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Abstract. Pseudorandom functions (PRFs) are one of the most fundamental building blocks in cryp-
tography with numerous applications such as message authentication codes and private key encryption.
In this work, we propose a new framework to construct PRFs with the overall goal to build efficient
PRFs from standard assumptions with an almost tight proof of security. The main idea of our frame-
work is to start from a PRF for any small domain (i.e. poly-sized domain) and turn it into an `-bounded
pseudorandom function, i.e., into a PRF whose outputs are pseudorandom for the first ` distinct queries
to F . In the second step, we apply a novel technique which we call on-the-fly adaptation that turns
any bounded PRF into a fully-fledged (large domain) PRF. Both steps of our framework have a tight
security reduction, meaning that any successful attacker can be turned into an efficient algorithm for
the underlying hard computational problem without any significant increase in the running time or loss
of success probability.

Instantiating our framework with specific number theoretic assumptions, we construct a PRF based on
k-LIN (and thus DDH) that is faster than all known constructions, which reduces almost tightly to the
underlying problem, and which has shorter keys. Instantiating our framework with general assumptions,
we construct a PRF with very flat circuits whose security tightly reduces to the security of some small
domain PRF.
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1 Introduction

Goldreich, Goldwasser, and Micali (GGM) introduced pseudorandom functions (PRFs) in 1984 [13]. Roughly,
a PRF is a keyed deterministic function, whose output is indistinguishable from a random function. PRFs are
one of the most fundamental building blocks in cryptography, with numerous applications such as private-
key encryption, message authentication codes, key derivation, and many more, e.g., [2,14,22,31,34]. In this
work, we propose a novel framework to construct PRFs with the overall goal of constructing efficient PRFs
based on standard assumptions with an almost tight proof of security. The basic idea of this framework is
to transform a PRF for a small domain (i.e., poly-size) into a fully fledged domain that handles large input
spaces. This transformation tightly reduces to the underlying small domain PRF. The main steps of our
framework and the novel techniques are shown in Figure 1. We begin with a PRF that works over a small
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Fig. 1. Overview of the main steps and the techniques.



domain, say {0, 1}log `, and which can be evaluated very efficiently in time poly(λ, log `), for some parameter
`.

The first step in our framework is to extend the domain of a small-domain PRF into a bounded pseu-
dorandom function (bPRF). A function F is an `-bounded pseudorandom function (for an ` ≤ poly(λ)), if
the outputs of F are pseudorandom for the first ` distinct queries to F and if F can be computed “super
efficiently” (i.e., in time poly(λ, log(`))). In some sense, this primitive can be seen as the computational
analogue to `-wise independent functions.

The second step in our framework is a reduction technique we call on-the-fly adaptation. The goal of this
technique is to construct a PRF F in which we can dynamically embed an `-bounded PRF F` for every `
that grows at most polynomially. Now assume we have a PPT distinguisher D that distinguishes F from a
truly random function. Since D is efficient, it sends at most q = poly(λ) queries to its oracle (for an a-priori
unknown q). On-the-fly adaptation allows us to turn this distinguisher against F into a distinguisher D′
against a bounded PRF Fq that has the same advantage.

We will demonstrate this idea with a simple on-the-fly adaptation technique that works for any bounded
PRF. The basic idea of this technique is to compute F as a sum of functions F`, for an exponentially
increasing `. An important point is that all F` have the same domain. The function F is computed by

F (K,x) =

t⊕
i=0

F2i(K2i , x),

where K = (K2i)i=1,...,t. If we choose the parameter t = ω(log(λ)) slightly super-logarithmic, we will be able
to embed any F` into F . Notice that F can be computed efficiently, as we required that bounded PRFs can
be computed in time poly(λ, log(`)). To illustrate the main idea, assume that there exists a distinguisher D
that makes at most q = poly(λ) queries distinguishes F from a truly random function. We will provide a
reduction that turns this distinguisher into a distinguisher against the small domain PRF F2dlog qe . Observe
that we can express F by

F (K,x) =

log q−1⊕
i=0

F2i(K2i , x)⊕ F2dlog qe(K2dlog qe , x)⊕
t⊕

i=log q+1

F2i(K2i , x).

The reduction can now replace the middle term F2dlog qe(K2dlog qe , x) by its own oracle and provide to D an
oracle O′ that computes the function

O′(x) =

log q−1⊕
i=0

F2i(K2i , x)⊕O(x)⊕
t⊕

i=log q+1

F2i(K2i , x).

Clearly, if O computes the function F2dlog qe , then O′ computes the function F . On the other hand, if O is
a random function, then O′ also is a random function. This reduction is tight. Notice that it is crucial for
this technique to work that all F` have the same input domain. Basically the domain extension step in our
framework is geared towards equalizing the domains of small domain PRFs. This generic technique is similar
to a transformation from non-adaptive to adaptive pseudorandom functions by Berman and Haitner [4]. The
construction of [4] however yields no tight security proof (which was not the purpose of that work), as their
construction does not start from bounded PRFs.

We will now discuss domain extension for arbitrary PRFs and provide a simple domain extension tech-
nique that uses only linear functions to pre- and post-process a small domain PRF. This, together with the
generic on-the-fly adaptation technique described above yields a PRF construction from any small domain
PRF. We will discuss an instantiation of this general construction based on LWE.

Domain Extension for Arbitrary PRFs The problem of domain extension for pseudorandom functions
was first considered by Levin [20]. Levin showed that if the domain of a certain PRF is already sufficiently
large, then it can be extended by using a universal hash function to hash larger inputs into the domain of this
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PRF. However, this technique is vulnerable to a ”birthday attack”, which means that after a certain number
of queries there is a high probability of finding a collision in the hash function. Levin’s technique also fails
for small domain PRFs, i.e., PRFs with domains of polynomial size. Jain, Pietrzak, and Tentes [19] provided
a domain extension technique which also works for small domains, but has an unfavorable security loss in
this case. Moreover, as mentioned by the authors, their technique does not seem to be directly applicable
to efficient PRF such as the one’s based on DDH [19]. The work of Jain et al. [19] was refined by Chandran
and Garg [8]. Berman et al. [5] also showed how to bypass the birthday barrier via Cuckoo hashing.

We provide a simple general domain extension technique that preserves the parallel complexity of an
underlying small domain PRF. This domain extension technique is inspired by the construction of universal
hash functions by Ishai et al. [18] and can be seen as an amplified version of Levin’s trick. For a small domain
pseudorandom function PRF` : {0, 1}log(2λ`) → Y, we construct a large domain bounded PRF F` : X → Y
by

F`(K
′, x) =

λ⊕
j=1

PRF`(K,BIN(j)‖Hj(x)),

where K ′ = (K,H1, . . . ,Hλ), H1, . . . ,Hλ ←$ H are randomly chosen universal hash functions from a family
H that maps X to {0, 1}log(2`) and BIN(j) is the log(λ) bit binary representation of an integer j ∈ {1, . . . , λ}.

