsend, qH , qHMAC) >

> AdvSESPAKE(t, qexec, qsend, qH , qHMAC)−

− 2qH ·AdvCDH(t+ τ(2qexec + qsend))−O
(
qH + qHMAC

2n

)
.

Now we will construct an adversary «with warning» ASESPAKE,w based on the adver-
sary «without warning» ASESPAKE using him as a black box. For the intelligent adversary
«with warning» it is more logical to make a request to the oracle Oauth for the participant
of the Send-session, as advantage of the adversary ASESPAKEexec is comparable with the
success probability to solve the CDH problem. Therefore, we can consider the adversary
ASESPAKEsend

instead of the adversary ASESPAKE . In the process of attack the adversary
«with warning» working as a translator between the oracles and the adversary ASESPAKEsend

chooses one of the Send-session initiated by ASESPAKEsend
uniformly at random and makes

a request to the oracle Oauth for the participant of the chosen session.
If the adversary ASESPAKEsend

makes a request to the oracle Ocheck for the participant of
the session chosen by ASESPAKE,w , then the adversary ASESPAKE,w returns to ASESPAKEsend

the first part of the oracle Oauth response. If the adversary ASESPAKEsend
makes a request

to the oracle Ocheck for the participant of another session, then the adversary ASESPAKE,w

just transmits this request.
If the adversary ASESPAKEsend

makes a request to the oracle Oauth for the participant of
the session chosen by ASESPAKE,w , then the adversary ASESPAKE,w returns to ASESPAKEsend

the second part of the oracle Oauth response and outputs as a result the same bit that
the adversary ASESPAKEsend

outputs. If the adversary ASESPAKEsend
makes a request to the

oracle Oauth for the participant of another session, the adversary ASESPAKE,w chooses a
random key, computes M ′ using this key and sends it to the adversary ASESPAKEsend

. As a
results he outputs a random bit.

For the constructed adversary ASESPAKE,w the probability that the chosen session coin-
cides with the session the adversary ASESPAKEsend

made a request to the oracle Oauth for
is 1

qsend
. Thus the advantage for the adversary ASESPAKE,w is smaller than the advantage of

the adversary ASESPAKEsend
at most in qsend :

AdvSESPAKE,w(t, qexec, qsend, qH , qHMAC) >
1

qsend
·AdvSESPAKEsend

(t, qexec, qsend, qH , qHMAC).

From this we get a required bound.

3.9 Some comments and explanations

In this section some constructive features of the SESPAKE protocol and its influence on
the properties are discussed.
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3.9.1 The sessions number limitation for one password

Informally the SESPAKE protocol is secure if the best way to find a session key (or some
information about it) is the testing a password by force of interaction with network partic-
ipant ("online"-guessing a password). An inadmissible alternative for the protocol security
is a practical brute force that doesn’t required such interaction ("offline"-selection).

For the "online"-guessing every unsuccessful attempt leads to disconnection caused by the
validation failure according to the SESPAKEKC protocol. The absence of the fail attempts
limitation increases a probability of "online"-guessing the password. That is the reason, why
there must be a limitation of fail connections in a row and a limitation of fail connections for
the particular password. Also we should to insert a limitation on total connections number:
successful and unsuccessful connections. These limitations are very important part of the
protocol.

Let us observe the influence of these limitations on the bound of the theorem 3.11. Thus,
for example, in a summand (2qexec+qsend)

2

q
the value qexec is majorized with the admissible

number of sessions for the protocol, and qsend is majorized with the admissible number of
the fail connections for some password. The admissible number of the fail connections is
usually set to several tens, and the admissible number of sessions is majorized with the value
of order 107 – 109 . In this case, if q ≈ 2256 , then

(2qexec + qsend)
2

q
6 (3 · 109)2/2256 6 264/2256 = 2−192.

3.9.2 Processing of small order point case

In this section we consider the reasons for the special case processing when m
q
QB = 0E

(or m
q
QA = 0E ) at generation of the key. In this case «special processing» uses the zb flag

and the point P as QB , if m
q
QB = 0E .

A protocol where this case is not processed in a special way can be exposed with the
"online"-selection the passwords at wrong using the counters of fail connections number. We
will now explain this thesis.

Let the counters of fail connections number are decreased at start of the protocol
SESPAKEKC , and a case m

q
QB = 0E is not processed in the mentioned way. Then the

adversary imitating A sends to B the points u1 = X −QPW ′ , where m
q
X = 0E , for differ-

ent PW ′ and measures a time that B needs to respond. After B responds the adversary
disconnects. So, B does not decrease his counter of fail connections number, and measured
time gives the adversary a criterion to find a right password — for wrong password the time
will be essentially smaller, as the operation of scalar point multiplication (to obtain src )
becomes degenerative.

Difference in times to check the condition m
q
QB = 0E for cases QB = 0E and QB 6=

0E is inessential, as cofactor is sufficiently low on practice. It is explained by fact that a
characteristic p of the base field is chosen for optimization as low as possible to ensure that
the values of the parameter q meets the requirements ( 2254 < q < 2256 or 2508 < q < 2512 )
set in the document [6]. Thus the values q and p become close, it means that a cofactor
value m/q is low too.

