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Abstract. Deniable encryption, first introduced by Canetti et al. (CRYPTO
1997), allows a sender and/or receiver of encrypted communication to
produce fake but authentic-looking coins and/or secret keys that “open”
the communication to a different message. Here we initiate its study for
the more general case of functional encryption (FE), as introduced by
Boneh et al. (TCC 2011), wherein a receiver in possession of a key k can
compute from any encryption of a message x the value F (k, x) according
to the scheme’s functionality F . Our results are summarized as follows:
We put forth and motivate the concept of deniable FE, for which we con-
sider two models. In the first model, as previously considered by O’Neill
et al. (CRYPTO 2011) in the case of identity-based encryption, a re-
ceiver gets assistance from the master authority to generate a fake secret
key. In the second model, there are “normal” and “deniable” secret keys,
and a receiver in possession of a deniable secret key can produce a fake
but authentic-looking normal key on its own. This parallels the “multi-
distributional” model of deniability previously considered for public-key
encryption.
In the first model, we show that any FE scheme for the general circuit
functionality (as several recent candidate construction achieve) can be
converted into an FE scheme having receiver deniability, without intro-
ducing any additional assumptions. In addition we show an efficient
receiver deniable FE for Boolean Formulae from bilinear maps. In the
second (multi-distributional) model, we show a specific FE scheme for
the general circuit functionality having receiver deniability. This result
additionally assumes differing-inputs obfuscation and relies on a new
technique we call delayed trapdoor circuits. To our knowledge, a scheme
in the multi-distributional model was not previously known even in the
simpler case of identity-based encryption.
Finally, we show that receiver deniability for FE implies some form of
simulation security, further motivating study of the latter and implying
optimality of our results.
Keywords. Deniable Encryption, Functional Encryption, Sim-
ulation Security
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1 Introduction

Encryption schemes meeting standard security notions (e.g., semantic se-
curity [22]) may be committing in the sense that they tie the sender and
receiver to having communicated a particular message. This is potentially
damaging in the context of coercion, whereby for example the receiver’s
secret key becomes revealed (say under subpoena). Deniable encryption,
formalized by Canetti et al. in 1997 [14], mitigates this threat by allowing
the sender and/or receiver, after having already exchanged an encrypted
message, to produce fake but authentic-looking random coins that “open”
the ciphertext to a different message. That is, they can produce random
coins (from which in particular a secret key can be computed) that make
it look like they communicated some other message. The study of deniable
encryption has seen a renewed interest. In particular, O’Neill et al. [31]
construct “bideniable” public-key encryption schemes, namely where the
sender and receiver can simultaneously equivocate without coordination,
albeit in a relaxed, “multidistributional” model where there are special
“deniable” algorithms that the sender and receiver must run in order to
later be able to do so (in which case it looks like they ran the “normal”
prescribed algorithms all along). Following [14, 31], we call schemes where
only the sender can equivocate “sender deniable,” where only the receiver
can equivocate “receiver deniable,” and where both can equivocate “bide-
niable”. Bendlin et al. [8] show that (non-interactive) receiver-deniable
public-key encryption is impossible unless one works in the multidistribu-
tional model. Finally, a recent breakthrough work of Sahai and Waters [32]
constructs sender-deniable public-key encryption without relying on the
multidistributional model.

Deniability for Functional Encryption. In this paper, we initiate
the study of deniability for much more advanced cryptosystems, as cap-
tured under the umbrella concept of functional encryption (FE) [12].
(Deniability for identity-based encryption was also previously considered
by [31].) Whereas in traditional public-key encryption decryption is an
all-or-nothing affair (i.e., a receiver is either able to recover the entire
message using its key, or nothing), in FE is possible to finely control the
amount of information that is revealed by a ciphertext to a given receiver.
Somewhat more precisely, in a functional encryption scheme for function-
ality F , each secret key (generated by a master authority) is associated
with some value k. Anyone can encrypt via the public parameters. When
a ciphertext Ctx that encrypts x is decrypted using a secret key Skk for
value k, the result is F (k, x). Intuitively, security requires that a receiver
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in possession of Skk learns nothing beyond this. We contend that deni-
ability is an important property to consider in the context of FE. For
example, consider a large organization using FE in which members have
different keys. Suppose the police coerces one of the members of the or-
ganization into revealing its key or requesting a key for some value k. A
deniable FE scheme in the sense we consider would allow this member to
provide the police with a key S̃Kk that “opens” a ciphertext Ctx as above
to any apparent value of F (k, x) it likes. Another interesting application
would be an encrypted email server that uses FE, where the server is in
possession of keys that allow it to do searches, spam filtering, targeted
advertising, etc. If the government coerces the email server to provide its
keys or requests additional keys from the client, the server can do so in a
way that again reveals any apparent values it likes. As another scenario,
consider a secure routing protocol implemented with FE, where any node
receives an encrypted packet and using a secret key corresponding to its
routing table can forward the packet to the right port without knowing
the next destinations of the packet. The NSA could coerce the nodes to
reveal their respective routing tables to trace the final destinations of the
packet. If the FE system is receiver deniable, there is no reason for the
NSA to coerce them as the nodes could reveal a fake secret key.

Model and Definitions. More specifically, we propose the concept of
receiver-deniable FE. For intuition, suppose the coercer has observed Ctx
as above. Informally, receiver-deniable FE allows the sender to produce
“fake” secret key Sk′k (we assume the coercer knows k) that makes equiv-
ocate Ctx as encryption of any other x′ so that the secret key decrypts to
F (k, x′). But this intuition for the definition hides several points. First,
what if the coercer is able to coerce many receivers, thus seeing many
secret keys? In the case of identity-based encryption, it was previously
observed by O’Neill et al. [31] that this case is equivalent via a hybrid
argument to equivocation of a single ciphertext and secret key. However,
this hybrid argument fails in our more general setting. Therefore, in our
modeling we consider what we call (nc, nk)-receiver-deniability, meaning
the coercer requests nc challenge ciphertexts (for which no underlying
randomness is revealed) and nk secret keys (i.e, receiver-coerce queries)
adaptively. Second, and more interesting, O’Neill et al. [31] noted that
an impossibility result of [8] implies that, even in the simpler case of
identity-based encryption, “full” receiver deniability inherently requires
that a receiver get assistance from the master authority to produce a
fake secret key. While this may seem like the strongest possible model
(indeed, [31] conveys the intuition that it is necessary for deniability), we
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propose an alternative, “multi-distributional” model as well, where there
are “normal” and “deniable” secret keys, and a receiver in possession of a
deniable secret key can produce a fake but authentic-looking normal one
without any assistance. Here we envision that a user tells the authority
initially whether it wants a normal or deniable secret key, and can later
claim to a coercer that it requested a normal one even if it did not. We
consider both models for deniable FE in this work. Note that the mod-
els are incomparable: on the one hand, the first (“full”) model requires
the receiver to get assistance from the master authority, but a receiver
does not have to choose one or the other type of key to request initially
as in the second (“multi-distributional”) model. Getting assistance from
the master authority to equivocate may not be feasible in many cases,
making the second model particularly compelling, especially in light of
the arguments of [31] for the meaningfulness of the multi-distributional
model in the basic case of public-key encryption.

“Full” Receiver Deniability from Trapdoor Circuits. Next we
show show how to transform any “IND-secure” FE scheme for general
circuits (i.e., where its functionality F computes general boolean cir-
cuits on some input length) into a FE for the same functionality that is
(nc, poly)-receiver-deniable in the full model (but where the receiver gets
assistance from the master authority to equivocate) without introducing
any additional assumption. In particular, recent works [19, 13, 34, 21]
show IND-secure FE for general circuits whose security is based either
on indistinguishable obfuscation and its variants or polynomial hardness
of simple assumptions on multi-linear maps. We can use any of these
schemes in our construction. We present a direct black-box transforma-
tion, making use of the “trapdoor circuits” technique, introduced by De
Caro et al. [17] to show how to bootstrap IND-secure for circuits to the
stronger notion of simulation security (SIM-security). The idea of the
trapdoor mechanism is to replace the original circuit C with a trapdoor
circuit Trap[C] that the receiver faking algorithm can then use to program
the output in some way.

