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Abstract. We remark that the experimental demonstrations of Shor’s algorithm in

the past decades are falsely claimed and flawed, because they had used too less qubits

in the first quantum register to accomplish the step of Continued Fraction Expansion

in Shor’s algorithm. More worse, the amount of qubits used in some experiments are

too less to represent all residues modulo n, which means that the number n cannot be

truly involved in the related computations.
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1 Introduction

It is well known that factoring an integer n can be reduced to finding the order of some integer x

modulo n, i.e., ordn(x). So far, there is not a polynomial time algorithm run on classical computers

which can be used to compute the order. But in 1994, Shor [1] claimed that his algorithm can be

used to compute ordn(x) on a quantum computer.

Since 2001, some teams have reported that they had successfully factored 15 into 3 × 5 using

Shor’s algorithm. We shall have a close look at those experimental demonstrations and argue that

all these demonstrations are falsely claimed because they violate the necessary condition that the

selected number q must satisfy n2 ≤ q < 2n2. Essentially, these demonstrations have no relation

to the Shor’s algorithm.

2 Preliminaries

A quantum analogue of a classical computer operates with quantum bits involving quantum states.

The state of a quantum computer is described as a basis vector in a Hilbert space. A qubit is

a quantum state |Ψ〉 of the form |Ψ〉 = a|0〉 + b|1〉, where the amplitudes a, b ∈ C such that
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|a|2 + |b|2 = 1, |0〉 and |1〉 are basis vectors of the Hilbert space. Here, the ket notation |x〉 means

that x is a quantum state. The state of a quantum system having n qubits is a point in a 2n-

dimensional vector space. Given a state
∑2n−1

i=0 ai|χi〉, where the amplitudes are complex numbers

such that
∑2n−1

i=0 |ai|2 = 1 and each |χi〉 is a basis vector of the Hilbert space, if the machine is

measured with respect to this basis, the probability of seeing basis state |χi〉 is |ai|2.
Two quantum mechanical systems are combined using the tensor product. For example, a system

of two qubits |Ψ〉 = a1|0〉+ a2|1〉 and |Φ〉 = b1|0〉+ b2|1〉 can be written as

|Ψ〉|Φ〉 =

(
a1
a2

)
⊗
(
b1
b2

)
=




a1b1

a1b2

a2b1

a2b2




We shall also use the shorthand notations |Ψ,Φ〉. We call a quantum state having two or more

components entangled state, if it is not a product state. According to the Copenhagen interpre-

tation of quantum mechanics, measurement causes an instantaneous collapse of the wave function

describing the quantum system into an eigenstate of the observable state that was measured. If

entangled, one object cannot be fully described without considering the other(s).

Operations on a qubit are described by 2 × 2 unitary matrices. Of these, some of the most

important are

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
, H =

1√
2

[
1 1

1 −1

]
,

where H denotes the Hadamard gate. Clearly, H|0〉 = 1√
2
(|0〉+ |1〉).

Operations on two qubits are described by 4×4 unitary matrices. Of these, the most important

operation is the controlled-NOT, denoted by CNOT. The action of CNOT is given by |c〉|t〉 →
|c〉|c⊕ t〉, where ⊕ denotes addition modulo 2. The matrix representation of CNOT is




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



.

Likewise,
::::::::::
operations

:::
on

::̀:::::::
qubits

:::
are

::::::::::
described

:::
by

:::::::
2` × 2`

::::::::
unitary

:::::::::
matrices.

There is another method to describe linear operators performed on multiple qubits. Suppose that

V and W are vector spaces of dimension 2µ and 2ν (they describe quantum systems corresponding

to µ and ν qubits, respectively). Suppose |v〉 and |w〉 are vectors in V and W , and A and B are

linear operators on V and W , respectively. Then we can define a linear operator A⊗B on V ⊗W
by the equation

(A⊗B)(|v〉 ⊗ |w〉) ≡ A|v〉 ⊗B|w〉.
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3 Description of Shor’s algorithm

The Shor’s algorithm requires two quantum registers. At the beginning of the algorithm, one has

to find q = 2s for some integer s such that n2 ≤ q < 2n2, where n is to be factored. It then proceeds

as follows.

