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Abstract

A notion of the graph of minimal distances of bent functions is introduced. It is an
undirected graph (V , E) where V is the set of all bent functions in 2k variables and (f, g) ∈ E
if the Hamming distance between f and g is equal to 2k (it is the minimal possible distance
between two different bent functions). The maximum degree of the graph is obtained and
it is shown that all its vertices of maximum degree are quadratic. It is proven that a
subgraph of the graph induced by all functions affinely equivalent to Maiorana—McFarland
bent functions is connected.
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1 Introduction

Bent functions are Boolean functions in even number of variables that have maximal possible
nonlinearity. They were proposed by O. Rothaus [17]. Bent functions have a lot of applications
in algebra, combinatorics, coding theory, cryptography, see [19]. However, there are still many
open questions concerning bent function, for example, see [4].

This work is devoted to the minimal Hamming distance between two bent functions. It is
equal to 2k for bent functions in 2k variables. For the given bent function f in 2k variables any
bent function at the distance 2k from f can be obtained in the following way: we chose some
k-dimensional affine subspace L such that f is affine on it and just invert values of f on L, see
[14]. For the first time this approach to construct new bent functions by affine subspaces was
proposed in [2].

It seemed some properties can be formulated easier in terms of graph of minimal distances
GB2k. It is an undirected graph (V , E) where V is the set of all bent functions in 2k variables
and (f, g) ∈ E if the Hamming distance between f and g is equal to 2k. For example, the
number of bent functions at the distance 2k from the given bent function f is the degree of
vertex f in GB2k; an existence of bent functions h1, . . . , hn for two bent functions f, g such that
dist(f, h1) = 2k, dist(hn, g) = 2k and dist(hi, hi+1) = 2k for i ∈ {1, . . . , n − 1} is just existence
of a path between f and g in GB2k.

∗The author was supported by the Russian Foundation for Basic Research (project no. 15-31-20635).
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In this work the maximum degree of GB2k is obtained. It is equal to 2k(21 + 1) . . . (2k + 1).
Moreover, it is proven that any vertex of maximum degree is a quadratic bent function. In
order to prove that, a notion of completely affinely decomposable Boolean function of order k
is introduced. Such function is either affine on each coset of a k-dimensional affine subspace or
not affine on any coset; and the function should be affine on at least one k-dimensional affine
subspace. It is obtained that completely affinely decomposable functions are either affine or
quadratic; their complete classification depending on k is done.

Next, a subgraph GM2k of GB2k induced by all bent functions affinely equivalent to Maiora-
na—McFarland bent functions is considered. A lower bound of a vertex degree in GM2k is
obtained and it is proven that GM2k is connected. As a consequence, GB2, GB4, GB6 are
connected too. But in general GB2k is not connected due to existing isolated vertices (starting
with 2k = 14), such bent functions were found in [5].

Note that results of the work were announced in [19].

2 Definitions

2.1 Boolean functions

Let us give definitions. A Boolean function in n variables is a mapping f : Fn2 → F2. Denote
by Fn the set of all Boolean functions in n variables. The Hamming distance dist(f, g) between
two Boolean functions f, g ∈ Fn is the number of x ∈ Fn2 such that f(x) 6= g(x). Define by
〈x, y〉 = x1y1 ⊕ x2y2 ⊕ . . . ⊕ xnyn inner product of two vectors x, y ∈ Fn2 . Denote by supp(f),
f ∈ Fn, the set {x : f(x) = 1, x ∈ Fn2}. The weight wt(f) of Boolean function f ∈ Fn is equal
to |supp(f)|. The restriction of a Boolean function f ∈ Fn on the set S ⊆ Fn2 is a mapping

f |S : S → F2, where f |S(x) = f(x) for all x ∈ S. A subfunction f b1,...,bki1,...,ik
of function f is a

restriction of f on the face {x ∈ Fn2 | xi1 = b1, . . . , xik = bk}.
A Boolean function f ∈ Fn is called balanced if wt(f) = 2n−1. Balancedness is generalized

to the restriction of a Boolean function: f |S is called balanced, where S ⊆ Fn2 and |S| is even, if
|{x ∈ S | f |S(x) = 1}| = |S|/2.

2.2 Algebraic normal form

Representation of f ∈ Fn in the form

f(x1, . . . , xn) = a0 ⊕
n⊕
k=1

⊕
1≤i1<...<ik≤n

ai1...ikxi1 . . . xik ,

where a0, ai1...ik ∈ F2, is called algebraic normal form (ANF ), xi1 . . . xik is called a monomial of
degree k, ai1...ik , a0 are coefficients. The degree deg f is the length of the longest monomial with
nonzero coefficient (and −∞ if all coefficients are zero). There is the only way to represent f in
such form.

A Boolean function is called affine if its degree is not more than 1, in other words, it is a
function of the form

`a,c(x) = 〈a, x〉 ⊕ c for some a ∈ Fn2 , c ∈ F2.

Denote by An the set of all affine functions in n variables.
A Boolean function is called quadratic if its degree is equal to 2.
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Derivative function Dαf of f ∈ Fn in the direction α ∈ Fn2 is the function f(x)⊕ f(x⊕ α).
Note that if deg f ≥ 0, then degDαf < deg f for any direction α ∈ Fn2 .

2.3 Affine equivalence

Two Boolean functions f, g ∈ Fn are called affinely equivalent if there exist an invertible n-by-n
binary matrix A, vector b ∈ Fn2 and affine function ` ∈ An such that

f(x) = g(xA⊕ b)⊕ `(x) for all x ∈ Fn2 .

Note that dist(f, g) = dist(f(xA⊕ b)⊕ `(x), g(xA⊕ b)⊕ `(x)).
The notion of affine equivalence is used with addition of an affine function instead of classic

definition f(x) = g(xA⊕ b) since considered transformations form the group of automorphisms
of the set of bent functions, see [18]. In these terms some results of the work can be formulated
shorter.