To give some intuition, let us consider for simplicity the case of equiv-
ocating a single ciphertext and secret key. Then, a plaintext will have two
slots where the first slot will be the actual message x. The second slot
will be a random string s, some sort of tag used to identify the cipher-
text. On the other hand, Trap[C], where for simplicity we restrict C to
be one-bit output circuit, will have two slots embedded in it, let us call
them trapdoor values. Both the slots will be random strings r1, r2 used as
formal variables to represent Boolean values 0 and 1. Now, if it happens
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that s = r1 then Trap[C] returns 0, if s = r2 then it returns 1, otherwise
Trap[C] returns C(x). Notice that, when s, r1 and r2 are chosen uniformly
and independently at the random then the above events happen with neg-
ligible probability thus this trapdoor mechanism does not influence the
correctness of the scheme. On the other hand, it is easy to see how the
receiver faking algorithm works by setting r1 or r2 to s depending on the
expected faked output. Clearly, the receiver needs the master authority to
generate a new secret key, corresponding to circuit Trap[C], with tailored
embedded r1 and r2. Moreover, the above solution fails when more secret
keys have to be equivocated. In fact, s then would appear in all the faked
secret keys and this would be easily recognizable by the the adversary. A
trivial fix is to put in the ciphertexts as many different s’s as the number
of secret keys to be faked but this will create an unnecessary dependence
that can be removed by using a PRF as a compact source of randomness.
In Section 3 we present the result in full details.

Efficient Receiver Deniable FE for Boolean Formulae. We explore
the possibility of achieving receiver deniability for weaker classes of func-
tionalities that still support some form of trapdoor mechanism and for
which a functional encryption scheme can be constructed assuming stan-
dard assumptions. We show how to do this for Boolean formulae, namely
we show how to transform any IND-secure FE scheme for Boolean formu-
late into one that is (nc, nd)-receiver deniable. Note that Katz, Sahai and
Waters [27] show how to construct an FE scheme for Boolean formulae
given an FE scheme for the inner-product predicate whose security, by
the result of Okamoto and Takashima [29], can be based on the Decisional
Linear Assumption in bilinear groups. An interesting point, however, is
that these schemes for boolean formulae allow polynomials in t variables
with degree at most d in each variable, as long as dt is polynomial in the
security parameter. This will mean that in order for our scheme to be
efficient the trapdoor mechanism will have a non-negligible probability
of being activated by an honest encryption (i.e., completeness is non-
negligible). We fix this issue by using parallel repetition. The resulting
scheme is (nc, nk)-receiver deniable but we do not know how to achieve
nk = poly. The result is presented in Section 4,

“Multi-distributional” Receiver Deniability from “Delayed Trap-
door Circuits”. In our first result, the receiver crucially relies on the
assistance of the master authority to generate a new secret key with tai-
lored embedded r1 and r2, the trapdoor values. To avoid this, we need
to find a way for the central authority to release a fake key that allows
the receiver to modify the trapdoor values later on when required. This is
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solved using the new technique of delayed trapdoor circuits. Instead of em-
bedding directly the trapdoor values in the Trap[C], they are externalised.
The trapdoor values are encrypted using an IND-CCA encryption scheme
to avoid that the adversary can maul those values and learn something
it should not learn. The resulting ciphertext, let us call it Ct′, is then
linked to the corresponding Trap[C] by using a one-way function f in
this way: a fresh random value z in the domain of f will be encrypted
together with the trapdoor values, t = f(z) will be embedded in trapdoor
circuit. Trap[C] then will take in input also Ct′ and verify that it encrypts
a pre-image of t, before proceeding more. It is easy to see then that the
fake key we were looking for is z. Knowing z allows to generate a new Ct′

for different trapdoor values. Our construction starts from that of Garg
et al. [19] but departs from it in many technicalities needed to face the
challenges met in the hybrid experiments. Namely, a ciphertext of the
functional encryption scheme for x corresponds to a double encryption,
à la Naor-Yung [28], of x, using a statistical simulation-soundness NIZK.
A secret key for circuit C is the differing-input obfuscation [4, 2, 13] of
a trapdoor circuit Trap[C] that takes in input the double encryption of x
and the double encryption of the trapdoor values related to Trap[C]. Intu-
itively, differing-input obfuscation is required because there are certain Ct′

that allows to understand, for example, which secret key Trap[C] is using
to decrypt the double encryption of x. The actual construction is much
more complicated, and is presented in full details in Section 3. We point
out that in a concurrent work Apon et al.[3] construct a bi-deniable FE
scheme for the inner-product predicate in the multidistributional model
from LWE.

Relation to Simulation-Based Security. As observed by [31], in the
case of PKE, deniability implies a scheme is also non-committing [15, 16]
and secure under key-revealing selective-opening attacks (SOA-K) [18, 6].
On the other hand, it was recently observed by [7] that the notion of
simulation-based (SIM) security for FE implicitly incorporates SOA-K.
SIM-security is a stronger notion of security for FE than IND-security and
has been the subject of multiple recent works [30, 12, 7, 1, 17, 23, 5]. Very
roughly, in both notions the adversary makes key-derivation queries, then
queries for challenge ciphertexts, then again makes key-derivation queries.
SIM-security asks that the “view” of the adversary can be simulated by a
simulator given neither ciphertexts nor keys but only the corresponding
outputs of the functionality on the underlying plaintexts, whereas IND-
security only asks that it cannot distinguish the encryptions of messages
that it cannot trivially distinguish using its requested keys. This leads
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to the interesting result that a receiver-deniable FE scheme necessarily
achieves some form of SIM-security. To formalize it, recall from [17] that
(q1, `, q2)-SIM security denotes SIM-security where the adversary is al-
lowed to make at most q1 non-adaptive key queries, ` encryption queries
(challenge ciphertexts), and q2 adaptive key queries. We show that an
(nc, nk)-receiver deniable FE scheme is also (0, nc, nk)-SIM-secure (see
Appendix A for a formal theorem and proof). On the other hand we stress
deniability is stronger in the respect that equivocable ciphertexts and keys
must decrypt correctly in the real system. Our results on receiver denia-
bility can be seen as showing that the techniques of [17] are sufficient not
just for achieving SIM-security but for deniability as well. Moreover, this
implication implies that known impossibility results for SIM-secure FE
[12, 7, 1, 17] mean that in the receiver deniable case (nc, poly)-deniability
(which we achieve assuming IND-secure FE for the circuit functionality)
is in fact optimal. These impossibility results hold only in the standard
model and not in the (programmable) RO model [26], but in the case
of deniability it is unclear how programmable ROs could help since pro-
grammability only helps in a simulation whereas deniability refers to the
behaviour of the real system.
What about sender deniability? In this work we choose to focus on
receiver deniability rather than sender deniability. Receiver deniability is
arguably more important than sender deniability in practice — it is plau-
sible that the sender erases its coins, but not that the receiver erases its
key. We believe sender deniability can also be added to our schemes, how-
ever, by applying the techniques of Sahai and Waters [32] used to achieve
sender-deniable public-key encryption. We investigated sender deniability
for FE but we did not include the results in this version.

2 Definitions

We start by giving formal definition of functional encryption [12, 20],
and its security, and deniable functional encryption and its security. Due
to space constraints we defer to [4, 2, 13] for definitions of differing-
inputs obfuscation, and to Garg et al.. [19] for the definition of statistical
simulation-sound non-interactive zero-knowledge proofs (SSS-NIZK, in
short).
Functional Encryption. We define the primitive and its security fol-
lowing Boneh et al. [12] notation.

Definition 1 [Functionality] A functionality F = {Fn}n>0 is a family of
functions Fn : Kn × Xn → Σ where Kn is the key space for parameter
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n, Xn is the message space for parameter n and Σ is the output space.
Sometimes we will refer to functionality F as a function from F : K×X →
Σ with K = ∪nKn and X = ∪nXn.

Notice that, when x = (x1, . . . , x`) is a vector of messages, for any k ∈
K, we denote by F (k,x) the vector of evaluations (F (k, x1), . . . , F (k, x`)).

Definition 2 [Functional Encryption Scheme] A functional encryption
scheme for functionality F defined over (K,X) is a tuple FE = (Setup,
KeyGen,Enc,Dec) of 4 algorithms with the following syntax:
1. Setup(1λ, 1n) outputs public and master secret keys (Mpk,Msk) for

security parameter λ and length parameter n that are polynomially
related.

2. KeyGen(Msk, k), on input Msk and k ∈ Kn outputs secret key Sk.
3. Enc(Mpk, x), on input Mpk and x ∈ Xn outputs ciphertext Ct;
4. Dec(Mpk,Ct,Sk) outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Mpk,Msk)←
Setup(1λ, 1n), all k ∈ Kn and x ∈ Xn, for Sk ← KeyGen(Msk, k) and
Ct ← Enc(Mpk, x), we have that Dec(Mpk,Ct, Sk) = F (k, x) whenever
F (k, x) 6= ⊥, except with negligible probability. (See [7] for a discussion
about this condition.)

Definition 3 [Circuit Functionality] The Circuit functionality has key
space Kn equals to the set of all n-input Boolean circuits and message
space Xn the set {0, 1}n of n-bit strings. For C ∈ Kn and x ∈ Xn, we
have Circuit(C, x) = C(x), that is, the output of circuit C on input x.