42



The analysis method described above becomes unusable if participants decrease their
counters at the start of the work.

Additionally notice that if the adversary imitates a side B he can manipulate a value
UKM . But he can not set it to 0 to obtain the degeneracy of scalar point multiplication
because A can detect it.

3.9.3 Pseudorandomness of the points Q1 , Q2 , Q3 and P

The points Q1 , Q2 , Q3 and P must be chosen in such a way that a multiplicity of
any point under any other point would be unknown, and a run time for computing this
multiplicity would be comparable with a run time for solving a discrete logarithm problem
in the group of used elliptic curve. We can achieve it by choosing the points according to
the principle of proved pseudorandomness [7]. So, a choice of elliptic curve points in the
Weierstrass form can be made by the following way: generate a random string s and set
x = H(s) until the value x3 + ax + b becomes a quadratic residue; set y =

√
x mod p .

Here as H we can use, for example, the GOST R 34.11-2012 hash-function [5].
If the multiplicity of some point Qi under P is known, then the adversary that imitates

a server can get a criterion to control the wrong passwords (thus he can find a password in
"offline" mode). In this case he needs to interact with a client just once. We describe the
potential action sequence. For short we consider parameters UKM and m

q
equal to 1 .

If the Qind multiplicity under P is known, then Qs multiplicity under P is also known:
let Qs = γP . Let z = F (PW, salt, 2000) . Then the adversary sends the message u2 =
βP + z′γP in response to the message u1 = αP − zγP , where β and z′ are values chosen
by the adversary at will. The next message sent by a client is a constant string ciphered on
the key K = H256 (α (β + z′γ − zγ)P ) unknown by the adversary. Correctness of decoding
this message is a criterion to control wrong session keys and the relation

K = H256 ((β + z′γ − zγ) · (u1 + zγP )) ,

gives a possibility to try a key. The adversary does not know just a dependent on the password
value z at the right.

If the Qs multiplicity under P is unknown, then the adversary needs to know α , as the
key will be computed by formula K = H256 (αβP + αr′Qs − αrQs) .

3.9.4 A secret parameter

From the description of the protocol we can easily see that a client authenticates using
not PW but QPW . A server does not know that QPW is generated from the password
PW .

But there is a sense to consider a modified protocol: the server doesn’t store QPW but
generates QPW from PW at the start of the authentication procedure. This modification
has a sense if the participants are equal, i.e, for example, participants are the custom work-
stations. In this case a password is entered by users every time when they want to connect
according to the protocol. But the modified protocol has some operational differences from
the original one. Also this modification can influence on the properties of the used mecha-
nisms upon some conditions.
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Notice that if a server stores QPW , then he has no need to compute QPW at the work
start. It can be excused in the case when the server is a device with the limited computing
resources (e.g., if a server is a functional key carrier).

The keeping by the server a point QPW instead of PW is excused also if a password
PW is used by the client not for interaction according to the considered protocol only. In
this case if the adversary gets an access to server’s secret parameter (password PW ), then
he knows the secret parameters of all systems that uses the same password PW . If the
secret parameter is a point QPW , the adversary just gets a criterion to find PW .

The participant should protect stored parameters PW and QPW using technical means
and organizational measures.

4 Conclusion
We propose a new password-authenticated key exchange protocol SESPAKE and analyze

its cryptographic properties. The SESPAKE protocol includes a key agreement step and an
authentication step without key diversification. For this protocol we propose to extend the
original indistinguishability-based model. It allows to prove the protocol security under two
different threats: the threat of distinguishing a generated session key from a random string
and the threat of the false authentication.

This protocol is the first PAKE protocol without key diversification for a full version
of which a full security proof has been obtained. Also the paper contains a comparative
review of the some well-known protocols with the proposed one considering efficiency and
security properties. Additionally there is a detailed explanation of the reasons of all protocol
elements.

The SESPAKE protocol is one of the most efficient PAKE protocols as it needs only 4
computations of multiple points in the group of elliptic curve points and 2 group elements
and 2 hash values exchanges.
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6 Appendix
Lemma 6.1. Let πr,N is the probability that there are two equal values among r realiza-
tion of a random variable uniformly distributed on the set of power N . Then the following
inequality holds:

πr,N 6
r2

2N
.

Proof. Let us denote the probability that all r realization are different as χr,N . It is easy
to see that πr,N = 1− χr,N and

χr,N = 1 ·
(

1− 1

N

)(
1− 2

N

)
. . .

(
1− r − 1

N

)
.

We will prove by induction that χr,N > 1− r(r−1)
2N

. For r = 1 statement is right as χ1,N =
1 > 1 . Let the statement holds for r > 1 . The justice of this statement for r + 1 follows
from the relations:

χr+1,N = χr,N ·
(

1− r

N

)
>

(
1− r(r − 1)

2N

)(
1− r

N

)
=

1− 1

N

(
r(r − 1)

2
+ r

)
+
r2(r − 1)

2N2
> 1− r(r + 1)

2N
.

Thus we conclude that πr,N 6 r(r−1)
2N
6 r2

2N
.
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