1.1 A General Transformation

Above we described our on-the-fly adaptation technique that works for any bounded PRF. Combining this
technique with a general domain extension technique, we obtain large domain pseudorandom function with
almost tight security (i.e., only a logarithmic loss) from any suitable small domain PRF. In a nutshell, a
small domain PRF is suitable for this technique if its security loss only depends on the size of its input
domain, but not (polynomially) on the number queries a distinguisher sends3. The computational problems
from which PRFs with such a small security loss can be constructed usually have one feature in common:
they support a statistical random self-reduction. Candidate PRFs with this property are PRFs based on the
LWE [32,30] problem, such as the PRF of Banerjee, Peikert, and Rosen [1]. Using the BPR PRF as small
domain PRF in our general construction, we obtain a large domain PRF which is secure under a weaker
assumption, which has a tighter proof of security, and a shallower evaluation circuit than instantiating the
BPR scheme with a large domain directly.

In the remaining part of this section, we discuss more efficient instantiations based on DDH and k-LIN.
Here, we exploit specific number theoretic properties in order to improve the efficiency and security of the
resulting PRF.

1.2 Efficient PRFs based on DDH and k-LIN

One appealing property of our framework is that it yields several new constructions of PRFs based on weak
standard assumptions, such as k-LIN (and thus DDH) with an almost tight proof of security. A tight reduction
means that a successful attacker can be turned into an efficient algorithm for the hard computational problem
without any significant increase in the running time or significant loss of success probability4. We will
provide a specific on-the-fly adaptation technique that exploits algebraic properties of the underlying number
theoretic assumptions. We can thus avoid the blow up of the general on-the-fly adaptation technique described
in the last paragraph and obtain PRFs that improve upon known constructions in terms of efficiency, security,
and key-size.

3 The Naor Reingold PRF would be such a suitable PRF as its security reduction only loses a factor of n. However,
as discussed above we provide a much more efficient direct construction based on the NR PRF.

4 Usually even a polynomially-bounded increase/loss is considered as significant, if the polynomial may be large. An
increase/loss by a small constant factor is not considered as significant.
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Instantiation based on DDH. In the following we discuss our construction based on the DDH assumption.
Our underlying small domain PRF is the Naor-Reingold PRF based on DDH [28]. For an input domain
{0, 1}n, the Naor Reingold PRF NR : Kn × {0, 1}n → G is defined by

NRn(K,x) = ga
∏n−1

j=0 s
xj
j ,

where K = (a, s0, . . . , sn−1) and a, s0, . . . , sn−1 ←$ Zp. In the first step, we turn the small domain PRF
NRlog(`), which has a domain of size ` into an `-bounded PRF that has input domain Zp, i.e., a large input
domain. In contrast to our generic construction (that we will discuss later), we can exploit specific number
theoretic properties in order to improve the efficiency, the tightness of the security reduction, and the key-size.
The bounded PRF F` : K × Zp → G is defined as follows:

F`(K,x) = ga
∏log(`)−1

j=0 (sj+x
2j ). (1)

We will briefly discuss why security of this PRF tightly reduces to the security of NRlog(`). Expanding the
exponent of F`(K,x) yields

a

log(`)−1∏
j=0

(sj + x2
j

) =
∑

c∈{0,1}log(`)

a log(`)−1∏
j=0

s
1−cj
j


︸ ︷︷ ︸

E(c)

x
∑t

j=1 cj2
j

(2)

Now, observe that the term E(c) on the right side is an exponent of the Naor Reingold PRF NRlog(`).

Specifically, it holds that gE(c) = NRlog(`)(¬c) (where ¬c is the bitwise negation of c). Changing the sum on

the right side of (2) to run over all j = 0, . . . , 2d`e − 1 and setting c = BIN(j) (where BIN(j) is the log(`)-bit
binary representation of j), we get that F` can be equivalently computed as

F`(K,x) =

2dlog(`)e−1∏
j=0

(
NRlog(`)(K,¬BIN(j))

)xj

. (3)

Notice that this expression can still be efficiently computed as long as ` ≤ poly(λ). Now, observe that if we
replace NRlog(`) by a random function in this expression, then F` becomes an (information theoretic) `-wise
independent function. We can therefore use this alternative description of F` to show that it is an `-bounded
PRF.

The observation that functions of the form as F` in (3) can be computed in time log ` via a closed form as
(1) was previously made by Benadbbas, Gennaro, and Vahlis for the Naor-Reingold PRF [3] and Fiore and
Gennaro for the Lewko-Waters PRF [12]. The fact that F` is a bounded PRF was independently observed
by Hazay [15].

In the last step, we apply an “in-place” on-the-fly adaptation technique to this function. We will not use
the generic technique described above, but one that exploits the specific algebraic properties of F`. We define
the full fledged PRF F by

F(K,x) = ga
∏t−1

j=0(sj+x
2j ),

where the parameter t = ω(log(λ)) is chosen slightly super-logarithmic. Now, notice that we can embed the
bounded PRF F` (for any ` ≤ poly(λ)) into F by

F(K,x) =

(
ga
∏log(`)−1

j=0 (sj+x
2j )

)∏t−1
j=log(`)

(sj+x
2j )

= (F`(K`, x))
∏t−1

j=log(`)
(sj+x

2j )
.

In the security proof, we replace F` by a truly random function. The main part of the proof consists in
showing that the exponent

∏t−1
j=log(`)(sj + x2

j

) only accounts for a negligible error.
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Comparison to Naor-Reingold [27]. Our full fledged PRF with input domain Zp improves upon the Naor-
Reingold PRF (NR-PRF) in terms of tightness of the security reduction and compactness. In contrast to the
NR-PRF, the loss of our security reduction is only a factor of log(q) (where q = poly(λ) is the number of
queries required by the distinguisher D), compared to a factor n for the NR-PRF. Our PRF is very compact
as it only requires ω(log(λ)) Zp elements for its key, whereas the Naor-Reingold needs n Zp elements. Since
the exponentiation is the dominating factor in the computation of both PRFs, the costs to evaluate both
functions is roughly the same.