Indistinguishability-based Security. The indistinguishability-based
notion of security for functional encryption scheme FE = (Setup,KeyGen,
Enc,Dec) for functionality F defined over (K,X) is formalized by means
of the following game INDFE

A between an adversary A = (A0,A1) and a
challenger C.
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INDFE
A (1λ)

1. C generates (Mpk,Msk)← Setup(1λ) and runs A0 on input Mpk;
2. A0, during its computation, issues q1 non-adaptive key-generation queries. C

on input key k ∈ K computes Sk = KeyGen(Msk, k) and sends it to A0.
When A0 stops, it outputs two challenge messages vectors, of length `, x0,x1 ∈
X` and its internal state st.

3. C picks b ∈ {0, 1} at random, and, for i ∈ `, computes the challenge ciphertexts
Cti = Enc(Mpk, xb[i]). Then C sends (Cti)i∈[`] to A1 that resumes its computa-
tion from state st.

4. A1, during its computation, issues q2 adaptive key-generation queries. C on
input key k ∈ K computes Sk = KeyGen(Msk, k) and sends it to A1.

5. When A1 stops, it outputs b′.
6. Output: if b = b′, for each i ∈ [`], |xi0| = |xi1|, and F (k,x0) = F (k,x1) for each
k for which A has issued a key-generation query, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,INDA (1λ) = Prob[INDFE
A (1λ) = 1]− 1/2

Definition 4 We say that FE is (q1, `, q2)-indistinguishably secure ((q1, `, q2)-
IND-Secure, for short) where q1 = q1(λ), ` = `(λ)q2 = q2(λ) are polyno-
mials in the security parameter λ that are fixed a priori, if all probabilis-
tic polynomial-time adversaries A issuing at most q1 non-adaptive key
queries, q2 adaptive key queries and output challenge message vectors of
length and most `, have at most negligible advantage in the above game.
Notice that, in the case that a parameter is an unbounded polynomial we
use the notation poly. If a parameter is not specified then it assumed to
be poly.

Receiver-Deniable Functional Encryption Scheme. We define the
primitive and its security in the following way:

Definition 5 [Receiver-Deniable Functional Encryption Scheme] A (nc, nk)-
receiver-deniable functional encryption scheme for functionality F defined
over (K,X), where nc = nc(λ), nk = nk(λ) are polynomials in the secu-
rity parameter λ that are fixed a priori, is made up of the algorithms
RecDenFE = (Setup,Enc,KeyGen,Dec) of a standard FE scheme for F
(Definition 2) and in addition the following algorithm:

• RecFake(Msk, k,Ct,x). The receiver faking algorithm, on input the
master secret key Msk, a key k, at most nc ciphertexts Ct = (Ct1, . . . ,Ctnc)
and messages x = (x1, . . . , xnc), outputs faked secret key SkC .

Correctness is defined as in Definition 2 and indistinguishability as in
Definition 4.
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Definition 6 [Receiver-Deniability] We require that for every PPT ad-
versary A = (A0,A1), issuing at most nk receiver-coerce oracle queries,
the following two experiments are computationally indistinguishable.

RealRecDenExpRecDenFE
A (1λ)

(Mpk,Msk)← Setup(1λ);

(x?,y?, st)← AO1,O2
0 (Mpk);

(Ct?i ← Enc(Mpk, xi; ri))i∈[nc];

Output: AO1,O2,K1(·,Ct?,x?)
1 (Ct?, st)

FakeRecDenExpRecDenFE
A (1λ)

(Mpk,Msk)← Setup(1λ);

(x?,y?, st)← AO1,O2
0 (Mpk);

(Ct?i ← Enc(Mpk, yi; ri))i∈[nc];

Output: AO1,O2,K2(·,Ct?,x?)
1 (Ct?, st)

where x? = (x?1, . . . , x
?
nc), y? = (y?1, . . . , y

?
nc), and Ct? = (Ct?1, . . . ,Ct

?
nc).

(K1,K2) are the receiver-coerce oracles.
All the oracles declared above are defined as follows:

K1(k,Ct,x)
Skk ← KeyGen(Msk, k);
Output: Skk

K2(k,Ct,x)
Skk ← RecFake(Msk, k,Ct,x);
Output: Skk

O1(k, x, y)
Ct← Enc(Mpk, x; r);
Skk ← KeyGen(Msk, k);
Output: (Ct, Skk)

O2(k, x, y)
Ct← Enc(Mpk, y; r);
Skk ← RecFake(Msk, k,Ct, x);
Output: (Ct, Skk)

In the above experiments, we require the following:

1. There is no query (k, x, y) issued to O1 and at same time a query
(k,Ct?,x) for some x issued to K1 and there is no query (k, x, y)
issued to O2 and at same time a query (k,Ct?,x) for some x issued
to K2, where we consider all queries issued during the entire course of
the experiment; i.e., when counting all the queries made by A0 and
A1 together.

2. For any query issued by A1 to its oracle K1 or K2 oracle for key k?,
neither A0 nor A1 query k? to either of their oracles O1,O2; i.e., they
do not make any query (k?, x, y) for any x, y to O1 or O2.

3. For each key k different from any of the challenge keys k?i queried by
A0 and A1 to oracles O1 or O2, it holds that F (k,x?) = F (k,y?).

2.1 Multi-Distributional Receiver-Deniable Functional
Encryption Scheme

Definition 7 [Multi-Distributional Receiver-Deniable FE] A (nc, nk)-multi-
distributional receiver-deniable functional encryption scheme for func-
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tionality F defined over (K,X), where nc = nc(λ), nk = nk(λ) are poly-
nomials in the security parameter λ that are fixed a priori, is made up
of the algorithms MDRecDenFE = (Setup,Enc,KeyGen,Dec) of a stan-
dard FE scheme for F (Definition 2) and in addition the following two
algorithms:
• DenKeyGen(Msk, k). The deniable key generation algorithm, on input

the master secret key Msk, and key k, outputs secret key Skk and fake
key Fkk.

• RecFake(Skk,Fkk,Ct,x). The receiver faking algorithm, on input secret
key and fake key Skk,Fkk for key k, at most nc ciphertexts Ct =
(Ct1, . . . ,Ctnc) and messages x = (x1, . . . , xnc), outputs faked secret
key Sk′k.

Correctness is defined as in Definition 2 and indistinguishability as in
Definition 4. We also require the following security property.

Definition 8 [Multi-Distributional Receiver Deniability] We require that
for every PPT adversary A = (A0,A1), issuing at most nk receiver-coerce
oracle queries, the following two experiments are computationally indis-
tinguishable.

RealMDRecDenExpRecDenFE
A (1λ)

(x?,y?, st)← A0(1λ);

(Mpk,Msk)← Setup(1λ);
(Ct?i ← Enc(Mpk, xi; ri))i∈[nc];

Output: AO1,O2,K1(·,Ct?,x?)
1 (Mpk,Ct?, st)

FakeMDRecDenExpRecDenFE
A (1λ)

(x?,y?, st)← A0(1λ);

(Mpk,Msk)← Setup(1λ);
(Ct?i ← Enc(Mpk, yi; ri))i∈[nc];

Output: AO1,O2,K2(·,Ct?,x?)
1 (Mpk,Ct?, st)

where x? = (x?1, . . . , x
?
nc), y? = (y?1, . . . , y

?
nc), and Ct? = (Ct?1, . . . ,Ct

?
nc).

(K1,K2) are the receiver-coerce oracles.
All the oracle declared above are defined as follows:

K1(k,Ct,x)
Skk ← KeyGen(Msk, k);
Output: Skk

K2(k,Ct,x)
(Skk,Fkk)← DenKeyGen(Msk, k);
Sk′k ← RecFake(Skk,Fkk,Ct,x);
Output: Sk′k

O1(k, x, y)
Ct← Enc(Mpk, x; r);
Skk ← KeyGen(Msk, k);
Output: (Ct, Skk)

O2(k, x, y)
Ct← Enc(Mpk, y; r);
(Skk,Fkk)← DenKeyGen(Msk, k);
Sk′k ← RecFake(Skk,Fkk,Ct, x);
Output: (Ct, Sk′k)
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In the above experiments, we require the following:

1. There is no query (k, x, y) issued to O1 and at same time a query
(k,Ct?,x) for some x issued to K1 and there is no query (k, x, y)
issued to O2 and at same time a query (k,Ct?,x) for some x issued
to K2, where we consider all queries issued during the entire course of
the experiment; i.e., when counting all the queries made by A0 and
A1 together.

2. For any query issued by A1 to its oracle K1 or K2 for key k?, neither
A0 nor A1 query k? to either of their oracles O1,O2; i.e., they do not
make any query (k?, x, y) for any x, y to O1 or O2.

3. For each key k different from any of the challenge keys k?i queried by
A to oracles O1 or O2, it holds that F (k,x?) = F (k,y?).

Remark 9 Our security notion is selective, in that the adversary com-
mits to (x, y) before it sees Mpk. It is possible to bootstrap selectively-
secure scheme to full security using standard complexity leveraging argu-
ments [10, 24] at the price of a 2|x| loss in the security reduction.

