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Abstract. We remark that the experimental demonstrations of Shor’s algorithm in
the past decades are falsely claimed and flawed, because they had used too less qubits
in the first quantum register to accomplish the step of Continued Fraction Expansion
in Shor’s algorithm. More worse, the amount of qubits used in some experiments are
too less to represent all residues modulo n, which means that the number n cannot be
truly involved in the related computations.
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1 Introduction

It is well known that factoring an integer n can be reduced to finding the order of some integer x
modulo n, i.e., ord,(z). So far, there is not a polynomial time algorithm run on classical computers
which can be used to compute the order. But in 1994, Shor [I] claimed that his algorithm can be
used to compute ord, (x) on a quantum computer.

Since 2001, some teams have reported that they had successfully factored 15 into 3 x 5 using
Shor’s algorithm. We shall have a close look at those experimental demonstrations and argue that
all these demonstrations are falsely claimed because they violate the necessary condition that the
selected number ¢ must satisfy n? < ¢ < 2n?. Essentially, these demonstrations have no relation

to the Shor’s algorithm.

2 Preliminaries

A quantum analogue of a classical computer operates with quantum bits involving quantum states.
The state of a quantum computer is described as a basis vector in a Hilbert space. A qubit is
a quantum state |¥) of the form |¥) = a|0) + b|1), where the amplitudes a,b € C such that
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la]? 4+ |b]? = 1, |0) and |1) are basis vectors of the Hilbert space. Here, the ket notation |z) means
that = is a quantum state. The state of a quantum system having n qubits is a point in a 2"-
dimensional vector space. Given a state Zia ! a;i|x:), where the amplitudes are complex numbers
such that Zfia Ya;|2 = 1 and each |y;) is a basis vector of the Hilbert space, if the machine is
measured with respect to this basis, the probability of seeing basis state |x;) is |a;|*.

Two quantum mechanical systems are combined using the tensor product. For example, a system
of two qubits |¥) = a;|0) + az|1) and |®) = b1]|0) + ba|1) can be written as

al b1

aj b1 albg
Tle) (a2> <b2> azby
agbg

We shall also use the shorthand notations |¥, ®). We call a quantum state having two or more
components entangled state, if it is not a product state. According to the Copenhagen interpre-
tation of quantum mechanics, measurement causes an instantaneous collapse of the wave function
describing the quantum system into an eigenstate of the observable state that was measured. If
entangled, one object cannot be fully described without considering the other(s).

Operations on a qubit are described by 2 x 2 unitary matrices. Of these, some of the most

important are

0 1 0 —i 10 111
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where H denotes the Hadamard gate. Clearly, H|0) = %(]O) + [1)).

Operations on two qubits are described by 4 x 4 unitary matrices. Of these, the most important
operation is the controlled-NOT, denoted by CNOT. The action of CNOT is given by |c)[t) —
le)|c @ t), where @ denotes addition modulo 2. The matrix representation of CNOT is

10 00
0100
00 01
0010

Likewise, operations on ¢ qubits are described by 2¢ x 2¢ unitary matrices.
There is another method to describe linear operators performed on multiple qubits. Suppose that

V and W are vector spaces of dimension 2# and 2" (they describe quantum systems corresponding
to pu and v qubits, respectively). Suppose |v) and |w) are vectors in V and W, and A and B are
linear operators on V and W, respectively. Then we can define a linear operator A®@ B on V @ W
by the equation

(A® B)(|v) ® |w)) = Alv) ® Bluw).



3 Description of Shor’s algorithm

The Shor’s algorithm requires two quantum registers. At the beginning of the algorithm, one has
to find ¢ = 2° for some integer s such that n? < ¢ < 2n?, where n is to be factored. It then proceeds

as follows.

e Initialization. Put register-1 in the uniform superposition

1=
N ;) |a}[0).

Computation. Keep a in register-1 and compute z% in register-2 for some randomly chosen

integer x. It gives the state

-1
14
— D _la)|z").
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o Fourier Transformation. Performing Fourier transform on register-1, we obtain the state

qg—1g-1

611 DY exp(2miac/q)|c)|z*).

a=0 c¢=0
e Observation. It suffices to observe register-1. The probability p that the machine reaches the
state |c, 2") is
2
1 .
- Z exp(2miac/q)|
q . pa—=mpk
a:Tr"=x
where 0 < k < r = ord,(z), the sum is over all a (0 < a < ¢) such that ¢ = 2*.
o (Continued Fraction Expansion. If there is a d such that
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then the probability of seeing |c, z¥) is greater than 1/3r2. Since ¢ > n?, we have

2%1 < ﬁ < ﬁ Then d/r can be obtained by rounding c¢/q.
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c
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4 The complexity argument of Shor’s algorithm

At the end of the Shor’s factoring algorithm, one should observe the first register and denote the

measured result as an integer c. Its complexity argument comprises:

(1) The probability p of seeing a quantum state |c, ¥ (modn)) such that r/2 > {rc}, is greater
than 1/3r%, where n is the integer to be factored, ¢ is a power of 2 satisfying n? < ¢ < 2n?
and r = ord, (z).

