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Abstract

Secure two party computation (2PC) is a well-studied problem with many real world appli-
cations. Due to Cleve’s result on general impossibility of fairness, however, the state-of-the-art
solutions only provide security with abort. We investigate fairness for 2PC in presence of a
trusted Arbiter, in an optimistic setting where the Arbiter is not involved if the parties act
fairly. Existing fair solutions in this setting are by far less efficient than the fastest unfair 2PC.

We close this efficiency gap by designing protocols for fair 2PC with covert and malicious
security that have competitive performance with the state-of-the-art unfair constructions. In
particular, our protocols only requires the exchange of a few extra messages with sizes that only
depend on the output length; the Arbiter’s load is independent of the computation size; and a
malicious Arbiter can only break fairness, but not covert/malicious security even if he colludes
with a party. Finally, our solutions are designed to work with the state-of-the-art optimizations
applicable to garbled circuits and cut-and-choose 2PC such as free-XOR, half-gates, and the
cheating-recovery paradigm.

Keywords: secure two-party computation, covert adversaries, cut-and-choose, garbled circuits,
fair secure computation, optimistic fair exchange.

1 Introduction

In electronic commerce, privacy and fairness are two sought-after properties as depicted in work
related to contract signing and fair exchange [5, 14, 53, 9, 6, 8, 21]. Fair exchange is used in
electronic payments to buy or barter items [12, 46] and contract signing is often used to ensure
fairness: either all parties sign and agree on the contract, or the contract is invalid.

Fair secure two-party computation (2PC), a fundamental problem in cryptography, can be
used to address both the privacy and fairness concerns, simultaneously. Alice and Bob would like
to jointly compute a function of their private inputs, such that nothing other than the output
leaks, and either both parties learn the output or either do (e.g. two banks trying to calculate a
joint credit score for a customer, without giving away critical private information). Unfortunately,
however, there is a significant efficiency gap between secure 2PC that achieve fairness and their
unfair counterparts that have been the subject of many recent implementations and optimizations.

2PC Without Fairness: Yao [68] introduced the first 2PC with security against honest-but-
curious adversaries [49] and a large body of recent work has focused on making 2PC practical in
presence of stronger (covert and malicious) adversaries [54, 50, 7, 58, 48, 24].
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The cut-and-choose paradigm is a popular method for enhancing the security of Yao’s garbled
circuit protocol to the case of malicious (or covert) adversaries where the players can deviate
arbitrarily. In a nutshell, in this paradigm, one player (Alice) garbles many circuits while the other
player (Bob) checks a randomly chosen subset (to ensure that the garbling was done correctly) and
evaluates the rest. Until recently, many existing solutions (e.g. [55, 50, 51, 65, 56, 66]) required
garbling at least 3s circuits to detect cheating with probability 1−2−s. The high number of garbled
circuits is due to the fact that all these constructions ask that the evaluator computes a “majority
output” and, for it to be valid, require that more than half of the evaluated circuits are correct. For
the majority output to be valid, parties also need to enforce equality of the garbler’s input to the
majority of the circuits evaluated. This is often handled via a procedure called input-consistency
check.

The recent work of Lindell [48] shows how to reduce the number of garbled circuits by a factor
of 3.1 In this approach, the second player evaluates the unchecked circuits, but is content with
computing only one correct output (instead of a majority output) due to a cheating-detection
component. This allows one to reduce the number of circuits to s and still achieve 1− 2−s security.

A more modest security guarantee for 2PC is covert security, proposed by Aumann and Lindell
[7], which provides a practical alternative to the malicious setting. In this setting, the adversary can
cheat with some small but non-negligible probability. The rationale is that a reputable real-world
entity will not risk getting caught with non-negligible probability due to loss of reputation or the
legal/economical costs. The protocols in the covert setting are more efficient than their malicious
counterparts. For instance, in the cut-and-choose paradigm, one can settle for only garbling s = 5
circuits if 1− 1/s = 4/5 probability of getting caught is prohibitive enough. Back to our two banks
computing a customer’s credit score scenario, the financial losses when a bank gets caught cheating
can be seen as prohibitive as a negligible probability of cheating.

2PC with Fairness: All the above-mentioned work focus on security with abort, where the
malicious party is allowed to abort the protocol after he learns the output of the computation, but
before the honest party obtains the output, because it is known that achieving general fairness is
impossible [20]. This limits the real world applicability of the most efficient solutions. An interested
corporation is less likely to adopt 2PC solutions if it has to risk being at a competitive disadvantage
by revealing the outcome of the computation to a competitor without learning it itself.

There are two main approaches for achieving fairness in general-purpose 2PC.2 (i) Gradual
release-based approaches let Alice and Bob reveal each other’s output piece by piece, using super-
constant rounds [60, 36, 64, 63]. (ii) Arbiter-based approaches achieve constant round complexity
by assuming that a trusted third party is available when needed [18, 47, 35, 34]. Optimistic
approaches employ the Arbiter only if there is a dispute among the parties [5].

The most relevant work to ours is that of Cachin and Camenisch [18], and the follow up work
of [35], in the same optimistic Arbiter-based setting. Both constructions utilize zero-knowledge
proofs that require public-key operations, and hence have a high computational cost compared to
the state-of-the-art cut-and-choose 2PC. Furthermore, in [18], the Arbiter may need to redo almost
the whole computation in case of a malicious behavior, which creates a bottleneck in the system.

Lindell’s optimistic framework [47], on the other hand, necessitates an electronic payment sys-
tem. It is possible that one party obtains the output of the computation, whereas the other obtains
a payment. [1, 2, 15, 33, 40, 46] also employ such penalty-based fairness models. These construc-

1An alternative approach for reducing the number of circuits by a factor of 1.5 was introduced by [30].
2A different line of work focuses on achieving fairness not in general but for specific applications [27, 3, 16, 22, 17].
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tions are incomparable to ours as they work in a different setting and make different assumptions.
See Table 1 for a list of the main differences between these work and ours.

[18] [47] [35]

Resolutions with Arbiter
take time proportional to the

circuit size

Requires a payment system
and employs penalty-based

fairness.

Efficiently adds fairness, but to
zero-knowledge based 2PC

protocols only.

Table 1: Comparison to the most related previous work.

Our Contribution: In this paper we investigate fairness for 2PC in presence of a trusted
Arbiter in an optimistic setting, where the Arbiter is not involved if the parties act fairly. We
design efficient protocols for fair 2PC with security against covert and malicious adversaries. Our
constructions follow the cut-and-choose paradigm, and for the first time, close the efficiency gap
between fair 2PC and the state-of-the-art unfair solutions, in this setting. In particular:

X The overhead of our protocols against state-of-the-art unfair solutions is small; only a constant
number of extra rounds and a few messages with sizes that only depend on the output length.

X The Arbiter’s load is minimal, and independent of the size of computation.
X A malicious Arbiter can only break fairness, but not covert/malicious security even if he

colludes with a party. We prove this via a simulator for the usual security with abort definition,
when the adversary is also controlling the Arbiter.

X Our protocols are compatible with optimizations applicable to cut-and-choose 2PC such as
free-XOR [39], FleXor [38], and half-gates [69]. It also utilizes the cheating-recovery paradigm,
and hence uses a reduced number of garbled circuits. These render our protocols the most
efficient fair secure computation protocols to date.

X Our work is the first to consider fairness in the covert adversary model.

2 Overview of Our Constructions

We review the high level ideas behind our covert and malicious 2PC constructions next, emphasizing
the non-trivial parts. Our starting point in each case is the state-of-the-art protocol with security
with abort (in the cut-and-choose paradigm). We then show how to enhance and modify each at
very low cost in order to obtain fairness in the presence of an Arbiter.

Some of our techniques are similar to that of Kılınç and Küpçü [35] who also provide an efficient
solution for fair 2PC in the same setting. Similar to ours, their solution employs commitments to
output labels, and verifiable escrows. But they instantiate these using zero-knowledge proofs of
knowledge. In fact, verifiable escrow inherently employs zero-knowledge proofs. When one switches
to the cut-and-choose setting, it is unclear how to deal with the multitude of such commitments
and verifiable escrows, and still preserve correctness and efficiency. Our solutions are the first to
combine optimistic Arbiter-based fairness and the cut-and-choose paradigm efficiently.

2.1 Fair Covert 2PC

There are various ways of combining fairness and covert security in a simulation-based defini-
tion. In this paper we consider the natural notion where both fairness and correctness/privacy
are guaranteed with a reasonable (not all-but-negligible) probability 1 − ε but both fairness and
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correctness/privacy are lost with probability ε against active cheating. A related notion to fairness
in the covert setting is 1/p security [26, 31]. In that line of work [28, 57, 11, 10], the ideal world
provides complete fairness (as in our case for malicious adversaries), but the simulation only needs
to achieve 1/p indistinguishability between the ideal and real worlds. Our approach is slightly dif-
ferent: we directly take the covert adversary model [7, 4], and modify it to preserve fairness unless
the adversary cheats and remains undetected. Note that the 1/p security does not explicitly model
detection of the adversary’s misbehavior. It is an interesting question to understand the relation
between the two notions. Next, we review the main technical difficulties in our covert construction.

Security with Abort. Recall the covert 2PC protocol of Aumann and Lindell [7]. Alice
generates s garbled circuits GC1, . . . ,GCs. Then, the parties perform ` (number of input bits)
oblivious transfers (OTs) for Bob to learn his garbled inputs (this is intentionally done for all s
circuits and before the opening). Alice sends the s garbled circuits to Bob. Parties then perform a
coin-toss to choose a random index e ∈ {1, . . . , s}. Alice opens the secrets for all garbled circuits
and OTs except for the eth one. Bob checks correctness of the opened circuits and the corresponding
OTs, and aborts if cheating is detected. Else, Alice sends her garbled inputs for the eth circuit.
Bob evaluates the circuit and learns his own output. He also obtains the garbled values for Alice’s
output, which he sends to her for translation.

