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Abstract. In this paper, we present an invariant subspace attack against
block cipher Midori64 which has recently been proposed by Banik et al. at
Asiacrypt 2015 to achieve low energy consumption. We show that when
each nibble of the key has the value 0 or 1 and each nibble of the plaintext
has the value 8 or 9, each nibble of the ciphertext also has the value 8
or 9 with probability one regardless of the number of rounds applied.
This fact indicates that Midori64 has a class of 232 weak keys that can be
distinguished with a single query. It also indicates that the number of
keys generated uniformly at random for Midori64 must not exceed 296,
i.e., the pseudorandom-permutation security of Midori64 is only up to
96 bits instead of 128 bits. Interestingly, given the information that the
key is from the 232 weak key subspace, key recovery can be performed
within time complexity 216 and data complexity 21. We have confirmed
the correctness of the analysis by implementing the attack. At the current
stage, our attacks do not apply to Midori128.

Keywords: Midori, block cipher, invariant subspace attack, S-box, round
constant, weak key, pseudorandom-permutation.

1 Introduction

Midori is a family of lightweight block ciphers recently published at Asiacrypt
2015 [1]. They have been advertised as one of the first lightweight ciphers optimized
with respect to the energy consumed by the circuit per bit in encryption or
decryption operation. To achieve the desired low energy goal, several design
decisions were made in Midori. The diffusion layer consists of almost MDS 4× 4
binary matrices. The 4-bit S-box has a small delay, i.e. 1.5-2 times faster than
those of PRINCE [3] and PRESENT [2]. The round constants are seemingly
random binary values extracted for the constant π. The key schedule is trivial
and thus efficient. Finally, the number of rounds is rather small for lightweight
ciphers: only 16-20 rounds are used.

The submission document of Midori contains a standard analysis of the ciphers
against various types of attacks: differential and linear, boomerangs, impossible



differentials, etc. As a result, it has been concluded that the ciphers provide
a safe security margin. Additional analysis of Midori has been provided in [7].
In that work, Lin and Wu show that 12 rounds (out of 16) of Midori64 can be
attacked with the meet-in-the-middle technique, with a rather high complexity:
the key recovery requires around 255 chosen plaintexts, 2106 memory, and 2125.5

computations.

Our Contribution. We show that Midori64 has a class of 232 weak keys that can
be distinguished with a complexity of a single query. Furthermore, within this class
of keys, a key recovery can be achieved efficiently given two plaintext-ciphertext
pairs, including one that should verify the distinguisher.

Our analysis is based on the invariant subspace attacks [5] and uses the
unfortunate combination in Midori64 of round constants, fixed points for the
S-box, and multiplication by binary matrix in the diffusion layer. When each
nibble of the master key has the value 0 or 1 (in total 232 such keys), and each
nibble of the state (including the plaintext) has the value of 8 or 9, then the
transformations in Midori64 keep the state in the same class (of nibbles values 8
and 9). Hence, regardless of the number of rounds, the class is maintained, and as
a result, the ciphertext belongs to this class as well. This fact allows to launch an
efficient distinguisher. The key recovery uses an additional fact: the values 8 and
9 are fixed points for the S-box used in Midori64. As a result, the whole cipher
under the weak-key class becomes a linear transformation (the only non-linear
component, the S-box, turns into the identity mapping). Therefore, recovering
the key is equivalent to solving a system of linear equations and can be achieved
given only two pairs of plaintext-ciphertext verifying the distinguisher.

We have confirmed the correctness of the whole analysis by implementing
independently the distinguisher and the key recovery. At the current stage, our
attacks do not apply to Midori128.