Instantiation based on k-LIN. In the main body, we directly provide a PRF construction based on
a family of weaker computational problems known as k-LIN [33,17]. The decisional k-linear assumption
becomes (generically) weaker as the parameter k grows, where the instance k = 1 corresponds to DDH and
k = 2 to the linear assumption [6]. The main motivation for these assumptions is that groups are known where
the DDH assumption is easy, but the computational Diffie Hellman problem is supposedly hard [16]. It is
thus desirable to have constructions of cryptographic primitives based on the decisional k-linear assumption
instead of DDH. Our generalized PRF is defined as follows: Let k ≥ 1 be a positive integer, G = 〈g〉 be a
cyclic group of prime order p and t = ω(log(λ)). The function F : K × Zp → Gk is defined by

F (K,x) = ga
>·
∏t−1

j=0(Sj+x
2j ·I),

where K = (a,S0, . . . ,St−1) with a ←$ Zkp, S0, . . . ,St−1 ←$ Zk×kp and I the identity matrix. Clearly, if we
only need a single group element as output, we can truncate the exponent and perform only 1 exponentiation.

Comparison to Lewko-Waters [21]. Our PRF improves upon the Lewko-Waters PRF (LW-PRF) in terms
of efficiency, tightness of the security reduction, and compactness. A single evaluation of the LW-PRF
involves n matrix multiplications and a single exponentiation. In our case, the computation requires only
t = ω(log(λ)) matrix multiplications and a single exponentiation. For larger k, the cost of the matrix
multiplication dominates the cost of the exponentiation, so in this case our construction is more efficient.
The security reduction of Lewko and Waters loses a factor of k ·n while our reduction only losses a factor of
k log q. The keys of the LW-PRF consist of n k×k matrices over Zp, while ours consists merely of t = ω(log λ)
such matrices.

1.3 Other Related Work

Many number-theoretic PRF constructions follow the GGM paradigm [13], such as [27,21,1]. Naor and
Reingold introduced pseudorandom synthesizer (PRS) that can be used to construct parallel computable
pseudorandom function [26,1]. A PRF construction that is not based on either the GGM or synthesizers
paradigm is the PRF of Dodis-Yampolskiy, which is in fact a direct construction, but whose security is closely
related to its underlying bilinear q-type assumption [10]. Recently, Chase and Meiklejohn showed that this
q-type assumption can be reduced to the subgroup hiding assumption in composite order groups [9]. The
PRF of Naor, Reingold, and Rosen is a clever variant of the Naor-Reingold PRF that is secure under the
factoring assumption [29]. The work of Boneh, Montgomery, and Raghunathan combines a generalization
of the GGM tree with the Dodis-Yampolskiy PRF to get a large-domain (simulateable) verifiable random
function [7].

2 Preliminaries

Throughout this paper, we will use λ to denote the security parameter. We will denote the concatenation of
two bit strings x and y by x‖y. We will generally assume that logarithms are rounded to the next biggest
integer, i.e., when we write log(`) we actually mean dlog(`)e. To avoid confusion, we will sometimes still
write dlog(`)e, e.g. when we write 2dlog(`)e to indicate that this can be different from `.
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Definition 1 (Pseudorandom Functions). Let Xλ and Yλ be two finite sets depending on λ. We say that
an efficiently computable keyed function PRF : Kλ×Xλ → Yλ with key-space Kλ is a pseudorandom function
(PRF), if it holds for every PPT oracle distinguisher D that

|Pr[DPRF(K,·)(1λ) = 1]− Pr[DR(1λ) = 1]| ≤ negl(λ),

where K ←$ Kλ and R : Xλ → Yλ is a randomly chosen function. If |X | ≤ poly(λ), then we say that PRF is
a small-domain PRF, otherwise we call PRF a large-domain PRF.

We will usually omit the λ subscript in the definition of K, X and Y. Moreover, we will henceforth
implicitly assume that distinguisher gets 1λ as an additional input without explicitly stating this.

As mentioned in the outline, bounded pseudorandom functions can be seen as a computational analogue of
limited-wise independent functions. Basically, the difference between true PRFs and bounded PRFs manifests
itself in their security guarantee. While a distinguisher against a true PRF can query the PRF an a-priori
unbounded number of times, a distinguisher against an `-bounded PRF can query the PRF with at most `
distinct queries.

Definition 2 (Bounded Pseudorandom Functions). Let X and Y be finite sets (depending on λ). We
say that a keyed function F` : K` × X → Y parametrized by a parameter ` is a bounded pseudorandom
function (bPRF), if F` is computable in time poly(λ, log(`)) and if it holds for all efficiently computable
`∗ = `(λ) ≤ poly(λ) and all `∗-query distinguishers D (i.e. distinguishers that send at most `∗ distinct
queries) that

|Pr[DF`(K,·) = 1]− Pr[DR = 1]| ≤ negl(λ),

where K ←$ K` and R : X → Y is a randomly chosen function.

Notice that in the definition of bounded PRFs we allow the key-space to depend on `, but X and Y are
independent of `. Moreover, as we require that F` is computable in time poly(λ, log(`)), we implicitly also
require that |K`| ≤ poly(λ, log(`)). Requiring that F` can be computed in time poly(λ, log(`)) allows us to
evaluate F` for super-polynomial `, while we only require security for `∗ which are at most polynomial.

The following lemma states that if a function F outputs uniformly random outputs under benign inputs,
then the statistical distance from F to a uniformly random function F ′ can be bounded by the probability
that a non-adaptive sequence of inputs is not benign. Intuitively, an adaptive distinguisher D learns nothing
about the set of bad inputs unless it finds such an input by chance, as otherwise the function F reveals no
information about the set of bad inputs. This lemma is a simplified version of a more general statement due
to Maurer [23].

Lemma 1. Let X and Z be two finite sets. Let FK,aux : X → Z be a function that takes two addi-
tional parameters K ∈ K and aux ∈ AUX. Let good(·, ·) be a predicate with the following property: If
good({x1, . . . , xi}, aux) holds, then FK,aux(x1), . . . , FK,aux(xi) are distributed uniformly at random over the
choice of K ←$ K. Let D be a (possibly unbounded) distinguisher that makes at most ` distinct queries,
K ←$ K, aux←$ AUX and let F ′ be a uniformly chosen function from X to Z. Then it holds that

|Pr[DFK,aux = 1]− Pr[DF
′

= 1]| ≤ max
S

Pr[¬good(S, aux)],

where S runs over all subsets of X of size at most `.