It is easy to see that the above construction is not fair. We now highlight the main changes we
make to this protocol to achieve fairness.

Delay Evaluator’s Output Translation. Note that Bob can abort the protocol immediately
after learning his output and without forwarding Alice’s output to her. Therefore, we modify the
protocol so that Alice does not send to Bob the translation table for his output (mapping output
labels to actual bits) until he sends Alice’s garbled output to her. But note that this trivial change
fails since now Alice can abort before sending the translation table to Bob.

Hence, we need to ensure that if Alice aborts at this stage, Bob has enough information to invoke
an output resolution protocol with the Arbiter and show evidence that he has been following the
steps of the protocol and hence deserves to know the output. After checking Bob’s claim, the
Arbiter should be able to provide him with sufficient information to decode his output.

Prove Bob’s Honesty to the Arbiter. Notice that efficiently proving this is a non-trivial
task. For example, in [18], the Arbiter and the resolving party re-perform almost the whole com-
putation for this purpose. In our case, Bob’s proof of following through with the protocol will
be the garbled output he computes for Alice’s output. Note that due to the output-authenticity
property of the garbling scheme, Bob cannot forge this value except if he honestly computes the
output. In order to enable the Arbiter to check the validity of Bob’s claimed output label, Alice
will send hashes of her output labels (in permuted order) to Bob along with the garbled circuits,
and a signature for the eth one. Bob verifies validity of these hashes for the opened circuits. Now
when he goes to the Arbiter, he shows both the output labels he obtained for Alice’s output, and
the signed hashes for the eth circuit. The Arbiter can verify that the two are consistent, by ensuring
that there is one output label provided per pair.

Equip the Arbiter with the Translation Table for Bob’s Output. Furthermore, the
Arbiter should have sufficient information to pass along to Bob for decoding his output. Hence,
Alice encrypts the translation table for Bob’s output under the Arbiter’s public key and sends it to
Bob along with the garbled circuits, and a signature for the eth one. Bob checks validity of these
encryptions for the opened circuits. Once Bob’s claim of behaving honestly is verified, the Arbiter
can decrypt the translation table, and send it to Bob for him to decode his output. The signature
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is needed to make sure that Bob is sending a legitimate decoding table for decryption. Since Bob
verified the opened ones, he is ensured, with good probability, that the eth decoding table is proper.

Simulation-based Proof with Fairness. One important difference between our proof and
those of standard 2PC is that in our case the ideal trusted party must only be contacted by the
simulator once it is certain that both parties can obtain the output, as first observed by Kılınç and
Küpçü [35] for indistinguishability of the ideal and real world outputs. Therefore, to overcome this
difficulty, Alice also commits to Bob’s output translation tables as cBi using a trapdoor commitment,
and opens them for the opened circuits. Bob ensures that the committed and encrypted translation
tables are the same (in fact, we encrypt the commitment openings). For the eth circuit, she opens
cBe at the last step of the protocol. The reason we need these commitments is that, unlike standard
covert 2PC, the Alice simulator in the proof for the case of corrupted Bob does not have fB(xA, x

′
B)

when sending the garbled circuits (since in the fair protocol neither party may learn the output
at this stage), and hence cannot embed the output in the eth one at that stage. With trapdoor
commitments, at a later stage, she is able to open the translation to something different in order
to ensure the “fake” evaluation circuit evaluates to the correct output fB(xA, x

′
B). The hiding

property of the commitment scheme ensures indistinguishability of the simulator’s actions.
Handle Premature Resolutions. The parties have the right to contact the Arbiter. But

they may choose to do so at a stage other than the prescribed one. For example, Bob may invoke
the output resolution before he sends Alice’s output labels to her. This behavior is mitigated by
requiring that Bob provides the Arbiter with Alice’s output labels that match the signed decoding
table. Due to output authenticity of the garbling scheme and unforgeability of the signature scheme,
Bob cannot cheat against the Arbiter and must provide correct labels. Later on, Alice can recover
her output through her own output resolution protocol. A timeout mechanism ensures that Bob
must contact the Arbiter during a predefined time3, and immediately after that Alice can contact
the Arbiter, without waiting indefinitely.

A Note on Synchronicity. Observe that we employ a timeout for resolutions with the
Arbiter. Katz et al. [32] define a very nice framework for integrating synchronicity in the Universal
Composability [19] framework. They provide a clock functionality which allows all honest parties
to proceed further once a particular clock signal is reached, allowing for synchronous protocols. In
that setting, they show input completeness and guaranteed termination can be achieved together
(though not necessarily fairness). In our protocols, the only place we employ loosely synchronized
clocks is for resolutions with the Arbiter. The remaining (optimistic) part of the protocol employs
no synchronicity assumptions (just local network timeouts). There are two main reasons we choose
to proceed this way: (1) Due to a result by Küpçü and Lysyanskaya [44] (see also [43]), if one would
like to employ multiple autonomous (independent) entities to replace a single trusted Arbiter, we
are forced to employ timing models. (2) Optimistic fair exchange literature shows that the timeout-
based resolutions can be exchanged with slightly more expensive protocols (with one more round)
that provide fairness without requiring timeouts (see e.g. [5, 46]). We believe a similar methodology
may be employed here to replace the timeouts, and leave such an extension to our protocols as future
work.

Proof overview. We obtain security against malicious Bob as follows: The simulator acts as
Alice, except that she commits to and encrypts random values instead of actual output decoding
table in cBe , d

B
e . Towards the end, if the simulator obtains proper output labels for Alice’s output

3Such timeout mechanisms are easy to implement and standard in the optimistic fair exchange literature (see e.g.
[5, 46]).
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from the adversarial Bob, then she contacts the ideal trusted party to learn Bob’s output and
simulate opening of cBe to the actual values. Hiding commitments ensure indistinguishability of
Alice’s behavior. If, instead of sending them directly to Alice, Bob contacts the Arbiter and performs
a proper resolution, the simulator simulates the Arbiter, and upon receiving proper output labels for
Alice, contacts the ideal trusted party for obtaining Bob’s output. She then sends the corresponding
decoding table as if it was the decryption of dBe . Semantic security ensures indistinguishability of
Alice’s and Arbiter’s behavior.

For security against covert Alice, different from the unfair scenario, the simulator contacts the
ideal trusted party if Alice acts properly, and obtains Alice’s output. He sends the corresponding
labels back to Alice. He simulates by himself Bob’s Arbiter resolution should Alice not respond back
with Bob’s output labels’ openings. If Alice later contacts the Arbiter for resolution, he returns
back Alice’s output labels again.

2.2 Fair Malicious 2PC

Security with Abort. Our starting point is the cut-and-choose 2PC of Lindell [48], which contains
a cheating-detection component to remove the requirement that majority of the circuits are correct,
and hence reduce the number of circuits by a factor of 3.

In this protocol, Alice garbles s circuits GC1, . . . ,GCs with the exception that she uses the same
output labels for all circuits. Parties also perform ` OTs for Bob to learn his input labels. Bob
then chooses a random subset of these circuits to be evaluated, and the rest are to be opened and
checked for correctness later. Bob evaluates the evaluation circuits. Since output labels are reused
for all circuits, Bob expects to retrieve the same labels from all evaluations. If this is indeed the
case, he only needs to ensure that one of the evaluations was correct in order to make sure he has
the correct output. If Bob obtains different labels for at least a single output wire, he uses the two
distinct labels W0 and W1 corresponding to values 0 and 1, as his proof of Alice’s cheating.

At this stage, parties engage in a cheating-detection phase, which itself is a malicious cut-and-
choose 2PC for evaluating a cheating-detection (CD) circuit. This cut-and-choose is performed
using 3s circuits (and a majority output), but since the CD circuit is significantly smaller, this
will be a small overhead, independent of the actual circuit’s size. The CD circuit takes W0 and
W1 as Bob’s input (his evidence of Alice’s cheating), and takes Alice’s input xA to the original
computation as her input. If Bob’s two labels are valid proofs (Alice embeds the output labels in
the CD circuits, and the CD circuit checks whether Bob’s two labels are among them), he learns
Alice’s input xA and can compute f(xA, xB) on his own. Otherwise he learns a random value. It is
important that Alice does not know whether Bob learned the output by evaluating the computation
circuits or the cheating-detection circuits. Alice then opens the check circuits and Bob aborts if
any of the checks fail. Else, he sends Alice’s output labels to her.

Handle Alice’s Input Consistency. Deviating from [48], we handle the consistency of Alice’s
inputs using the technique of [66], as it seems more suitable for the tweaks we need to make to
input-consistency. In this approach a universal hash function (UH) is evaluated on her input inside
the circuits, and Bob verifies that the output of this function is the same in all circuits. Alice’s
input is padded with a short random string rx in order to increase its entropy and reduce the
amount of information that can be learned about the input from the output of the UH. Let ` be
the input length and s′ be a security parameter. [66] shows that a random matrix of dimensions
s′× (`+ 2s′+ log s′) over GF (2) can be used as a UH, where the evaluation consists of multiplying
this matrix with the input vector (and getting a vector of length s′).
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Delay Bob’s Output via a One-time Pad. Similar to the covert 2PC, it is easy to see that
the above construction is not fair. In particular, Bob can abort the protocol immediately after
learning his output and without forwarding Alice’s output to her. But unlike our fair covert 2PC,
delaying the transmission of the output translation table is not sufficient for preventing Bob from
learning his output early. Since the same output labels are used for all circuits and a fraction of
them are opened, Bob can reconstruct the translation table on his own after the opening phase,
and learn his output.