2 Preliminaries

2.1 Description of Midori

Midori consists of two algorithms Midori64 and Midori128. The block size, n, is 64
bits and 128 bits for Midori64 and Midori128, respectively, and the key size is 128
bits for both. Both of Midori64 and Midori128 adopt a standard SPN structure,
and the internal state is represented as 4× 4 cells, where the size of each cell is 4
bits for Midori64 and 8 bits for Midori128. The state S consisting of sixteen cells
s0, s1, . . . , s15 has the following data structure:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
In high-level, by using a 128-bit key, Midori64 and Midori128 generate a

whitening key WK and r − 1 round keys RK 0,RK 1, . . . ,RK r−2. Here, r is the



number of rounds, which is 16 for Midori64 and 20 for Midori128. The plaintext
is first loaded into the state and the whitening key WK is XORed to the state.
Then, the round function RF : {0, 1}n × {0, 1}128 7→ {0, 1}n, which takes as
input the current state and the round key RKi and outputs the updated state,
is iterated r − 2 times. Finally, the last round function RF l is applied and the
resulting state is output as the ciphertext.

Key Generation. In Midori64, the 128-bit key K is separated into two 64-bit
states K0 and K1. Then, the whitening key WK is computed by K0 ⊕K1, and
the round key RK i for i = 0, 1, . . . 14 is computed by K(i mod 2) ⊕ αi, where αi is
a round constant described below. In Midori128, WK is simply K and RK i for
i = 0, 1, . . . 18 is Ki ⊕ αi.

Round constant αi where i = 0, 1, . . . . , 18 is the only component which differs
in different rounds: αi consists of 16 binary cells. The constants have been derived
from the hexadecimal encoding of the fractional part of π. For example, α0 to α3

are defined as follows.

α0 =


0 0 1 0
0 1 0 0
0 0 1 1
1 1 1 1

 , α1 =


0 1 1 0
1 0 1 0
1 0 0 0
1 0 0 0

 , α2 =


1 0 0 0
0 1 0 1
1 0 1 0
0 0 1 1

 , α3 =


0 0 0 0
1 0 0 0
1 1 0 1
0 0 1 1

 .
The other αi’s are similarly defined. Refer to [1] for more details. In this paper,
we later exploit the fact that all the cells in any αi are 0 or 1.

Round Function and the Last Round Function. The round function RF
consists of the four operations SubCell, ShuffleCell, MixColumn and KeyAdd that
update the n-bit state S.

SubCell. This operation in Midori64 applies a 4-bit S-box Sb0 to each cell and
its equivalent in Midori128 applies four 8-bit S-boxes SSb0, SSb1, SSb2 and SSb3

to each of four cells in Row 0, Row 1, Row 2 and Row 3, respectively. Each SSbi
is generated by 4-bit S-box Sb1. Refer to [1] for the details of how to generate
SSbi from Sb1. The full specifications of Sb0 and Sb1 are shown in Table 1.

Table 1: Specifications of Sb0 and Sb1.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb0(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Sb1(x) 1 0 5 3 e 2 f 7 d a 9 b c 8 4 6



ShuffleCell. This transformation is a cell-wise permutation. Each cell is permuted
as follows. 

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 −→

s0 s14 s9 s7
s10 s4 s3 s13
s5 s11 s12 s2
s15 s1 s6 s8

 .
MixColumn. This transformation applies a 4 × 4 binary involution matrix to
each column of the state as follows.

si
si+1

si+2

si+3

 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




si
si+1

si+2

si+3

 , for i ∈ {0, 4, 8, 12}.

KeyAdd. KeyAdd(S,RK i) XORs RK i to the state S.

The last round function RF l applies only two operations SubCell(S) and
KeyAdd(S,WK ).

Summary. The encryption of Midori can be summarized as below in Algorithm 1,
and in particular Midori64 encryption function is depicted in Figure 1. Note that
the decryption can be similarly described. However, since our attack only uses
the encryption, we omit the precisions on the decryption.

Algorithm 1 – Midori encryption algorithm.

1: function Midori-Encryption(P )
2: S ← P
3: S ← KeyAdd(S,WK )
4: for i = 0, . . . , r − 2 do
5: S ← SubCell(S)
6: S ← ShuffleCell(S)
7: S ← MixColumn(S)
8: S ← KeyAdd(S,RK i)
9: end for

10: S ← SubCell(S)
11: S ← KeyAdd(S,WK )
12: return S
13: end function
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Figure 1: Midori64 encryption algorithm.