It holds Dickson’s theorem for a quadratic Boolean function: any quadratic f ∈ Fn can be
reduced by transformation of the form f(xA), where A is an invertible n-by-n binary matrix, to
the form

x1x2 ⊕ x3x4 ⊕ . . .⊕ x2t−1x2t ⊕ `(x)

for some ` ∈ An and t, 1 ≤ t ≤ n/2.
Thus, any quadratic f ∈ Fn is affinely equivalent to the function gt(x1, . . . , xn) = x1x2 ⊕

x3x4 ⊕ . . .⊕ x2t−1x2t for some t, 1 ≤ t ≤ n/2.

2.4 Affine subspaces

Nonempty set L ⊆ Fn2 is called linear subspace of Fn2 if for any a, b ∈ L it is true a ⊕ b ∈ L; its
dimension dimL is equal to log2 |L|.

Denote by s⊕D, where s ∈ Fn2 and D ⊆ Fn2 , a shift of the set D, i. e. s⊕D = {s⊕x | x ∈ D}.
The set L ⊆ Fn2 is called affine subspace of Fn2 (or briefly subspace) if it is a shift of some

linear subspace of Fn2 ; the dimension dimL is the dimension of corresponding linear subspace.
A shift of an affine subspace is also called its coset.

Denote by ASPkn the set of all k-dimensional affine subspaces of Fn2 and by LSPkn the set of
all k-dimensional linear subspaces. An affine(linear) subspace L is a subspace of an affine(linear)
subspace U if L ⊆ U (both L,U ⊆ Fn2 ); let

ASPk(U) = {L ∈ ASPkn | L ⊆ U},

LSPk(U) = {L ∈ LSPkn | L ⊆ U}.

A Boolean function f ∈ Fn is affine on an affine subspace L ⊆ Fn2 if f |L = `a,c|L for some
a ∈ Fn2 , c ∈ F2. Denote that by f |L(x) = 〈a, x〉 ⊕ c.

2.5 Walsh—Hadamard transform

Walsh—Hadamard transform of f ∈ Fn is the mapping Wf : Fn2 → Z such that

Wf (y) =
∑
x∈Fn

2

(−1)f(x)⊕〈x,y〉,
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the numbers Wf (y) are called Walsh—Hadamard coefficients. Walsh—Hadamard transform
uniquely determines f . It is true Parseval’s equality :∑

y∈Fn
2

W 2
f (y) = 22n.

For a function f ∈ Fn, a linear subspace L ⊆ Fn2 and a, b ∈ Fn2 it is right the following
formula: ∑

x∈a⊕L
(−1)f(x)⊕〈b,x〉 = 2dimL−n(−1)〈a,b〉

∑
y∈b⊕L⊥

Wf (y)(−1)〈a,y〉. (1)

2.6 Bent functions

A bent function is a Boolean function f ∈ F2k such that |Wf (y)| = 2k for all y ∈ F2k
2 . Denote

by B2k the set of all bent functions in 2k variables. Note that for f ∈ B2k it holds

wt(f),dist(f, `a,c) ∈ {22k−1 ± 2k−1} for any a ∈ F2k
2 , c ∈ F2.

The dual function f̃ can be defined by f in the following way

(−1)f̃(y) =
1

2k
Wf (y) for all y ∈ F2k

2 .

Function f̃ is a bent function too. For a bent function f formula (1) can be simplified:∑
x∈a⊕L

(−1)f(x)⊕〈b,x〉 = 2dimL−k(−1)〈a,b〉
∑

y∈b⊕L⊥
(−1)f̃(y)⊕〈a,y〉, (2)

where L is a linear subspace of F2k
2 , a, b ∈ F2k

2 . It can be found in [2].
Denote by IndD, where D ⊆ Fn2 , the Boolean function in n variables that takes value 1 only

on the set D.
For a bent function the following construction is right. Let f ∈ B2k, L ∈ ASPk2k and f be

affine on L. Then
f ⊕ IndL is a bent function too. (3)

The construction was proposed by C. Carlet [2].
For f, g ∈ B2k, f 6= g, it holds dist(f, g) ≥ 2k. In [12] was proven the following criterion.

Proposition 1. Let f ∈ B2k. Then all bent functions at the distance 2k from f have the form
f ⊕ IndL, where L ∈ ASPk2k and f is affine on L.

The following functions form Maiorana—McFarland [16] class of bent functions M2k:

f(x, y) = 〈x, π(y)〉 ⊕ ϕ(y), where

• x, y ∈ Fk2,

• π is a permutation on Fk2 and

• ϕ is an arbitrary Boolean function in k variables.

Denote by M̃2k the set of all bent functions affinely equivalent to functions fromM2k. This
class is also called completed Maiorana—McFarland class.

More information concerning bent functions can be found in [19], [8], [10], [15] and [7]
(Chapters 8 and 9 by C. Carlet).
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3 The graph of minimal distances of bent functions

An undirected graph GB2k = (V,E) is called the graph of minimal distances of bent functions if

• V is the set of all bent functions in 2k variables and

• (f, g) ∈ E if and only if dist(f, g) = 2k.

Denote by GM2k a subgraph of GB2k induced by all vertices from M̃2k. Summarize known facts
in terms of GB2k and GM2k.

• The maximum degree of GB2k and GM2k is equal to 2k(21 + 1)(22 + 1) . . . (2k + 1), any
vertex of maximum degree is a quadratic bent function, see section 7.

• Degree of a vertex of GM2k is not less than 22k+1 − 2k, see proposition 13.

• GM2k is connected, see section 9.

Describe the structure of the work. In sections 4 and 5 auxiliary results concerning affinity
of Boolean functions will be obtained. Section 6 is devoted to a notion of completely affinely
decomposable Boolean function. Complete classification of such functions will be done. Then,
in section 7 the maximum degree of GB2k will be obtained; due to results of section 6, it will be
also proven that all vertices of maximum degree are quadratic. Next, the last two sections are
devoted to connectivity of some subgraphs of GB2k. In section 8 a subgraph of GB2k induced
by all vertices from M2k will be considered. Finally, in section 9 connectivity of GM2k will be
proven.