3 Receiver Deniable FE from Trapdoor Circuits

In this section, we present a construction of a (nc, poly)-receiver deniable
functional encryption scheme for Circuit, RecDenFE.

Overview. To construct our RecDenFE scheme, we start from an IND-
Secure FE scheme for Circuit. During the key generation, we replace the
original circuit with a trapdoor one that the receiver faking algorithm can
then use to program the output in some way. More specifically, we put
additional “slots” in the plaintexts and secret keys that will be critically
used by the receiver faking algorithm. A plaintext will have two slots
where the first slot will be the actual message x. The second slot will be
a random string s, some sort of tag used to identify the ciphertext that
will serve as seed of a PRF. On the other hand, a secret key for circuit C
has 4 · nc slots consisting of random strings ti, zi, t

′
i, z
′
i, for i ∈ [nc], used

as formal variables to represent Boolean values 0 and 1. Specifically:

Definition 10 [Trapdoor Circuit] Let C be a Boolean circuit on n-bits
and 1-bit output, F = {fs : s ∈ {0, 1}λ}λ∈N be a (l(λ), L(λ))-pseudo-

random function family. For any t = (ti ∈ {0, 1}l(λ))i∈[nc], z = (zi ∈
{0, 1}L(λ))i∈[nc] and t′ = (t′i ∈ {0, 1}l(λ))i∈[nc], z′ = (z′i ∈ {0, 1}L(λ))i∈[nc],
define the corresponding trapdoor circuit Trap[C,F ]t,z,t

′,z′ on (n+ λ)-bit
inputs and 1-bit output as follows:
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Circuit Trap[C,F ]t,z,t
′,z′(x′)

(x, s)← x′

If fs(ti) = zi for some i ∈ [nc] Then Return 1
Else If fs(t

′
i) = z′i for some i ∈ [nc] Then Return 0

Else Return C(x)

We are now ready to present our RecDenFE scheme.

Construction 11 [Receiver Deniable Functional Encryption] Let FE =
(FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a functional encryption scheme
for the functionality Circuit and F = {fs : s ∈ {0, 1}λ}λ∈N be a (l(λ), L(λ))-
pseudo-random function family. We define our receiver deniable func-
tional encryption scheme RecDenFE = (Setup,KeyGen,Enc,Dec,RecFake)
for Circuit as follows.
• Setup(1λ, 1n) runs FE.Setup(1λ, 1n+λ) to get the pair (FE.Mpk,FE.Msk).

Then, the master public key is Mpk = FE.Mpk and the master secret
key is Msk = FE.Msk. The algorithm returns the pair (Mpk,Msk).

• Enc(Mpk, x) on input master public key Mpk = FE.Mpk, and message
x ∈ {0, 1}n, chooses a random s ∈ {0, 1}λ and sets x′ = (x, s). Then
the algorithm computes and returns the ciphertext Ct = FE.Enc(FE.Mpk, x′).

• KeyGen(Msk, C) on input master secret key Msk = FE.Msk and a n-
input Boolean circuit C, chooses, for i ∈ [nc], random strings ti, t

′
i ∈

{0, 1}l(λ), zi, z′i ∈ {0, 1}L(λ) and computes FE.SkC = FE.KeyGen(
FE.Msk,Trap[C,F ]t,z,t

′,z′). The algorithm returns the secret key SkC =
(t, z, t′, z′,FE.SkC).

• Dec(Mpk,Ct,SkC) on input master public key Mpk = FE.Mpk, Ct and
secret key SkC = (t, z, t′, z′,FE.SkC) for circuit C, returns the output
of FE.Dec(FE.Mpk,Ct,FE.SkC).

• RecFake(Msk, C,Ct,x) on input the master secret key Msk = FE.Msk,
a Boolean circuit C on n-bits input and 1-bit output, at most nc ci-
phertexts Ct = (Ct1, . . . ,Ct`) and messages x = (x1, . . . , x`), extracts
si from each ciphertext Cti by using FE.Msk. Then, for each i ∈ [`],
RecFake chooses random ti and t′i in {0, 1}l(λ) and distinguishes be-
tween the following two case:
• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′i = fsi(t

′
i) and chooses random zi ∈ {0, 1}L(λ).

Finally, RecFake computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t
′,z′),

and returns secret key SkC = (t, z, t′, z′,FE.SkC).

Correctness of our RecDenFE scheme follows from the correctness of FE
and from the observation that, for randomly chosen t, z, t′, z′ and s and
for all x, Trap[C,F ]t,z,t

′,z′(x, s) = C(x) except with negligible probability.
Security. The proof of security can be found in Appendix B.
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4 Receiver Deniable FE for Boolean Formulae

We have seen in the previous section how to construct a receiver deniable
functional encryption scheme for circuits assuming the existence of an
IND-Secure FE scheme for the same functionality. To the best of our
knowledge, the only way to construct an IND-Secure FE for circuits is by
using obfuscation and its variants.

In this section we explore the possibility of achieving receiver denia-
bility for weaker classes of functionalities that still support some form of
trapdoor mechanism and for which a functional encryption scheme can be
constructed assuming standard assumptions. Namely, we are interested in
constructing a receiver deniable FE for Boolean formulae. In [27], Katz,
Sahai and Waters show how to construct a functional encryption scheme
for Boolean formulae given a functional encryption scheme for the inner-
product whose security, by the result of Okamoto and Takashima [29],
can be based on the Decisional Linear Assumption in bilinear groups.
To construct a functional encryption scheme for Boolean formulae, [27]
first shows how to construct functional encryption schemes for predicates
corresponding to univariate polynomials whose degree d is polynomial in
the security parameter. This can be generalized to the case of polynomi-
als in t variables, and degree at most d in each variable, as long as dt is
polynomial in the security parameter. Given the polynomial-based con-
struction, [27] shows that for Boolean variables it is possible to handle
arbitrary CNF or DNF formulas by noting that the predicate ORI1,I2 ,
where ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can be encoded as
the bivariate polynomial p(x1, x2) = (x1−I1) · (x2−I2) and the predicate
ANDI1,I2 , where ANDI1,I2(x1, x2) = 1 if both x1 = I1 and x2 = I2, corre-
spond to the polynomial p(x1, x2) = (x1 − I1) + (x2 − I2). (Notice that,
for non-Boolean variables it is not known how to directly handle nega-
tion.) The complexity of the resulting scheme depends polynomially on
dt, where t is the number of variables and d is the maximum degree of the
resulting polynomial in each variable. This bound will critically influence
our construction of receiver deniable scheme as we will show in the next
section. Specifically, the length of the additional slots used in trapdoor
mechanism of the previous section will be fixed and independent of the
security parameter to avoid the exponential blowup of the complexity of
the resulting scheme. As a consequence, the trapdoor mechanism has a
non-negligible probability of being active in the real scheme thus influ-
encing the decryption error probability. Parallel repetition will fix this
issue.
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4.1 Our Construction

Overview. The trapdoor formula will follow the same design lines of the
trapdoor circuit we used in the previous section with the main difference
being the length of the slots which will be here constant and independent
from the security parameter to avoid the exponential blowup in the [27]
construction. Thus, as in the previous section, we will have additional
slots in the plaintexts and secret keys that will be critically used by the
receiver faking algorithm. The plaintext will have two slots where the first
slot will be the actual message x. The second slot will be a random string
s. On the other hand, a secret key for Boolean formula f will also have
two slots to represent Boolean values 0 and 1. Specifically:

Construction 12 [Trapdoor Boolean Formula] Let f be a Boolean for-
mula on n-bits. For any two strings r0, r1 ∈ {0, 1}`, define the corre-
sponding trapdoor boolean formula Trap[f ]r0,r1 on (n + `)-bit inputs as
follows: FormulaTrap[f ]r0,r1(x, s) := (s = r1)∨ [f(x) ∧ ¬(s = r0)], where
the expression (s = r) is the comparison bit-a-bit.

We are now ready to present our RecDenFE scheme.

Construction 13 [Receiver Deniable Functional Encryption for Boolean
Formulae] Let FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Eval) be the func-
tional encryption scheme for the functionality Boolean Formulae. For any
constant ` > 3, we define our receiver deniable functional encryption
scheme RecDenFE = (Setup,KeyGen,Enc,Dec,RecFake) for Boolean for-
mulae as follows.
• Setup(1λ, 1n, 1m), for each i ∈ [m], runs FE.Setup(1λ, 1n+`) to get the

pair (FE.Mpki,FE.Mski). Then, the master public key is Mpk = (FE.Mpk)i∈[m]

and the master secret key is Msk = (FE.Msk)i∈[m]. The algorithm re-
turns the pair (Mpk,Msk).

• Enc(Mpk, x), on input master public key Mpk = (FE.Mpki)i∈[m] and

message x ∈ {0, 1}n, for each i ∈ [m], chooses a random si ∈ {0, 1}`
and sets Cti = FE.Enc(FE.Mpki, (x, si)). The algorithm returns the
ciphertext Ct = (Cti)i∈[m].

