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1 Horst-Görtz Institute for IT Security and Faculty of Mathematics,
Ruhr-Universität Bochum, Bochum, Germany

2 Department of Computer Science, Sapienza University of Rome, Rome, Italy

Abstract. We construct a public-key encryption (PKE) scheme whose
security is polynomial-time equivalent to the hardness of the Subset Sum
problem. Our scheme achieves the standard notion of indistinguishabil-
ity against chosen-ciphertext attacks (IND-CCA) and can be used to
encrypt messages of arbitrary polynomial length, improving upon a pre-
vious construction by Lyubashevsky, Palacio, and Segev (TCC 2010)
which achieved only the weaker notion of semantic security (IND-CPA)
and whose concrete security decreases with the length of the message
being encrypted.
At the core of our construction is a trapdoor technique which originates
in the work of Micciancio and Peikert (Eurocrypt 2012).
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1 Introduction

Public-Key Encryption (PKE) is perhaps the most basic application of public-
key cryptography [10]. Intuitively a PKE scheme allows Alice to encrypt a mes-
sage M for Bob, given just Bob’s public key pk ; the received ciphertext C can
be decrypted by Bob using the secret key sk corresponding to pk .

Security of a PKE scheme can be formulated in different ways, depending
on the assumed adversarial capabilities. The most basic and natural notion is
that of indistinguishability against chosen-plaintext attacks (IND-CPA, a.k.a. se-
mantic security) [14]; here we demand that a passive (computationally bounded)
adversary only given pk should not be able to distinguish the encryption of two
(adversarially chosen) messages M0,M1.

Whilst already sufficient for some applications, IND-CPA security is not
enough to deal with active adversaries. Hence, researchers have put forward
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stronger security notions. The de-facto standard notion of security for PKE is
that of indistinguishability against chosen-ciphertext attacks [29] (IND-CCA),
where we now demand that an active (computationally bounded) adversary given
pk should not be able to distinguish the encryption of two (adversarially chosen)
messages M0,M1 even given access to an oracle decrypting arbitrarily chosen
ciphertexts.3

By now we dispose of many PKE schemes satisfying IND-CCA security under
a variety of assumptions, including factoring [15], decisional and computational
Diffie-Hellman [8,6], and learning parity with noise [18].

The Subset Sum assumption. Since its introduction, the Subset Sum problem
has been considered a valid alternative to number-theoretic assumptions. In its
basic computational version, the Subset Sum problem SS(n, q) (parametrized
by integers q and n) asks to find a secret vector s ∈ {0, 1}n given a vector
a ∈ Znq together with the target value T := 〈a · s〉 mod q, where both a and
s are chosen uniformly at random, and 〈·, ·〉 denotes the inner product. The
hardness of SS(n, q) depends on the so-called density, which is defined by the
ratio δ := n/ log q. In case δ < 1/n or δ > n/ log2 n, the problem can be solved in
polynomial time [20,13,12,21,32]. In case δ is o(1) or even as small as O(1/ log n),
the problem is considered to be hard. The best classical algorithm for solving
Subset Sum is due to [19], and takes sub-exponential time for solving instances
with δ = o(1) and time 2(ln 2/2+o(1))n/ log logn for instances with δ = O(1/ log n).

One nice feature of the Subset Sum problem is its believed hardness against
quantum attacks. At the time of writing, the best quantum attack—due to Bern-
stein et al. [3]—on Subset Sum requires complexity 2(0.241+o(1))n to solve a ran-
dom instance of the problem.

PKE from Subset Sum. The first PKE scheme based on the hardness of
Subset Sum was constructed in the seminal work of Ajtai and Dwork [2], who
presented a scheme whose semantic security is as hard to break as solving worst-
case instances of a lattice problem called “the unique shortest vector problem”
(uSVP). It is well known that Subset Sum can be reduced to uSVP [20,13].

A disadvantage of the scheme in [2] (and its extensions [30,31,27]) is that they
are based on Subset Sum only in an indirect way (i.e., via a non-tight reduction
to uSVP). This limitation was overcome by the work of Lyubashevsky, Palacio,
and Segev [22] that proposed a new PKE scheme achieving IND-CPA security
with a simple and direct reduction to solving random instances of the Subset
Sum problem.