4 Affinity of a Boolean function on an affine subspace

There are the following notions concerning affinity of a Boolean function on an affine subspace.
A Boolean function f ∈ Fn is called k-normal (weakly k-normal) if it is constant (affine) on some
k-dimensional affine subspace of Fn2 . And function f is called normal (weakly normal) if it is
dn/2e-normal (weakly dn/2e-normal). The notion of normality was introduced for even number
of variables by H. Dobbertin [9]. Later it was generalized by C. Charpin [6]. There are also
notions of affinity level and generalized affinity level connected with the maximum dimension of
a subspace such that f is affine on it [1], [15].

An idea of affinity on an affine subspaces was applied to construct bent function. For example,
big class of normal bent functions was introduced by H. Dobbertin [9]; bent functions that are
affine on some t-dimensional affine subspace (face) and on each its coset were considered in [20],
[3].

Next, prove auxiliary propositions concerning affinity of a Boolean function on an affine
subspace. First of all, prove the main lemma of this section.

Lemma 1. Let f ∈ Fn and U ∈ ASPkn, where k > 0. Then f is affine on U if and only if there
exists L ∈ ASPk−1(U) such that both f |L and f |a⊕L are constants, where a ∈ U\L.

Proof. Without loss of generality it can be supposed that both U and L are linear subspaces,
i. e. U ∈ LSPkn, L ∈ LSPk−1(U) (otherwise function f(x ⊕ b) for b ∈ U can be considered
instead of f).
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(=⇒) Let f be affine on U . It means that f |U (x) = 〈w, x〉 ⊕ c for some w ∈ Fn2 and c ∈ F2.
Solve the equation

〈w, x〉 = 0, x ∈ U.

Since U is a linear subspace, the set of all solutions will be either U or some L ∈ LSPk−1U . For
the second case the set of all solutions of the equation 〈w, x〉 = 1, x ∈ U will be a ⊕ L, where
a ∈ U\L.

Thus, for both cases there exists L ∈ LSPk−1(U) such that both f |L and f |a⊕L are constants.
(⇐=) Let f |L = c1 and f |a⊕L = c2, c1, c2 ∈ F2. Prove that f is affine on U . Note that

U = L ∪ (a ⊕ L). If c1 = c2, the statement is obvious. Let c1 6= c2, i. e. c2 = c1 ⊕ 1. Consider

L⊥. For some w ∈ L⊥ it is true that 〈w, a〉 = 1 since if 〈w, a〉 = 0 ∀w ∈ L⊥, then a ∈ L⊥⊥ = L,
but a /∈ L. Therefore, 〈w, x〉|L = 0 and 〈w, x〉|a⊕L = 1. Thus, f |U (x) = 〈w, x〉 ⊕ c1.
Consider corollaries of the lemma.

Proposition 2. Let f ∈ Fn be affine on L ∈ ASPnk . Then f |L is either constant or balanced.

Its proof is obvious.

Proposition 3. Let f ∈ Fn and f |L be constant, where L ∈ ASPkn. Then f is affine on a
subspace L ∪ (a⊕ L), a ∈ Fn2 , if and only if f |a⊕L is constant too.

The proof obviously follows from lemma 1 and proposition 2.

Proposition 4. Let f ∈ Fn be affine on L ∈ ASPkn, k > 0, and f |U = c for some U ∈ ASPt(L),
c ∈ F2, where t < k. Then there exists an affine subspace T ∈ ASPk−1(L) such that f |T = c
and U ⊆ T .

Proof. If f |L = c, any T ∈ ASPk−1(L) containing U can be chosen. Otherwise, by lemma 1
there exists T ∈ ASPk−1(L) such that both f |T and f |a⊕T are constants, where a ∈ L\T .
Without loss of generality we can suppose that f |T = c. Since f |L is not constant, f |a⊕T = c⊕1.
Thus, U ⊆ T .

Proposition 5. Let f ∈ Fn, L be an affine subspace of Fn2 and f |L(x) = 〈w, x〉 ⊕ c for some
w ∈ Fn2 and c ∈ F2. Then f is affine on L∪ (a⊕L), a ∈ Fn2 , if and only if f |a⊕L(x) = 〈w, x〉⊕ c′
for some c′ ∈ F2.

Proof. Consider function f ′(x) = f(x)⊕〈w, x〉⊕c. It holds f ′|L = 0. Next, the proof is obvious
by proposition 3.

Proposition 6. Let f ∈ Fn, n > 2 and L = {a, b, c, d} be a 2-dimensional affine subspace of
Fn2 . Then f is affine on L if and only if f(a)⊕ f(b)⊕ f(c)⊕ f(d) = 0.

The proof is obvious.

5 Affinity of a quadratic Boolean function on an affine subspace

In this section we give auxiliary results concerning affinity of a quadratic Boolean function on
an affine subspace.

Proposition 7. Let f ∈ Fn, deg f ≤ 2 and f be affine on an affine subspace L of Fn2 . Then f
is affine on each coset of L.
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Proof. Note that f(x ⊕ a) = f(x) ⊕ (f(x) ⊕ f(x ⊕ a)), a ∈ Fn2 . Since the degree of derivative
function f(x)⊕f(x⊕a) is less than the degree of f (i.e. it is not more than 1), f(x⊕a) is affine
on L and, therefore, f is affine on a⊕ L.

Lemma 2. Let f ∈ Fn, f be quadratic and affine on L ∈ ASPtn, t ≤ n/2. Then there exist
different affine subspaces (a1⊕L), . . . , (a2n−2t⊕L) such that for some w ∈ Fn2 and c1, . . . , c2n−2t ∈
F2 it is true

f |ai⊕L(x) = 〈w, x〉 ⊕ ci, i ∈ {1, . . . , 2n−2t}.