Proof. It suffices to prove the lemma for a deterministic D, as the statement for a randomized D follows by
a standard coin-fixing and averaging argument. Thus assume that D is deterministic. Define the transcript-
function TS(F ) as the sequence (x1, F (x1)), . . . , (xr, F (xr)) of input/output pairs that D generates when
having oracle access to the function F . We say that a sequence T = ((x1, y1), . . . , (xr, yr)) (for some r) is a
valid transcript, if there exists a function F : X → Y such that T = TS(F ), i.e. the transcript was created by
an interaction of D with F . For a valid transcript T , let DQ(T ) be the set of distinct queries of T , i.e. the set
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of all x such that a tuple (x, y) appears in T 5. Clearly, for a (fixed) valid transcript T = ((x1, y1), . . . , (xr, yr))
and a (randomly chosen) function F it holds that

Pr[TS(F ) = T ] = Pr[F (x1) = y1, . . . , F (xr) = yr]. (4)

Now fix aux, but let K and F ′ be chosen at random. We will first show that

|Pr[DFK,aux = 1]− Pr[DF
′

= 1]| ≤ Pr[¬good(DQ(TS(F ′)), aux)]. (5)

By the averaging principle it follows immediately that this also holds for a randomly chosen aux. Before we
prove (5), we will show for every valid transcript T that if good(DQ(T ), aux) holds, then we have

Pr[DFK,aux = 1 ∧ TS(FK,aux) = T ] = Pr[DF
′

= 1 ∧ TS(F ′) = T ]. (6)

To see this, note first that the output of D∗ is a deterministic function of the transcript T (i.e. either 0 or 1
depending on T ). Thus the above follows from

Pr[TS(FK,aux) = T ] = Pr[TS(F ′) = T ].

But by (4) this is equivalent to

Pr[FK,aux(x1) = y1, . . . , FK,aux(xr) = yr] = Pr[F ′(x1) = y1, . . . , F
′(xr) = yr].

where T = ((x1, y1), . . . , (xr, yr)). But this follows immediately from the fact that the F ′(xi) are distributed
uniformly at random for distinct xi and also the FK,aux are distributed uniformly at random for distinct xi,
as we assume that good(DQ(T ), aux) = good({x1, . . . , xr}, aux) holds.

We can now prove (5). It holds that

Pr[DF
′

= 1] = Pr[DF
′

= 1 ∧ good(DQ(TS(F ′)), aux)]

+ Pr[DF
′

= 1 ∧ ¬good(DQ(TS(F ′)), aux)]

≤
∑

T s.t. good(DQ(T ),aux)

Pr[DF
′

= 1 ∧ TS(F ′) = T ]

+ Pr[good(DQ(TS(F ′)), aux)]

=
∑

T s.t. good(DQ(T ),aux)

Pr[DFK,aux = 1 ∧ TS(FK,aux) = T ]

+ Pr[good(DQ(TS(F ′)), aux)]

= Pr[DFK,aux = 1 ∧ good(DQ(TS(FK,aux)), aux)]

+ Pr[¬good(DQ(TS(F ′)), aux)]

≤ Pr[DFK,aux = 1] + Pr[¬good(DQ(TS(F ′)), aux)].

It follows that
|Pr[DFK,aux = 1]− Pr[DF

′
= 1]| ≤ Pr[¬good(DQ(TS(F ′)), aux)].

Now assume that aux←$ AUX is chosen at random. As F ′ is independent of aux, it holds that

Pr[¬good(DQ(TS(F ′)), aux)] ≤ max
S

Pr[¬good(S, aux)],

where S is a set of queries that maximizes Pr[¬good(S, aux)]. Finally, this yields

|Pr[DFK,aux = 1]− Pr[DF
′

= 1]| ≤ max
S

Pr[¬good(S, aux)],

which concludes the proof.

5 We distinguish between transcripts and distinct query sets because transcripts uniquely determine the output of a
distinguisher while distinct query sets do not necessarily.
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3 A Generic Construction

In this section, we will first provide an efficient construction of `-bounded pseudorandom function any small
domain PRF with input space of (polynomial) size n · `. Security of the `-bounded PRF follows tightly from
the underlying small domain PRF. Second, we will provide a general construction of a PRF from `-bounded
PRFs, where security also follows tightly.

3.1 Bounded PRFs via Domain Extension of Small Domain PRFs

We will need universal hash functions for our domain extension technique.

Definition 3 (Universal Hash Functions). Let X and Y be finite sets. We say that a family H of
functions from X to Y is a family of universal hash functions, if it holds for all x 6= x′ ∈ X that Pr[H(x) =
H(x′)] ≤ 1/|Y|, where the probability is taken over the random choice of H ←$ H.

Universal hash functions can be constructed very efficiently, see e.g.,[18].

Construction 1 Let PRF` : K` × {0, 1}log(2λ`) → {0, 1}m be a keyed function with key space K`. Let H`
be a family of universal hash functions that map X to {0, 1}log(2`). Let BIN(j) denote the log(λ) bit binary
representation of a number j ∈ {1, . . . , λ}. We define the keyed function F` : K′ × X → {0, 1}m with key
space K′` = Hλ ×K` by

F`(K
′, x) =

λ⊕
j=1

PRF`(K,BIN(j)‖Hj(x)),

where Hj ←$ H` for j = 1, . . . , λ, K ←$ K` and K ′ = (H1, . . . ,Hλ,K).

Similar constructions haven been suggested before in different contexts, such as e.g., [24,25]. The following
theorem states that F` is an `-bounded pseudorandom function if PRF` is a pseudorandom function.

Theorem 1. Let PRF` and F` be as in Construction 1. If PRF` is a pseudorandom function, then F` is an
`-bounded pseudorandom function. More specifically, assume there exists an `∗ ≤ poly(λ) and an `∗-query
PPT distinguisher D that distinguishes F`∗ from a truly random function with advantage ε, then there exists
a PPT distinguisher D′ with essentially the same runtime as D that distinguishes PRF`∗ from a truly random
function with advantage at least ε− `∗ · 2−λ.

We will first prove two technical statements and then provide the proof for Theorem 1.

Definition 4. Let Y be a finite set and let y1, . . . ,y` ∈ Yk be vectors of length k. We say that a vector
y1, . . . ,y` is cover free, if for every i ∈ {1, . . . , `} there exists a j ∈ {1, . . . , k} such that it holds for all i′ 6= i
that yi,j 6= yi′,j.

Lemma 2. Let ` = poly(λ) and let X and Y be two finite sets with |Y| ≥ 2`. Let H be a family of universal
hash functions mapping X to Y. Let H1, . . . ,Hλ ←$ H be chosen uniformly at random and define H(x) :=
(H1(x), . . . ,Hλ(x)). Then it holds for all pairwise distinct x1, . . . , x` ∈ X that H(x1), . . . ,H(x`) are cover
free, except with probability ` · 2−λ over the choice of H1, . . . ,Hλ, i.e.

Pr[H(x1), . . . ,H(x`) not cover free] ≤ ` · 2−λ.