To overcome this issue, we encrypt Bob’s output using a one-time pad padB that is Alice’s
additional input to the computation circuit. In particular, the circuit returns fB(xA, xB)⊕padB as
Bob’s output, and the padB itself is only revealed in the final step of the protocol. Alice’s output in
the circuit is also encrypted using a separate pad padA of her choice, to prevent Bob from learning
her output even after the opening.

Commit to the Consistent Pad. Note that simply revealing the padB to Bob does not
provide Bob with sufficient guarantee that it is the same padB Alice used in the computation.
Hence, for each circuit Alice sends a trapdoor commitment cBi to the translation table PadDeci for
the input wires associated with padB. She also encrypts the opening of this commitment as dBi
using the Arbiter’s public key, and signs it for resolution purposes. For the opened circuits, cBi
and dBi are opened and checked. In the final stage, in order to reveal padB, Alice opens cBi for
the evaluated circuits. But, we are not done yet. Bob learns one or more pad values used in the
evaluation circuits, and needs to determine which is the correct one for decrypting his output. To
facilitate this, we apply a separate UH to padB (i.e. Mp · (padB‖rp) for a random matrix Mp) in
the computation circuits, which Bob uses in the final stage to determine the “correct” pad among
those retrieved. Without this, we could not have guaranteed correctness.

Simulate with Fairness. For simulation purposes, similar to the fair covert 2PC, the fact that
the simulator can open cBi to an arbitrary pad in the final stage allows the simulation to go through
by postponing the query to the ideal trusted party for obtaining the output, until we are sure both
parties can learn the output. Remember that such a simulation is a necessity for simulating fair
secure computation protocols properly [35].

Commit to Alice’s Output Early. Similar to the fair covert 2PC, we also need to ensure that
if Alice aborts before revealing padB, Bob has enough information to invoke an output resolution
protocol with the Arbiter and show evidence that he has been following the steps of the protocol.
In the covert protocol, we used the output-authenticity property of the garbling scheme for this
purpose, but in the current protocol, output-authenticity is lost after the opening stage, since all
circuits use the same output labels. To circumvent this issue, we have Bob commit to the output
labels for Alice’s output before the opening stage, and have Alice sign the commitment. In case
of a resolution, Bob opens the signed commitment for the Arbiter, who checks its correctness and
consistency with a signed translation table provided by Alice, and only then decrypts dBi escrows
for Bob to learn the pads and obtain his output.

Fix Cheating-Detection. Note that in regular cheating-detection, Bob only learns xA and
hence the plaintext version of Alice’s output fA(xA, xB). But, Bob needs to commit to the output
labels for Alice’s output, and because the output translation table of Alice corresponds to a padded
output, knowing fA(xA, xB) is not sufficient for simulation. Therefore, we need to modify the CD
circuit as well. We fix this by having the CD circuit also output padA. Bob can now compute
fA(xA, xB) ⊕ padA, and use Alice’s output translation table GDecA to determine which evaluated
circuit returned the correct output (we know there is at least one such circuit with all but negligible
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probability). He commits to those labels as Alice’s output labels.
Proof overview. Our proofs are very similar in essence to the above malicious Bob case.

Simulator Alice would commit to and encrypt random values, and later when she obtains the
actual output from the ideal trusted party, she would simulate opening them to the correct values.
For malicious Alice case, simulator Bob also commits to random labels for Alice’s outputs, and
later simulates opening them to proper labels.

3 Preliminaries

Garbling Schemes. Bellare et al. [13] introduce the notion of a garbling scheme Garble as a
cryptographic primitive. We refer the reader to their work for a complete treatment and only give
a brief summary here. Besides the standard privacy guarantees, we heavily take advantage of the
output-authenticity of a garbling scheme, which intuitively guarantees that the evaluator cannot
forge valid output labels except by honestly evaluating the garbled circuit.

Committing Oblivious Transfer. In a standard oblivious transfer (OT) protocol [61], the
receiver has a selection bit σ, and the sender has two messages a0, a1. At the end of the protocol,
the receiver learns aσ while the sender does not learn anything. In a committing oblivious transfer
[37, 65], at the end of the interaction, the receiver also receives a commitment to the sender’s input
messages, and the sender obtains the opening to those commitments. As a result, the receiver can
ask the sender to open his messages at a later stage. Efficient constructions for committing OT
were proposed in [65] and [56].

3.1 Security Definitions

In secure two-party computation, it is required that the parties do not learn anything beyond what
is revealed by the output of the computation. Alice and Bob are trying to compute a function
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ on their private inputs x and y, respectively. The function
computes f(x, y) = (fA, fB), where fA is the output Alice should obtain, and fB is Bob’s output.
(Unfair) Security against Malicious Adversaries: Security is captured by a simulator that
can simulate the messages, as well as the outputs, without knowing the input of the party it
simulates. Since it is known that a general two-party protocol cannot be fair [20], most existing
work focus on the unfair definition where the malicious party is allowed to abort after she learns
her output but before the honest party learns his output. There is a real world, where an honest
user H interacts with the adversary C. Then, we need a simulator in the corresponding ideal world
who can interact with the same adversary C on behalf of the user, and submits his input to the
ideal trusted party U to obtain the output. If those two worlds are indistinguishable, since the only
value U reveals is the output of the computation, security is satisfied. This concept is formalized
below (see e.g. [29]).

Ideal World: Players are the adversary C, the honest party H, and the ideal trusted party U .
1. U receives input x or abort from C, and y or abort from H. If any abort message is

received, U sends abort to both of the parties and halts.
2. Otherwise U computes f(x, y) = (fC , fH) and sends fC to C.
3. C responds with either continue or abort.
4. If C says continue, U sends fH to H. Otherwise, U sends abort to H.
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Real World: This is the case where the honest user H interacts with the adversary C according
to the protocol specification.

Definition 3.1 (Secure Two-Party Computation). Let π be a probabilistic polynomial time
(PPT) protocol and let f be a PPT two-party functionality. We say that π computes f securely
if for every PPT real world adversary C with auxiliary input z, there exists a PPT ideal world
simulator S given the same auxiliary input z so that for every auxiliary info z ∈ {0, 1}∗ and for
every pair of inputs x, y ∈ {0, 1}∗, the ideal and real world outputs of both the adversary and the
honest party are computationally indistinguishable.

(Unfair) Security against Covert Adversaries: An almost identical definition can be used for
the covert adversary setting [7], mainly by changing the ideal world definition. Let ε ∈ [0, 1] be a
probability value. The ideal world is now as follows:

Ideal World: Players are the adversary C, the honest party H, and the ideal trusted party U .
1. U receives input x or abort or corrupted or cheat from C, and y or abort from H. If

any abort message is received, U sends abort to both of the parties and halts.
2. If C sent corrupted, then U sends corrupted to H and halts. This is to enable the

adversary to voluntarily disclose itself.
3. If C says cheat, with ε probability, U sends corrupted to H and halts (thus the adversary

is caught), and with 1− ε probability, U sends undetected and y to C.
(a) If C receives undetected, responds with some output o. Then U sends o to H and

halts. This means, when undetected, the adversary can break both security
and correctness.

4. Otherwise U computes f(x, y) = fC , fH and sends fC to C.
5. C responds with either continue or abort.
6. If C says continue, U sends fH to H, and if C says abort, U sends abort to H.

Fair Security against Malicious Adversaries: Note that in the unfair ideal worlds, the adver-
sary may choose to abort the protocol after receiving her output, and before the honest party learns
his output. To prevent this, we consider a real world trusted third party (called the Arbiter) to
be optimistically available. Optimistic means that the Arbiter is contacted only if some dispute is
to be resolved. Thus, the Arbiter is not involved if everything goes well. The parties in the real
protocol have access to this Arbiter. Furthermore, the ideal world trusted party U would return the
outputs to the adversary and the honest party simultaneously. When fairness is a requirement, we
need the simulator to simulate the interactions with the Arbiter as well [35], since it is an honest
party. In the fair security definitions below, the last 3 steps of the regular security ideal worlds
above are condensed into one last step (which is the only difference between the ideal worlds when
fairness is involved).

Ideal World: Players are the adversary C, the honest party H, and the ideal trusted party U .
1. U receives input x or abort from C, and y or abort from H. If any abort message is

received, U sends abort to both of the parties and halts.
2. Otherwise U computes f(x, y) = fC , fH . U sends fC to C and fH to H.

Fair Security against Covert Adversaries: In the covert setting, remember that security and
correctness hold unless the cheating is undetected. The same is true for fairness.

Ideal World: Players are the adversary C, the honest party H, and the ideal trusted party U .
1. U receives input x or abort or corrupted or cheat from C, and y or abort from H. If

any abort message is received, U sends abort to both of the parties and halts.
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2. If C sent corrupted, then U sends corrupted to H and halts. This is to enable the
adversary to voluntarily disclose itself.

3. If C says cheat, with ε probability, U sends corrupted to H and halts (thus the adversary
is caught), and with 1− ε probability, U sends undetected and y to C.
(a) If C receives undetected, responds with some output o. Then U sends o toH and halts.

This means, when undetected, the adversary can break fairness, security, and
correctness.

4. Otherwise U computes f(x, y) = fC , fH . U sends fC to C and fH to H.

4 Fair Covert Cut-and-Choose 2PC

In Figure 2 we provide a full description of our fair covert 2PC, and Figure 3 and 4 show the
resolutions with the Arbiter for Bob and Alice, respectively. As discussed in the overview section
(Section 2) our starting point is the covert 2PC protocol of [7]. The vertical lines in the figures
represent parts that would not have existed in the unfair counterpart. Appendix 4.1 presents proof
of security of the protocol. Finally, the protocol remains secure against covert adversaries even
if the Arbiter actively cheats and colludes with one of the parties. See Appendix 4.2 for proof of
security of the malicious Arbiter case.

