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Abstract. SQUARE is an iterated block cipher proposed by Daemen et.al. in FSE1997. Inspired 
by Bogdanov et.al.’s recent works [12], we first present an improved biclique attack, i.e. stat-based 
independent biclique attack on full rounds SQUARE in this paper. We construct a one round 
stat-based independent biclique for the initial round, and utilize matching with precomputation 
techniques to recover the whole key from the remaining rounds. The computing complexity of our 
attack is 126.172 encryptions and required data can be reduced to a single plaintext-ciphertext pair. 
To be the best of our knowledge, our attack has an optimal computing complexity and data 
complexity of biclique attack on full rounds SQUARE.  

Keywords: Block cipher SQUARE, Biclique attack, Star-based independent biclique, balanced 
Biclique 

1.  Introduction 

SQUARE. SQUARE is an eight rounds SPN block cipher [1] proposed by Daemen, Knudsen and 
Rijmen in FSE1997. As we all know, Rijndael, the candidate of Advanced Encryption Standard 
(AES), was also proposed by Daemen and Rijmen in 1997, SQUARE is considered as the 
predecessor of the AES. So all kind of cryptanalysis of AES, such as difference cryptanalysis [13], 
linear cryptanalysis [14], boomerang attack [2], biclique attack [3], etc, are also suitable for 
SQUAER. The first attack on SQUARE is a square attack [1] which is named after the block 
cipher SQUARE, this square attack can break six rounds SQUARE with 722 encryptions, 322
chosen plaintexts, and 722  block of memory[1]. In 2011, Koo et.al.gave a related-key 
boomerang attack on full rounds SQUARE[2], they applied a three rounds related-key differentials 
with probability of 282  to construct a seven rounds related-key boomerang distinguisher, and 
successfully attacked on full rounds SQUARE with 362 encryptions and 1232 data. In 2014, 
Hamid et.al first presented a single-key attack on full rounds SQUARE [3], they constructed a 3 
rounds biclique using the independent related-key differentials and applied matching with 
precomputation on the remaining five rounds with 1262 encryptions and 482 chosen plaintexts. 
This year, ZHANG et.al showed a biclique attack on full round SQUARE [15], which need about 

126.32  encryptions and 162  chosen plaintexts. 
Biclique attack. Biclique attack was firstly proposed by Khovratovich et.al in 2011[4]. A biclique 
allows an adversary to test a set of key candidates very efficiently. The biclique attack has been 
regarded as an advance in the fields of symmetric-key cryptography. Since its introduction, an 
entire rounds cryptanalysis researches emerged, aiming to apply the biclique techniques to various 
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block ciphers [5][6][7][8][9][10]. In 2015, Bogdanov et.al. [12] proposed star biclique structures, 
i.e., the star-based biclique attacks, on all versions of AES cipher with the minimal possible data 
complexity theoretically, but their star biclique structures are not independent. Up to now, the 
star-based biclique attack has not been widely used. 
Our contributions. Motivated by the star-based biclique attacks on AES [12], we first present a 
star-based independent biclique attack on full rounds block cipher SQUARE, i.e., we first give a 
star independent biclique structure. We construct a single round star independent biclique on the 
first round according to the independent related-key differentials, and apply matching with 
precomputation technique on the remaining seven rounds to recover the all 128 bits keys. Perhaps 
a star independent biclique structure could result in a best computing complexity and date 
complexity among other known biclique structures for full rounds block ciphers. To be the best of 
our knowledge, our star-based independent biclique attack on full rounds SQUARE, with 126.172
encryptions and a single plaintext-ciphertext pair, are better than the existing results. In addition, 
we show that a biclique attack can be improved by changing the biclique constructions or by 
selecting better differences characteristics in the biclique construction. 
Outline. This paper is organized as follows. In section 2, we describe the block cipher SQUARE. 
In section 3, we introduce star-based independent bicliques. In section 4, we present a star-based 
independent biclique attack on full rounds SQUARE. Finally, we give our conclusion in Section5. 

2  Description of SQUARE 

Here, we give a description of block cipher SQUARE.  

2.1 Round Transformation 

SQUARE is an eight rounds an iterated block cipher with a block length and a key length of 128 
bits each. The round transformation of SQUARE is composed of four distinct transformations. 
Similar to AES, SQUARE is also SPN structure. The basic building blocks of the cipher are five 
different invertible transformations that operate on a 4 4 array of bytes. The element of a state 
a  in row i  and column j is specified as ,i ja . Both indexes start from 0. The round 

transformations are composed of a linear transformation , a nonlinear transformation , a byte 
permutation   and bitwise round key addition , as is depicted in Fig1. 