• Initialization. Put register-1 in the uniform superposition

1√
q

q−1∑

a=0

|a〉|0〉.

• Computation. Keep a in register-1 and compute xa in register-2 for some randomly chosen

integer x. It gives the state

1√
q

q−1∑

a=0

|a〉|xa〉.

• Fourier Transformation. Performing Fourier transform on register-1, we obtain the state

1

q

q−1∑

a=0

q−1∑

c=0

exp(2πiac/q)|c〉|xa〉.

• Observation. It suffices to observe register-1. The probability p that the machine reaches the

state |c, xk〉 is ∣∣∣∣∣
1

q

∑

a:xa≡xk
exp(2πiac/q)

∣∣∣∣∣

2

,

where 0 ≤ k < r = ordn(x), the sum is over all a (0 ≤ a < q) such that xa ≡ xk.
• Continued Fraction Expansion. If there is a d such that

−r
2
≤ dq − rc ≤ r

2
,

then the probability of seeing |c, xk〉 is greater than 1/3r2. Since q ≥ n2, we have
∣∣∣ cq − d

r

∣∣∣ ≤
1
2q ≤ 1

2n2 <
1

2r2
. Then d/r can be obtained by rounding c/q.

4 The complexity argument of Shor’s algorithm

At the end of the Shor’s factoring algorithm, one should observe the first register and denote the

measured result as an integer c. Its complexity argument comprises:

(1) The probability p of seeing a quantum state |c, xk (modn)〉 such that r/2 ≥ {rc}q is greater

than 1/3r2, where n is the integer to be factored, q is a power of 2 satisfying n2 ≤ q < 2n2

and r = ordn(x).

(2) There are φ(r) possible c which can be used to compute the order r.

(3) The measured number in the second register, i.e., xk, takes r possible values 1, x, x2, · · · , xr−1.
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(4) The success probability of running the algorithm once is greater than r · φ(r) · 1
3r2

. By

φ(r)/r > ξ/ log log r for some constant ξ, it concludes that the algorithm runs in polynomial

time.

The Shor’s complexity argument can be depicted by the following Graph-1.
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Graph-1: Shor’s complexity argument

5 Demonstrations of Shor’s algorithm

In 2001, it was reported that Shor’s algorithm was demonstrated by a group at IBM, who factored

15 into 3 × 5, using a quantum computer with 7 qubits, 3 qubits in register-1 and 4 qubits in

register-2 (see Figure-1) [2].

In 2007, a group at University of Queensland reported an experimental demonstration of a

compiled version of Shor’s algorithm. They factored 15 into 3 × 5, using 7 qubits either, 3 qubits

in register-1 and 4 qubits in register-2 (see Figure-2) [3].

In 2007, a group at University of Science and Technology of China reported another experimental

demonstration of a complied version of Shor’s algorithm. They factored 15 into 3×5 using 6 qubits

only, 2 qubits in register-1 and 4 qubits in register-2 (see Figure-3) [4].

In 2012, a group at University of California, Santa Barbara, reported a new experimental

demonstration of a compiled version of Shor’s algorithm. They factored 15 into 3×5 using 3 qubits

either, 1 qubits in register-1 and 2 qubits in register-2 (see Figure-4) [5].

In 2015, Monz, et al. [6] have reported a new demonstration of factoring 15 using a scalable

Shor algorithm with an ion-trap quantum computer.
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Demonstrations qubits in register-1 qubits in register-2

Figure 1, Ref.[2] 3 4

Figure 2, Ref.[3] 3 4

Figure 3, Ref.[4] 2 4

Figure 4, Ref.[5] 1 2

Figure 5, Ref.[6] 1 4

Table 1: The number of qubits used in some demonstrations.
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Figure 1: Demonstration (IBM, N = 15, a = 7)
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application of the order-finding function produces the

entangled state
∑2n−1

x=0 |x〉|CxmodN〉; iii) the inverse
Quantum Fourier Transform (QFT) followed by mea-
surement of the argument-register in the logical basis,
which with high probability extracts the order r after fur-
ther classical processing. If the routine is standalone, the
inverse QFT can be performed using an approach based
on local measurement and feedforward [21]. Note that
the inverse QFT in [14] was unnecessary: it is straight-
forward to show this is true for any order-2l circuit [22].