Performance. Our protocol confirms that the cost of achieving fairness is very small, and
the amount of work the Arbiter needs to perform (in case of a resolution) is independent of the
circuit size. Mainly, we require Alice to commit to and encrypt Bob’s output translation table,
and sign it. Thus, compared to an unfair state-of-the-art covert protocol, Alice needs to perform
s commitments and encryptions of size proportional to Bob’s output length, and s signatures on
those. Bob, of course, needs to verify all these. Finally, at the last step, Alice needs to send an
extra message as the opening of the eth commitment to Bob’s decoding table, hence adding a single
round of interaction to the protocol. Table 2 summarizes this overhead.

Extra Rounds Extra Messages’ Size Operation Type

1 O(sm) Public Key

Table 2: Overhead for fairness (Covert). Round is a single message. s is the statistical security
parameter, m is Bob’s output length.

Optimistic Fair Exchange Considerations. The optimistic fair exchange literature includes
many implementation details we skip here for the sake of clarity (see e.g. [5, 45, 44]). For example,
to ensure that the Arbiter treats different computations separately, the signatures must include
a unique session identifier sid. This session identifier can be generated jointly randomly by
Alice and Bob, put into the signatures by Alice, and verified by Bob. Furthermore, the resolution
timeouts (i.e. deadlines, which are current time plus allowed timeout) can be put in the signature
as well. Bob must abort if the resolution timeout is very different from what he was expecting, and
the Arbiter checks this deadline during resolutions.4 Note that a message timeout (to decide that
the other party did not respond back) is different from the resolution timeout, and is much shorter.5

Finally, obviously there is a computation timeout in this protocol, which is related to the reasonable

4No tight synchronization is necessary. For example, if Bob has half an hour until the deadline, and the parties’
clock differs by 5 minutes, it may still be considered to be within allowable range.

5For example, consider it as a web request timeout, around 2 minutes.
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amount of time for Bob to finish computing the garbled circuit. We do not complicate our protocol
with such a computation timeout description, since until the resolution timeout is defined
during the output exchange phase of our protocol, any party can locally abort the
protocol without breaking fairness. If Alice already registered her signature verification
key with the Arbiter, our protocol can be employed as is. But, if we want anonymity, then the
Arbiter must have a way of obtaining this verification key. The standard mechanism is to put it
into the label of a labeled encryption scheme. In our case, Alice can generate a new key pair for
each computation (or even circuit) and put the verification key into the label of dBi encryptions,
and Bob can verify the signatures using this verification key. The Arbiter can then also use this
key for verification. Details such as these are well-discussed in the previous work [5, 46, 42, 41],
and hence we do not repeat for the sake of space.

Alice’s input: xA ∈ {0, 1}`. Bob’s input: xB ∈ {0, 1}`.
Common input: Alice and Bob agree on the description of a circuit C, where C(xA, xB) = f(xA, xB) =
(fA(xA, xB), fB(xA, xB)), and a second-preimage resistant hash function H : {0, 1}∗ → {0, 1}`.
s is a statistical security parameter that is inversely proportional to the bound on the cheating probability. L
is a computational security parameter, so, for example, each key label is L-bits long. Let TCommit(·) be a
trapdoor commitment scheme.
Setup: Let (PKT , SKT ) be the Arbiter’s key pair for a public key encryption, and (SKA, V KA) be the signing-
verification key-pair for a digital signature scheme for Alice. At the beginning of the protocol, both parties
obtain the Arbiter’s public key from the Arbiter. Alice sends her verification key to Bob and the Arbiter.
Output: Alice learns an m-bit string fA(xA, xB) and Bob learns an m-bit string fB(xA, xB).

Alice Prepares the Garbled Circuits.
1. For 1 ≤ i ≤ s, Alice computes GCi ← Garble(C).
2. Let inA,i,j

b denote the key for bit b for Alice’s jth input wire in the ith garbled circuit for b ∈ {0, 1},
1 ≤ i ≤ s, and 1 ≤ j ≤ `. inB,i,j

b is defined similarly for Bob’s input labels.
3. Let outA,i,j

b denote the key for bit b for Alice’s jth output wire in the ith garbled circuit. outB,i,j
b is used

for Bob’s output labels.
4. Alice lets GDecBi =

{
outB,i,j

0 , outB,i,j
1

}m

j=1
be the decoding table for Bob’s output.

5. Alice computes GDecAi =
{
H(outA,i,j

bi,j
), H(outA,i,j

¬bi,j )
}m

j=1
for random bits bi,j as the output validity-

checking table for her output. [This table is randomly permuted based on the bits bi,j such that in case
of output resolution, the Arbiter can check validity of output labels without learning their actual value.]

6. She computes cBi = TCommit(GDecBi ) as the commitment to Bob’s output decoding table. Let
GDecOpenBi be the opening of this commitment. She encrypts this opening as dBi = EPKT (GDecOpenBi )
using the Arbiter’s public key. [GDecAi and dBi will be used by the Arbiter to verify Bob’s honesty, and
give back Bob’s output decoding table, respectively. cBi will be employed by Bob to ensure that Alice
behaves honestly at the last step. Note that GDecAi is computed using a second-preimage resistant hash
function, whereas cBi is computed via trapdoor commitments.]

7. Alice signs those as σi = Sign(SKA, (sid,GDec
A
i , d

B
i )). [This signature will tie the two decryption tables

to the same circuit, and be checked by the Arbiter. sid is the unique session identifier.]

Oblivious Transfer for Bob’s Input.
1. Alice and Bob engage in ` committed OTs, where in the jth OT, Bob’s input is xB,j and Alice input is

a pair where the first component is [inB,1,j
0 , . . . , inB,s,j

0 ] and the second component is [inB,1,j
1 , . . . , inB,s,j

1 ].
As a result, Bob learns inB,i,j

xB,j
for 1 ≤ i ≤ s, 1 ≤ j ≤ `.

Alice Sends the Circuits.
1. Alice sends

{
GCi,GDec

A
i , c

B
i , d

B
i

}s

i=1
to Bob.

Figure 1: Optimistic Fair Covert 2PC
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OT-based Challenge Generation.
1. Bob picks a random challenge index e, lets be = 0, and bi = 1 for all i 6= e.
2. Alice and Bob run s OTs where Bob’s input (as the receiver) in the ith OT is bi while Alice (as the

sender) inputs a pair where the first component is her garbled inputs {inA,i,j
XA,j
}`j=1 along with σi, and

the second component is the openings for GCi,GDec
A
i , c

B
i , d

B
i and the input and randomness she used in

the ith committed OT above. In other words, for i 6= e Bob learns openings for everything about the
circuits, and for i = e he learns Alice’s input labels and her signature.

Bob Verifies Check Circuits.
1. For i 6= e, Bob uses the openings he obtained in the challenge generation phase to check the correctness

of GCi. He verifies the consistency of cBi with dBi both of which he has openings for. He checks that
GDecBi is consistent with GCi.

2. For i = e, he verifies the signature σe.

Bob Evaluates.
1. Note that Bob has Alice’s input labels for the eth circuit via the OT-based challenge generation and his

own input labels via the committed OT. He evaluates GCe.

Output Exchange.
1. Bob tells Alice that he is done with the evaluation.
2. Alice responds by sending σt = Sign(SKA, (sid, deadline)). Bob checks the timeout and the session

identifier are consistent with the agreed upon values, and aborts otherwise.

3. Denote the labels for Alice’s output by
{
outA,e,j

outA,j

}m

j=1
. Bob sends these to Alice, along with σe so that

Alice will learn the evaluated circuit identifier e, and then she translates them to her actual output on
her own. If Alice does not receive the correct labels in time, she contacts the Arbiter for resolution.

4. Alice opens cBe to the decoding table GDecBe , which Bob uses to decode his actual output. If Bob does
not receive the correct decoding table in time, he contacts the Arbiter for resolution.

Figure 2: Optimistic Fair Covert 2PC

1. Bob sends GDecAe , d
B
e , σe, σt to the Arbiter. He also sends labels for Alice’s output i.e.

{
outA,e,j

outA,j

}m

j=1
.

2. The Arbiter verifies the signatures, checks that the time is earlier than the deadline in σt and the session
identifiers are matching. He also makes sure outA,e,j

outA,j
values are consistent with GDecAe . Essentially, one

output label per pair must be provided. He aborts if any of the checks fail.
3. In case of no fails, the Arbiter decrypts dBe and sends GDecOpenBe to Bob. He stores

{
outA,e,j

outA,j

}m

j=1
for

Alice.
4. Bob checks that GDecOpenBe is the correct opening for cBe ,a and uses GDecBe in the opening to translate his

output labels to actual outputs.

aThis check is necessary against potentially malicious Arbiter to preserve correctness.

Figure 3: Resolution for Bob (for Optimistic Fair Covert 2PC)

1. If Alice contacts the Arbiter before the timeout and Bob has not contacted the Arbiter yet, the Arbiter tells
Alice to come after the timeout.

2. If Alice contacts the Arbiter after the timeout and Bob has not contacted the Arbiter yet, the protocol is
aborted and no party obtains the actual output.

3. Else (Bob already contacted the Arbiter and resolved), the Arbiter sends
{
outA,e,j

outA,j

}m

j=1
obtained via Bob’s

resolution to Alice (after making sure she is the same Alice, e.g. by asking for the input to a one way
function whose output was in the associated signature given by Bob, see e.g. [5]).

4. Alice translates
{
outA,e,j

outA,j

}m

j=1
to actual outputs on her own.