More precisely, the security of the scheme in [22] is based on the assumption
that a random instance (a, T ) of the Subset Sum problem is indistinguishable
from uniform. Such a decisional variant of the problem was shown to be equiva-
lent to the above introduced computational version (i.e., to the task of recovering
s) by Impagliazzo and Naor [16].

3 Clearly, the decryption oracle cannot be queried on the challenge ciphertext.



1.1 Our Contributions and Techniques

The work of [22] left as an explicit open problem to construct a PKE scheme
achieving IND-CCA security with a direct reduction to the hardness of Subset
Sum.

Contributions. In this paper we present a new PKE scheme resolving the
above open problem. Previous to our work, the only known PKE schemes with
IND-CCA security from Subset Sum were the ones based on uSVP [27,28] (which
are not directly based on the hardness of Subset Sum). An additional advantage
of our scheme is that it can be used to encrypt an arbitrary polynomial number of
bits; this stands in sharp contrast with the scheme of [22], whose concrete security
starts to decrease when encrypting messages of length longer than n log n (where
n is, as usual, the Subset Sum dimension).4 The theorem below summarizes our
main result.

Theorem 1 (Main result, informal). For prime5 p = Θ(m2n log2 n) and
q = pm there exists a PKE scheme with IND-CCA security based on the hardness
of SS(n, q).

Techniques. Our scheme (similar to the one of [22]) is based on the decisional
variant of SS(n, pm), where p is a prime and m is an integer. The main ob-
servation (also made in [22]) is that, in case q = pm, the target value T :=
〈a · s〉 mod pm written in base p is equal to As + e(A, s) where A ∈ Zm×np is a
matrix whose i-th column corresponds to the i-th element of vector a written in
base p, and e(A, s) is a vector in Zmp (function of A and s) which corresponds to
the carries when performing “grade-school” addition. This particular structure
resembles the structure of an instance of the learning with errors (LWE) prob-
lem [31], with the important difference that the noise term is “deterministic”
and, in fact, completely determined by the matrix A and the vector s.

We use the above similarity between LWE and Subset Sum to construct our
new PKE scheme, using a trapdoor technique due to Micciancio and Peikert [24].
Essentially our scheme relies on a tag-based trapdoor function, where the trap-
door is associated with a hidden tag. Whenever the function is evaluated w.r.t.
the hidden tag, the trapdoor disappears and the function is hard to invert; for
all other tags the function can be inverted efficiently given the trapdoor. Using
the leftover hash lemma, one can switch the hidden tag without the adversary
noticing.

The above technique allows us to prove that our PKE scheme achieves a
weaker (tag-based) CCA notion. This means that each ciphertext is associated
with a tag τ , and in the security game the adversary has to commit in advance

4 In particular, for message length n2 the scheme of [22] can be broken in polynomial
time.

5 In the original version, we have proposed a smaller modulus that is even. We are
not able to prove security for the original choices of parameters. For applying the
leftover hash lemma we need a prime modulus p greater than 2 and we need a larger
modulus to ensure that our decryption does not leak the secret key.



to the tag τ∗ which will be associated with the challenge ciphertext.6 In the se-
curity proof we first switch the tag associated with the hidden trapdoor with the
challenge tag (using the trapdoor technique outlined above). Now, the simulator
is not able to decrypt a message related to the challenge tag which allows us to
argue about indistinguishability of the PKE scheme.

It is well known that the above weak tag-based CCA notion can be gener-
ically enhanced to full-fledged IND-CCA security using a one-time signature
scheme [17]. This allows us to conclude Theorem 1.

Efficiency. Let ` be the length of the messages to be encrypted, and denote
by n, p and m the parameters of the Subset Sum problem. The secret key of
our PKE scheme consists of a binary matrix of dimension n×m; the public key
consists of 3 matrices of elements in Zp, with dimensions (respectively) m × n,
n × n, and ` × n. A ciphertext consists of 3 vectors of elements in Zp, with
dimensions (respectively) m, n, and `.

1.2 Related Work

Pioneered by Merkle and Hellman [23], the first construction of PKE schemes
based on Subset Sum were based on instances of the problem with special struc-
ture. All these constructions have been subsequently broken. (See [26] for a
survey.)