Modular exponentiation is the most computationally-
intensive part of the algorithm [13]. It can be realised by
a cascade of controlled unitary operations, U , as shown
in the nested inset of Fig. 1a). It is clear that the reg-
isters become highly entangled with each other: since
U is a function of C and N , the entangling operation is
unique to each problem. Here we choose to factor 15 with
the first two co-primes, C=2 and C=4. In these cases en-
tire sets of gates are redundant: specifically, U2n=I when
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FIG. 1: a) Conceptual circuit for the order-finding routine of
Shor’s algorithm for number N and co-prime C [13]. The ar-
gument and function registers are bundles of n and m qubits;
the nested order-finding structure uses U |y〉=|CymodN〉,
where the initial function-register state is |y〉=1. The algo-
rithm is completed by logical measurement of the argument-
register, and reversing the order of the argument qubits. b),c)
Implementation of a) for N=15 and C=4, 2, respectively; the
unitaries are decomposed into controlled-swap gates (cswap),
marked as x; controlled-phase gates are marked by dots; h and
t represent Hadamard and π/8 gates. Many gates are redun-
dant, e.g. the second gate in b), the first and second gates in
c). d),e) Partially-compiled circuits of b),c), replacing cswap
by controlled-not gates. n.b. e) is equivalent to the N=15
C=7 circuit in Ref.[14]. f),g) Fully-compiled circuits of d),e),
by evaluating logC [C

xmodN ] in the function-register.

n>0 for C=4, and U2n=I when n>1 for C=2. Figs 1b),c)
show the remaining gates for C=4 and C=2, respectively,
after decomposition of the unitaries into controlled-swap
gates—this level of compiling is equivalent to that in-
troduced in Ref. [14]. Further compilation can always
be made since the initial state of the function-register
is fixed, allowing the cswap gates to be replaced by
controlled-not (cnot) gates as shown in Figs 1d),e) [23].

We implemented the order-2-finding circuit, Fig. 1d).
The qubits are realised with simultaneous forward and
backward production of photon pairs from parametric
downconversion, Fig. 2a): the logical states are encoded
into the vertical and horizontal polarisations. This circuit
required implementing a recently-proposed three-qubit
quantum-logic gate, Fig. 2b), which realises a cascade of
n controlled-z gates with exponentially greater success
than chaining n individual gates [24]. The controlled-
not gates are realised by combining Hadamards and
controlled-z gates based on partially-polarising beam-
splitters. The gates are nondeterministic, with one third
success probability when fully prebiased [8, 9, 10]. A run
of each routine is flagged by a fourfold event, where a
single photon arrives at each output. Dependent pho-
tons from the forward pass interfere non-classically at
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FIG. 2: Experimental schematic. a) Forward and backward
photons pairs are produced via parametric downconversion
(PDC) of a frequency-doubled mode-locked Ti:Sapphire laser
(820 nm→410 nm, ∆τ=80 fs at 82 MHz repetition rate)
through a Type-I 2 mm Bismuth Borate (BiB3O6) crystal.
Photons are input to the circuits via blocked interference
filters (820±3 nm) and single-mode optical fibres, and de-
tected using single photon counting modules, (PerkinElmer
AQR-14FC). Coincidences are measured using a quad-logic
card driven by a four-channel constant fraction discrimina-
tor. With 500 mW at 410 nm this yielded 60 kHz and 25 kHz
twofold coincidence rates for direct detection, which differed
due to mismatched pump focus sizes; the measured fourfold
coincidence rate was 35 Hz. b),c) Linear optical circuits for
order-2 and order-4 finding algorithms, with inputs from a)
labelled; the letters on the detectors refer to the Fig. 1 qubits.
d),e) Physical optical circuits for b),c), replacing the classical
interferometers with partially-polarising beamsplitters.