Proof. Fix pairwise distinct x1, . . . , x` ∈ X . We will first analyze the probability that a given the j-th
component of H(xi) is identical to the j-th component of some H(xi′) for i′ 6= i. Clearly, this is exactly the
case there exists an i′ 6= i such that Hj(xi) = Hj(xi′). By a union-bound and the universality of H it holds
that

Pr[∃i′ 6= i : Hj(xi) = Hj(xi′)] ≤
∑
i′ 6=i

Pr[Hj(xi) = Hj(xi′)]

≤ ` · 1

|Y |
≤ ` · 1

2`
=

1

2
.
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As the H1, . . . ,Hλ are chosen independently, it holds that

Pr[∀j∃i′ 6= i : Hj(xi) = Hj(xi′)] =

λ∏
j=1

Pr[∃i′ 6= i : Hj(xi) = Hj(xi′)] ≤ 2−λ.

Finally, it holds by a union bound that

Pr[H(x1), . . . ,H(x`) not cover free] = Pr[∃i∀j∃i′ 6= i : Hj(xi) = Hj(xi′)]

≤
∑̀
i=1

Pr[∀j∃i′ 6= i : Hj(xi) = Hj(xi′)]

≤ ` · 2−λ.

Lemma 3. Fix functions H1, . . . ,Hλ : X → Y and define H(x) = (H1(x), . . . ,Hλ(x)). Let R1, . . . , Rλ be
randomly chosen functions from Y to {0, 1}m. Define the function F : X → {0, 1}m by

F (x) =

λ⊕
j=1

Rj(Hj(x)).

It holds for all distinct x1, . . . , x` ∈ X for which H(x1), . . . ,H(x`) are cover-free and all y1, . . . , y` ∈ {0, 1}m
that

Pr[F (x1) = y1, . . . , F (x`) = y`] = 2−`·m.

Proof. Since H(x1), . . . ,H(x`) are cover-free, we get that every H(xi) has a unique coordinate Hj(xi). This
mean that the term Rj(Hj(xi)) appears only in the sum

F (xj) =

λ⊕
j=1

Rj(Hj(xj)).

As Rj(Hj(xi)) is distributed independently and uniformly at random, the same holds for F (xj). Thus, the
F (x1), . . . , F (x`) are distributed independently and uniformly at random, from which the statement of the
lemma follows directly.

Given these tools, we are ready to prove Theorem 1.

Proof (Theorem 1). Let D be an `-query distinguisher with advantage ε against the pseudorandomness of
F`. Define the following hybrids, where in hybrid i D has oracle access to a function F (i) : X → {0, 1}m.

– Hybrid H1: The function F (1) is given by F (1)(x) = F`(K,x), where K ←$ K` is a uniformly chosen
key.

– Hybrid H2: Let R1, . . . , Rλ be a uniformly random functions that map from {0, 1}n to {0, 1}log(2`).
Define F (2) by

F (2)(x) =

λ⊕
j=1

Rj(Hj(x)).

– Hybrid H3: The function F (3) is chosen uniformly at random. This is the ideal experiment.

Clearly, it holds that

|Pr[DF
(1)

= 1]− Pr[DF
(3)

= 1]| ≥ ε
Define

ε1 = |Pr[DF
(1)

= 1]− Pr[DF
(2)

= 1]|

ε2 = |Pr[DF
(2)

= 1]− Pr[DF
(3)

= 1]|.

9



By the triangle inequality it holds that

ε ≤ ε1 + ε2. (7)

We will first show that ε2 ≤ ` · 2−λ. Define H(x) = (H1(x), . . . ,Hλ(x)) and R(z) =
⊕λ

j=1Rj(zj) and

note that we can express F (2) by F (2)(x) = R(H(x)). For a set S = {x1, . . . , xr} ⊆ X of size at most ` define
the predicate good(S,H) to be true if and only if H(x1), . . . ,H(xr) are cover-free. By Lemma 3 it holds
that F (2)(x1), . . . , F (2)(xr) are distributed independently and uniformly at random if H(x1), . . . ,H(xr) are
cover-free. Thus, the conditions for Lemma 1 are given and it holds that

ε2 = |Pr[DF
(2)

= 1]− Pr[DF
(3)

= 1]|
≤ max
x1,...,x`

Pr[H(x1), . . . ,H(x`) not cover-free].

By Lemma 2 it holds for all distinct x1, . . . , x` ∈ X that

Pr[H(x1), . . . ,H(x`) not cover-free] ≤ ` · 2−λ,

and we can conclude that ε2 ≤ `2−λ. It follows by (7) that ε ≤ ε1 + ` · 2−λ and therefore ε1 ≥ ε− ` · 2−λ.

We will now construct a PPT distinguisher D′ that distinguishes the small domain PRF PRF` from a
uniformly random function with advantage ε1. Since the input domain of PRF` has only polynomial size,
we can assume wlog that D′ receives the entire function table of PRF` as input. Let H` be the family of
universal hash functions from Construction 1.

Distinguisher D′

Input: Function T : {0, 1}log(λ)+log(2`) → {0, 1}m,
encoded as a function table

H1, . . . , Hλ ←$ H
b′ ← DO(·)(1λ)
return b′

O(x):

y ←
⊕λ

i=1 T (BIN(i)‖Hi(x))
return y

First assume that T is a function T (x) = PRF`(K,x) for a randomly chosen key K ←$ K`. Then the oracle
O′ in D′’s simulation is identically distributed to F (1). On the other hand, if T is a uniformly random function
R′, then for i = 1, . . . , λ the functions Ri(y) = R′(BIN(i)‖y) are independent and uniformly random functions

from {0, 1}log(2`) to {0, 1}m. Thus, in this case the oracle O computes the function O(x) =
∑λ
i=1Ri(Hi(x)),

which is identically distributed to F (2). Consequently, it holds that

Adv(D′) = |Pr[D′PRF`(K,·) = 1]− Pr[D′R
′

= 1]|

= |Pr[DF
(1)

= 1]− Pr[DF
(2)

= 1]| = ε1,

i.e. D′ distinguishes PRF` from a uniformly random function R′ with advantage ε1 ≥ ε−`·2−λ. This concludes
the proof.

3.2 PRFs via On-the-Fly Adaptation of bounded PRFs

In this section we provide a generic on-the-fly adaptation technique which converts a bounded PRF into a
standard PRF.
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Construction 2 Let t = ω(log(λ)) be slightly super-logarithmic. For a given parameter `, let F` : K`×X →
{0, 1}m be a keyed function with corresponding key space K`. Define the function F : K×X → {0, 1}m with
key-space K =

∏t
i=0K2i by

F (K,x) =

t⊕
i=0

F2i(K2i , x),

where K2i ←$ K2i for i = 1, . . . , t and K = (K2i)i=1,...,t.

We will now show that F is in fact a pseudorandom function.