Proof. Denote by Sw the set of all cosets of L such that function f(x) ⊕ 〈w, x〉 is constant
on it. Note that if f |a⊕L(x) = 〈w, x〉 ⊕ c, then for any w′ ∈ w ⊕ L⊥ it holds f |a⊕L(x) =
〈w′, x〉 ⊕ 〈w ⊕ w′, a〉 ⊕ c. Thus, Sw = Sw⊕u for u ∈ L⊥.

According to proposition 7, f is affine on each of 2n−t different shifts of L. Therefore, it is
true

1

|L⊥|
∑
w∈Fn

2

|Sw| =
1

2n−t

∑
w∈Fn

2

|Sw| ≥ 2n−t,

that is why |Sw| ≥ 2n−t2n−t/2n = 2n−2t for some w ∈ Fn2 .

Lemma 3. Let f ∈ F2k, f be quadratic and U ∈ ASP2k−1(2k). Then there exists L ∈ ASPk(U)
such that f is affine on L.

Proof. Since U is of dimension 2k − 1, it holds F2k
2 = U ∪ (c ∪ U) for some c ∈ F2k

2 . Prove by
induction that there exists L ∈ ASPt(U), t ≤ k, such that f is affine on L.

Base of the induction t = 0 is obvious.
Suppose that the statement is true for t, t < k. Prove that it is true for t+1. By the induction

there exists L ∈ ASPt(U) such that f is affine on L. By lemma 2 for some w ∈ F2k
2 there exist

different a1 ⊕ L, . . . , a22k−2t ⊕ L such that for some w ∈ F2k
2 it holds f |ai⊕L(x) = 〈w, x〉 ⊕ ci,

ci ∈ F2. As long as t < k, we have 22k−2t ≥ 4 different affine subspaces.
Since L ⊆ U , there always exist different a ⊕ L and b ⊕ L, a, b ∈ F2k

2 , among (a1 ⊕
L), . . . , (a22k−2t ⊕ L) such that either a ⊕ L, b ⊕ L ⊆ U or a ⊕ L, b ⊕ L ⊆ c ⊕ U . Next, by
proposition 5 function f is affine on L′ = (a ⊕ L) ∪ (b ⊕ L) of dimension t + 1. If L′ ⊆ U , the
lemma is proven. Otherwise L′ ⊆ c ⊕ U . By proposition 7 function f is affine on c ⊕ L′ and
c⊕ L′ ⊆ U .

6 Completely affinely decomposable Boolean functions

In this section the notion of completely affinely decomposable Boolean function is introduced. It
will be showed that any such function is either quadratic or affine.

Definition 1. Boolean function f ∈ Fn is called completely affinely decomposable of order k,
2 ≤ k ≤ n, if the following conditions hold:

• f is affine on some subspace from ASPkn;

• if f is affine on a subspace L ∈ ASPkn, then f is affine on each coset of L.
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There is no sense to consider orders 0 and 1, since all Boolean functions would satisfy the
definition.

Denote by ADkn the set of all completely affinely decomposable functions of order k in n
variables. It is simple to prove the following proposition.

Proposition 8. Let f, g ∈ Fn be affinely equivalent. Then f ∈ ADkn if and only if g ∈ ADkn.

Show that ADkn contains only affine and quadratic functions. Firstly, it holds

Proposition 9. ADkn ⊆ ADk−1n ⊆ . . . ⊆ AD2
n.

To prove the proposition it is sufficient to use the following lemma.

Lemma 4. Let f ∈ ADkn and f be affine on some linear subspace U ∈ LSPtn, t < k. Then
there exists linear subspace L ∈ LSPkn such that U ⊆ L and f is affine on L.

Proof. Prove the lemma using induction by dimension of U . Base of induction dimU = 0
obviously follows from the lemma condition.

Suppose that for all linear subspaces of dimension less than t, t ≤ k − 1, the statement is
true. Prove that it is true for affine subspace U of dimension t+ 1.

Represent U as U ′ ∪ (a ⊕ U ′), where U ′ ∈ LSPt(U) and a ∈ U . Then by induction there
exists L ∈ LSPkn, U ′ ⊆ L and f is affine on L. Without loss of generality it can be supposed
that f |L = 0 thanks to transformations of the form f ⊕ `w,c. Next, by proposition 3 it is true
f |a⊕U ′ = c for some c ∈ Z2. Since by the lemma condition f is affine on a⊕L, by proposition 4
there exists (a⊕T ) ∈ ASPk−1(a⊕L) such that f |a⊕T = c and a⊕U ′ ⊆ a⊕T ⊂ a⊕L (therefore,
it holds U ′ ⊆ T ⊂ L too). As long as f |T = 0 due to T ⊂ L, by proposition 3 function f is affine
on k-dimensional linear subspace T ∪ (a⊕ T ) that contains U .
Next, show that AD2

n can contain only affine and quadratic functions.

Lemma 5. Let f ∈ Fn, n > 2. Then there exists L ∈ ASP2
n such that f is affine on L.

Proof. Prove that f is affine on some L ∈ ASP2
n when n = 3. It is sufficient for proving the

lemma. ANF of f can contain 4 monomials of degree 2 or 3: x1x2x3, x1x2, x1x3 x2x3. Consider
two cases.

Case 1. Monomial x1x2x3 does not belong to the ANF. There are two subcases.

1. Monomials x1x2, x1x3 and x2x3 belong to the ANF. Note that x1x2⊕x1x3⊕x2x3 = x1(x2⊕
x3)⊕x2x3, that is why f is affine on 2-dimensional affine subspace D = {(x1, x2, x3) | x2⊕
x3 = 1, x1, x2, x3 ∈ F2}.

2. Otherwise all monimials of degree 2 from the ANF contain common variable xi, 1 ≤ i ≤ 3.
Therefore, f0i is affine.

Case 2. Monomial x1x2x3 belongs to the ANF. There are also two subcases.