Figure 2: Demonstration (University of Queensland, N = 15, C = 4)
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FIG. 1: Quantum circuit for the order-finding routine of Shor’s algorithm. (a). Outline of the quantum circuit. (b). Quantum
circuit for N = 15 and a = 11. The MEF is implemented by two CNOT gates and the QFT is implemented by Hadamard
rotations and two-qubit conditional phase gates. The gate-labeling scheme denotes the axis about which the conditional rotation
takes place and the angle of rotation. (c). The simplified linear optics network using HWPs and PBSs to implement the MEF
circuit and the semiclassical version of the QFT circuit. The double lines denote classical information.

Implementations of this algorithm, even for factoriza-
tion of a small number, place a lot of challenging exper-
imental demands, e.g., coherent manipulations of multi-
ple qubits and creations of highly-entangled multiqubit
registers. Here we aim to demonstrate the simplest in-
stance of Shor’s algorithm, i.e., the factorization of 15.
Quantum networks for evaluating the MEF have been
designed which involve O(n3) operations [15, 17]. Since

ax = a2
n−1xn−1 · · · a2x1ax0 , the execution of MEF can be

decomposed into a sequence of controlled multiplications.
A general purpose algorithm to factorize 15 would require
at least n = 8, m = 4, thus total 12 qubits [15]. Several
observations allow us to reduce the resources substan-
tially for the purpose of a proof-of-principle demonstra-
tion. First we choose to implement the algorithm with
a = 11, this was identified in [5] as the “easy” case. Since
a2mod15 = 1, MEF can be simplified to multiplications
controlled only by x0, which can be implemented by two
controlled-NOT (CNOT) gates [18]. A QFT then fol-
lows to read out the period r. Such a circuit is shown in
Fig. 1b. We note there are two qubits in the second reg-
ister which evolve trivially during computation and can
thus be left out.

To demonstrate the circuit of Fig. 1b we use single pho-
tons as qubits, where |0〉 and |1〉 are encoded with the
photon’s horizontal (H) and vertical (V ) polarization re-
spectively. The difficulty in implementing this circuit lies
in the CNOT gates and conditional π/2-phase shift gate.
Although such entangling gates are possible for photons
in principle using measurement-induced nonlinearity [7],
currently they are still experimentally expensive [9, 19].
Here we note that since the target qubits of the CNOT
gates are always fixed at |H〉, so the gate could be re-
alized in an easier and more efficient fashion. Such a
CNOT gate use only a polarizing beam splitter (PBS)
and a half-wave plate (HWP), through which an arbi-
trary control qubit (α|H〉 + β|V 〉) and the target qubit
|H〉 evolve into α|H〉|H〉 + β|V 〉|V 〉 upon post-selection
[20], that is, conditioned on that there is one and only one
photon out of each output (see Fig. 1c). Furthermore, the

QFT circuit can also be implemented with a more effi-
cient method. It was observed by Griffiths and Niu [21]
that when immediately followed by measurements, the
fully coherent QFT can be replaced by a semiclassical
version that employs only single-qubit rotations condi-
tioned on measurement outcomes. This eliminates the
need for entangling gates and reduces the numbers of
gates quadratically. Thus we finally arrive at the simpli-
fied linear optics MEF and QFT network in Fig. 1c. We
note despite of these simplifications, our circuit suffices to
demonstrate the underlying principles of this algorithm.

Now we proceed with the experimental demonstration.
Our experimental set-up is illustrated in Fig. 2, where
a pulsed ultraviolet laser passes through two β-barium
borate (BBO) crystals to create two pairs of entangled
photon [22]. We use polarizers to disentangle the photons
and prepare them in the states |H〉i with i denoting the
spatial modes (see Fig. 1c). The photons pass through
the HWPs and are superposed on the PBSs (see Fig. 2) to
implement the necessary single- and two-qubit gates. To
ensure good spatial and temporal overlap, the photons
are spectrally filtered (∆λFWHW = 3.2 nm) and coupled
by single-mode fibers [23].