Theorem 2. Let F` and F be as in Construction 2. Assume that F` is an `-bounded PRF for every efficiently
computable ` = `(λ). Then F is a pseudorandom function. Specifically, if D is a PPT distinguisher against
F with advantage ε that makes at most q = poly(λ) distinct queries, then there exists a PPT distinguisher D′
(with essentially the same runtime as D) with advantage ε against F`∗ , where `∗ = 2dlog(q)e ≤ 2q = poly(λ).

Proof. Let D be a PPT distinguisher against F with advantage ε that makes at most q distinct queries.
Note that since q = poly(λ) and t = ω(log(λ)), it holds log(q) ≤ t (for a sufficiently large λ). We will now
construct an `∗-query distinguisher D′ against F`∗ , which is given in Figure 2.

Distinguisher D′
Has access to oracle O(·)
Set i∗ ← dlog(q)e
For i ∈ {1, . . . , t}\{i∗}

K2i ←$ K2i

b′ ← DO
′(·)(1λ)

return b′

O′(x):

y ←
⊕i∗−1

i=0 F2i(K2i , x)⊕O(x)⊕
⊕t

i=i∗+1 F2i(K2i , x)

return y

Fig. 2. The distinguisher D′

Notice first that D′ sends at most q ≤ 2dlog(q)e = `∗ queries to its oracle, as D sends at most q oracle
queries. We will now analyze the distinguishing advantage of D′. First, assume that D′’s oracle O implements
the function F`∗(K, ·) for a randomly chosen K ←$ K`∗ . Then, the oracle O provided by D′ to D implements
exactly the function F (K, ·) for a randomly chosen K ←$ K. On the other hand, if O behaves like a uniformly
random function R′, then the oracle O′ also implements a uniformly random function R, as R′ is independent
of the K2i . Consequently, it holds that

Adv(D′) = |Pr[D′F`∗ (K`∗ ,·) = 1]− Pr[D′R
′

= 1]|
= |Pr[DF = 1]− Pr[DR = 1]| = ε,

i.e. D′ distinguishes F` from a uniformly random function R′ with advantage ε. This concludes the proof.

3.3 Instantiations

Combining Theorem 1 and Theorem 2 yields the following

Theorem 3. Let t = ω(log(λ)). Let PRF` : {0, 1}log(2λ`) → {0, 1}m be a small domain PRF, let H` : X →
{0, 1}log(2`) be a family of universal hash functions. Define the keyed function F : K ×X → {0, 1}m by

F (K,x) =

t⊕
i=1

λ⊕
j=1

PRF2i(K2i ,BIN(j)‖H2i,j(x)),

11



where K2i ←$ K2i for i = 1, . . . , t and H2i,j ←$ H2i for i = 1, . . . , t and j = 1, . . . , λ.
If PRF` is a PRF for every ` = poly(λ), then F is a PRF. More specifically, if there exists an distin-

guisher D that makes at most q = poly(λ) queries and distinguishes F with advantage ε, then there exists a
distinguisher D′ with essentially the same runtime as D that distinguishes PRF2dqe with advantage ε−q ·2−λ.

We will briefly discuss efficiency aspects of the construction provided in Theorem 3. First of all notice
that the transformation preserves the parallel complexity of the underlying small domain PRF. Moreover,
the pre- and post-processing steps are entirely linear, i.e. the computation of universal hash functions and
XOR-ing the results.

We will now discuss an instantiation of this PRF using a small domain PRF based on lattice problems.
As already mentioned in the introduction, the main purpose of our constructions is obtaining PRFs from
standard assumptions that are as tight as possible. Since the construction in the last section allows reducing
the security of the constructed large domain PRF to the security of an adversary specific small domain PRF,
we need a family of small domain PRFs with security as tight as possible. The Naor-Reingold PRF with
domain {0, 1}n allows for a security loss of a factor of n, while the security loss of a comparable GGM PRF
is q · n. This holds because the DDH problem possesses a statistical random self-reduction which allows to
compute an arbitrary number of DDH samples from a given sample. The learning with errors (LWE) problem
enjoys a similar property, which is stated explicitly in the assumption.

Definition 5 (Decisional LWE [32,30]). Let p = p(λ) be a modulus, k = k(λ) = poly(λ) be a positive
integer and χr = DZ,r be a gaussian distribution with noise parameter r. Let s←$ Zkp be chosen uniformly at
random. The goal of the LWE(p, n, χr) problem is to distinguish an arbitrary number of samples (a, 〈a, s〉+e)
where a←$ Zkp and e←$ χα from samples (a, u) where u←$ Zp is chosen uniformly at random.

Banerjee, Peikert and Rosen [1] constructed a PRF based on the LWE problem. The PRF has a structure
which is similar to the Lewko-Waters PRF but uses a rounding operation instead of exponentiation. Let
p1 � p2. For an x ∈ Zp1 define bxep2 = d(p2/p1) · xc mod p2. For vectors x ∈ Zkp1 define b·ep2 component-
wise. We can now state the BPR PRF.

Theorem 4. Let n = n(λ) be a positive integer, r = r(n) be a noise parameter, k = k(λ) = poly(λ) be
a positive integer and let p1, p2 be moduli such that p1 ≥ p2 · n · (Cr

√
k)n · kω(1), where C is a universal

constant. The keyed function BPRn : Kn × {0, 1}n → Zkp2 with key space Kn = Zkp2 ×
(
Zk×kp2

)n
is defined by

BPRn(K,x) =

a>
n∏
j=1

S
xj

j


p2

,

where a←$ Zkp1 and S1, . . . ,Sn ←$ χ
k×k
α and K = (a,S1, . . . ,Sn).

Assume that LWE(p1, k, χr) is hard. Then BPRn is a pseudorandom function. Specifically, if there exists
a distinguisher D that distinguishes BPRn with advantage ε from a random function, then there exists a
distinguisher D′ with essentially the same runtime as D that distinguishes LWE(p1, k, χr) with advantage
ε/(k · n).

Observe that in Theorem 4 the underlying hardness assumption changes when we increase the input length
n. More specifically, the smaller the term p1/r is, the harder the underlying LWE problem LWE(p1, k, χr)
becomes. The term p1/r is dominated by (Cr

√
k)n, thus we aim towards minimizing n. Observe that we

can fix a modulus p2 for the whole family BPRn, therefore all functions in this family have the same output
domain. Plugging the BPRn as small domain PRF in the construction of Theorem 3 yields that n never
becomes larger than log(q) for some q = poly(n). Thus we can base the security of the PRF in Theorem
3 on LWE(p1, k, χr) with p1 = p2 · n · (Cr

√
k)log(2λq) · kω(1), which is slightly super-polynomial (instead of

sub-exponential). Moreover, since the BPRn loses only a factor k · n in its security reduction to LWE, the
resulting PRF from Theorem 3 loses only a factor of k · log(2λq). We remark that using the more efficient
and tighter Ring-LWE based PRF of [1], the security reduction to Ring-LWE loses only a factor of log(2λq).
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While the construction from Theorem 3 preserves the parallel complexity of the small domain PRF, the
overall complexity of evaluating the PRF may actually increase. We consider it an interesting problem to find
a PRF construction which enjoys similar properties as the k-LIN based construction in Section 4, i.e. one
improves the underlying small domain PRF in all aspects, in particular key size and evaluation complexity.