1. There are no minomials of degree 2 in the ANF. Then it is obvious that f01 is affine.

2. Otherwise without loss of generality suppose that the ANF contains x1x2. Then f13 is
affine since x1x2x3, x1x2 cancel out and x1x3 and x2x3 contains x3 = 1.
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Lemma 6. Let f ∈ AD2
n. Then f is either affine or quadratic.

Proof. Prove the lemma using induction by the variable number. It is obvious that any
Boolean function in 2 variables is either affine or quadratic. Suppose that if g ∈ AD2

k, k < n,
then deg g ≤ 2. Prove that deg f ≤ 2.

Consider the linear subspace

L = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} ⊆ Fn2 .

Then any coset of L can be represented in the following way:

{(x, 0, 0), (x, 0, 1), (x, 1, 0), (x, 1, 1)}, x ∈ Fn−22 .

Since f ∈ AD2
n, function f is either affine on each coset of L or not affine on any coset of L at

all. That is why by proposition 6 for some constant c ∈ F2 it is true

f(x, 0, 0)⊕ f(x, 0, 1)⊕ f(x, 1, 0)⊕ f(x, 1, 1) = c ∀x ∈ Fn−22 .

Decompose f by two last variables.

f(x, y, z) = (y ⊕ 1)(z ⊕ 1)f(x, 0, 0)⊕ (y ⊕ 1)zf(x, 0, 1)⊕
y(z ⊕ 1)f(x, 1, 0)⊕ yzf(x, 1, 1).

In other words,

f(x, y, z) = (f(x, 0, 0)⊕ f(x, 0, 1)⊕ f(x, 1, 0)⊕ f(x, 1, 1))yz ⊕
(f(x, 0, 0)⊕ f(x, 1, 0))y ⊕ (f(x, 0, 0)⊕ f(x, 0, 1))z ⊕ f(x, 0, 0).

Let f ′(x, y) = f(x, y, 0) and f ′′(x, y) = f(x, 0, y), i. e. they are subfunctions of f ; and α =
(0, 1) ∈ Fn−12 . Then

f(x, y, z) = c · yz ⊕ yDαf
′(x)⊕ zDαf

′′(x)⊕ f(x, 0, 0). (4)

Let h be any of f ′, f ′′ or f(x, 0, 0); and let m be the number of variables of h, m < n. Prove
that deg h ≤ 2. If m < 3 it is obvious. Otherwise, by lemma 5 function h is affine on some
2-dimensional affine subspace. In view of h is a subfunction of f , it is right h ∈ AD2

m. Thus, by
the induction deg h ≤ 2.

Therefore,
deg f(x, 0, 0) ≤ 2 and degDαf

′, degDαf
′′ ≤ 1.

By equality (4) it is true deg f ≤ 2. The lemma is proven.
The next lemma can be also found in [2]. To completeness, prove it too.

Lemma 7. A bent function f ∈ B2k can not be affine on an affine subspace of dimension more
than k.

Proof. Let f |L(x) = 〈w, x〉 ⊕ c, L ∈ ASPk+1
2k . Then for bent function f ′(x) = f(x)⊕ 〈w, x〉 ⊕ c

it is true f ′|L = 0. Since the dimension of L more than k, there exist two different subspace U
and a⊕U such that U ⊆ L and (a⊕U) ⊆ L. Then g = f ′⊕IndU ⊕Inda⊕U is also bent function
by construction (3), at the same time wt(g) = wt(f ′) + 2k+1. It is a contradiction because the
weight of a bent function is equal to 22k−1 ± 2k−1.

The following theorem gives complete classification of completely affinely decomposable
Boolean functions.
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Theorem 1. Let f ∈ Fn. The following statements are right.
(i) Function f ∈ ADkn, where 2 ≤ k ≤ dn/2e, if and only if f is either affine or quadratic.
(ii) Function f ∈ ADkn, where dn/2e ≤ k < n, and f /∈ ADk+1

n if and only if f is affinely
equivalent to the function

gn−k(x1, . . . , xn) = x1x2 ⊕ x3x4 ⊕ . . .⊕ x2n−2k−1x2n−2k
(iii) Function f ∈ ADnn if and only if f is affine.

Proof. Note that if f ∈ ADkn, then it is either affine or quadratic: it follows from the proposi-
tion 9 and lemma 6.

As for affine and quadratic Boolean functions there is proposition 7, it is sufficient to prove
existence of an affine subspace such that the function is affine on it. Point (iii) is obvious.

By Dickson’s theorem any quadratic Boolean function is affine equivalent to gt(x1, . . . , xn) =
x1x2 ⊕ x3x4 ⊕ . . . ⊕ x2t−1x2t for some t, 1 ≤ t ≤ n/2. So, gt is affine on affine subspace
{x ∈ Fn2 | x2 = x4 = . . . = x2t = 0} of dimension n−t, i. e. point (i) is proven. To prove the point
(ii) it is sufficient to use that function h(x1, . . . , x2n−2k) = x1x2⊕x3x4⊕ . . .⊕x2n−2k−1x2n−2k in
2n− 2k variables is a bent function and by lemma 7 it can not be affine on an affine subspace of
dimension more than n−k: then function g can not be affine on an affine subspace of dimension
more than n− k + (n− (2n− 2k)) = k.

Thus, among bent function only quadratic bent functions can be completely affinely decom-
posable.

A particular case of completely affinely decomposable functions was considered in [13]: it
was proven that f ∈ Fn is completely affinely decomposable of order dn/2e if and only if it is
either affine or quadratic.

7 The maximum degree of GB2k

Here we prove that the maximum degree of GB2k is equal to 2k(21 + 1)(22 + 1) . . . (2k + 1). Note
that results of the section were published in [11] (in Russian). Now these results are formulated
in other terms, and, to completeness, they are given with proofs.