• KeyGen(Msk, f), on input master secret key Msk = (FE.Msk)i∈[m] and
a n-input Boolean formula f , for each i ∈ [m], chooses two ran-
dom strings ri0, r

i
1 ∈ {0, 1}`, such that ri0 6= ri1, and computes se-

cret key FE.Skif = FE.KeyGen(FE.Mski,Trap[f ]r
i
0,r

i
1). The algorithm

returns the secret key Skf = (ri0, r
i
1,FE.Sk

i
f )i∈[m].

• Dec(Mpk,Ct,Skf ), on input master public key Mpk = (FE.Mpk)i∈[m],

Ct = (Cti)i∈[m] and secret key Skf = (ri0, r
i
1,FE.Sk

i
f )i∈[m] for Boolean
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formula f , for i ∈ [m], computes Boolean value bi = FE.Eval(FE.Mpki,
Cti,FE.Sk

i
f ), and returns as output the Boolean value on which the

majority of bi’s have agreed on.
• RecFake(Msk, f,Ct, x′), on input the master secret key Msk = (FE.Mski)i∈[m],

an n-input Boolean formula f , ciphertext Ct = (Cti)i∈[m] and message
x′, for all i ∈ [m], the algorithm extracts si from Cti by using FE.Mski.
Now, RecFake chooses the ri0’s and ri1’s by following a binomial dis-
tribution with number of trials equals to m and success probability
p = (1− 2−`). Specifically, RecFake distinguishes between the follow-
ing two cases. Let b′ = f(x′), for each i ∈ [m], if there is a success
in the i-th trial then RecFake sets rib′ = si and ri1−b to a random
value different from si. Otherwise, RecFake sets ri1−b′ = si and rb to a
random value different from si. Finally, RecFake computes secret key
FE.Skif = FE.KeyGen(FE.Mski,Trap[f ]r

i
0,r

i
1), and returns the secret key

Skf = (ri0, r
i
1,FE.Sk

i
f )i∈[m] as faking key.

Correctness. Notice that for any i ∈ [m], the probability that si =
ri0∨si = ri1 is at most 2−`+1. Thus the output of the decryption is correct,

i.e. Trap[f ]r
i
0,r

i
1(x, si) = f(x), with probability at least 1− 2−`+1.

Thus on average, an (1 − 2−`+1) fraction of the ciphertexts will be
decrypted to the correct value and for large enough m, the Chernoff
bound guarantees that the correctness of RecDenFE hold with overwhelm-
ing probability.
Security. The proof that RecDenFE is a (1, 1)-receiver deniable func-
tional encryption scheme for Boolean formulae is essentially that of The-
orem 20 and we omit further details.

We note that one can extend the scheme to (nc, nk)-receiver deniabil-
ity in a simple way but we cannot achieve nk = poly in this case, however,
because we cannot use symmetric encryption (at least in a straightforward
way).

5 Multi-Distributional Receiver Deniable FE from diO

In order to avoid to overburden the notation and to make the presentation
easy to follow, we present a construction of a (1, 1)-multi-distributional
receiver deniable functional encryption scheme for Circuit.
Overview. Our construction resembles that of Garg et al. [19]. Namely,
a ciphertext of the functional encryption scheme for x corresponds to a
double encryption, à la Naor-Yung [28], of x, using a statistical simulation-
soundness NIZK. A secret key for circuit C is the differing-input obfusca-
tion of a trapdoor circuit Trap[C] that takes in input the double encryp-
tion of x and the double encryption of the trapdoor values.
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Construction 14 [Multi-Distributional Receiver Deniable FE] Given an
IND-CPA PKE system E = (E .Setup, E .Enc, E .Dec) with perfect cor-
rectness, a differing-inputs obfuscator diO, an SSS-NIZK proof system
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify,NIZK.Sim) and a one-way
function f , we define our multi-distributional receiver deniable functional
encryption MDRecDenFE = (Setup,KeyGen,Enc,DenKeyGen,RecFake,Dec)
as follows:

1. Setup(1λ) takes in input the security parameter λ and computes the
following: For i ∈ [4], (pki, ski)← E .Setup(1λ). Then, crs← NIZK.Setup(1λ).
The algorithm sets Mpk = ((pki)i∈[4], f, crs), Msk = ((ski)i∈[4]).

2. KeyGen(Msk, C) takes in input master secret key Msk = ((ski)i∈[4]),
and circuit C, and does the following: Computes common reference
string crs′ ← NIZK.Setup(1λ). Then, sample random z in the do-
main of f and set t = f(z) and compute Ct′ := (ct3, ct4, π2), where
ct3 ← E .Enc(pk3, (z, 0n, 0λ); r3) and ct4 ← E .Enc(pk4, (z, 0n, 0λ); r4),
and π2 is a NIZK proof of Equation 2. Finally, the algorithm com-
putes a differing-input obfuscation diOTrap1,3 for the trapdoor circuit
Trap1,3[C, crs, crs

′, ski, skj , f, t]. The algorithm outputs secret key for
the circuit C, SkC = (diOTrap1,3 , t,Ct

′).
3. DenKeyGen(Msk, C) takes in inputMsk = ((ski)i∈[4]) and circuit C,

and computes SkC = KeyGen(Msk, C). The algorithm outputs SkC as
the secret key for the circuit C and FkC = z.

4. Enc(Mpk, x), on input master public key Mpk = ((pki)i∈[4], f, crs)
and messages x ∈ Xn, computes Ct = (ct1, ct2, π1), where ct1 ←
E .Enc(pk1, x; r1) and ct2 ← E .Enc(pk2, x; r2) and π1 is a NIZK proof
of Equation 1. The algorithm outputs ciphertext Ct.

5. Dec(SkC ,Ct) on input secret key SkC = (diOTrap1,3 , t,Ct
′) and cipher-

text Ct, the algorithm outputs diOTrap1,3(Ct,Ct′).

6. RecFake(SkC ,FkC ,Ct, x) on input secret key SkC = (diOTrap1,3 , t,Ct
′),

fake key FkC = z, where t = f(z), ciphertext Ct = (ct1, ct2, π1) and
message x, does the following: Compute Ĉt := (ĉt3, ĉt4, π̂2), where
ĉt3 ← E .Enc(pk3, (z,Ct, x); r3) and ĉt4 ← E .Enc(pk4, (z,Ct, x); r4) and
π̂2 is a NIZK proof of Equation 2. The new secret key for circuit C is
SkC = (diOTrap1,3 , t, Ĉt).

Correctness follows immediately from the correctness of the diO, PKE,
SSS-NIZK, and the description of the trapdoor circuits described below.



18 Angelo De Caro, Vincenzo Iovino, and Adam O’Neill

Trapi,j [C, crs, crs
′, ski, skj , f, t](Ct = (ct1, ct2, π1),Ct′ = (ct3, ct4, π2))

The algorithm does the following:

1. Check that π1 is valid NIZK proof (using the NIZK.Verify algorithm and crs)
for the NP-statement

∃x, r1, r2 :

ct1 = E .Enc(pk1, x; r1) and ct2 = E .Enc(pk2, x; r2)
(1)

2. Check that π2 is valid NIZK proof (using the NIZK.Verify algorithm and crs′)
for the NP-statement

∃z, c, x, r3, r4 :

ct3 = E .Enc(pk3, (z, c, x); r3) and ct4 = E .Enc(pk4, (z, c, x); r4) and f(z) = t
(2)

3. If any checks fail output 0.
4. (z′, c′, x′)← E .Dec(skj , ctj)
5. if c′ = Ct then output C(x′); otherwise output C(E .Dec(ski, cti)).

Remark 15 To allow a secret key to support faking against nc cipher-
texts, like we do in Section 3, we attach to a secret key nc ciphertexts Ct′i
each being the double encryption of (zi, 0

n, 0λ) for different zi’s. Then,
Trapi,j will contain the images under f of all zi’s.

Proof of Security. We prove the following main theorem.

Theorem 16 If diO is an differing-input obfuscator, E is IND-CPA and
f is a one-way function then MDRecDenFE is a (1, 1)-multi-distributional
receiver deniable in the sense of Definition 6.