4 A Direct Construction from the k-LIN Problem

In this section, we will provide our efficient constructions of number-theoretic PRFs. As discussed above, we
will first develop a specialized domain extension technique and then construct a large domain PRF using a
tailor-made on-the-fly adaptation strategy.

4.1 Preliminaries

In this section, we will generally index vectors of length n with indices 0, . . . , n−1. We will denote the identity
matrix in Zk×kp by I. For vectors a ∈ Zkp we define exponentiation component-wise, i.e. ga = (ga0 , . . . , gak−1).
The decisional k-linear assumption (k-LIN) [33,17] generalizes the decisional DDH problem. The decisional
k-Linear assumption becomes (generically) weaker when the parameter k grows, where the instance k = 1
corresponds to DDH and k = 2 to the linear assumption [6]. The main motivation for these assumptions is
that groups are known, where the DDH assumption is easy, but the computational Diffie Hellman problem
is supposedly hard [16].

Definition 6 (Decisional k-LIN Problem). Let G be a cyclic group of prime order p. Let g0, g1, . . . , gk ←$

G and s1, . . . , sk, r ←$ Zp be chosen uniformly at random. The goal of the k-LIN problem in G is to distinguish
the distributions

(g0, . . . , gk, g
s1
1 , . . . , g

sk
k , g

∑k
i=1 si

0 ) and (g0, . . . , gk, g
s1
1 , . . . , g

sk
k , g

r
0).

We will use the PRF construction of Lewko and Waters [21] as underlying small domain PRF in our
construction.

Theorem 5. Let k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group of prime order p and n = n(λ) be a
positive integer. Define the keyed function LWn : Kn × {0, 1}n → G with key space Kn = Zkp ×

(
Zk×kp

)n
by

LWn(K,x) = ga
>·
∏n−1

j=0 S
xj
j ,

where a←$ Zkp, S0, . . . ,Sn−1 ←$ Zk×kp and K = (a,S0, . . . ,Sn−1). If the k-LIN problem is hard in G, then
LWn is a pseudorandom function. More specifically, assume that there exists a PPT distinguisher D that
distinguishes LWn with advantage ε from a random function. Then there exists a PPT distinguisher D′ that
distinguishes the k-LIN problem with advantage ε/(k · n).

The Lewko-Waters PRF LW as described in the construction in Theorem 5 outputs k group elements and
therefore requires k exponentiations. We can truncate the output of the LW PRF to a single group element,
thereby only requiring a single exponentiation.

4.2 A bounded PRF from k-LIN

We will now provide an efficient construction of a bounded PRF from k-LIN. The security of this bounded
PRF tightly reduces to the security of a small domain LW PRF and therefore to k-LIN with only a logarithmic
loss.

Construction 3 Let k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group of prime order p. The keyed

function F` : K` × Zp → G with key space K` = Zkp ×
(
Zk×kp

)log(`)
is defined by

F`(K`, x) = ga
>·
∏log(`)−1

j=0 (Sj+x
2j ·I),

where a←$ Zkp, S0, . . . ,Slog(`)−1 ←$ Zk×kp and K` = (a,S0, . . . ,Slog(`)−1)
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For a bit b ∈ {0, 1} let ¬b = 1 − b denote the negation of b. For a bit-vector c ∈ {0, 1}m let ¬c denote
the bit-wise negation of c. We will need the following technical lemma.

Lemma 4. Let p be a prime integer. It holds for all r ∈ N>0, all matrices S0, . . . ,Sr−1 ∈ Zk×kp and all
x ∈ Zp that

r−1∏
j=0

(Sj + x2
j

I) =
∑

c∈{0,1}r

r−1∏
j=0

S
¬cj
j

x
∑r−1

j=0 cj2
j

.

The proof of Lemma 4 works by inductively expanding the left side of the equation.

Proof. We will inductively expand the terms on the left side of the equation. Clearly, the equation is correct
for r = 1. Now assume that the equation is correct for r − 1. It holds that

r−1∏
j=0

(Sj + x2
j

I) =

r−2∏
j=0

(Sj + x2
j

I)

 (Sr−1 + x2
r−1

I)

=

 ∑
c∈{0,1}r−1

r−2∏
j=0

S
¬cj
j

x
∑r−2

j=0 cj2
j

 (Sr−1 + x2
r−1

I)

=
∑

c∈{0,1}r−1

r−2∏
j=0

S
¬cj
j

S1
r−1x

∑r−2
j=0 cj2

j+0·2r−1

+
∑

c∈{0,1}r−1

r−2∏
j=0

S
¬cj
j

S0
r−1x

∑r−2
j=0 cj2

j+1·2r−1

=
∑

c∈{0,1}r

r−1∏
j=0

S
¬cj
j

x
∑r−1

j=0 cj2
j

Theorem 6. Assume that the k-LIN problem is hard in G. Then the function F` defined in Construction 3
is a bounded PRF. More specifically let `∗ ≤ poly(λ) and assume that D is an `∗-query PPT distinguisher
with advantage ε against the pseudorandomness of F`∗ . Then there exists a distinguisher D′ (with essentially
the same runtime as D) with advantage ε

k·log(`∗) against k-LIN.

Proof. First observe that F` can be computed in time poly(λ, log(`)). Notice that LWlog(`) and F` have
identical key-spaces. Let K = (a,S0, . . . ,Slog(`)−1) be a key for F`. It follows immediately by Lemma 4 that
we can compute F` by

F`(K,x) = ga
>·
∏log(`)−1

j=0 (Sj+x
2j ·I)

= g
a>·
∑

c∈{0,1}log(`)

(∏log(`)−1
i=0 S

¬ci
i

)
x
∑log(`)−1

i=0
ci2

i

=
∏

c∈{0,1}log(`)
g
a>·
(∏log(`)−1

i=0 S
¬ci
i

)
x
∑log(`)−1

i=0
ci2

i

=
∏

c∈{0,1}log(`)

(
LWlog(`)(K,¬c)

)x∑log(`)−1
i=0

ci2
i

For an integer j ∈ {0, . . . , 2dlog(`)e−1} let BIN(j) denote the log(`) bit binary representation of j, i.e. it holds

that j =
∑log(`)−1
i=0 BIN(j)i2

i. Thus, it holds that

F`(K,x) =

2dlog(`)e−1∏
j=0

(
LWlog(`)(K,¬BIN(j))

)xj

. (8)
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Now, let `∗ ≤ poly(λ) and assume that D is a `∗-query PPT distinguisher that distinguishes F`∗ with
advantage ε from a random function. We will construct a PPT distinguisher D′ that distinguishes LWlog(`∗)

from a random function with advantage ε. Since the function table of a function {0, 1}log(`∗) → Gk has size
2dlog(`

∗)e · k log(|G|) ≤ 2`∗k log(|G|) = poly(λ), we can assume that D′’s input is an explicit function table.