Recall that the number of bent functions at the distance 2k from f is equal to the number
of k-dimensional affine subspaces of F2k

2 such that f is affine on each of them.
Since any U ∈ ASPkn, k > 0, can be represented as U = L∪ (a⊕L), where L ∈ ASPk−1(U)

and a ∈ U\L, proposition 5 gives us a condition that allows to increase subspace dimension by
1, keeping affinity of a function.

Next, appreciate the number of ways to increase subspace dimension by 1 using the condition.
In order to do that, recall the following notion. Let f ∈ Fn, S ⊆ Fn2 . Incomplete Walsh—
Hadamard transform of function f |S is the mapping

WfS (y) =
∑
x∈S

(−1)f(x)⊕〈y,x〉, y ∈ Fn2 .

It holds an analogue of Parseval’s equality:∑
y∈Fn

2

W 2
fS

(y) =
∑
y∈Fn

2

∑
u∈S

∑
v∈S

(−1)f(u)⊕f(v)⊕〈u⊕v,y〉 =

∑
u∈S

∑
v∈S

(−1)f(u)⊕f(v)
∑
y∈Fn

2

(−1)〈u⊕v,y〉 =
∑
u∈S

(−1)f(u)⊕f(u)2n = 2n|S|.
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More information concerning incomplete Walsh—Hadamard transform can be found in [15].

Lemma 8. Let f be bent function in 2k variables, L ∈ ASPt2k, t ≤ k and a1⊕L, . . . , an⊕L be
different cosets of L. Let for some w ∈ F2k

2 it hold

f |ai⊕L(x) = 〈w, x〉 ⊕ ci, ci ∈ F2 for all i ∈ {1, . . . , n}.

Then n ≤ 22k−2t. Moreover, if n = 22k−2t, function (f(x) ⊕ 〈w, x〉)|a⊕L is balanced for any
a /∈ (a1 ⊕ L) ∪ . . . ∪ (an ⊕ L).

Proof. It is known that for bent function f , linear subspace L, a,w ∈ F2k
2 it holds formula (2):∑

x∈a⊕L
(−1)f(x)⊕〈w,x〉 = 2dimL−k(−1)〈a,w〉

∑
y∈w⊕L⊥

(−1)f̃(y)⊕〈a,y〉. (5)

Let S = w ⊕ L⊥, consider incomplete Walsh—Hadamard transform of f̃ |S :

Wf̃S
(u) =

∑
y∈S

(−1)f̃(y)⊕〈u,y〉, u ∈ F2k
2 .

Next, according to equality (5)

Wf̃S
(u) = 2k−t(−1)〈u,w〉

∑
x∈u⊕L

(−1)f(x)⊕〈w,x〉. (6)

Let V = (a1⊕L)∪ . . .∪ (an⊕L). Then by equality (6) and the lemma condition it follows that
for all u ∈ V it is true |Wf̃S

(u)| = 2k−t2t = 2k. According to analogue of Parseval’s equality for

f̃ |S , |S| = 22k−t and |V | = n2t, it is obtained∑
u∈F2k

2

W 2
f̃S

(u) =
∑
u∈V

W 2
f̃S

(u) +
∑
u/∈V

W 2
f̃S

(u) = n2t22k +
∑
u/∈V

W 2
f̃S

(u) = 22k22k−t.

Therefore, n ≤ 22k−2t.
If n = 22k−2t, then Wf̃S

(u) = 0 for any u /∈ V . In this case by equality (6) it is obtained

that
∑

x∈u⊕L (−1)f(x)⊕〈w,x〉 = 0 for any u /∈ V . The lemma is proven.

Formulate the case n = 22k−2t from the previous lemma separately.

Proposition 10. Let f ∈ B2k be constant on each of 22k−2t different cosets of L ∈ ASPt2k,
t ≤ k. Then f is balanced on each of the other cosets of L.

It is a generalization of the proposition proven by C. Carlet.

Proposition 11 (C. Carlet, 1994, [2]). Let f ∈ B2k and f |L be constant, where L ∈ ASPk2k.
Then f is balanced on each coset of L except L.

Next, formulate the main result of the section.

Theorem 2. The maximum degree of GB2k is equal to 2k(21 + 1) · . . . · (2k + 1). Any vertex of
maximum degree is a quadratic bent function.

11



Proof. Denote by h an arbitrary quadratic bent function in 2k variables. Define the following
set:

Dt(f) = {L | L ∈ ASPt2k and f is affine on L}, 0 ≤ t ≤ k.

By proposition 1 the number of bent functions that are at the distance 2k from f is equal to
|Dk(f)|. Prove that |Dk(f)| ≤ |Dk(h)|.

Show that |Dt(f)| ≤ |Dt(h)| using induction by t, 0 ≤ t ≤ k. For t = 0 it is obvious that
|D0(f)| = |D0(h)| = 22k.

Let for t < k it hold |Dt(f)| ≤ |Dt(h)|. Prove that |Dt+1(f)| ≤ |Dt+1(h)|. Let Nf (L) =
{U ∈ Dt+1(f) | L ⊂ U}, where L ∈ Dt(f). Note that any U ∈ Nf (L) can be represented as
U = L ∪ (a⊕ L) for any a ∈ U\L. Then

|Dt+1(f)| = 1

2(2t+1 − 1)

∑
L∈Dt(f)

|Nf (L)|, (7)

since |ASPt(U)| = 2(2t+1 − 1). By proposition 5 and by lemmas 8 and 2 for any L ∈ Dt(f)
and L′ ∈ Dt(h) it holds |Nf (L)| ≤ |Nh(L′)| = 22k−2t − 1. Therefore, |Dt+1(f)| ≤ |Dt+1(h)|.

Thus, |Dk(f)| ≤ |Dk(h)|. Since |Nh(L′)| = 22k−2 dimL′ − 1, it is true

|Dk(h)| = 22k
k−1∏
t=0

22k−2t − 1

2(2t+1 − 1)
= 2k

k∏
t=1

22t − 1

2t − 1
= 2k(21 + 1) · . . . · (2k + 1).