(2) There are ¢(r) possible ¢ which can be used to compute the order r.

(3) The measured number in the second register, i.e., 2¥, takes r possible values 1,2, 22, --- , 2" L.



(4) The success probability of running the algorithm once is greater than r - ¢(r) - 3% By
o(r)/r > £/ loglogr for some constant &, it concludes that the algorithm runs in polynomial

time.

The Shor’s complexity argument can be depicted by the following Graph-1.
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Graph-1: Shor's complexity argument

5 Demonstrations of Shor’s algorithm

In 2001, it was reported that Shor’s algorithm was demonstrated by a group at IBM, who factored
15 into 3 x 5, using a quantum computer with 7 qubits, 3 qubits in register-1 and 4 qubits in

register-2 (see Figure-1) [2].

In 2007, a group at University of Queensland reported an experimental demonstration of a
compiled version of Shor’s algorithm. They factored 15 into 3 x 5, using 7 qubits either, 3 qubits
in register-1 and 4 qubits in register-2 (see Figure-2) [3].

In 2007, a group at University of Science and Technology of China reported another experimental
demonstration of a complied version of Shor’s algorithm. They factored 15 into 3 x 5 using 6 qubits

only, 2 qubits in register-1 and 4 qubits in register-2 (see Figure-3) [4].

In 2012, a group at University of California, Santa Barbara, reported a new experimental
demonstration of a compiled version of Shor’s algorithm. They factored 15 into 3 x 5 using 3 qubits

either, 1 qubits in register-1 and 2 qubits in register-2 (see Figure-4) [5].

In 2015, Monz, et al. [6] have reported a new demonstration of factoring 15 using a scalable

Shor algorithm with an ion-trap quantum computer.
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Table 1: The number of qubits used in some demonstrations.
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Figure 1: Demonstration (IBM, N =15,a =7)

Inverse Quantum

Initialisation Modular exponentiation Fourier Transform
x = QFT-1 |—
argument .=

a) 1 1 ~ d

>0 21 2n- C mod NV
function guc %UC %UC

a —‘ H H

b TH] — A

1

c—H - s e T HF

b U C U U

g ) 4 ) > = C*mod IV

e

f

g — X

Figure 2: Demonstration (University of Queensland, N = 15,C = 4)
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Figure 3: Demonstration (University of Science and Technology of China, N = 15,a = 11)
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Figure 4: Demonstration (University of California, Santa Barbara, N = 15)
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Figure 5: Demonstration (Universitét Innsbruck, Technikerstr, N = 15)



6 The demonstrations are falsely claimed and flawed

6.1 8 qubits should be used in the first register

All these demonstrations are falsely claimed because they do not meet the necessary condition that
152 < 28 < 2 x 152, which means 8 qubits should be used in the first register. Obviously, the last
step of Continued Fraction Expansion in Shor’s algorithm can not be accomplished if less qubits

are used in the first register.

6.2 The Shor’s complexity argument does not apply to these demonstrations

The Shor’s complexity argument does not apply to these demonstrations because less qubits are
used in the register-1. In such case, the probability p of seeing a quantum state |c, 2" (modn))
such that r/2 > {rc}, is greater than 1/3r% can not be properly estimated using the original Shor
argument.

Here is a brief description of the original Shor argument for the estimation of the probability
p. Setting a = br + k for some integer b and the order r» = ord,,(x), the probability p is

[(g—k—1)/r] 2

1 = ;
- Z eQﬂ'z(br-l—k)c/q
q b=0

Then it argues that the probability p equals to

1 L(q—k=1)/7]

- Z 627rib{rc}q/q
q b=0

Writing the above sum into an integral, we obtain
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Taking into account that k < r, we can obtain the approximation

1
1/ exp <27riu{rc}q) du.
T Jo T

: /0 exp <2mu{’“ﬁ}q> du‘ > 2/ (mr)

Taking u = rb/q, we have

Hence, we have

Therefore,

4
p>m>1/37“2.