2.2 The Invariant Subspace Attack

As a method of cryptanalysis, the invariant subspace attack has been introduced
by Leander et al. at CRYPTO 2011 [5]. In this method, the adversary aims to
find so-called invariant subspaces, i.e. subsets of the set of all possible state and
key values, invariant of the round transformations used in the analyzed cipher.
When such a subset exists, then the adversary encrypts plaintexts that belong
to the subset, assumes the master key belongs as well to the subset (thus it is
a weak-key attack) and expects to obtain corresponding ciphertexts that also
belong to the subset. This immediately yields a distinguisher for the cipher, while
more advanced approaches can be used for a key recovery.

Non-trivial invariant subspaces not necessarily exist for a given cipher. When
they do exist, they are found either by a careful analysis (as it is the case of
the analysis of PRINTCipher [5]) or with the use of a specialized tool [6]. To
deduce the invariant subspace, the former method requires examination of all the
transformations used in the cipher, which usually provide a hint of the possible
subspace. On the other hand, the latter method is generic and is achieved by a
computer search. Its success depends on the proportion of the sizes of weak to
all key class.

3 Subspace Attack on Midori64

This section explains our subspace attack on Midori64. Our attack is a weak-key
attack, in which the size of the weak-key class is 232. With such a weak key,
Midori64 can be distinguished from a random permutation only with one chosen
plaintext query, negligible computational cost, and negligible memory amount.
Moreover, the key can be recovered from the 232 choices with approximately 216

operations.

3.1 Distinguisher with Subspace Attack

We first introduce several notations used in this attack.

K: a subspace of nibble values consisting of two elements 0 and 1, i.e., K , {0, 1}



K: a subspace of state values in which each of its sixteen nibbles belongs to K,
i.e., K , K16

S: a subspace of nibble values consisting of two elements 8 and 9, i.e., S , {8, 9}
S: a subspace of state values in which each of its sixteen nibbles belongs to S,

i.e., S , S16

Theorem 1 (Invariant Subspace). When a 128-bit key K0‖K1 satisfies K0,K1 ∈
K, any plaintext P ∈ S is mapped to the ciphertext C ∈ S with probability one by
Midori64.

Throughout this section, we prove Theorem 1. To achieve this, we focus indepen-
dently on each transformation used in Midori64.

Round Key Generation. Let x, y ∈ K. Then, x⊕ y ∈ K. Therefore, for any
X,Y ∈ K, X ⊕ Y ∈ K. This fact enables us to simulate all round keys.

The whitening key WK is computed by K0 ⊕K1. By assuming K0,K1 ∈ K,
we have WK ∈ K.

The round key for the i-th round, RK i, is computed by K(i mod 2) ⊕ αi. Here,
an important observation for our attack is that all the round constants αi only
consist of 0 and 1, i.e., αi ∈ K for i = 0, 1, . . . , 14. By assuming K0,K1 ∈ K, we
have RK i ∈ K for all i = 0, 1, . . . , 14.

Data Processing Part. Let x ∈ S and y ∈ K. Then, x⊕ y ∈ S. Therefore, for
any X ∈ S and Y ∈ K, X ⊕ Y ∈ S. As long as the plaintext P ∈ S, the state
after adding the whitening key, WK ∈ K, belongs to S.

Then, the state is processed by the SubCell operation. Here, we exploit two
particular data transitions through the S-box for Midori64; Sb0(8) = 8 and
Sb0(9) = 9. Namely, as long as the input state belongs to S, SubCell is equivalent
to the identity map. Obviously, we obtain S← SubCell(S).

The subsequent ShuffleCell is a nibble-wise permutation, and since all nibbles
in S satisfy S, S← ShuffleCell(S).

The MixColumn operation is slightly more complex. Because the diffusion
matrix is a binary matrix, each output nibble from MixColumn can be represented
as the XOR of three input nibbles. As long as the input state belongs to S, each
of three nibbles is either 8 or 9. Thus, the possibilities for each output nibble is
the following eight cases:

8⊕ 8⊕ 8 = 8, 8⊕ 8⊕ 9 = 9, 8⊕ 9⊕ 8 = 9, 8⊕ 9⊕ 9 = 8,

9⊕ 8⊕ 8 = 9, 9⊕ 8⊕ 9 = 8, 9⊕ 9⊕ 8 = 8, 9⊕ 9⊕ 9 = 9.