How could one experimentally verify a valid demon-
stration of Shor’s algorithm? First let us see the the-
oretical predictions. After a = 11 is chosen, the
first step of this algorithm, the MEF should evolve
as (1/2)

∑3
x=0 |x〉|11xmod15〉 = (1/2)(|0〉|1〉 + |1〉|11〉 +

|2〉|1〉+ |3〉|11〉). As we rewrite it in binary representation
(|000001〉+ |011011〉+ |100001〉+ |111011〉)/2, it shows
that a nontrivial Greenberger-Horne-Zeilinger (GHZ) [24]
entangled state |ψ〉 = (1/

√
2)(|0〉2|0〉3|0〉4 + |1〉2|1〉3|1〉4)

is created between the two registers. For Shor’s algo-
rithm as well as some others, multiqubit entanglement is
a necessary condition if the quantum algorithm is to offer
an exponential speed-up over classical computation [6].
In our experiment, as the photons pass through the MEF
circuit, we first observe the Hong-Ou-Mandel type inter-
ference [25] of three photons in arms 2-3-4 (see Fig. 3b).
Then, after fixing the delays at the zero positions, we ex-

Figure 3: Demonstration (University of Science and Technology of China, N = 15, a = 11)
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FIG. 3: Compiled version of Shor’s algorithm. a, Four-qubit circuit to factor N = 15, with co-prime a = 4. The three steps in
the algorithm are initialization, modular exponentiation, and the quantum Fourier transform, which computes armod(N) and
returns the period r = 2. b, “Recompiled” three-qubit version of Shor’s algorithm. The redundant qubit Q1 is removed by
noting that HH = I. Circuits a and b are equivalent for this specific case. The three steps of the runtime analysis are labeled
1,2,3. c, CNOT gates are realized using an equivalent controlled-Z (CZ) circuit. d, Step 1: Bell singlet between Q2 and Q3

with fidelity, FBell = 〈ψs| ρBell |ψs〉 = 0.75±0.01 and EOF = 0.43. e, Step 2: Three-qubit |GHZ〉 = (|ggg〉+ |eee〉)/
√

2 between
Q2, Q3, and Q4 with fidelity FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.59± 0.01. f, Step 3: QST after running the complete algorithm.
The three-qubit |GHZ〉 is rotated into |ψ3〉 = H2 |GHZ〉 = (|ggg〉 + |egg〉 + |gee〉 − |eee〉)/2 with fidelity, F = 0.55. g,h The
density matrix of the single-qubit output register Q2 formed by: (g), tracing-out Q3 and Q4 from f, and (h) directly measuring
Q2 with QST, both with F =

√
ρ σm

√
ρ = 0.92± 0.01 and SL = 0.78. From 1.5× 105 direct measurements the output register

returns the period r = 2, with probability 0.483 ± 0.003, yielding the prime factors 3 and 5. (i), The density matrix of the
single-qubit output register without entangling gates, H2H2 |g〉 = I |g〉. The algorithm fails and returns r = 0 100 % of the
time. Compared to the single quantum state |ψout〉 = |g〉, the fidelity Fcheck = 〈ψg| ρcheck |ψg〉 = 0.83± 0.01, which is less than
unity due to the energy relaxation.

“10” (including the redundant qubit) with equal proba-
bility, where the former represents a failure and the latter
indicates the successful determination of r = 2. We use
three methods to analyze the output of the algorithm:
Three-qubit QST, single-qubit QST, and the raw proba-
bilities of the output register state. Figures 3g, h are the
real part of the density matrices for the single qubit out-
put register from three-qubit QST and one-qubit QST
with fidelity F =

√
ρ σm

√
ρ = 0.92 ± 0.01 for both den-

sity matrices. From the raw probabilities calculated from
150,000 repetitions of the algorithm, we measure the out-
put “10” with probability 0.483 ± 0.003, yielding r = 2,
and after classical processing we compute the prime fac-
tors 3 and 5.