Figure 4: Resolution for Alice (for Optimistic Fair Covert 2PC)
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4.1 Proof of Fair Covert 2PC Protocol

Theorem 4.1. If the committed-OT protocol used is secure against malicious adversaries[37], the
garbling scheme is secure and provides output authenticity [13], the (labeled) public key encryption
scheme employed is semantically secure [67], the hash function used is second-preimage resistant
[62], the trapdoor commitment scheme is hiding and binding [23, 52], and the signature scheme is
existentially unforgeable [25], then our construction is fair and secure against malicious Bob and
covert Alice.

4.1.1 Proof

Security against malicious Bob: For any adversary B corrupting Bob in the real protocol, we
describe a simulator SB in the ideal world such that the joint outputs of both parties in the two
worlds are indistinguishable.

1. SB generates a key pair on behalf of the Arbiter, and another on behalf of Alice, and pro-
vides the public keys to B. She further generates the commitment parameters and keeps a
trapdoor.6

2. SB runs B and plays the ideal trusted party UCOT in the committed oblivious transfer to
receive B’s input x′B. If B aborts at this stage, SB sends abort to the ideal trusted party Uf
for f and simulates honest Alice aborting. Else, she continues as honest Alice would in the
protocol.

3. SB learns the challenge index e chosen by B by playing the role of the ideal trusted party
in the OT-based challenge generation. She picks a random x′A as Alice’s input and uses it
during the OT-based challenge generation. She generates the circuits, commitments, decoding
tables, encryptions all as an honest Alice would.

4. SB continues as honest Alice would, until she receives output labels for Alice’s output from
B.
(a) If they are correct, then she sends x′B to Uf , and receives fB(xA, x

′
B) as output, and

hence learns the correct out′B labels. Note that SB prepared everything using a random
input x′A for Alice, whereas the output labels out′B are based on the actual input xA of
Alice. Therefore, SB now needs to fake the opening of her commitment. She generates
the GDecBe according to out′B, and sends it to Bob together with a simulated opening
for cBe using the trapdoor.

(b) If the labels were problematic (or was not received within a reasonable message timeout),
SB waits until the resolution timeout. During this time, if Bob wants to perform a
resolution with the Arbiter, she acts as the Arbiter.

i. If Bob provides correct labels to the Arbiter, then she acts identical to the step above
(i.e. contacts Uf , providing x′B and obtaining back the output, preparing GDecBe via
the corresponding out′B, and giving the corresponding GDecOpenBe to Bob using the
trapdoor).

ii. If Bob did not contact the Arbiter until the timeout, SB sends abort to Uf and
aborts. In this case, no party learns the actual output.

Indistinguishability: SB is indistinguishable from real Alice, as she acts exactly the same
with small exceptions.

6e.g., Pedersen commitments [59] have a trapdoor dloggh, which the simulator can use in the CRS model by
creating the commitment parameters.
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• In step 2, the hybrid model allows her to act as the trusted party for the committed oblivious
transfer.
• In step 3, similarly she acts as the trusted party for the OT-based challenge generation,

using a random input for Alice. But due to security of the garbling scheme this remains
indistinguishable to Bob. We want to remind the reader that the circuit is outputting random
labels, which will only make sense once the translation table is obtained. Therefore, until the
opening of the translation table, Bob cannot distinguish anything.
• SB also behaves exactly like the Arbiter when Bob resolves.

– Note that due to the output-authenticity of the garbling scheme and the fact that H is
a second-preimage resistant hash function, Bob cannot forge another valid output label
except with negligible probability in L. Because Bob only learns one output label per
pair of hashes he is given per bit, due to the output authenticity of the garbling scheme.
He cannot use the hash values to break output authenticity by finding a different output
label, neither by finding a second preimage to the output label he computed, nor by
finding a preimage to the hash value corresponding to the other bit.

– When the Arbiter decrypts, it may be to a different GDecOpen, but semantic security of
encryption makes sure that this is indistinguishable.

• Lastly, the trapdoor commitment scheme allows SB to fake the opening to the correct GDecBe
after contacting Uf .

Hence, outputs in the two worlds would be identical (i.e. either abort or the correct output), except
with negligible probability. Finally, note that the simulator contacts the ideal trusted party for the
output only when both parties can obtain their outputs in the real world.
Security against covert Alice. For any adversary A corrupting Alice in the real protocol, we
describe a simulator SA in the ideal world such that the joint outputs of both parties in the two
worlds are indistinguishable.

1. SA generates a key pair on behalf of the Arbiter, and provides the public key to A. SA obtains
the signature public key of A.

2. SA picks a random input x′B on behalf of Bob, and plays the role of the ideal trusted party
UCOT in the committed OT in order to obtain A’s input to the OT (all labels for Bob’s input
wires). If A aborts, SA sends abort to the ideal trusted party Uf for f and simulates honest
Bob aborting.

3. SA receives from A her inputs to the s OTs for the OT-based challenge generation. In other
words, he learns the openings for GCi,GDec

A
i , c

B
i , d

B
i and the ith committed OT, as well as

A’s input labels {inA,i,jXA,j
}`j=1 along with σi, for all i ∈ {1, . . . , s}.

4. We call an index i valid if all the openings for GCi,GDec
A
i , c

B
i , d

B
i and the ith committed OT

for Bob’s input are correct and consistent. We now have three different cases:
(a) All indices are valid: SA lets the challenge index be a random e ∈ {1, . . . , s}. In this case,
SA uses A’s input labels for the eth circuit (he obtained them from OT-based challenge
generation) to extract her actual input x′A. If the signature σe also verifies, he tells A
that he is done.

i. If a correct signature σt with a good timeout is received, he sends x′A to Uf and
receives fA(x′A, xB) back. He uses it and the openings for eth circuit to derive Alice’s
output labels out′A for the eth circuit and sends them to her. If Alice does not
respond back with the correct labels for Bob’s output, he decrypts dBe and obtains
Bob’s output (simulating honest Bob resolving with the Arbiter). If Alice contacts
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the Arbiter afterward, he sends Alice’s output labels again.
ii. In any other case, or if the decryption of dBe was problematic, he sends abort to
Uf and halts. Note that dBe being faulty only happens with at most 1/s probability,
in which case the definition allows the adversary to break fairness as well.

(b) Two or more indices are invalid. In this case, A is always caught in the real protocol.
SA lets the challenge index be a random e ∈ {1, . . . , s} and sends corrupted to Uf ,
outputting whatever A does.

(c) All but one of the indices are valid. SA sends cheat to Uf . With probability 1 − 1/s
the ideal trusted party returns corrupted. If so, SA chooses the challenge index to
be one of the valid ones. He then simulates honest Bob aborting and outputs whatever
A does. With the remaining probability of 1/s, Uf returns undetected together with
honest Bob’s input xB. Then SA lets the challenge index be the invalid index. SA then
simulates honest Bob identically to the real protocol (using his input xB) and outputs
whatever A does.

Indistinguishability: SA is indistinguishable from real Bob, as he behaves exactly the same.
• One exception is that he picks a random input for Bob. But, the output he receives from Uf

is created using the correct input of Bob, and hence will be identical in both worlds.
• SA also behaves exactly like the Arbiter during resolutions, and only aborts whenever a real

Bob would.
• The joint output distributions would only be distinguishable ifAmanages to forge a signature,

which only happens with a negligible probability.

4.2 Security against Colluding Arbiter - Covert Protocol

Theorem 4.2. If the committed-OT protocol used is secure against malicious adversaries [18], the
garbling scheme is secure and provides output authenticity [13], the (labeled) public key encryption
scheme employed is semantically secure [67], the hash function used is second-preimage resistant
[62], the trapdoor commitment scheme is hiding and binding [23, 52], and the signature scheme is
existentially unforgeable [25], then our construction is secure (with abort) against malicious Bob
and covert Alice, even when the Arbiter acts maliciously and colludes with one of them.

4.2.1 Proof

Note that by security here, we mean the usual unfair definition that allows the adversary to abort
after receiving his output but before the honest party receives her output. The corresponding
security definition was already given. We prove for Alice and Bob separately, assuming the Arbiter
colludes with the malicious one. This means, the simulator is not allowed to act on behalf of the
Arbiter in its simulation.
Security against malicious Bob and colluding Arbiter: For any adversary B corrupting Bob
in the real protocol, we describe a simulator SB in the ideal world such that the joint outputs of
both parties in the two worlds are indistinguishable.

1. SB generates a key pair on behalf of Alice, and provides the signature verification key to B.
She learns the Arbiter’s public key. She does not need a commitment trapdoor for this proof.

2. SB runs B and plays the ideal trusted party UCOT in the committed oblivious transfer to
receive B’s input x′B. If B aborts at this stage, SB sends abort to the ideal trusted party Uf
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for f and simulates honest Alice aborting. Else, she continues as honest Alice would in the
protocol.

3. SB sends x′B to the ideal trusted party Uf for f , and receives fB(xA, x
′
B) as output, and hence

learns the correct out′B labels.
4. SB learns the challenge index e chosen by B by playing the role of the ideal trusted party in

the OT-based challenge generation. For all i 6= e, she generates the circuits, commitments,
decoding tables, encryptions all as an honest Alice would. For GCe, he garbles a circuit that
always outputs out′B labels as Bob’s output, but does the normal computation for Alice’s
output, and prepares cBe , d

B
e according to out′B.

5. SB continues the same as honest Alice until she receives output labels for Alice’s output from
B. If they are correct, then she opens cBe to GDecBe (previously prepared according to out′B)
to Bob. She also sends continue to Uf and halts.