0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 1 2

3

4 5 6

7
8 9 10

11

12
13
14
15

  

 
Fig1. The Round Transformation of SQUARE 
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A linear transformation .  is a linear operation that operations separately on each of the four 
rows of a state. We have 

      , , 1 ,1 2 ,2 3 ,3: ( ) , 0,1,2,3i j j i o j i j i j ib a b c a c a c a c a i j               

Where the multiplication is in 8(2 )GF  and the indices of c must be taken modulo 4. The rows 
of a state can be denoted by polynomials, i.e., the polynomial corresponding to row i  of a state 
a  is given by 

2 3
,0 ,1 ,2 ,3( )i i i i ia x a a x a x a x                        

Defined ( ) j
j jc x c x  ,  can be described as a modular polynomial multiplication: 

4( ) ( ) ( ) ( ) mod1 0 4i ib a b x c x a x x i       

( )c x  can be denoted as a 4 4  MDS matrix M in 8(2 )GF ,where 
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

M
       

 

A nonlinear transformation .   is a nonlinear byte substitution, identical for all bytes. Every 
byte in the state is replaced by the byte generated after using a S-box. 

, ,: ( ) ( )i j i jb a b S a     

Where S is an invertible 8-bit substitution table or S-box.  
A byte permutation  .   is a linear transformation transposing the state matrix.   is to 
interchange of rows and columns of a state. 

, ,: ( ) i j j ib a b a     

 is an involution, so 1   . 
Bitwise round key addition  .  is bitwise Xor. The 128-bit internal state is Xor with the 
128-bit subkey:  

[ ] : [ ]( )t t tk b k a b a k      

where tk is the subkey of round t . 

2.1  The Key Schedule 
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The key schedule of SQUARE is simple but effective. The key schedule generates 9 subkeys 
0 1 8, ,...,rk rk rk and each of them is 128 bits. K is the master key and 0rk is initiated with K . 
+1irk , 0,1,...,7i  is generated by 

+1
(0) (0) (3)

+1 1
( ) ( ) ( 1)

= ( )
= , , 1,2,3

i i i i
row row row
i i i
row j row j row j

rk rk rotl rk C
rk rk rk for i j 

 
   

where iC is a round constant and the operation rotl is a left-rotation operation 

,0 ,1 ,2 ,3 ,1 ,2 ,3 ,0[ , , , ] [ , , , ]i i i i i i i irotl a a a a a a a a  

SQUARE is defined as eight rounds preceeded by a key addition 0[ ]k  and by 1  : 
8 7 6 5 4 3 2 1 0 1[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]SQUARE k k k k k k k k k k                    , 

where [ ]tk  is the round transformation 

[ ] [ ]t tk k         

3  Star-based Independent Bicllique 

In this section, we introduce Canteaut el.al’s star-based biclique structure, and construct a 
star-based independent biclique from related-key differentials. 

3.1 Star-based Biclique Structure 

In paper[11], Canteaut el.al first proposed a biclique attack whose data complexity can be reduced 
to a single plaintext-ciphertext pair. They suggested that the structure of biclique with just one 
state in one vertex set and 22 d states in the other one, rather than 2d states in one vertex set and 
2d states in the other one. The structure of the former is called a star (See Fig2), and the latter’s is 
called a balanced biclique (See Fig3). 

1y 2y 22y d

x
1k 22 dk

           

0S 1S 2 1dS 

0C 1C 2 1dC 

[0,0]K [2 1,2 1]d dK  

 
Fig2. Stars: unbalanced biclique with dimension d              Fig3. Balanced biclique with dimension d  

3.2 Constructing a Star-based Independent Biclique from Related-Key differentials 
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As we know, there are two approaches to construct balanced bicliques. One is from independent 
related-key differentials, and the other is from interleaving related-key differentials. In most cases 
of biclique attacks, ones always consider independent related-key differentials. Because the 
star-based biclique has an advantage of data complexity, we focus on constructing a star biclique 
from independent related-key differentials, and named this kind of biclique as a star-based 
independent biclique. It is worth to noting that we have implemented a star-based independent 
biclique attack on full rounds SQUARE in this paper. The procedure of constructing a star-based 
biclique is following. 
Suppose we have a set of 2 1d   related-key  - differentials from x to ,i jy : 

(0, )K
i i   

and also have another set of 2 1d   related-key  - differentials from the same part of the 
cipher: 

(0, )K
j j   

If the - differentials and - differentials do not share any active non-linear components, i.e., 
both of the differentials are independent, we should construct an independent biclique.  
If input x , output 0,0y and key [0,0]K  also conform to both of  - differentials and  - 
differentials, then the values 

, 0,0
[ , ] [0,0]
i j i j

K K
i i

x
y y
K i j K

        
 

form a star of dimension d , with 0 0 0 0 0K K        . We named it as a star-based 
independent biclique . 

4  A Star-based Independent Bicllique Attack on Full Round Block Cipher SQUARE 

According to Section 3, we illustrate our star-based independent biclique attack on full rounds 
block cipher SQUARE in this section. We construct a single round star-based 
independent-biclique of SQUARE with dimension eight, and apply this star-based 
independent-biclique to recover all keys of full round SQUARE. Our single round star-based 
independent-biclique can place the initial round or final round of SQUARE. Here, we place it at 
the initial round.  