The linear entropy SL = 4[1−Tr(ρ2)]/3 is another met-
ric for comparing the observed output to the ideal mixed

state, where SL = 1 for a completely mixed state[30]. We
find SL = 0.78 for both the reduced density matrix from
the third step of the runtime analysis (three-qubit QST),
and from direct single-qubit QST of the register qubit.

As a final check of the requisite entanglement, we run
the full algorithm without any of the entangling oper-
ations and use QST to measure the single-qubit output
register. The circuit reduces to two H-gates separated by
the time of the two entangling gates. Ideally Q2 returns
to the ground state and the algorithm fails (returns “0”)
100 % of the time. Figure 3i is the real part of the density
matrix for the register qubit after running this check ex-
periment. The fidelity of measuring the register qubit in
|g〉 is Fcheck = 〈g| ρcheck |g〉 = 0.83±0.01. The algorithm
fails, as expected, without the entangling operations.

In conclusion, we have implemented a compiled ver-

Figure 4: Demonstration (University of California, Santa Barbara, N = 15) 2
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FIG. 1: Circuit diagram of Shor’s algorithm for factoring 15 based on Kitaev’s approach for: a) a generic base a; and the
specific circuit representations for the modular multipliers; b) The actual implementation for factoring 15 to base 11, optimised
for the single input state it is subject to; c) Kitaev’s approach to Shor’s algorithm for the bases {2,7,8,13}: the optimised map
of the first multiplier is identical in all 4 cases, the last multiplier is implemented with full modular multipliers as depicted in
d); d) Circuit diagrams of the modular multipliers of the form a mod N for bases a={2,7,8,11,13}.

sults of ax mod N) and generally about 2n qubits in
the period-register [10]. Thus even a seemingly simple
example such as factoring 15 (an n = 4 -bit number),
would require 3n = 12 qubits when implemented in this
straightforward way. These qubits then would have to be
manipulated with high fidelity gates. Given the current
state-of-the-art control over quantum systems [11], such
an approach likely yields an unsatisfying performance.
However, a full quantum implementation of this part
of the algorithm is not really necessary. In Ref. 9 Ki-
taev notes that, if only the classical information of the
QFT (such as the period r) is of interest, 2n qubits sub-
ject to a QFT can be replaced by a single qubit. This
approach, however, requires qubit-recycling (specifically:
in-sequence single-qubit readout and state reinitializa-
tion) paired with feed-forward to compensate for the re-
duced system size.

In the following, Kitaev’s QFT will be referred to as
KQFT(M). It replaces a QFT acting on M qubits with
a semiclassical QFT acting repeatedly on a single qubit.
Similar applications of Kitaev’s approach to a semiclas-
sical QFT in quantum algorithms have been investigated
in Refs. [12–14]. For the implementation of Shor’s algo-
rithm, Kitaev’s approach provides a reduction from the
previous n computational qubits and 2n QFT qubits (in
total 3n qubits) to only n computational-qubits and 1
KQFT(2n) qubit (in total n+ 1 qubits).

A notably more challenging aspect than the QFT, and
the second key-ingredient of Shor’s algorithm, is the mod-

ular exponentiation, which admits these general simplifi-
cations:

(i) Considering Kitaev’s approach (see Fig. 1), the in-
put state |1〉 (in decimal representation) is subject to a
conditional multiplication based on the most-significant
bit k of the period register. At most there will be two
results after this first step. It follows that, for the very
first step it is sufficient to implement an optimized oper-

ation that conditionally maps |1〉 → |a2k

mod N〉. Con-
sidering the importance of a high-fidelity multiplication
(with its performance being fed-forward to all subsequent
qubits), this efficient simplification improves the overall
performance of experimental realizations.