Note that this formula for a quadratic bent function was calculated in [12].
Prove that the bound is reached only on quadratic bent functions. Let f be not quadratic

and |Dk(f)| 6= 0, note that in this case it holds k > 2. Then by theorem 1 function f is not
completely affinely decomposable of order k. It means that f is affine on some L ∈ ASPk2k and
not affine on some its coset.

Without loss of generality it can be supposed that L is a linear subspace and f |L = 0 thanks
to transformations of the form f(x⊕ a)⊕ 〈w, x〉 ⊕ c. By proposition 10 function f is balanced
on each coset of L except L.

Let L′ ∈ LSPk−1(L), so, f |L′ = 0. Let Nf (L′) > 1, i. e. f is affine on L′ ∪ (a ⊕ L′) for
some a /∈ L. Then by lemma 3 f |a⊕L′ = c for some c ∈ F2. Since f |a⊕L is balanced, it holds
f |(a⊕L)\(a⊕L′) = c⊕ 1 and by lemma 3 function f is affine on a⊕ L.

At the same time if L′, L′′ ∈ LSPk−1(L) are different, function f can not be affine on both
L′ ∪ (a⊕ L′) and L′′ ∪ (a⊕ L′′) due to balancedness of f |a⊕L. Note that |LSPk−1(L)| = 2k − 1
and |{a ⊕ L | a ∈ F2k

2 \L}| = 2k − 1. Thus, if Nf (L′) > 1 for any L′ ∈ LSPk−1(L), then f is
affine on each coset of L. It is a contradiction, therefore, Nf (L′) = 1 for some L′ ∈ LSPk−1(L).
At the same time Nh(U) = 3 for any U ∈ Dk−1(h), that is why Dk(f) < Dk(h) by equality (7).
The theorem is proven.

8 Bent functions at the minimal distance from a Maiorana—
McFarland bent function

In this section bent functions at the minimal distance from a Maiorana—McFarland bent func-
tion are considered.
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Lemma 9. Let f, g ∈ M2k, i. e. f(x, y) = 〈x, π(y)〉 ⊕ ϕ(y), Let g(x, y) = 〈x, π′(y)〉 ⊕ ϕ′(y).
Then dist(f, g) = 2k if and only if one of the following conditions holds

• π = π′ and dist(ϕ,ϕ′) = 1;

• π′ = π◦τa,b and ϕ′(y) = ϕ(y) for all y ∈ Fk2\{a, b}, where τa,b is a transposition that swaps
two different a, b ∈ Fk2.

Proof. Let S = {y ∈ Fk2 | π(y) 6= π′(y)}. Then

dist(f, g) = 2k
∑

t∈Fk
2\S

(ϕ(t)⊕ ϕ′(t)) +
∑
s∈S

dist(f(x, s), g(x, s)).

Consider the second part of the sum: dist(f(x, s), g(x, s)) is equal to the number of solutions
of

〈x, π(s)⊕ π′(s)〉 ⊕ ϕ(s)⊕ ϕ′(s) = 1.

Since π(s) 6= π′(s), there are exactly 2k−1 different x ∈ Fk2 on which f(x, s) 6= g(x, s). Thus,

dist(f, g) = 2k
∑

t∈Fk
2\S

(ϕ(t)⊕ ϕ′(t)) + 2k−1|S|.

It means that dist(f, g) = 2k if and only if either |S| = 0, dist(ϕ,ϕ′) = 1 or |S| = 2,
ϕ′(y) = ϕ(y) for all y ∈ Fk2\S.
Since the set of all transpositions generates any permutation, the following proposition holds.

Proposition 12. A subgraph of GB2k induced by vertices from M2k is a regular connected
graph.

Now the minimum degree of GM2k can be estimated.

Proposition 13. Let f ∈ M̃2k. Then the degree of vertex f in GM2k is not less than 22k+1−2k.

Proof. Since an affine transform does not change distance between any two Boolean functions,
without loss of generality we can suppose that f ∈M2k. By lemma 9 there are 4 ·2k(2k−1)/2+
2k = 22k+1 − 2k bent functions from M2k that are at the distance 2k from f .

It is not difficult to prove the following statement that helps us to determine whether a bent
function is affinely equivalent to a Maiorana—McFarland bent function.

Proposition 14 (A. Canteaut et al. [5]). Let f ∈ B2k. Then f ∈ M̃2k if and only if there
exists L ∈ ASPk2k such that f is affine on each coset of L.

9 Connectivity of GM2k

The main idea of proving connectivity of GM2k is to prove that there exists a path in GM2k

between any two quadratic bent functions, since there always exists a path between f ∈ M̃2k

and some quadratic bent function by proposition 12. Describe a way to find a path in GM2k.

Lemma 10. Let f ∈ B2k, f be quadratic and g = f ⊕ IndU , where U is an affine subspace
of Fk2. Let L ∈ ASPk(U) and f be affine on L. Then g ∈ M̃2k and there is a path in GM2k

between f and g.
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Proof. As long as L ∈ ASPk(U), it holds

U = (a1 ⊕ L) ∪ (a2 ⊕ L) ∪ . . . ∪ (am ⊕ L), m = 2dimU−k,

where all ai ⊕ L are different cosets of L. Function f is quadratic, that is why it is affine on
each coset of L. Next, let

f0 = f and fi = fi−1 ⊕ Indai⊕L, 1 ≤ i ≤ m.

It is obvious that fm = g and dist(fi, fi+1) = 2k. Since a1 ⊕ L, . . . , am ⊕ L are not intersected,
each fi is affine on each coset of L like f . Thus, each fi is a bent function by construction 3 and
f0, . . . , fm ∈ M̃2k by proposition 14.
It is not difficult to prove the following lemma.

Lemma 11. Let f ∈ B2k and f be quadratic. Then there is a path in GM2k between f and
f ⊕ `a,c for any a ∈ F2k

2 and c ∈ F2.