In a seminal paper, Impagliazzo and Naor [16] presented constructions of
universal one-way hash functions, pseudorandom generators and bit commitment
schemes based on the hardness of random instances of Subset Sum.

Besides constructing PKE schemes, [22] additionally presents an oblivious
transfer protocol with security against malicious senders and semi-honest re-
ceivers. The Subset Sum problem has also recently been used to solve the prob-
lem of outsourced pattern matching [11] in the cloud setting.

2 Preliminaries

For two distributions D and D′ over Ω, D(x) is the probability assigned to x ∈ Ω
and ∆[D,D′] := 1

2

∑
x∈Ω |D(x)−D′(x)| is the statistical distance between D and

D′. We denote with x ← X that x is sampled according to the distribution X.
If X is a set, then this denotes that x is sampled uniformly at random from X.
b·e2 : Zp → Z2 is the rounding function defined by bxe2 := bx · 2pe.

Vectors and matrices are denoted in boldface. For two vectors u,v, with
u = (u1, . . . , un) and v = (v1, . . . , vn), the inner product between u and v is
defined as 〈u,v〉 :=

∑n
i=1 ui · vi. We represent elements in Zp by integers in the

range [−(p−1)/2; (p−1)/2]. For an element v ∈ Zp, its length, denoted by |v| is
the absolute value of its representative in the range [−(p− 1)/2; (p− 1)/2]. For
a vector v = (v1, . . . , vn) ∈ Znp , we define ‖v‖∞ := max1≤i≤n |vi|.

6 Decryption queries for the challenge tag τ∗ are disallowed.



We say that a function ν is negligible in the security parameter n, if it is
asymptotically smaller than the inverse of any polynomial in n, i.e. ν(n) =
n−ω(1). An algorithm A is probabilistic polynomial-time (PPT) if A is random-
ized, and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) (i.e., A with
input x and random coins r) terminates in at most poly(|x|) steps.

In the following, we will need to bound the norm on the inner product between
vectors. For this, we will use the Hoeffding bound.

Lemma 1 (Hoeffding Bound). For n ∈ N, c ∈ R, let X1, . . . , Xn be indepen-
dent random variables in range [a, b], and X :=

∑n
i=1Xi, then

Pr[|X − E[X]| ≥ c] ≤ 2e
− 2c2

n(a−b)2 .

2.1 Subset Sum

Traditionally a Subset Sum SS(n, q) instance is defined as a := (a1, . . . , an) and a
target T := 〈a, s〉 mod q, where the goal is to recover s ∈ {0, 1}n. For a modulus
q = pm, Lyubashevsky, Palacio, and Segev [22] gave an alternative description
which shows its similarities with the LWE problem more clearly. First they define
matrix A ∈ Zm×np , where aj,i :=

⌊
ai
pj−1

⌋
mod p. Thus,

A� s :=

n∑
i=1

si ·

 m∑
j=1

aj,ip
j−1

 mod pm =

n∑
i=1

si · ai mod pm = 〈a, s〉 mod pm

where s ∈ {0, 1}n. Notice that when As is the matrix vector multiplication
modp, then A � s = As + e(A, s) mod p ∈ Zmp . Here e(A, s)1 := 0, and for
1 < j ≤ m the j-th component of e(A, s) is given by

e(A, s)j :=

⌊∑n
i=1 siaj−1,i

p

⌋
+ cj mod p,

for carry cj which is recursively defined by c2 := 0 and

cj :=

⌊
(
∑n
i=1 siaj−1,i) mod p+ e(A, s)j−1

p

⌋
mod p.

Since cj is small, and moreover it is the only part of e(A, s)j which depends on
e(A, s)j−1, one has that e(A, s)j − cj is bound by the Hoeffding bound. This
implies an overall bound on e(A, s)j :

Lemma 2 ([22] Lemma 3.3). For any n,m ∈ N, prime modulus p and s ∈
{0, 1}n, there exists a negligible function ν : N→ [0, 1] such that

Pr
A←Zm×n

p

[‖e(A, s)‖∞ ≥
√
n log n] ≤ ν(n).