6. If the labels were problematic (or was not received in a reasonable amount of time –e.g. a
few round-trip message delays–), SB waits until the resolution timeout and then contacts the
Arbiter. If the resolution is successful, she sends continue to Uf , else she sends abort to
Uf and halts.

Indistinguishability: SB is indistinguishable from real Alice, as she acts exactly the same
with one difference: She uses random inputs for Alice in the garbled circuits. But due to security
properties of the garbling scheme this remains indistinguishable to Bob. The simulator only aborts
in the ideal world when the real adversary aborts. Hence, outputs in the two worlds would be
identically distributed (i.e. either abort or the correct output), except with negligible probability.
Security against covert Alice and colluding Arbiter. For any adversary A corrupting Alice
in the real protocol, we describe a simulator SA in the ideal world such that the joint outputs of
both parties in the two worlds are indistinguishable.

1. SA obtains the signature public key and the Arbiter’s public key from A.
2. SA picks a random input x′B on behalf of Bob, and plays the role of the ideal trusted party
UCOT in the committed OT in order to obtain A’s input to the OT (all labels for Bob’s input
wires). If A aborts, SA sends abort to the ideal trusted party Uf for f and simulates honest
Bob aborting.

3. SA receives from A her inputs to the s OTs for the OT-based challenge generation. In other
words, he learns the openings for GCi,GDec

A
i , c

B
i , d

B
i and the ith committed OT, as well as

A’s input labels {inA,i,jXA,j
}`j=1 along with σi, for all i ∈ {1, . . . , s}.

4. We call an index i valid if all the openings for GCi,GDec
A
i , c

B
i , d

B
i and the ith committed OT

for Bob’s input are correct and consistent. We now have three different cases:
(a) All indices are valid: SA lets the challenge index be a random e ∈ {1, . . . , s}. In this case,
SA uses A’s input labels for the eth circuit (he obtained them from OT-based challenge
generation) to extract her actual input x′A. If the signature σe also verifies, he tells A
that he is done.

i. If a correct signature σt with a good timeout is received, he sends x′A to Uf and
receives fA(x′A, xB) back. He uses it and the openings for eth circuit to derive
Alice’s output labels out′A for the eth circuit and sends them to her. If Alice does
not respond back with the correct labels for Bob’s output, he tries to resolve with
the Arbiter. If he successfully obtains the correct opening of cBe via the decryption
of dBe , he sends continue to Uf .

ii. In any other case, or if the decryption of dBe was problematic, he sends abort to
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Uf and halts. Note that dBe being faulty only happens with at most 1/s probability,
in which case the definition allows the adversary to break fairness as well.

(b) Two or more indices are invalid. In this case, A is always caught in the real protocol.
SA lets the challenge index be a random e ∈ {1, . . . , s} and sends corrupted to Uf ,
outputting whatever A does.

(c) All but one of the indices are valid. SA sends cheat to Uf . With probability 1 − 1/s
the ideal trusted party returns corrupted. If so, SA chooses the challenge index to
be one of the valid ones. He then simulates honest Bob aborting and outputs whatever
A does. With the remaining probability of 1/s, Uf returns undetected together with
honest Bob’s input xB. Then SA lets the challenge index be the invalid index. SA then
simulates honest Bob identically to the real protocol (using his input xB) and outputs
whatever A does.

Indistinguishability: SA is indistinguishable from real Bob, as he behaves exactly the same,
and aborts exactly at the same locations. The hybrid model allows SA to act as the trusted parties
in the oblivious transfers.

5 Fair Malicious Cut-and-Choose 2PC

In this section we describe an efficient malicious 2PC protocol that also achieves fairness. As
discussed in the overview (Section 2), we can employ stat-of the-art techniques such as cheating-
detection, Free-XOR, FleXor, and Half-gates [48, 39, 38, 69]. Figures 6 and 8 describe the full
protocol, and Figures 9 and 10 show the resolutions with the Arbiter for Bob and Alice, respectively.
The vertical lines in the figures represent parts that would not have existed in the unfair counterpart.
The protocol remains secure against malicious adversaries even if the Arbiter actively cheats and
colludes with one of the parties. See Appendix 5.1 for the proof of security. Appendix 5.2 prove
that even if the Arbiter maliciously colludes with the adversarial party, only fairness is lost but
correctness/privacy is preserved.

Performance. Our protocol confirms that the cost of achieving fairness is very small, and the
amount of work the Arbiter needs to perform (in case of a resolution) is independent of the circuit
size. We require Alice to extend her input length by 2m+ t bits for the pads (padA, padB) used to
encrypt the outputs and the random input rp used for input consistency of padB. This also requires
extending the circuit for the one time pad computations, but free XOR technique [39] enables us
to obtain this for free. The input length to the cheating-detection circuit is also extended by m
bits for the pad for Alice’s output.

As in the fair covert protocol, we require Alice to commit to and encrypt Bob’s output trans-
lation table, and sign it. Thus, compared to an unfair state-of-the-art covert protocol, Alice needs
to perform s commitments and encryptions of size proportional to Bob’s output length m, and s/2
signatures on those, plus 2 other signatures. Bob, of course, needs to verify all these. In addition,
we need Bob to commit to Alice’s m output labels. Finally, at the last step, Alice needs to send an
extra message as the opening of s/2 commitments to Bob’s decoding tables (though commitments
can be constant size using a collision-resistant hash function, their openings must be of size O(m)).
Table 3 summarizes this overhead.
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Alice’s input: xA ∈ {0, 1}`. Bob’s input: xB ∈ {0, 1}`.
Common input: Alice and Bob agree on the description of a circuit C, where C(xA, xB) = f(xA, xB) =
(fA(xA, xB), fB(xA, xB)), and a second-preimage resistant hash function H : {0, 1}∗ → {0, 1}`.
s is a statistical security parameter that represents the bound on the cheating probability. L is a computational
security parameter, so, for example, each key label is L-bits long. s′ is a statistical security parameter associated
with the input-consistency matrix. Let t = 2s′ + log s′, and `′ = 2m+ `+ 2t.
Let TCommit(·) be a trapdoor commitment scheme, and Commit(·) be a regular commitment scheme.

Figure 5: Optimistic Fair Malicious 2PC Inputs

Setup: Let (PKT , SKT ) be the Arbiter’s key pair for a public key encryption, and (SKA, V KA) be the signing-
verification key-pair for a digital signature scheme for Alice. At the beginning of the protocol, both parties
obtain the commitment parameters, and the Arbiter’s public key from the Arbiter. Alice sends her verification
key to Bob and the Arbiter.
Output: Alice learns an m-bit string outA = fA(xA, xB) and Bob learns an m-bit string outB = fB(xA, xB).

Alice Prepares Input/Output Labels.
1. Alice chooses s PRF seeds sdA1 , . . . , sd

A
s , and commits to them using Commit(sdA1 ), . . . ,Commit(sdAs ).

All the randomness Alice will use for generating the ith garbled computation circuit and its input labels
will be derived from sdAi . Similarly, she chooses 3s PRF seeds sd′A1 , . . . , sd

′A
3s , and commits to them,

where the randomness she uses for generating the ith garbled cheating-detection (CD) circuit and its
input labels will be derived from sd′Ai .

2. Alice chooses rx, rp ∈R {0, 1}t, padA, padB ∈R {0, 1}m and sets xCA = padB‖rp‖xA‖padA‖rx. She will be
using xCA as her input to the computation circuits instead of xA. We denote the jth bit of xCA by xCA,j .

3. Alice chooses inA,i,j
b ∈R {0, 1}L for b ∈ {0, 1}, 1 ≤ i ≤ s and 1 ≤ j ≤ `′ . inA,i,j

b would be the b-key for
Alice’s jth input wire in the ith computation garbled circuit.

4. Alice sends Commit(H(inA,i,1

xC
A,1

‖ · · · ‖inA,i,`′

xC
A,`′

)) for 1 ≤ i ≤ s, i.e. commitments to encoding of her inputs.

This is intended to commit Alice to her inputs before the matrices associated with input-consistency are
chosen.

5. Alice lets her input to the CD circuit be xCD
A = xA‖padA‖rx. She chooses random labels for the

associated input wires in the CD circuits and commits to the encoding of her inputs as she did for the
computation circuits.

6. Alice chooses WA,j
b ∈R {0, 1}L for j ∈ {1, . . . ,m} and b ∈ {0, 1}. Similarly, she chooses WB,j

b ∈ {0, 1}L.
These correspond to labels for output wires corresponding to Alice’s and Bob’s output (padded with
Alice’s pads), respectively, and unlike the covert protocol, will be the same across all s circuits.

7. Alice lets GDecB =
{
H(WB,j

0 ), H(WB,j
1 )

}m

j=1
be the decoding table for Bob’s output. She also lets

GDecA =
{
H(WA,j

0 ), H(WA,j
1 )

}m

j=1
. The translation table for other outputs of the circuit (i.e. outputs

of the UH functions) will be created in the standard way and with different labels for each circuit.

8. Alice lets PadDeci =
{
inA,i,j

0 , inA,i,j
1

}m+t

j=1
for the ith circuit (note that the first m + t input wires are

associated with Alice’s padB and rp). This is essentially a decoding table for input wires for Alice’s
padB and rp. Alice then commits to this table cBi = TCommit(PadDeci) using the trapdoor commitment
scheme, and encrypts its opening as dBi = EPKT (PadDecOpeni) using the Arbiter’s public key.

Figure 6: Optimistic Fair Malicious 2PC
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Alice Prepares the Garbled Circuits.
1. Alice and Bob jointly choose random binary matrices Mx ∈R {0, 1}s

′×`+m+t,Mp ∈R {0, 1}s
′×m+t. Let

C′(xCA, xB) = (fA(xA, xB) ⊕ padA, (fB(xA, xB) ⊕ padB ,Mx · (xA‖padA‖rx),Mp · (padB ||rp))). In other
words, the circuit pads Alice and Bob’s output with separate pads generated by Alice, and also outputs
the result of applying the Mx and Mp to xA and padB for input-consistency checks.