(ii) Subsequent multipliers can similarly be replaced
with maps by considering only possible outputs of the
previous multiplications. However, using such maps will
become exponentially more challenging, as the number of
input and output states to be considered grows exponen-
tially with the number of steps: after n steps, 2n > N
possible outcomes need to be considered - a numerical
task as challenging as factoring N by classical means.
Thus, controlled full modular multipliers need to be im-
plemented. Fig. 2 shows the experimentally obtained
truth table for the modular multiplier (2 mod 15) (see
also supplementary material for modular multipliers with
bases {7, 8, 11, 13}). These quantum circuits can be effi-
ciently derived from classical procedures using a variety
of standard techniques for reversible quantum arithmetic
and local logic optimization [15, 16].

Figure 5: Demonstration (Universität Innsbruck, Technikerstr, N = 15)
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6 The demonstrations are falsely claimed and flawed

6.1 8 qubits should be used in the first register

All these demonstrations are falsely claimed because they do not meet the necessary condition that

152 < 28 < 2× 152, which means 8 qubits should be used in the first register. Obviously, the last

step of Continued Fraction Expansion in Shor’s algorithm can not be accomplished if less qubits

are used in the first register.

6.2 The Shor’s complexity argument does not apply to these demonstrations

The Shor’s complexity argument does not apply to these demonstrations because less qubits are

used in the register-1. In such case, the probability p of seeing a quantum state |c, xk (modn)〉
such that r/2 ≥ {rc}q is greater than 1/3r2 can not be properly estimated using the original Shor

argument.

Here is a brief description of the original Shor argument for the estimation of the probability

p. Setting a = br + k for some integer b and the order r = ordn(x), the probability p is

∣∣∣∣∣∣
1

q

b(q−k−1)/rc∑

b=0

e2πi(br+k)c/q

∣∣∣∣∣∣

2

.

Then it argues that the probability p equals to

∣∣∣∣∣∣
1

q

b(q−k−1)/rc∑

b=0

e2πib{rc}q/q

∣∣∣∣∣∣

2

.

Writing the above sum into an integral, we obtain

1

q

∫ b (q−k−1)
r

c

b=0
e2πib{rc}q/qdb+O

(b(q − k − 1)/rc
q

(e2πi{rc}q/q − 1)

)
.

Taking u = rb/q, we have

1

r

∫ r
q
b q−k−1

r
c

0
exp

(
2πiu

{rc}q
r

)
du

Taking into account that k < r, we can obtain the approximation

1

r

∫ 1

0
exp

(
2πiu

{rc}q
r

)
du.

Hence, we have ∣∣∣∣
1

r

∫ 1

0
exp

(
2πiu

{rc}q
r

)
du

∣∣∣∣ ≥ 2/(πr)

Therefore,

p ≥ 4

π2r2
> 1/3r2.
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6.3 The high dimension unitary operator for quantum modular exponentiation

is falsely specified

In math, the operators performed in the process of Shor’s algorithm can be described as follows.

|0〉|0〉 H⊗s
−−−−→ 1√

q

q−1∑

a=0

|a〉|0〉

(Hadamard gateH performed on each qubit in Register-1)

U−−−→ 1√
q

q−1∑

a=0

|a〉|xa〉

(Unitary operatorU performed on all qubits in Register-2)

QFT−−−−→ 1

q

q−1∑

a=0

q−1∑

c=0

exp(2πiac/q)|c〉|xa〉

(Quantum Fourier Transformation performed on all qubits in Register-1)

measurement
−−−− 99K |c, xk〉

We know the wanted superposition in the first register is modulated by the following procedure.

First, a Hadamard gate H = 1√
2

[
1 1

1 −1

]
is performed on each qubit to obtain the s intermediate

states of 1√
2
(|0〉+ |1〉). Second, combine all these states using the tensor product.

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

=
1

2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉)

...

1√
2

(|0〉+ |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ |1〉)
︸ ︷︷ ︸

s qubits

=
1√
q

q−1∑

a=0

|a〉

Note that the procedure works well because all those involved pure states are in binary form.