The main difference between Subset Sum and LWE is that error term e(A, s)
is uniquely determined given A and s where as in case of LWE, error e is sampled
from a discrete Gaussian distribution independent of A, s.

The Subset Sum assumption. A SS(n, pm) instance has the following distri-
bution:

DSS(n,pm) := {(A,A� s) | A← Zm×np , s← {0, 1}n}.

The challenge is to distinguish DSS(n,pm) from a uniform (A,b) ∈ Zm×np × Zmp .
The advantage of an algorithm A in breaking the SS(n, pm) assumption is

AdvSS(n,pm)(A) = |Pr[A(A,b) = 1]− Pr[A(A′,b′) = 1]|,

where (A,b) ← DSS(n,pm) and (A′,b′) ← Zm×np × Zmp . It was shown by Im-
pagliazzo and Naor [16] that this decisional version of Subset Sum is as hard as
recovering the hidden vector s.

Re-randomizing Subset Sum. We use a technique introduced by Lyuba-
shevsky [21] allowing to re-randomize a Subset Sum sample. This technique
is based on the leftover hash lemma:

Lemma 3 (Leftover hash lemma). For prime p, 2m ≥ n+1+ω(log n+ 1)/ log p
and polynomial `, there exists a negligible function ν : N → [0, 1] such that the
statistical distance

∆
[
(A,RA,a,Ra), (A,C,a, c)

]
≤ ν(n),

for A← Zm×np , R← [−√p/2,√p/2]`×m, a← Znp , C← Z`×np , c← Z`p.

A Subset Sum sample (A,b) ← DSS(n,pm) can now be re-randomized to
(RA,Rb) where RA is statistically close to uniform given A,b and Rb. Note
that (RA,Rb) is not SS(n, pm)-distributed anymore.

Given this re-randomization technique, we are able to construct a tag-based
trapdoor function [24] and a PKE scheme whose hardness is independent of the
amount of simultaneously encrypted bits. Of major significance is the fact that,
after re-randomization, the noise is still bounded:

Lemma 4 ([22] Lemma 3.4). For any n,m ∈ N, prime modulus p, s ∈ {0, 1}n
and r ∈ [−√p/2,√p/2]m, there exists a negligible function ν : N → [0, 1] such
that

Pr
A←Zm×n

p

[r · e(A, s) ≥ √pnm log2 n+
√
pm] ≤ ν(n).

This bound will be crucial to show the correctness of our proposed PKE. For
the security of our scheme, we need a stronger statement.

Lemma 5. For any n,m ∈ N and r← [−√p/2,√p/2]m, there exists a negligible
function ν : N→ [0, 1] such that

Pr
r

[
∃e ∈ Zm, ‖e‖∞ ≤

√
n log n : |re| ≥

√
np log n

2
(
√
m log n+m)

]
≤ ν(n).



Proof. We first assume ‖e‖∞ = 1. For any r ∈ Zmp ,

m∑
j=1

|rj | ≥ re ≥ −
m∑
j=1

|rj |.

For simplicity, we will give a bound for
∑m
j=1 rj , for r ← [1,

√
p/2]m, which is

sufficient. The expectation of this sum is m
2 (
√
p/2 + 1). Hence, by the Hoeffding

bound (Lemma 1)

Pr
r

∣∣∣∣∣∣
m∑
j=1

rj −
m

2

(√
p

2
+ 1

)∣∣∣∣∣∣ ≥
√
pm

2
log n

 ≤ 2e

− (
√

pm log n)2

2m

(√
p

2
−1

)2

≤ 2e−2 log2 n,

where the sum is carried out in R. Thus, there is a negligible function ν(n) such
that

Pr
r

[
∃e ∈ Zmp , ‖e‖∞ ≤

√
n log n : |re| ≥

√
np log n

2
(
√
m log n+m)

]
≤ ν(n).

2.2 Tag-Based Encryption

The main motivation behind the concept of tag-based encryption (TBE) comes
from the fact that it is possible to transform an identity-based encryption scheme
into an IND-CCA secure PKE scheme [5,4]. Kiltz [17] showed that these trans-
formations already work starting from TBE.

A TBE scheme with tag-space T , message-spaceM, and security parameter
n, consists of the following three PPT algorithms TBE = (Gen,Enc,Dec).