To prove the above theorem, we prove the indistinguishability of the fol-
lowing hybrid experiments. Recall that, for simplicity, we prove (1, 1)-
security. Extending the proof of security to nc being any constant and
nk = poly resorts to add more hybrids to switch the challenge ciphertexts
and the secret keys generated by the receiver-coerce oracle to the target
distribution.
Hybrid H1. This is the RealMDRecDenExp experiment where the receiver-
coerce oracle is K1.
Hybrid H2. It is identical to H1 except that: (1) (crs, π?1) is simulated
as (crs, π?1) ← NIZK.Sim(1λ,∃x, r1, r2 : ct?1 = E .Enc(pk1, x; r1) and ct?2 =
E .Enc(pk2, x; r2)) where ct?1, ct

?
2 is part of the challenge ciphertext. Note

that, in the selective security game the challenge ciphertext can be given
out simultaneously with the public parameters. (2) (crs′, π2), generated by
the receiver-coerce oracle, is simulated as (crs′, π2)← NIZK.Sim(1λ,∃z, c, x, r3, r4 :
ct3 = E .Enc(pk3, (z, c, x); r3) ∧ ct4 = E .Enc(pk4, (z, c, x); r4) ∧ f(z) = t).
Notice that the crs of the secret keys generated by O1 and O2 are not
simulated. The indistinguishability of H2 from H1 follows from the ZK
property of the NIZK system and by a standard hybrid argument.
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Hybrid H3. It is identical to H2 except that ct?2 encrypts y. The NIZK’s
are still simulated. The indistinguishability of H3 from H2 follows from
the IND-CPA security of (pk2, sk2).
Hybrid H4. It is identical to H3 except that ct4, generated by the
receiver-coerce oracle, encrypts (0k,Ct?, x). The NIZK’s are still simu-
lated. The indistinguishability of H4 from H3 follows from the IND-CPA
security of (pk4, sk4).
Hybrid H5. It is identical to H4 except that the secret keys, generated
by the receiver-coerce oracle, contain the differing-input obfuscation of
the program Trap1,4. The indistinguishability of H5 from H4 follows from
the security of diO noticing that Trap1,3 and Trap1,4 compute the same
function. This follows: (1) by the statistical simulation-soundness of the
NIZK system that guarantees that Ct′, as generated by the receiver-coerce
oracle, used in both experiments, is the only one to contain a NIZK proof
for a false statement accepted by the verifier and (2) by the fact that
by definition of Trap1,3, Trap1,4 and Ct′, it holds that: Trap1,3(Ct

?,Ct′) =
C(E .Dec(sk1, ct1)) = C(x) = C(E .Dec(sk4, ct4)) = Trap1,4(Ct

?,Ct′).
Hybrid H6. It is identical to H5 except that the secret keys, generated
by O1 and O2, contain the differing-input obfuscation of the program
Trap1,4. The indistinguishability of H6 from H5 follows from the security
of diO noticing that Trap1,3 and Trap1,4 compute the same function. The
statistical simulation-soundness of the NIZK system guarantees that there
is no Ct′ for a false statement that the verifier accepts.
Hybrid H7. It is identical to H6 except that ct3, generated by the
receiver-coerce oracle, encrypts (0k,Ct?, x). The NIZK’s are still simu-
lated. The indistinguishability of H7 from H6 follows from the IND-CPA
security of (pk3, sk3).
Hybrid H8. It is identical to H7 except that the secret keys, generated
by the receiver-coerce oracle, contain the differing-input obfuscation of the
program Trap1,3. The indistinguishability of H8 from H7 is symmetrical
to that of H5 from H4.
Hybrid H9. It is identical to H8 except that the secret keys, generated
by the receiver-coerce oracle, contain the differing-input obfuscation of
the program Trap2,3.

Overview: by the statistical simulation-soundness of the NIZK proof
system and by definition of Trap2,3, the inputs that distinguish Trap2,3
from Trap1,3 have the form (Ct?, Ĉt) where: (1) Ĉt = (ĉt3, ĉt4, π̂2) 6= Ct′.
(2) ĉt3 and ĉt4 encrypt the same value (this follows by the statistical
simulation-soundness of the NIZK system and from the fact that, being
Ct′ the only false statement with accepting proof, it must hold that Ĉt 6=
Ct′), and (3) ĉt3 encrypts a string of the form (z′, c′, x′) with f(z′) = t.
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To prove the indistinguishability of H8 from H7, we proceed in two
steps: Let A = (A0,A1) be any multi-distributional receiver deniability
adversary, in the first step we show that there exists a sampling algorithm
SamplerA that samples a circuit family C (containing Trap2,3 and Trap1,3),
that it is differing-inputs under the one-wayness of f . In the second step,
we show that if A can distinguish the two experiments, then it is possible
to construct a distinguisher that breaks the security of diO.

First Step: We define a circuit family C associated with a PPT SamplerA

and show that it is differing-inputs under the one-wayness of f . SamplerA

takes in input the security parameter, the description of the OWF f and
the challenge of the one-way security game t?, and does the following:

1. Runs A0 on input 1λ to obtain (x?, y?, stA).
2. Computes, for i ∈ [4], (pki, ski)← E .Setup(1λ), and ct?1 = E .Enc(pk1, x?)

and ct?2 = E .Enc(pk1, y?) and (crs, π?1) ← NIZK.Sim(1λ,∃x, r1, r2 :
ct?1 = E .Enc(pk1, x; r1) and ct?2 = E .Enc(pk2, x; r2)). Sets the master
public key and the challenge ciphertext as Mpk = ((pki)i∈[4], f, crs),
Ct? = (ct?1, ct

?
2, π

?
1). The master secret key is then Msk = (ski).

Finally, runs A1 on input (Mpk,Ct?, stA), simulating oracles O1,O2

and K(·,Ct?, x?) in the following way:
1. O1(k, x, y),O2(k, x, y): Given Mpk and Msk, the output distribu-

tions of these oracles is easy to generate.
2. K(C,Ct?, x?): SamplerA computes ct3 = E .Enc(pk3, (0λ,Ct?, x?))

and ct4 = E .Enc(pk4, (0λ,Ct?, x?)), and (crs′, π2) ← NIZK.Sim(∃z,
c, x, r3, r4 : ct3 = E .Enc(pk3, (z, c, x); r3) and ct4 = E .Enc(pk4, (z, c, x); r4)
and f(z) = t?). At this point the algorithm interrupts the execu-

tion ofA and returns (Trap1,3[C, crs, crs
′, sk1, sk3, f, t],Trap2,3[C, crs,

crs′, sk2, sk3, f, t], st), where st contains its entire computation.

This terminates the description of SamplerA. Now, suppose there exists an
adversary B that takes in input (1λ,Trap1,3,Trap2,3, st) and finds an input

on which Trap1,3,Trap2,3 are different, meaning B finds a Ĉt = (ĉt3, ĉt4, π̂2)
as defined above. Then, by using sk3 in st, B can decrypt ĉt3 and extract
a pre-image of t?.

Second Step: Suppose that A distinguishes H9 and H8 with non-
negligible advantage then we can construct a distinguisher DA, for the
differing-input circuit family defined above, that breaks the security of
diO. The distinguisher DA taks in (C, st) where C is the differing-input
obfuscation of either Trap1,3 or Trap2,3 and does the following: (1) Restart

from the position where SamplerA stopped and uses C to generate the out-
put of the receiver-coerce oracle. Specifically, D returns (C, t?,Ct′), where
Ct′ = (ct3, ct4, π2). (2) D continues to respond to the oracle invocations
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as SamplerA does. (3) Finally, when A has completed its execution, it
returns a bit that become D’s output.

This terminates the description of DA. Now, if C is the differing-
input obfuscation of Trap1,3 then (SamplerA,DA) have simulated H8. On
the other hand, if C is the differing-input obfuscation of Trap2,3 then

(SamplerA,DA) have simulated H9.

Hybrid H10. It is identical to H9 except that the secret keys, generated
by the O1 and O2, contain the differing-input obfuscation of the program
Trap2,4. The indistinguishability of H10 from H9 follows from the security
of diO noticing that Trap1,4 and Trap2,4 compute the same function. The
statistical simulation-soundness of the NIZK system guarantees that there
is no Ct for a false statement that the verifier accepts. Moreover when
considering Ct?, the security game constraints guarantee that the the
secret keys asked toO1 andO2 evaluate to the same value on the challenge
messages.

Hybrid H11. It is identical to H10 except that ct?1 encrypts y, The
indistinguishability of H11 from H10 follows from the IND-CPA security
of (pk1, sk1).

Hybrid H12. It is identical to H11 except that the secret keys, generated
by the O1 and O2, contain the differing-input obfuscation of the program
Trap2,3. The indistinguishability of H12 from H11 is symmetrical to that
of H6 from H5.

Hybrid H13. It is identical to H12 except that ct4, generated by the
receiver-coerce oracle, encrypts (z,Ct?, x), The indistinguishability of H13

from H12 follows from the IND-CPA security of (pk4, sk4).

Hybrid H14. It is identical to H13 except that the secret keys, generated
by the receiver-coerce oracle, contain the differing-input obfuscation of the
program Trap2,4. The indistinguishability of H14 from H13 is symmetrical
to that of H5 from H4.

Hybrid H15. It is identical to H14 except that the secret keys, generated
by the O1 and O2, contain the differing-input obfuscation of the program
Trap2,4. The indistinguishability of H15 from H14 is symmetrical to that
of H6 from H5.