6.3 The high dimension unitary operator for quantum modular exponentiation
is falsely specified

In math, the operators performed in the process of Shor’s algorithm can be described as follows.

H®s 1«
10)[0) — = la)0)
(Hadamard gate H performed on each qubit in Register-1)
u 1
— — > la)|=")
(Unitary operator U performed on all qubits in Register-2)

FT q 1qg-1
Q—> fZZexp (2miac/q)|c)|z®)

a=0 c¢=0
(Quantum Fourier Transformation performed on all qubits in Register-1)

measurement i
— s Je,a®)

We know the wanted superposition in the first register is modulated by the following procedure.

1 1
First, a Hadamard gate H = % ) ) ] is performed on each qubit to obtain the s intermediate

states of %(|0> +|1)). Second, combine all these states using the tensor product.
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Note that the procedure works well because all those involved pure states are in binary form.

We would like to stress that if two pure states are in decimal representations |z), |#2), then we
can not directly combine them to obtain |23). Suppose that the binary strings for integers x, 22
are by, - - - by, bl - - b. We have |x) @ |22) = |by, - - bobl. - - - b)) = 2071z + 22). Thus,

1 1 - 1=
TMHm ﬁmwwwww®m@@m+w<mmm¢ﬂ;ummw,



where ¢ = 2°. Some people are misled by the conventional equation
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which can be computed by fast squaring algorithm, and simply take for granted that quantum
modular exponentiation is in polynomial time.

We remark that the specified quantum unitary operations used on each qubit or each group
of qubits in the second quantum register in these demonstrations are flawed. In fact, these low

dimension operators can not be composed to a high dimension unitary operator U such that

1 2 1
Uu: ﬁ;yam — ﬂ;'am ).

In other words, these demonstrations failed to specify the procedure of quantum modular exponen-
tiation. In short, nobody has successfully described the structure of the high dimension unitary

operator U.

6.4 Further remarks

We remark that the principles behind these demonstrations have not been explained properly,
including their correctness and complexity.

In Figure 2, it directly denotes the output of the second register by C* mod N. Clearly, the
authors confused the number C* mod N with the state |C* mod N). By the way, the state in the
second register is the superposition % ZZ::O |C* mod N) instead of the pure state |C* mod N).

In Figure 4, only 3 qubits are used in the compiled version. Clearly, the residues 0,1,2,--- ,14
of module 15 can not be represented by 3 qubits. In such case, how to ensure that the modular 15
is really involved in the computation? It is certain that the demonstration is unbelievable.

In Figure 5, to modulate the wanted quantum state in the register-2, one has to find an efficient
and universal quantum modular exponentiation method, which does not depend on any special
bases. But the proposed circuit diagram shows that the method does depend on the different
bases. It is not universal. Concretely, for base 11 one has to use the circuit b). For bases 2, 7, 8,
13, the circuit ¢) should be used. But even worse, both two circuits cannot generate the wanted
quantum state in the register-2 in the original Shor’s algorithm. It claims [6] that the scalable Shor

algorithm is based on the Kitaev’s result [7]. In the page 2 (left column) of [6], it writes:

In Ref.[7] Kitaev notes that, if only the classical information of the QFT (such as
the period r) is of interest, 2n qubits subject to a QFT can be replaced by a single
qubit. This approach, however, requires qubit-recycling (specifically: in-sequence single-
qubit readout and state reinitialization) paired with feed-forward to compensate for the

reduced system size.



But we find the claim is wrong. In fact, Kitaev only claimed that factoring can be reduced to
the Abelian Stabilizer Problem (ASP). Throughout the paper [7], He did not claim that 2¢ qubits
subject to a Quantum Fourier Transformation (QFT) can be replaced by a single qubit if only the
classical information of the QFT (such as the period r) is of interest. We here want to stress that
the authors [6] misunderstand the purpose of using QFT in Shor algorithm. The aim of applying
QFT to the register-1 is to accumulate the wanted state |c,z* (modn)) such that it is possibly
observed with significant probability. QFT has no direct relation to the order r. In fact, r is

deduced by rounding g.

7 Conclusion

We point out that the experimental demonstrations of Shor’s algorithm in the past decades are
falsely claimed and flawed. These demonstrations have misled researches who studying quantum
computing and modern cryptography. Taking into account the development of quantum computer,
especially the awful performance of D-Wave Two which was advertised as a 512-qubit quantum
computer [§], and some unsolved questions about the Shor’s algorithm [9, [10], we do not think that
Shor’s algorithm will become a real threat to modern public key cryptosystems, such as RSA and
ElGamal.
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