Gen(1n): Outputs a secret key sk and a public key pk .
Enc(pk , τ,M ): Outputs a ciphertext C for M ∈M, and tag τ ∈ T .
Dec(sk , τ, C): Outputs the decrypted message M of ciphertext C with respect

to tag τ ∈ T , or an invalid symbol ⊥.

For correctness, we require that for any τ,M and (sk , pk)← Gen(1n):

Dec(sk , τ,Enc(pk , τ,M )) = M

holds with overwhelming probability. As for security, we define the following
selective-tag weak CCA game GTBE [17]:

1. Adversary A picks a tag τ∗ ∈ T .
2. Run (sk , pk) ← Gen(1n). Adversary A receives public key pk and gets per-

manent access to an oracle which outputs Dec(sk , τ, C) upon input requests
of the form QueryDec(C, τ) for all τ 6= τ∗, and ⊥ otherwise.

3. A chooses M0 and M1 from M and receives C ← Enc(pk , τ∗,Mu) for u ←
{0, 1}.

4. Finally A outputs u′ and GTBE outputs 1 iff u′ = u.



The advantage of an adversary A in game GTBE is defined as

AdvTBE(A) :=

∣∣∣∣Pr[GTBE(A) = 1]− 1

2

∣∣∣∣ ,
and a TBE scheme is called secure against selective-tag weak CCA adversaries,
if for all PPT A there exists a negligible function ν : N → [0, 1] such that
AdvTBE(A) ≤ ν(n).

Given an exponential tag-space, there is a transformation from a TBE scheme
satisfying the above notion to an IND-CCA secure PKE; the transformation
requires a one-time signature scheme or a message authentication code plus a
commitment [17].

We embed the tags in our proposed TBE using a full-rank differences (FRD)
encoding H [7,1]. This means that H : Zn2 → Zn×n2 , τ 7→ Hτ and ∀τ 6= τ ′ ∈ Zn2
Hτ −Hτ ′ has full rank.

3 A Subset Sum Based TBE

For security parameter n, let p = Θ(m2n log2 n) for prime p > 2, and m = Θ(n)
for appropriate constant factors. The following three algorithms describe our
TBE = (Gen,Enc,Dec) based on SS(n, pm) with tag space T := Zn2 \ {0} (where
0 is the all-zero vector of length n) and message space M := {0, 1}`.

Gen(1n): Sample R ← [−√p/2,√p/2]n×m and A ← Zm×np , C ← Z`×np . Define
B := RA. The private and public key are defined as

sk := R, pk := (A,B,C) ∈ Zm×np × Zn×np × Z`×np .

Enc(pk , τ,M ): Pick R′ ← [−√p/2,√p/2]n×m, R′′ ← [−√p/2,√p/2]`×m, s ←
{0, 1}n and define

c0 := As + e(A, s) ∈ Zmp

c1 :=

(
B +

p− 1

2
·Hτ

)
s + R′ · e(A, s) ∈ Znp

c2 := Cs + R′′ · e(A, s) +
p− 1

2
·M ∈ Z`p

where Hτ is the matrix representation of τ .
Dec(sk , τ, C): Compute

ŝ :=

⌊(
R I
)
·
(
−c0
c1

)⌉
2

.

and s = H−1τ ŝ. If ‖c0 −As‖∞ ≥
√
n log n or ‖c1 −

(
B + p−1

2 ·Hτ

)
s‖∞ ≥ p

8
output ⊥. Otherwise output message M = bc2 −Cse2.



3.1 Correctness

The correctness of the scheme follows basically from the bounds on the noise
of re-randomized Subset Sum instances. Given these bounds, the noise will be
smaller than p/4 such that it will be rounded away by the rounding function
b·e2.

Theorem 2 (Correctness). Let p = O(m2n log2 n) for prime p > 2, m =
Θ(n), and ` ∈ O(nc) for some constant c. Then for any τ ∈ Zn2 , M ∈ {0, 1}`,
there exists a negligible function ν : N→ [0, 1] such that

Pr
(sk ,pk)←Gen(1n)

[Dec(sk , τ,Enc(pk , τ,M )) 6= M ] ≤ ν(n).