4.1 Key Partitioning 

We divide the 128-bit keyK into 1122 groups with 162 keys in each group. The index i is placed 
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in byte 0 whereas index j is placed in byte 15.  - differentials activates byte 0 of key $0  and 

 - differentials activates byte 15 of key $0 . The base key [0,0]K , also the first subkey, are all 
16-byte values with two bytes fixed to 0 whereas the remaining 14-bytes take all possible values 
(shown in Fig4). All of 162 keys in a set [ , ]K i j are defined relative to the base key [0,0]K , and 

two differentials K
i and K

j , where 8, {0,...,2 1}i j  . 

K
i  K

j 

i

j  
Fig4. key partitioning 

4.2 Constructing a Single Round Star-based Independent-Biclique 
Step1-base computation. Let 0x be the plaintext, obtain 0,0 [0,0] 0( )Ky f x  under the base key

[0,0]K , where f is the subcipher that cover the star-based independent-biclique (Fig5. left). 

Step2- -differentials computation. Under 82 1 key differences K
i ( 8{0,...,2 1}i  ), get

0 Ki i
 (Fig4. middle). This process has the same starting point as the base computation. 

Step3- -differentials computation. Under 82 1 key differences K
j ( 8{0,...,2 1}j  ), get

0 Kj
j

 (Fig4. right) from the same part of the SQUARE cipher, i.e., this process has the 
same starting point as the base computation. 
Step4- biclique computation. Both the differentials do not share any non-linear components, we 
can combine both the differentials into a combined differentials. Then the values 

, 0,0 0 0

0 0

0
[ , ] [0,0] 0
i j i j

K K K K
i i

x
y y
K i j K

              
 

form an star with dimension eight. As is depicted in Fig5, the differences propagation in these two 
differences over one round is non-overlapping, so we could obtain a star-based independent 
biclique. 
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Fig5. Star over first round 

4.3 Matching with Precomputation 

Here, we choose to match on byte 0 in the state after byte permutation transformation   of 
round 4. For the forward direction of matching, in round 2, no S-boxes is to be recomputed. In 
3-th round, four S-boxes have to be recomputed. In 4-th round, one S-boxes need to be 
recomputed. So there are 5 S-boxes to be recomputed in the forward matching (Fig6. top). For the 
backward direction of matching, in 5,6,7,8-th round, four S-boxes, sixteen S-boxes, eight S-boxes, 
three S-boxes need to be recomputed, respectively. Hence, there are in total 36 S-boxes to be 
recomputed.  


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
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$6

  

$7

  

$8

Forward Matching

Backward Matching

 
Fig6. Matching with Precomputations 

4.4  Complexities of the Attack 

Computing complexity. The full round SQUARE cipher has 16*8=128 S-boxes. From section 
4.3, the matching with precomputation process yields a recomputation of 36 out of 128 S-boxes. 



8 
 

Thus, the recomputation needs 16 14.17362 2128recompC     encryptions, while the 

precomputation needs 8 7.8172 28precompC     encryptions. The constructing one star-based 

independent-Biclique needs 8 612 2 28bicliqueC     encryptions. The eliminating false positives 

needs 82falseposC   encryptions. Therefore, the computing complexity of our star-based 
independent biclique attack on full rounds SQUARE is 

2

112 14.17 6 7.81 8
126.17

2 ( )
2 (2 2 2 2 )
2

n d
full recomp biclique precomp falseposC C C C C    

    


  

Data complexity. For our star-based independent biclique attack on full rounds SQUARE, the 
minimal data complexity is theoretically attainable, which can be reduced to a single known 
plaintext-cihpertext pair. One known plaintext-ciphertext pair can sometimes be enough. Two 
known plaintext-ciphertext pairs yield a success probability of practically 1.  
Memory complexity. The memory complexity is upper bounded by 82  computing of subcipher 
involved in the precomputation stage. 

5 Conclusions 

In this paper, we introduce a star-based independent bicliques attack, and first propose a  
star-based independent biclique attack (balanced biclique) on full rounds block cipher SQUARE. 
Our attack could reduce the data complexity to the theoretically attainable minimum. In our attack, 
we construct a single round star-based biclique on the first round of SQUARE and apply matching 
with precomputation on the remaining seven rounds. The computing complexity of our attack is 
about 126.172  encryptions, and the data complexity can be reduced to a single plaintext-ciphertext 
pair. Compared with the existing biclique attacks on full rounds SQUARE, both the computing 
complexity and data complexity of our attack are optimal. Additionally, we can note that the 
structure of biclique perhaps play an important role in reducing the data complexity.  
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Appendix A 
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Fig7. Biclique differentials and matching in full round SQUARE 