We would like to stress that if two pure states are in decimal representations |x〉, |x2〉, then we

can not directly combine them to obtain |x3〉. Suppose that the binary strings for integers x, x2

are bk · · · b0, b′i · · · b′0. We have |x〉 ⊗ |x2〉 = |bk · · · b0b′i · · · b′0〉 = |2i+1x+ x2〉. Thus,

1√
2

(|1〉+ |x〉)⊗ 1√
2

(|1〉+ |x2(modn)〉)⊗ · · · ⊗ 1√
2

(
|1〉+ |x2s−1

(modn)〉
)
6= 1√

q

q−1∑

a=0

|xa(modn)〉,
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where q = 2s. Some people are misled by the conventional equation

(1 + x)(1 + x2)(1 + x2
2
) · · · (1 + x2

s−1
) =

q−1∑

a=0

xa,

which can be computed by fast squaring algorithm, and simply take for granted that quantum

modular exponentiation is in polynomial time.

We remark that the specified quantum unitary operations used on each qubit or each group

of qubits in the second quantum register in these demonstrations are flawed. In fact, these low

dimension operators can not be composed to a high dimension unitary operator U such that

U :
1√
q

q−1∑

a=0

|a〉|0〉 −→ 1√
q

q−1∑

a=0

|a〉|xa〉.

In other words, these demonstrations failed to specify the procedure of quantum modular exponen-

tiation. In short, nobody has successfully described the structure of the high dimension unitary

operator U .

6.4 Further remarks

We remark that the principles behind these demonstrations have not been explained properly,

including their correctness and complexity.

In Figure 2, it directly denotes the output of the second register by Cx mod N . Clearly, the

authors confused the number Cx mod N with the state |Cx mod N〉. By the way, the state in the

second register is the superposition 1√
8

∑7
x=0 |Cx mod N〉 instead of the pure state |Cx mod N〉.

In Figure 4, only 3 qubits are used in the compiled version. Clearly, the residues 0, 1, 2, · · · , 14

of module 15 can not be represented by 3 qubits. In such case,
:::
how

:::
to

:::::::
ensure

:::::
that

:::
the

:::::::::
modular

:::
15

:
is
:::::::
really

::::::::
involved

:::
in

:::
the

:::::::::::::
computation? It is certain that the demonstration is unbelievable.

In Figure 5, to modulate the wanted quantum state in the register-2, one has to find an efficient

and universal quantum modular exponentiation method, which does not depend on any special

bases. But the proposed circuit diagram shows that the method does depend on the different

bases. It is not universal. Concretely, for base 11 one has to use the circuit b). For bases 2, 7, 8,

13, the circuit c) should be used. But even worse, both two circuits cannot generate the wanted

quantum state in the register-2 in the original Shor’s algorithm. It claims [6] that the scalable Shor

algorithm is based on the Kitaev’s result [7]. In the page 2 (left column) of [6], it writes:

In Ref.[7] Kitaev notes that, if only the classical information of the QFT (such as

the period r) is of interest, 2n qubits subject to a QFT can be replaced by a single

qubit. This approach, however, requires qubit-recycling (specifically: in-sequence single-

qubit readout and state reinitialization) paired with feed-forward to compensate for the

reduced system size.
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But we find the claim is wrong. In fact, Kitaev only claimed that factoring can be reduced to

the Abelian Stabilizer Problem (ASP). Throughout the paper [7], He did not claim that 2` qubits

subject to a Quantum Fourier Transformation (QFT) can be replaced by a single qubit if only the

classical information of the QFT (such as the period r) is of interest. We here want to stress that

the authors [6] misunderstand the purpose of using QFT in Shor algorithm. The aim of applying

QFT to the register-1 is to accumulate the wanted state |c, xk (modn)〉 such that it is possibly

observed with significant probability. QFT has no direct relation to the order r. In fact, r is

deduced by rounding c
q .

7 Conclusion

We point out that the experimental demonstrations of Shor’s algorithm in the past decades are

falsely claimed and flawed. These demonstrations have misled researches who studying quantum

computing and modern cryptography. Taking into account the development of quantum computer,

especially the awful performance of D-Wave Two which was advertised as a 512-qubit quantum

computer [8], and some unsolved questions about the Shor’s algorithm [9, 10], we do not think that

Shor’s algorithm will become a real threat to modern public key cryptosystems, such as RSA and

ElGamal.
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