In any case, each output nibble belongs to S, thus S← MixColumn(S).

The KeyAdd operation is the same as the whitening key addition, i.e., S←
KeyAdd(S,RK i ∈ K).



Summary. Thanks to the property of αi ∈ K, any weak key K0,K1 ∈ K leads
to WK ∈ K and RK i ∈ K. Let P ∈ S. Then, the state after the whitening key
addition becomes S ← KeyAdd(P ∈ S,WK ∈ K). Then, the following round
function is iterated by incrementing the round number i.

S← SubCell(S),

S← ShuffleCell(S),

S← MixColumn(S),

S← KeyAdd(S, RKi ∈ K).

As a result, regardless of the number of rounds applied, the state belongs to S
with probability one. The last round only consists of SubCell and the whitening
key addition, which does not break the property. This completes the proof of
Theorem 1.

Impact. The subspace attack is a weak-key attack. Since 16 nibbles in K0 and
16 nibbles in K1 can be either 0 or 1, the class contains 232 different weak keys.
In other words, the number of keys generated uniformly at random for Midori64
must not exceed 296. Otherwise, the pseudorandom-permutation (PRP) security
will be spoiled.

In provable security, the PRP security of the encryption algorithm EK is
usually measured by the advantage of the adversary who tries to distinguish a
random instantiation of EK from a random permutation RP . Let Π = (κ,EK)
denote an encryption scheme, where κ is a key space and EK is an encryption
algorithm. We define $ be a set of all bijective mappings on the block length.
Then, the advantage of the distinguisher DO with access to the oracle O who
tries to break the PRP security of Π can be defined as follows

AdvPRP
Π (D) =

∣∣∣Pr
[
K

$← κ : DEK = 1
]
− Pr

[
RP

$← $ : DRP = 1
]∣∣∣,

where
$← represents to choose one of the elements in the set uniformly at random.

The crucial point here is that the key for the particular encryption algorithm
EK is chosen uniformly at random, and the adversary’s goal is increasing the
probability for win rather than distinguishing the target with probability one.
Therefore, even though our subspace attack is a weak-key attack by cryptanalyst’s
words, it gives a certain impact from a provable-security viewpoint, i.e., the PRP
security of Midori64 is up to 96 bits instead of 128 bits.

Experiment. We implemented our subspace attack and verified its correctness.
Some examples are shown in Table 2.



Table 2: Experimental data.

Example 1 Example 2 Example 3

K0 0000000000000000 1100110011001100 0000101001001110

K1 0000000000000000 0011001100110011 1101010100010001

P 8888888888888888 9999999999999999 9889898898898989

C 9998899889888899 8999999988988989 9999988988898889

Computer Search of Invariant Subspaces. We found the above invariant
subspace by hand. In an attempt to increase the size of the weak-key class or
to find other similar subspaces, we performed additionally a computer search.4

We brute-forced all possible subspaces of values of nibbles in the plaintext (each
nibble belongs to the same subset) and all possible values of master key nibbles
(similarly, they all belong to another subset). As there are 16 values for the
nibbles in each of the two cases, the brute-force required around 216 · 216 = 232

time. We found five subspaces, all subsets of the original subspace. Thus, we can
conclude that no larger weak-key classes of the analyzed type exist in Midori64.

3.2 Key Recovery with Invariant Subspace Attack

In this section, we describe how a chosen plaintext P and its corresponding
ciphertext C satisfying the subspace distinguisher can be used to efficiently
recover the 128-bit weak key. Because the size of the weak-key class is 232, the
exhaustive search on the entire weak keys requires only 232 computations. Hence,
our goal is identifying the key with complexity less than 232.