Hybrid H16. It is identical to H15 except that ct3, generated by the
receiver-coerce oracle, encrypts (z,Ct?, x). The indistinguishability of H16

from H15 follows from the IND-CPA security of (pk3, sk3).

Hybrid H17. It is identical to H16 except that the secret keys, generated
by the receiver-coerce oracle, contain the differing-input obfuscation of the
program Trap2,3. The indistinguishability of H17 from H16 is symmetrical
to that of H5 from H4.
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Hybrid H18. It is identical to H17 except that the secret keys, generated
by the receiver-coerce oracle, contain the differing-input obfuscation of the
program Trap1,3. The indistinguishability of H18 from H17 is symmetrical
to that of H5 from H4.
Hybrid H19. It is identical to H18 except that the secret keys, generated
by the O1 and O2, contain the differing-input obfuscation of the program
Trap2,3. The indistinguishability of H19 from H18 is symmetrical to that
of H6 from H5.
Hybrid H20. It is identical to H19 except that the secret keys, generated
by the O1 and O2, contain the differing-input obfuscation of the program
Trap1,3. The indistinguishability of H20 from H19 is symmetrical to that
of H10 from H9.
Hybrid H21. It is identical to H20 except that all crs’s are honestly
generated. The indistinguishability of H21 from H20 follows from the zero-
knowledge of the NIZK system and by a standard hybrid argument. It
remains to notice that H21 corresponds to FakeDenExp where the receiver-
coerce oracle is K2.

6 Open problems and future work

Our work leaves open the problem of a construction of a multidistribu-
tional deniable FE for general functionalities that avoid the use of diO. It
is also worthy to investigate whether our techniques can be used to add
deniability to other flavors of FE, e.g., [33, 9, 11, 25].
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A Simulation-Based Security for FE and its Relation to
Receiver-Deniability

Definition 17 [De Caro et al. [17] Simulation-Based Definition] A FE
scheme FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over
(K,X) is (q1, `, q2)-simulation-secure ((q1, `, q2)-SIM-Secure, for short),
where q1 = q1(λ), ` = `(λ), q2 = q2(λ) are polynomials in the security
parameter λ that are fixed a priori, if there exists a PPT simulator al-
gorithm Sim = (Sim0, Sim1) such that for all PPT adversary algorithms
A = (A0,A1), issuing at most q1 non-adaptive key queries, q2 adaptive
key queries and output challenge message vector of length and most `,
the outputs of the following two experiments are computationally indis-
tinguishable.

RealExpFE,A(1λ, 1n)

(Mpk,Msk)← Setup(1λ, 1n);

(x, st)← AKeyGen(Msk,·)
0 (Mpk);

Ct← Enc(Mpk,x);

α← AKeyGen(Msk,·)
1 (Mpk,Ct, st);

Output: (Mpk,x, α)

IdealExpFE,ASim (1λ, 1n)

(Mpk,Msk)← Setup(1λ, 1n);

(x, st)← AKeyGen(Msk,·)
0 (Mpk);

(Ct, st′)← Sim0(Mpk, |x|, (ki, Skki , F (ki,x)));

α← AO(·)
1 (Mpk,Ct, st);

Output: (Mpk,x, α)

Here, the (ki)’s correspond to the key-generation queries of the adversary.
Further, oracleO(·) is the second stage of the simulator, namely algorithm
Sim1(Msk, st′, ·, ·). Algorithm Sim1 receives as third argument a key kj
for which the adversary queries a secret key, and as fourth argument the
output value F (kj ,x). Further, note that the simulator algorithm Sim1

is stateful in that after each invocation, it updates the state st′ which
is carried over to its next invocation. (Notice that, in the case that a
parameter is an unbounded polynomial we use the notation poly.)
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(nc, nk)-receiver-deniability =⇒ (0, nc, nk)-SIM-Security.

Theorem 18 Suppose that RecDenFE is a (nc, nk)-receiver-deniable func-
tional encryption scheme for functionality F defined over (K,X) then
RecDenFE is (0, nc, nk)-SIM-Secure (Definition 17) as well.

Proof. We start by constructing the simulator required by the SIM-Security.
Sim = (Sim0, Sim1) is defined as follow. Sim0 on input master public
key Mpk, remember that non-adaptive key generation queries are not
allowed in the setting we are considering, chooses random vector x? of
nc messages and, for i ∈ nc, generated ciphertext Ct?i = Enc(Mpk, x?i )
and returns (Ct?, st = (Ct?)). Sim1 on input master secret key Msk,
status st′, and tuple (k,SkC , F (k,x))) does the following. Sim1 invokes
the receiver faking algorithm to generate the secret key for k, namely
Skk = RecFake(Msk, k,Ct?, F (k,x)). Finally, Sim1 returns Skk as its own
output.

Now, for the sake of contradiction, let A = (A0,A1) and D be an
adversary and a distinguisher that break the (0, nc, nk)-SIM-Security of
RecDenFE, meaning that (A,D) can distinguish between RealExp and
IdealExp. Then, we construct and adversary B = (B0,B1) and distin-
guisher D′ that break the (nc, nk)-receiver-deniable security of RecDenFE.
Specifically, B is defined as follows: B0 on input master public key Mpk
runs A0 on input Mpk. Notice that, A0 does not issue any key generation
query. At some point A0 returns challenge messages x and status stA.
B0 chooses random messages x′ and returns (x,x′, st = (stA,x)).
B1 on input Ct? and status st (notice that in this case rS is a zero-

length vector) runs A1 on input Ct? and status stA. When A1 issue a
key-generation query for key k, B invokes its OK oracle on input k, Ct?

and F (k,x) to obtain Skk that is given back to A1. At some point A1

returns some output α and B1 returns α as its own output.
On the other hand, the distinguisher D′ is exactly D.
Now notice that, if B is playing the RealRecDenExp experiment then A

is playing the RealExp. On the other side, if B is playing the FakeRecDenExp
experiment then A is playing the IdealExp. This concludes the proof.

B Proof of Security of Construction 11

In this section, we prove the following main theorems

Theorem 19 If FE is IND-Secure, then RecDenFE is IND-Secure as well.

The proof of Theorem 19 is straightforward and we omit it.
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Theorem 20 If FE is (poly, 1, poly)-IND-Secure then RecDenFE is a (nc, poly)-
receiver deniable in the sense of Definition 6, for any constant nc.

Proof. We prove security via a sequence of hybrid experiments. To do so,
we will make use of the following simulation receiver faking algorithm.

Sim.RecFakeFE.KeyGen(FE.Msk,·)(C,x, s)

The algorithm takes in input a circuit C, messages x = (x1, . . . , x`), strings
s = (s1, . . . , s`) each in {0, 1}λ, and oracle access to the FE key generation
algorithm. Then, for each i ∈ [`], the algorithm chooses random ti and t′i in
{0, 1}l(λ) and distinguishes between the following two case:
• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′i = fsi(t

′
i) and chooses random zi ∈ {0, 1}L(λ).

Finally, the algorithm computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t
′,z′),

and returns secret key SkC = (t, z, t′, z′,FE.SkC).

We are now ready to describe the hybrids. The change between the
presented hybrid and the previous will be denoted by boxing the modified
parts.

Hybrid H1: Consider the following two oracles:

E?1 (x,y)

(si ← {0, 1}λ)i∈[nc]

(Cti ← FE.Enc(Mpk, (xi, si)))i∈[nc]

Output: ((Cti), ∅)

K?1(C,Ct,x)
SkC ← KeyGen(Msk, C);
Output: Skk

Then, hybrid H1 is the real experiment RealDenExp where the chal-
lenge ciphertexts are created by oracle E?1 , and the receiver-coerce oracle
is K?1.

Notice that E?1 is exactly E1 with the only difference that we have
unrolled the call to the RecDenFE encryption algorithm for the sake of
clarity, and K?1 = K1.

Hybrid H2: Consider the following oracles:

E?2 (x,y)

(si ← {0, 1}λ)i∈[nc]

(s′i ← {0, 1}λ)i∈[nc]

(Cti ← FE.Enc(Mpk, (xi, si)))i∈[nc]

Output: ((Cti), ∅)

K?2(C,Ct,x)

SkC ← Sim.RecFakeFE.KeyGen(FE.Msk,·)(C,x, s′)

Output: SkC

where s′ = (s′1, . . . , s
′
nc) is the randomness sampled by E?2 .

Then, experiment H2 is the same as H1 except that the oracle E?1 is
replaced by E?2 and receiver-coerce oracle is modified as above.
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Hybrid H3: Consider the following oracles:

E?3 (x,y)

(s′i ← {0, 1}λ)i∈[nc]

(Cti ← FE.Enc(Mpk, (yi, s
′
i)))i∈[nc]

Output: ((Cti), ∅)

K?3(C,Ct,x)

SkC ← Sim.RecFakeFE.KeyGen(FE.Msk,·)(C,x, s′)

Output: SkC

Then, experiment H3 is the same as H2 except that the oracle E?2 is
replaced by E?3 and receiver-coerce oracle is modified as above.