Proof. Given a ciphertext C = (c0, c1, c2), in case Dec successfully reconstruct
s, the decryption algorithm computes

bc2 −Cse2 =

⌊
R′′ · e(A, s) +

p− 1

2
·M
⌉
2

= bR′′ · e(A, s)e2 + M .

By Lemma 2, ‖c0 − As‖∞ ≤
√
n log n and by Lemma 4 ‖R′′ · e(A, s)‖∞ ≤√

pnm log2 n +
√
pm < p

8 with overwhelming probability over A ← Zm×np (for
appropriately chosen constants). Hence, ‖R′′ · e(A, s)‖∞ < p

8 and Dec outputs
M .

For the same reason ‖(R′ − R) · e(A, s)‖∞ < p
4 holds with overwhelming

probability over A← Zm×nq (for appropriately chosen constants). Therefore Dec
reconstructs⌊(

R I
)
·
(
−c0
c1

)⌉
2

=

⌊(
p− 1

2
·Hτ

)
s + (R′ −R)e(A, s)

⌉
2

=

⌊(
p− 1

2
·Hτ

)
s

⌉
2

.

Note that for every entry s′ of
(
p−1
2 ·Hτ

)
s ∈ Znp holds: s′ is close to 0,

close to p−1
2 , if its corresponding entry of Hτs ∈ Zn2 is 0, 1 respectively, where

close means at most additive term Θ(n) away. Therefore, the outcome of the
rounding function b·e2 is not influenced by the noise term, which is sufficiently
smaller than p

4 for appropriately chosen constants. Hence, Dec computes ŝ =⌊
p−1
2 ·Hτs

⌉
2

= Hτs. This results in the correct reconstruction of s = H−1τ ŝ =

H−1τ Hτs.

3.2 Proof of Security

The intuition behind the security proof is that B = RA is statistically indistin-
guishable from B′ = RA− p−1

2 Hτ∗ . But when B′ is used as part of the public
key, ciphertexts with tag τ∗ can not be decrypted using Dec anymore. During
the proof, we will show that there are ciphertexts for τ∗ which are at least as
hard to decrypt as solving SS(n, pm). Given any algorithm guessing the message
encrypted in such a ciphertext and therefore breaking the security of TBE, there
will be also an algorithm solving SS(n, pm).



Theorem 3 (CCA Security). Let p = Θ(m2n log2 n) for prime p > 2, and
m = Θ(n) for appropriate constant factors. If the SS(n, pm) assumption holds
(which corresponds to density δ ∈ O(1/ log n)), then the proposed TBE scheme is
secure against selective-tag weak CCA adversaries. In particular, for every PPT
algorithm A there exist a PPT algorithm D and a negligible function ν : N→ [0, 1]
such that:

AdvTBE(A) ≤ AdvSS(n,pm)(D) + ν(n).

Proof. We construct an algorithm D which will distinguish SS(n, pm) from uni-
form invoking a successful adversary A in game GTBA. If D receives a SS(n, pm)
instance D will simulate game GTBA and a successful A will guess b correctly
with probability 1

2 + AdvTBE(A) > 1
2 + ν(n). When D receives a uniform input,

D will simulate a game in which the challenge ciphertext is independent of mes-
sage Mu, and hence independent of u. Therefore guess u′ of A will be correct
(i.e., u′ = u) with probability 1

2 .
In the following, we describe algorithm D interacting with A and afterwards

we analyse its success probability.

1. D receives a SS(n, pm) challenge (A,b) and invokes A which will send a tag
τ∗ ∈ T .

2. D samples R′ ← [−√p/2,√p/2]n×m, R′′ ← [−√p/2,√p/2]`×m and sets

pk = (A,B := R′A− p−1
2 Hτ∗ ,C := R′′A) which is by Lemma 3 statistically

close to the output distribution of public keys of Gen. The public key pk is
given to A.
Thus, D uses R′ to respond to QueryDec(C, τ) queries as follows: If τ = τ∗

output ⊥. Otherwise D uses Dec(R′, τ, C) to reconstruct:

ŝ :=

⌊(
R′ I

)
·
(
−c0
c1

)⌉
2

.