The main observation pertains to the behavior of the S-box on the subset
S. Indeed, the S-box Sb0 used in Midori64 has four fixed points S ⊂ {3, 7, 8, 9}.
Consequently, under the assumption that S ∈ S, the S-box behaves like the
identity map, which in turn makes the full Midori64 cipher linear.

Therefore, recovering the 128-bit key K = K0||K1 can be done by writing the
system of linear equations between P ∈ S and C ∈ S. To describe the system,
we denote by k0, . . . , k15 the 16 variables from K0, and by k16, . . . , k31 the 16
ones from K1. We emphasize that ki ∈ K, since we assume that K belongs the
weak-key class K. Similarly, we denote the 16 known variables of the plaintext
P by p0, . . . , p15 and the 16 known variables of the ciphertext C by c0, . . . , c15,

4 A more general tool for search of invariant subspaces is given in [6].



that is:

K0 =


k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

 ∈ K, K1 =


k16 k20 k24 k28
k17 k21 k25 k29
k18 k22 k26 k30
k19 k23 k27 k31

 ∈ K,

P =


p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

 ∈ S, C =


c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15

 ∈ S.

Under these notations, the linear system of 16 equations becomes:

k0 ⊕ k11 ⊕ k14 ⊕ k15 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 = p0 ⊕ p5 ⊕ p6 ⊕ p7 ⊕ p10 ⊕ p11 ⊕ p12 ⊕ p13

⊕ c5 ⊕ c6 ⊕ c7 ⊕ c10 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ c15

k1 ⊕ k11 ⊕ k19 ⊕ k24 ⊕ k26 ⊕ k29 ⊕ k31 = p1 ⊕ p3 ⊕ p8 ⊕ p10 ⊕ p11 ⊕ p13 ⊕ p15

⊕ c3 ⊕ c8 ⊕ c10 ⊕ c13 ⊕ c15 ⊕ 1

k2 ⊕ k14 ⊕ k19 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k28 ⊕ k30 ⊕ k31 = p2 ⊕ p3 ⊕ p5 ⊕ p6 ⊕ p7 ⊕ p8 ⊕ p12 ⊕ p15

⊕ c3 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 ⊕ c14 ⊕ c15

k3 ⊕ k15 ⊕ k19 ⊕ k24 ⊕ k25 ⊕ k29 = p8 ⊕ p9 ⊕ p13 ⊕ p15 ⊕ c3 ⊕ c8 ⊕ c9 ⊕ c13 ⊕ 1

k4 ⊕ k11 ⊕ k13 ⊕ k15 ⊕ k22 ⊕ k25 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 = p4 ⊕ p6 ⊕ p9 ⊕ p12 ⊕ p14 ⊕ p15

⊕ c6 ⊕ c9 ⊕ c11 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ 1

k5 ⊕ k14 ⊕ k22 ⊕ k23 ⊕ k25 ⊕ k28 ⊕ k29 ⊕ k30 = p5 ⊕ p6 ⊕ p7 ⊕ p9 ⊕ p12 ⊕ p13

⊕ c6 ⊕ c7 ⊕ c9 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ 1

k6 ⊕ k13 ⊕ k14 ⊕ k15 ⊕ k22 ⊕ k25 ⊕ k28 ⊕ k29 = p9 ⊕ p12 ⊕ p14 ⊕ p15 ⊕ c6 ⊕ c9 ⊕ c12 ⊕ c13