Proof. Consider U = supp(`a,c). It is obvious that either U ∈ ASP2k−1
2k or U = F2k

2 or U is
empty. For the third case the proof is obvious. Otherwise by lemma 3 there exists L ∈ ASPk(U)
such that f is affine on L. Finally, by lemma 10 there exists a path between f and f ⊕ `a,c.

The following lemma is the main step for proving existence of a path in GM2k between any
two quadratic bent functions.

Lemma 12. Let f ∈ B2k and f be quadratic. Then there is a path in GM2k between f and
f(x1, . . . , x2k−1, x2k ⊕ x1).

Proof. Since f is quadratic, represent it as the following:

f(x1, . . . , x2k) = f ′(x1, . . . , x2k−1)⊕
(w1x1 ⊕ . . .⊕ w2k−1x2k−1 ⊕ d)x2k,

where w1, . . . , w2k−1, d ∈ F2. Then for g(x1, . . . , x2k) = f(x1, . . . , x2k−1, x2k ⊕ x1) it holds

g(x) = f(x)⊕ (w1x1 ⊕ . . .⊕ w2k−1x2k−1 ⊕ d)x1.

Consider S = supp((w1x1 ⊕ . . .⊕ w2k−1x2k−1 ⊕ d)x1). Note that S is an affine subspace. Prove
that there exists L ∈ ASPk(S) such that f is affine on L.

Case w1 = . . . = w2k−1 = 0 is impossible, because of bent function f(x)⊕ dxk must depend
on each its variable. Therefore, there exists wt 6= 0 for some 1 ≤ t ≤ 2k − 1.

If only w1 is nonzero, then S = supp(x1(x1 ⊕ d)). If d = 1, functions f and g are the same.
Otherwise S is an affine subspace of dimension 2k − 1 and by lemma 3 there exists required L.

If there exists other nonzero wt, without loss of generality suppose that t = 2k−1. Consider
f |x2k−1=w1x1⊕...⊕w2k−2x2k−2⊕d⊕1 ⊕ x2k which is equal to

f ′(x1, . . . , x2k−2, w1x1 ⊕ . . .⊕ w2k−2x2k−2 ⊕ d⊕ 1)

as a function in 2k − 2 variables. Let U = {x ∈ F2k−2
2 | x1 = 1} = supp(x1). Then by

lemma 3 there exists a (k − 1)-dimensional affine subspace L′ of F2k−2
2 that L′ ⊆ U and

f ′(x1, . . . , x2k−2, w1x1 ⊕ . . .⊕ w2k−2x2k−2 ⊕ d⊕ 1) is affine on L′.
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Therefore, f is affine on a k-dimensional affine subspace L ⊆ F2k
2 ,

L = {(y, w1y1 ⊕ . . .⊕ w2k−2y2k−2 ⊕ d⊕ 1, z) : y ∈ L′, z ∈ F2},

and at the same time L ⊆ S, because of (w1x1 ⊕ . . . ⊕ w2k−1x2k−1 ⊕ d)x1 does not depend on
x2k, w1x1 ⊕ . . .⊕w2k−1x2k−1 ⊕ d = 1 for any x ∈ L and x1 = 1 due to choosing L′. Required L
has been found.

Finally, thanks to S to be an affine subspace and L ∈ ASPk(S), by lemma 10 there exists a
path between f and g.

The next theorem is the main result concerning connectivity of subgraphs of GB2k.

Theorem 3. Graph GM2k is connected for all k ≥ 1.

Proof. According to lemma 9, for any bent function f0 ∈ M2k there are f1, . . . , fn ∈ M2k for
some n where dist(fi, fi+1) = 2k and fn(x, y) = x1y1 ⊕ x2y2 ⊕ . . .⊕ xkyk.

Therefore, for any bent function f0 ∈ M̃2k there are f1, . . . , fn ∈ M̃2k for some n where
dist(fi, fi+1) = 2k and fn is a quadratic bent function, i.e. there is a path in GM2k between any

f0 ∈ M̃2k and some quadratic bent function.
Thus, it is enough to prove that there is a path in GM2k between any two quadratic bent

functions.
According to Dickson’s theorem, for any two quadratic bent functions f, g in 2k variables

there exist an invertible 2k × 2k binary matrix A and affine function ` ∈ A2k such that g(x) =
f(xA)⊕ `(x) for any x ∈ F2k

2 .
At the same time by lemma 12 there is a path in GM2k between any quadratic f and

f(x1, . . . , x2k−1, x2k ⊕ x1). On one hand, we can easily extend lemma 12 (using permutations
on variable numbers) to transformations of the form

x′l = xl for all l ∈ {1, . . . , 2k}\{i},
x′i = xi ⊕ xj

for any i, j ∈ {1, . . . , 2k}, i 6= j. On the other hand, the set of all these transformations generates
any invertible transform xA. In view of lemma 11, the theorem is proven.

Corollary 1. Graphs GB2, GB4 and GB6 are connected.

It follows from all bent functions in 2, 4 and 6 variables are affinely equivalent to Maiorana—
McFarland bent functions (according to affine classification of bent function in small number
of variables [17], B2 and B4 consist of the only class of affine equivalence; B6 consists of four
classes; all class representatives are affinely equivalent to Maiorana—McFarland bent functions).

10 Conclusion

Note that there are many open questions concerning GB2k and GM2k. For example, the min-
imum degree of GM2k and an exact lower bound of a vertex degree in GB2k when the vertex
belongs to M̃2k are still unknown.

There are also open questions concerning connectivity of GB2k. In general, GB2k is not
connected starting with k = 7 due to existing isolated vertices, i.e. such bent functions that there
are no bent functions at the distance 2k from them. Such bent functions are called non-weakly
normal, they were constructed in [5]. At the same time it is an open question whether GB8,
GB10 and GB12 are connected as well as whether GB2k without isolated vertices is connected.
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