2. For 1 ≤ i ≤ s, Alice computes GCi ← Garble(C′) with the consideration that she uses the input and
output labels she generated above for the garbling.

3. Denote by CD the cheating detection circuit. Alice’s input to this circuit is xCD
A = xA‖padA‖rx. Bob’s

input is an L-bit string pc, his (potential) proof of Alice’s cheating. CD’s computation is as outlined in
Lindell [48] with the exception that in case of detected cheating xA and padA are both revealed to Bob.
In particular, CD has the labels

{
WB,j

0 ,WB,j
1

}m

j=1
and

{
WA,j

0 ,WA,j
1

}m

j=1
embedded in it and checks

whether pc is the XOR of the 0-key and the 1-key for any of the wires. If so, it outputs to Bob xA‖padA
. Otherwise, it outputs a random string. CD also outputs Mx · (xA‖padA‖rx) to Bob. Alice has no
output.

4. For 1 ≤ i ≤ 3s, Alice computes GCDi ← Garble(CD) with the consideration that she uses the input
labels she generated above for garbling. The translation tables for GCDi are generated in the standard
way.

Oblivious Transfer for Bob’s Input to Computation Circuits. Alice and Bob engage in ` commit-
ted OTs, where in the jth OT, Bob’s input is xB,j and Alice’s input is a pair where the first component is
[inB,1,j

0 , . . . , inB,s,j
0 ] and the second component is [inB,1,j

1 , . . . , inB,s,j
1 ]. As a result, Bob learns inB,i,j

xB,j
for 1 ≤ i ≤ s,

1 ≤ j ≤ `.
Alice Sends the Garbled Circuits. Alice sends

{
GCi, c

B
i , d

B
i }si=1 and GDecA, GDecB , and σoutA =

Sign(SKA, (sid,GDec
A)) to Bob (where sid is the unique session identifier). She also sends

{
GCDi}3si=1 and the

associated output translation tables.

Challenge Generation. Alice and Bob jointly run a simulatable coin-toss to generate a uniformly random
s-bit string b and a uniformly random 3s-bit string b′. Define the evaluation set E where i ∈ E if and only if
bi = 0, and the evaluation set E′ similarly with respect to b′. Both parties learn E and E′. Circuits are not
opened immediately, though.

Bob Evaluates Computation Circuits in E.
1. Alice sends her garbled input labels for xCA for all GCi, i ∈ E, by opening the commitments she made to

them earlier. Alice also sends σi,pad = Sign(SKA, (sid, d
B
i )) for i ∈ E. Bob uses these input labels and

those of his own from the committed OTs to evaluate all GCi where i ∈ E.
2. If there is at least one circuit with a valid output, and all circuits with a valid output return the same

output labels WA,1
oA,1

, . . . ,WA,m
oA,m

and WB,1
oB,1

, . . . ,WB,m
oB,m

, Bob lets CA = TCommit(WA,1
oA,1

, . . . ,WA,m
oA,m

).
Note that through these, Bob can learn oA = outA⊕ padA and oB = outB ⊕ padB , but since he does not
know the pads, these are useless. Bob lets pc be a random L-bit string.

3. If there are at least two circuits with valid but different outputs, Bob chooses the first output wire with
different labels and denotes the two labels by W and W ′. pc = W ⊕W ′ will constitute Bob’s input to
the cheating detection circuits.

4. If all circuits are evaluated to invalid output labels (i.e. the obtained labels are not consistent with
GDecA and GDecB) or if the output of the UHs in any two circuits are different Bob does not abort
(until after the opening stage) but instead commits to a random string of appropriate length in CA.

Figure 7: Optimistic Fair Malicious 2PC (cnt’d)
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Evaluating Cheating-Detection Circuits in E′.
1. Alice and Bob engage in L committed OTs, where in the jth OT, Bob’s input is pcj and Alice’s input is

a pair where the first component is the 3s input labels corresponding to 0 and the second component is
the 3s labels corresponding to 1.

2. Alice sends her garbled input labels for xCD
A for GCDi where i ∈ E′, by opening the commitments she

made to them earlier.
3. Bob uses the input labels to evaluate all GCDi with i ∈ E′, and uses the translation tables to translate

to plaintext outputs. If any two UH outputs are different or if they are different from those output in
the computation circuits Bob postpones aborting until the opening stage, commits to a random string
of appropriate length for CA.

4. Else, he considers the majority output as the correct output. If Bob had a valid proof of cheating pc, he
learns xA‖padA. He computes oA = fA(xA, xB)⊕ padA on his own. He then chooses a

{
WA,j

oA,j

}m

j=1
from

the evaluation circuits that is consistent with GDecA and oA, and lets CA = TCommit(WA,1
oA,1

, . . . ,WA,m
oA,m

)
(with high probability there is at least one). [Note that in case Alice’s opening of the check circuits are
problematic, Bob will never decommit anyways.]

Bob Commits to Alice’s Garbled Output.
1. Bob sends CA as his commitment to Alice’s output labels.
2. Alice sends back σoA = Sign(SKA, (sid, deadline, CA)). Bob can use this in case of resolution to prove

to the Arbiter that he computed Alice’s output honestly.

Alice Opens Everything for Check Circuits.
1. For i /∈ E, Alice opens sdAi to open all secrets of GCi. She also opens cBi , d

B
i , and the randomness used

in committed OTs for Bob’s input. Bob checks correctness of opened circuits and their consistency with
GDecA,GDecB . He also verifies correctness cBi , d

B
i and the opened PadDeci. He aborts if any of the

checks fail.
2. For i /∈ E′, Alice opens sd′Ai to open all secrets of GCDi. He also reveals the randomness used in

committed OTs for Bob’s input. Bob checks the correctness of the opened circuits and the OTs, and
aborts in case of a fail.

Output Exchange.
1. Bob opens CA to Alice’s output labels. Alice translates these to her actual output outA using padA and

the translation table, on her own. In case of a problem, Alice resolves with the Arbiter.
2. Alice opens cBi for i ∈ E. This allows Bob to learn the values Alice used for padB , rp in all evaluated

circuits. For each such value he computes Mp · (padB‖rp) and checks if the result is equal to the unique
UH output he obtained when evaluating the circuits. He chooses a pad meeting this requirement and
uses it to decode his final output outB . In case of a problem, Bob resolves with the Arbiter.

Figure 8: Optimistic Fair Malicious 2PC (cnt’d)

1. Bob sends GDecA, σGDecA , CA, σoA to the Arbiter. He also sends dBi , σi,pad for all i ∈ E to the Arbiter. He
also opens CA to WA,j

oA,1
, . . . ,WA,j

oA,m
.

2. The Arbiter verifies the signature, checks that the time is earlier than the deadline in the signature and the
session identifiers match. He also makes sure the opened values WA,j

oA,1
, . . . ,WA,j

oA,m
are consistent with CA

and GDecA. Essentially, one output label per pair must be provided. He aborts if any of the checks fail.
3. In case of no fails, the Arbiter decrypts dBi for i ∈ E and sends PadDecOpeni to Bob. He stores

WA,1
oA,1

, . . . ,WA,m
oA,m

for Alice.

4. Bob checks that PadDecOpenBi is the correct opening for cBi , for i ∈ E, and then uses PadDeci values to
obtain his actual output outB as in the last step of the main protocol.

Figure 9: Resolution for Bob (for Optimistic Fair Malicious 2PC)
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Extra Rounds Extra Input Length Extra Messages’ Size Operation Type

3 O(m+ t) O(s(m+ t)) Public Key

Table 3: Overhead for fairness (Malicious). Round is a single message. s is the statistical security
parameter, m is the output length, t is a security parameter for input consistency.

1. If Alice contacts the Arbiter before the timeout and Bob has not contacted the Arbiter yet, the Arbiter tells
Alice to come after the timeout.

2. If Alice contacts the Arbiter after the timeout and Bob has not contacted the Arbiter yet, the protocol is
aborted and no party obtains the actual output.

3. Else (Bob already contacted the Arbiter and resolved), the Arbiter sends WA,1
oA,1

, . . . ,WA,m
oA,m

obtained via
Bob’s resolution to Alice.

4. Alice translates WA,1
oA,1

, . . . ,WA,m
oA,m

to her actual outputs on her own.

Figure 10: Resolution for Alice (for Optimistic Fair Malicious 2PC)

5.1 Proof of Fair Malicious 2PC Protocol

Theorem 5.1. If the committed-OT protocol used is secure against malicious adversaries [18], the
garbling scheme is secure and provides output authenticity [13], the (labeled) public key encryption
scheme employed is semantically secure [67], the hash function used is second-preimage resistant
[62], the trapdoor commitment scheme is hiding and binding [23, 52], and the signature scheme is
existentially unforgeable [25], then our construction is fair and secure against malicious Bob and
malicious Alice.

5.1.1 Proof

Security against malicious Bob: For any adversary B corrupting Bob in the real protocol, we
describe a simulator SB in the ideal world such that the joint outputs of both parties in the two
worlds are indistinguishable.

1. SB generates a key pair on behalf of the Arbiter, and another on behalf of Alice, and provides
the public keys to B. She further generates the commitment parameters and keeps a trapdoor.

2. SB picks xCA = padB‖rp‖x′A‖padA‖rx randomly, and emulates honest Alice all the way upto
the oblivious transfer for Bob’s inputs. In these OTs, SB plays the ideal trusted party UCOT
in the committed oblivious transfer to receive B’s input x′B. She continues as an honest Alice
would.