Finally, notice that H3 is exactly the faking experiment FakeDenExp
where E2 = E?3 and K2 = K?3.

We now show that the relevant distinguishing probabilities between
adjacent hybrids are negligible, which completes the proof.

Indistinguishability of H1 and H2: To prove indistinguishability we
use the following sequence of hybrid experiments.

• Hybrid H1,j , for 1 ≤ j ≤ nc + 1: This is the same as H1 except that
E?2 is used instead of E?1 and the following new receiver-coercer oracle
is used:

K?1,j(C,Ct,x)

SkC ← Sim.RecFake
FE.KeyGen(FE.Msk,·)
2,j (C,x, s′)

Output: SkC

where s′ is chosen by oracle E?1 and Sim.RecFake2 is defined as follow:

Sim.RecFake
FE.KeyGen(FE.Msk,·)
2,j (C,x, s)

The algorithm takes in input a circuit C, messages x = (x1, . . . , x`), strings
s = (s1, . . . , s`) each in {0, 1}λ, and oracle access to the FE key generation
algorithm. Then, for each i ∈ [`], the algorithm chooses random ti and t′i in
{0, 1}l(λ).
Now we have two cases:

1. i < j : then the algorithm distinguishes between the following two cases:
• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′i = fsi(t

′
i) and chooses random zi ∈ {0, 1}L(λ).

2. i ≥ j : then the algorithm chooses random zi, z
′
i ∈ {0, 1}L(λ).

Finally, the algorithm computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t
′,z′),

and returns secret key SkC = (t, z, t′, z′,FE.SkC).

Then, notice that H1 = H1,1 and H2 = H1,nc+1. Thus, it is sufficient
to prove that H1,k is computational indistinguishable from H1,k+1. This
can be reduced to the security of the family of pseudo-random functions.
In fact, notice that H1,k+1 is the same as H1,k except that to set zk (or
z′k deeding on C(xk)), the PRF is used on input seed s′k which is never
used in any other part of the simulation.
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More formally, suppose there exists a distinguisher D and adversary
A = (A0,A1) for which H1,k and H1,k+1 are not computationally indistin-
guishable. Then A and D can be used to construct a successful adversary
B for the pseudo-randomness of F .

Specifically, B on input the security parameter λ an having oracle
access to a function f̂ which is either fs for random seed s ← {0, 1}λ
or F ← R(l(λ), L(λ)) where R(l(λ), L(λ)) is the space of all possible
functions F : {0, 1}l(λ) → {0, 1}L(λ), does the following.

• B, generates (Mpk,Msk) by invoking the setup algorithm of FE. B
runs A0 on input master public key Mpk and answers A0’s queries
to O1 and O2 by using (Mpk,Msk). Eventually, A0 outputs x? =
(x?1, . . . , x

?
nc),y

? = (y?1, . . . , y
?
nc) and its state st. Then B, generates

the challenge ciphertexts Ct?1, . . . ,Ct
?
nc by using Mpk, encrypting x or

y depending on a chosen random bit b. Finally, B runs A1 on input
challenge ciphertexts Ct?1, . . . ,Ct

?
nc and answers A1’s queries to O1 and

O2 by using (Mpk,Msk). To answer receiver-coerce oracle queries, B
first chooses (s′i ← {0, 1}λ)i∈[nc]\{k}, then on input a receiver-coerce
query of the form (C,Ct,x), where x = (x1, . . . , xnc), B does the
following: For each i ∈ [nc] \ {k}, B chooses random ti and t′i in
{0, 1}l(λ). Then,

1. i < k : B distinguishes between the following two cases: (a) If
C(xi) = 1, it sets zi = fs′i(ti) and chooses random z′i ∈ {0, 1}L(λ).
(b) If C(xi) = 0, it sets z′i = fs′i(t

′
i) and chooses random zi ∈

{0, 1}L(λ).
2. i = k : B uses its own oracle f̂ as follows:
• If C(xi) = 1, it sets zi = f̂(ti) and chooses random z′i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′i = f̂(t′i) and chooses random zi ∈ {0, 1}L(λ).

3. i ≥ k : B chooses random zi, z
′
i ∈ {0, 1}L(λ).

Finally, B computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t
′,z′),

and returns secret key SkC = (t, z, t′, z′,FE.SkC) as the answer of
oracle E?1 . Eventually, A1 returns its output and B passes it to the
distinguisher D and returns D’s output as its own output.

Now notice that if f̂ = F then B is simulating Game H1,k. On the

other hand, if f̂ = fs then B is simulating Game H1,k+1

Indistinguishability of H2 and H3: To prove indistinguishability we
use the following sequence of hybrid experiments.

• Hybrid H2,j , for 1 ≤ j ≤ nc + 1: This is the same as H2 except that
the following new oracle E?2,j is used:
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E?2,j(x,y)
(si ← {0, 1}λ)i∈[nc]

(s′i ← {0, 1}λ)i∈[nc]

Then, for i ∈ [nc], we have two cases:

1. i < j : Cti ← FE.Enc(Mpk, (yi, s
′
i)),

2. i ≥ j : Cti ← FE.Enc(Mpk, (xi, si)).

Output: ((Cti), ∅)

Then, notice then that H2 = H2,1 and H3 = H2,nc+1. Thus, it is suffi-
cient to prove that H2,k is computational indistinguishable from H2,k+1.
This follows from the assumed IND-Security of FE. In fact, notice that
H2,k+1 is the same as H2,k except that the k-th challenge ciphertext is for
message (yk, s

′
k) instead of (xk, sk). Moreover, notice that for all the faked

secret keys generated using the algorithm Sim.RecFake2,nc+1 it holds than
Trap[C,F ]t,z,t

′,z′(xk, sk) = C(xk) = Trap[C,F ]t,z,t
′,z′(yk, s

′
k).

More formally, suppose there exists a distinguisher D and adversary
A = (A0,A1) for which H2,k and H2,k+1 are not computationally indis-
tinguishable. Then A and D can be used to construct a successful IND
adversary B for FE. Specifically, B = (B0,B1) does the following.

• B0 on input FE master public key Mpk and having oracle access to
the FE key generation algorithm, runs A0 on input master public key
Mpk and answers A0’s queries to O1 and O2 by using Mpk and its key
generation oracle. Eventually, A0 outputs x? = (x?1, . . . , x

?
nc),y

? =
(y?1, . . . , y

?
nc) and its state st. Them B0, chooses (si ← {0, 1}λ)i∈[nc]

and (s′i ← {0, 1}λ)i∈[nc], and returns as its challenge messages (y?k, s
′
k)

and (x?k, sk) and put in its state the state of A0 and its entire compu-
tation.

• B1 on input ciphertext Ct?, which is the encryption of (y?k, s
′
k) or

(x?k, sk), and having oracle access to the FE key generation algo-
rithm, generates challenge ciphertexts in the following way: For j <
k, B1 sets Ct?j = Encrypt(Mpk, (y?j , s

′
j)), for j > k, B1 sets Ct?j =

Encrypt(Mpk, (x?j , sj)), and for j = k, B0 set Ct?k = Ct?. Finally, B1
runs A1 on input challenge ciphertexts Ct?1, . . . ,Ct

?
nc and answers A1’s

queries to O1 and O2 and to the receiver-coerce oracle K, which is im-
plemented at this stage by Sim.RecFake2,nc+1, by using Mpk and its
own key generation oracle. Eventually, A1 returns its output and B1
passes it to the distinguisher D and returns D’s output as its own
output.

It remains to verify that B is valid IND adversary, meaning that all the
key queries issued by B satisfy the game constraints with the respect to
the challenge messages (y?k, s

′
k) and (x?k, sk). We have the following two

cases: (1) For query made by A to O1 or O2 of the form (C, x, y), B gen-



Deniable Functional Encryption 31

erates a ciphertext with the respect to a freshly chosen seed ŝ and issues
a secret key query to its oracle for circuit Trap[C,F ]t,z,t

′,z′ , where z and
z′ are related to ŝ It holds then, under the constraints of the receiver de-
niable security game, C(y?k) = C(x?k) then with overwhelming probability
Trap[C,F ]t,z,t

′,z′((y?k, s
′
k)) = C(y?k) = C(x?k) = Trap[C,F ]t,z,t

′,z′((x?k, sk)),
by definition of the trapdoor circuit and by noting that sk, s

′
k, t, z, t

′, z′

are uncorrelated. (2) For a query issued to the receiver-coerce oracle
for a circuit C, the corresponding secret key is generated by the algo-
rithm Sim.RecFake2,nc+1. By definition of this algorithm it holds that
Trap[C,F ]t,z,t

′,z′(x?k, sk) = C(xk) = Trap[C,F ]t,z,t
′,z′(y?k, s

′
k). This con-

cludes the proof.