k7 ⊕ k13 ⊕ k14 ⊕ k15 ⊕ k23 = p13 ⊕ p14 ⊕ p15 ⊕ c7

k8 ⊕ k15 ⊕ k24 ⊕ k29 = p13 ⊕ p15 ⊕ c8 ⊕ c13

k9 ⊕ k11 ⊕ k13 ⊕ k14 ⊕ k24 ⊕ k28 = p8 ⊕ p9 ⊕ p11 ⊕ p12 ⊕ p13 ⊕ p14 ⊕ c8 ⊕ c12

k10 ⊕ k11 ⊕ k25 = p9 ⊕ p10 ⊕ p11 ⊕ c9 ⊕ 1

k12 ⊕ k13 ⊕ k14 ⊕ k15 ⊕ k29 = p12 ⊕ p14 ⊕ p15 ⊕ c13

k16 ⊕ k19 ⊕ k24 ⊕ k25 ⊕ k29 ⊕ k31 = p0 ⊕ p3 ⊕ p8 ⊕ p9 ⊕ p13 ⊕ p15

⊕ c0 ⊕ c3 ⊕ c8 ⊕ c9 ⊕ c13 ⊕ c15 ⊕ 1

k17 ⊕ k19 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k31 = p1 ⊕ p3 ⊕ p6 ⊕ p7 ⊕ p8 ⊕ p9 ⊕ p10 ⊕ p11 ⊕ p12 ⊕ p15

⊕ c1 ⊕ c3 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c9 ⊕ c10 ⊕ c11 ⊕ c12 ⊕ c15

k18 ⊕ k19 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 = p2 ⊕ p3 ⊕ p5 ⊕ p6 ⊕ p7 ⊕ p8 ⊕ p12 ⊕ p13 ⊕ p14 ⊕ p15

⊕ c2 ⊕ c3 ⊕ c5 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 ⊕ c13 ⊕ c14 ⊕ c15 ⊕ 1

k20 ⊕ k22 ⊕ k23 ⊕ k25 ⊕ k28 ⊕ k29 = p4 ⊕ p6 ⊕ p7 ⊕ p9 ⊕ p12 ⊕ p13

⊕ c4 ⊕ c6 ⊕ c7 ⊕ c9 ⊕ c12 ⊕ c13,

where there are 32 unknowns. The system being undetermined, the set of solution
contains 216 elements, which provides 216 key candidates for the 128-bit master
key K. Using an additional known plaintext-ciphertext pair, we uniquely deter-
mine the key in 216 operations. More precisely, the above system of equations
describe a Gröbner Basis so that one can simply enumerate all the 216 values for
k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k12, k16, k17, k18, k20 ∈ K and uniquely and
efficiently determine the remaining 16 key variables.

4 Countermeasures

In this section, we briefly discuss possible countermeasures against our invariant
subspace attack without destroying the design policy of Midori64. Note that the
invariant subspace attack can work regardless of the number of rounds applied.



Therefore, simply increasing the number of rounds is not sufficient (and not
energy-consumption friendly): consequently, a part of the round function or the
key generation should be modified.

The first direction is replacing the S-box Sb0 with another one. The new
S-box must be chosen carefully. For example, replacing Sb0 with Sb1 prevents
the invariant subspace of Theorem 1, while it allows another invariant subspace

P ∈ K K0,K1∈K7→ C ∈ K

due to the property of Sb1(0) = 1 and Sb1(1) = 0.
The second direction is replacing the round constant αi. A conservative way

is using all of 0 to 15 in αi. Another approach is using different 4-bit values in
different rounds, for example, replacing ‘1’ in αi with round number counter i.

The third direction is applying bit-permutations during the round function.
Fortunately, Midori has already introduced several bit-permutations to generate
SSbi from Sb1. The same bit-permutations can be reused to break the invariant
subspace property.

The last direction we would like to mention is replacing the key generation
process, i.e., introducing a light key schedule. The TWEAKEY framework [4]
seems to fit the design for low energy consumption. Moreover, practical related-key
differential attacks on Midori can be prevented at the same time.

5 Concluding Remarks

In this paper, we have presented the invariant subspace attack against Midori64.
We showed that Midori64 has a class of 232 weak keys, and with such keys along
with a properly chosen plaintext, the cipher becomes a linear transformation thus
can be distinguished with single chosen-plaintext query and even key recovery
can be performed by simply solving a system of linear equations.

At the current stage, the attack cannot be applied to Midori128, and this in-
spires us several countermeasures for Midori64. Investigating the design achieving
more secure but retaining almost the same implementation cost as Midori64 is
an interesting future research direction.

A Midori128 8-bit S-boxes

In order to provide convenience for future research, we give here the four 8-bit
S-boxes used in the Midori128 block cipher.
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