3. SB plays the honest Alice in the coin-toss and learns the evaluation sets E and E′ as a result.
She generates and sends the circuits, commitments, encryptions all as an honest Alice would.

4. Until the output exchange phase, SB simulates honest Alice. If B aborts, SB sends abort to
the ideal trusted party Uf for f and simulates honest Alice aborting.

5. SB finally receives the openings for CA.
(a) If the openings are proper, she sends x′B to Uf , and receives out′B = fB(xA, x

′
B) as

output. Together with the padB that she picked, this now allows her to figure out which
W labels would be the correct ones. She responds to Bob with simulating the openings
of cBi for i ∈ E in such a way that the pads translate correctly.

(b) If the openings are problematic (or were not received in a reasonable message timeout),
SB waits until the resolution timeout.
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i. During this time, if Bob wants to perform a resolution with the Arbiter, she acts as
the Arbiter. If Bob provides correct labels to the Arbiter, then SB acts the same
as above (i.e. contacting Uf and then preparing and sending PadDecOpeni values to
Bob according to the correct pad).

ii. If Bob did not resolve with the Arbiter until the timeout, SB sends abort to Uf
and aborts. In this case, no party learns the actual output.

Indistinguishability: SB is indistinguishable from real Alice, as she acts exactly the same
with small exceptions.
• In step 2, the hybrid model allows her to act as the trusted party for the committed oblivious

transfer.
• She uses random inputs for Alice in the garbled circuits. But due to security properties of

the garbling scheme this remains indistinguishable to Bob.
• SB also behaves exactly like the Arbiter when Bob resolves.

– Note that due to the output-authenticity of the garbling scheme and the fact that H is
a second-preimage resistant hash function, Bob cannot forge a valid output label except
with negligible probability in L.

– When the Arbiter decrypts, it may be to a different PadDecOpen, but semantic security
of encryption makes sure that this is indistinguishable.

• Lastly, the trapdoor commitment scheme allows SB to fake the opening to the correct PadDec
after contacting Uf .

Hence, outputs in the two worlds would be identical (i.e. either abort or the correct output).
Finally, note that the simulator contacts the ideal trusted party only when both parties can obtain
their outputs in the real world.
Security against malicious Alice: For any adversary A corrupting Alice in the real protocol,
we describe a simulator SA in the ideal world such that the joint outputs of both parties in the two
worlds are indistinguishable.

1. SA generates a key pair on behalf of the Arbiter, and provides the public key to A. SA obtains
the signature public key of A. He further generates the commitment parameters and keeps a
trapdoor.

2. SA runs A emulating an honest Bob with a random input x′B all the way upto the oblivious
transfer for Bob’s inputs. In these OTs, SA plays the role of the ideal trusted party UCOT in
the committed OT in order to obtain A’s input to the OT (all labels for Bob’s input wires).
If A aborts, SA sends abort to the ideal trusted party Uf for f and simulates honest Bob
aborting.

3. During committed OTs for cheating detection, SA again acts as the ideal trusted party and
learns Alice’s input, including x′A and pad′A.

4. SA continues acting as the honest Bob until he sends the commitment CA to Alice’s output
labels. At that point, he commits to random W labels, since he is not sure if the output
exchange will complete yet, and hence cannot contact Uf . He then continues as honest Bob.

5. Upto the output exchange phase, SA sends abort to the ideal trusted party Uf for f wherever
honest Bob would have aborted. If everything went well until the output exchange phase,
SA is now sure that both parties can obtain the output (since, an honest Bob would send
Alice’s output back and in the worst case, would have resolved with the Arbiter to obtain
his output). Hence sends sends x′A to Uf and receives out′A = fA(x′A, xB). He then computes

o′A = out′A ⊕ pad′A and picks the output labels {WA,j
oA,j}mj=1 accordingly (using the evaluated
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ones, since at least one is correct with high probability, and he can check via GDecA) and
sends them to Alice, simulating the opening of CA with the trapdoor.

6. SA then receives the openings for cBi , i ∈ E. If the openings are problematic (or were not
received in a reasonable message timeout), SA simulates Bob’s Arbiter resolution himself, and
uses the Arbiter’s secret key to decrypt dBi , i ∈ E to compute Bob’s actual output as in the
last step of the protocol.

7. If Alice contacts the Arbiter afterward, he sends the correctly computed output labels
{WA,j

oA,j}mj=1 to Alice.
Indistinguishability: SA is indistinguishable from real Bob, as he behaves exactly the same,

except:
(i) if all the evaluated circuits (or the associated commitments/inputs, etc.) are bad and A is

not caught. But this only happens with negligible probability of 2−s.
(ii) if A manages to find two different inputs that lead to the same output for the UHs. This also

only happens with negligible probability of 2−s
′
.

(iii) that SA first commits to random output labels in CA and then simulates their opening. But
due to the hiding property of the trapdoor commitments, this is indistinguishable.

SA also behaves exactly like the Arbiter during resolutions.

5.2 Security against Colluding Arbiter - Malicious Protocol

Theorem 5.2. If the committed-OT protocol used is secure against malicious adversaries [18], the
garbling scheme is secure and provides output authenticity [13], the (labeled) public key encryption
scheme employed is semantically secure [67], the hash function used is second-preimage resistant
[62], the trapdoor commitment scheme is hiding and binding [23, 52], and the signature scheme is
existentially unforgeable [25], then our construction is secure (with abort) against malicious Bob
and malicious Alice, even when the Arbiter acts maliciously and colludes with one of them.

5.2.1 Proof

Note that by security here, we mean the usual unfair definition that allows the adversary to abort
after receiving his output but before the honest party receives her output. The corresponding
security definition was already given. We prove for Alice and Bob separately, assuming the Arbiter
colludes with the malicious one. This means, the simulator is not allowed to act on behalf of the
Arbiter in its simulation.
Security against malicious Bob and colluding Arbiter: For any adversary B corrupting Bob
in the real protocol, we describe a simulator SB in the ideal world such that the joint outputs of
both parties in the two worlds are indistinguishable.

1. SB generates a key pair on behalf of Alice and sends the signature verification key to B. She
obtains the Arbiter’s public key from B.

2. SB picks xCA = padB‖rp‖x′A‖padA‖rx randomly, and emulates honest Alice all the way upto
the oblivious transfer for Bob’s inputs. In these OTs, SB plays the ideal trusted party UCOT
in the committed oblivious transfer to receive B’s input x′B. She continues as an honest Alice
would.

3. SB sends x′B to the ideal trusted party Uf for f , and receives out′B = fB(xA, x
′
B) as output.

4. SB plays the honest Alice in the coin-toss and learns the evaluation sets E and E′ as a result.
She generates and sends the circuits, commitments, encryptions all as an honest Alice would.
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5. Until the output exchange phase, SB simulates honest Alice. If B aborts, SB sends abort to
the ideal trusted party Uf for f and simulates honest Alice aborting.

6. SB finally receives the openings for CA.
(a) If the openings are proper, SB then responds to Bob with the openings of cBi for i ∈ E.

Note that these were already prepared according to the output of Bob, so there is no
problem. She sends continue to Uf .

(b) If the openings are problematic (or were not received within message timeout), SB waits
until the resolution timeout and then contacts the Arbiter. If the resolution is successful,
she sends continue to Uf , else she sends abort to Uf and halts.

Indistinguishability: SB is indistinguishable from real Alice, as she acts exactly the same
with one exception: She uses random inputs for Alice in the garbled circuits. But due to security
properties of the garbling scheme this remains indistinguishable to Bob. Hence, outputs in the two
worlds would be identical (i.e. either abort or the correct output).
Security against malicious Alice and colluding Arbiter: For any adversary A corrupting
Alice in the real protocol, we describe a simulator SA in the ideal world such that the joint outputs
of both parties in the two worlds are indistinguishable.

1. SA obtains the signature public key and the Arbiter’s public key from A. He does not need
the commitment trapdoor.

2. SA runs A emulating an honest Bob with a random input x′B all the way upto the oblivious
transfer for Bob’s inputs. In these OTs, SA plays the role of the ideal trusted party UCOT in
the committed OT in order to obtain A’s input to the OT (all labels for Bob’s input wires).
If A aborts, SA sends abort to the ideal trusted party Uf for f and simulates honest Bob
aborting.

3. During committed OTs for cheating detection, SA again acts as the ideal trusted party
and learns Alice’s input, including x′A and pad′A. He sends x′A to Uf and receives out′A =
fA(x′A, xB) back.

4. SA continues acting as the honest Bob until he sends the commitment CA to Alice’s output
labels. At that point, he computes o′A = out′A⊕ pad′A and picks the output labels {WA,j

oA,j}mj=1

accordingly (using the evaluated ones, since at least one is correct with high probability, and
he can check via GDecA). He prepares the commitment CA accordingly, and continues as
honest Bob.

5. Upto the output exchange phase, SA sends abort to the ideal trusted party Uf for f wherever
honest Bob would have aborted. He opens CA.

6. SA then receives the openings for cBi , i ∈ E. If the openings are problematic (or were not
received in a reasonable amount of time –e.g. a few round-trip message delays–), he tries to
resolve with the Arbiter. If he successfully obtains the correct openings of cBi , i ∈ E via the
decryptions of dBi , i ∈ E, he sends continue to Uf . Else, he sends abort to Uf .

Indistinguishability: SA is indistinguishable from real Bob, as he behaves exactly the same,
except:

(i) if all the evaluated circuits (or the associated commitments/inputs, etc.) are bad and A is
not caught. But this only happens with negligible probability of 2−s.

(ii) if A manages to find two different inputs that lead to the same output for the UHs. This also
only happens with negligible probability of 2−s

′
.
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