For a properly distributed ciphertext C, the entries of
(
p−1
2 ·Hτ − p−1

2 Hτ∗
)
s

are either close to 0 or close to p−1
2 and the noise terms are small.

ŝ =
⌊(
p−1
2 ·Hτ − p−1

2 Hτ∗
)
s
⌉
2

= (Hτ −Hτ∗)s.

s is reconstructed by computing s = (Hτ −Hτ∗)
−1ŝ.

Let C be any ciphertext that passes the sanity check, i.e. ‖c0 − As‖∞ <√
n log n and ‖c1−

(
B + p−1

2 ·Hτ

)
s‖∞ < p

8 . Clearly, if C ∈ Zm+n+`
p does not

pass this sanity check, Dec always outputs ⊥, which is independent of secret
key R′. By Lemma 5, for any choice of c0−As with ‖c0−As‖∞ <

√
n log n,

‖R′(c0−As)‖∞ < q
8 holds with overwhelming probability over the choice of

R′. Then the noise term is sufficiently small, i.e. ‖c1 −
(
B + p−1

2 ·Hτ

)
s −

R′(c0 −As)‖∞ < q
4 , and thus,⌊(

R′ I
)
·
(
−c0
c1

)⌉
2

=

⌊(
p− 1

2
·Hτ −

p− 1

2
Hτ∗

)
s

⌉
2

= (Hτ −Hτ∗)s



reconstructs ŝ correctly for any C ∈ Zm+n+`
p that passes the sanity check.

This ensures that the output of QueryDec(C, τ) depends only on B and A,
but not on R′. Further, if ŝ is reconstructed correctly, Dec outputs the correct
message M .

3. A sends M0 and M1. Now D samples u← {0, 1}, sets C∗ := (b,R′b,R′′b +
p−1
2 Mu), and sends C∗ to A.

4. Finally A outputs u′ and D outputs 1 iff u′ = u.

When b = As + e(A, s), the challenge ciphertext C∗ is a proper ciphertext
for public key pk and randomness s:

c0 := b = As + e(A, s)

c1 := R′b = R′As + R′e(A, s) =

(
B +

p− 1

2
·Hτ

)
s + R′e(A, s)

c2 := R′′b +
p− 1

2
Mu = Cs + R′′e(A, s) +

p− 1

2
Mu.

Note that, by Lemma 3, there is enough entropy in R′, R′′ such that B, R′e(A, s)
and C, R′′e(A, s) are independent. In this case B outputs 1 with roughly prob-
ability 1

2 + AdvTBE(A).
In the other case, i.e. when A,b← Zm×np × Zmp , we know that c2 := R′′b +

p−1
2 Mu is uniform and independent of A,C, c0 and c1 by Lemma 3. Therefore
C∗ is independent of u and for any output u′ of A:

Pr
u←{0,1}

[u = u′] =
1

2
.

Summing up, D outputs 1 for a SS(n, pm) instance with roughly probability
1
2 + AdvTBE(A), and it outputs 1 otherwise with probability 1

2 . This implies

AdvSS(n,pm)(D) = AdvTBE(A)− ν(n),

for a negligible function ν, concluding the proof.

4 Conclusions and Open Problems

We presented a construction of a new PKE scheme with a simple and direct
security proof based on the hardness of random instances of the Subset Sum
problem. Our scheme achieves IND-CCA security and its concrete security does
not depend on the length of the messages being encrypted. This resolves the main
open problems from the previous work by Lyubashevsky, Palacio, and Segev [22].

Similarly to one of the constructions in [22], it is not hard to see that actu-
ally our PKE scheme achieves the stronger notion of IND-CCA security against
non-adaptive leakage attacks.7 We leave it as an open problem to construct a

7 Since the latter notion is a very weak form of leakage resilience, we preferred to not
work out the details.



PKE scheme with IND-CCA security against fully adaptive leakage attacks. An
approach towards answering this question would be to construct a hash proof
system [9] based on Subset Sum, as this would directly yield a leakage-resilient
IND-CCA secure PKE [25].

It would also be interesting to construct PKE schemes with additional prop-
erties (always based on Subset Sum), such as circular security, key-dependent
message security, and security against related-key attacks.
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