Distinguisher D′

Input: Function T : {0, 1}log(`
∗) → Gk,

encoded as a function table

b′ ← DO(·)(1λ)
return b′

O(x):

y ←
∏2dlog(`

∗)e−1
j=0 (T (¬BIN(j)))x

j

return y

First observe that D′ is efficient as D is efficient and the oracle O can be implemented efficiently (as
2dlog(`

∗)e ≤ 2`∗). We will now analyze the advantage of D′. If D′’s input T is a function LWlog(`∗)(K, ·) for a
randomly chosen K ←$ Klog(`∗), then clearly by (8) it holds that the oracle O implements exactly F`∗(K, ·).
On the other hand, if T implements a random function R′ : {0, 1}log(`∗) → Gk, then we can express R′ by

R′(¬BIN(j)) = ga
>
j for all j = 0, . . . , 2dlog(`

∗)e−1, where the a0, . . . ,a2dlog(`∗)e−1 ←$ Gk are chosen uniformly
at random. Thus, in this case the function computed by O is

O(x) =

2dlog(`
∗)e−1∏

j=0

ga
>
j x

j

= g
∑2dlog(`

∗)e−1
j=0 a>j x

j

,

which is an `∗-wise independent function. To see this, note that g-exponentiation is an isomorphism and the

function in the exponent
∑2dlog(`

∗)e−1
j=0 a>j x

j is a random polynomial of degree 2dlog(`
∗)e − 1 ≥ `∗ − 1, which

is an `∗-wise independent function. Thus, from the view of D the oracle O implements a random function
R, as D sends at most `∗ distinct queries. We conclude

Adv(D′) = |Pr[D′LWlog(`∗)(K,·) = 1]− Pr[D′R
′

= 1]|
= |Pr[DF`∗ (K,·) = 1]− Pr[DR = 1]| = ε.

By Theorem 5, the distinguisher D′ yields a distinguisher D′′ with advantage ε
k log(`∗) against k-LIN.

4.3 In-Place On-the-Fly Adaptation

While the general on-the-fly adaptation strategy we will provide in Section 3.2 needs to replicate the the
underlying bounded PRF t times, we will now provide a specific on-the-fly adaptation technique for the
bounded PRF F` provided in the last paragraph that involves no expansion whatsoever. Due to the special
algebraic structure of F`, this on-the-fly adaptation can be done in-place. To obtain an unbounded PRF
from the bounded PRF of Construction 3, we will set the upper limit of the product in the exponent from
log(`) to some t = ω(log(λ)). We thereby ensure that t is large enough that we can embed F`∗ in this PRF
for any `∗ ≤ poly(λ).

Construction 4 Let k ≥ 1 be a positive integer and G = 〈g〉 be a cyclic group of prime order p. Let

t = ω(log(λ)). The keyed function F : K × Zp → G with key space K = Zkp ×
(
Zk×kp

)t
is defined by

F (K,x) = ga
>·
∏t−1

j=0(Sj+x
2j ·I),

where a←$ Zkp, S0, . . . ,St−1 ←$ Zk×kp and K = (a,S0, . . . ,St−1).
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We still need the following auxiliary lemma which states that a randomly chosen matrix from Zk×kp has
full rank, except with small probability.

Lemma 5. Let p be a prime and S←$ Zk×kp be chosen uniformly at random. Then it holds that

Pr[rank(S) < k] ≤ 1

p− 1
.

The proof of Lemma 5 is standard.

Theorem 7. Assume that the k-LIN problem is hard in G. Then the function F defined in Construction 4
is a PRF. More specifically assume that D is PPT distinguisher that makes at most q = poly(λ) queries and
distinguishes F with advantage ε from a uniformly random function. Then there exists a PPT distinguisher

D∗ (with essentially the same runtime as D) with advantage 1
k·log(q) ·

(
ε− qt

(p−1)

)
against k-LIN in G.

Proof. Let D be a distinguisher with advantage ε against the pseudorandomness of F which makes at most
q = poly(n) queries. Note that since q = poly(λ) and t = ω(log(λ)), it holds log(q) ≤ t− 1 (for a sufficiently
large λ). We will define 3 hybrid experiments. In hybrid i D is given access to a function F (i) : Zp → Gk.

– Hybrid H1: In this experiment D is given oracle access to the function F (1) given by F (1)(x) = F (K,x)
for a randomly chosen K ←$ K.

– Hybrid H2: In this experiment D is given oracle access to the function F (2) defined by

F (2)(x) = gr(x)
>·
∏t

j=log(q)(Sj+x
2j I),

where r : Zp → Zkp is a uniformly random function and Slog(q), . . . ,St−1 ←$ Zk×kp .

– Hybrid H3: In this experiment D is given oracle access to a uniformly random function F (3).

Clearly, it holds that

|Pr[DF
(1)

= 1]− Pr[DF
(3)

= 1]| ≥ ε.

Define

ε1 = |Pr[DF
(1)

= 1]− Pr[DF
(2)

= 1]|

ε2 = |Pr[DF
(2)

= 1]− Pr[DF
(3)

= 1]|.

By the triangle inequality it holds that
ε ≤ ε1 + ε2.

We will first show that ε2 ≤ qt/(p− 1). Define

M(x) =

t−1∏
j=log(q)

(Sj + x2
j

I),

and observe that F (2)(x) = gr
>(x)·M(x). Now, if it holds for distinct x1, . . . , xq ∈ Zp that rank(M(xi)) = k for

i = 1, . . . , q, then r>(x1) ·M(x1), . . . , r>(xq) ·M(xq) are distributed independently and uniformly at random.
Thus it also holds that F (2)(x1), . . . , F (2)(xq) are distributed independently and uniformly at random. We can
define the predicate good({x1, . . . , xq},M) to be true if and only if it holds rank(M(xi)) = k for i = 1, . . . , q.
Applying Lemma 1 yields

ε2 = |Pr[DF
(2)

= 1]− Pr[DF
(3)

= 1]|
≤ max
x1,...,x`

Pr[¬good({x1, . . . , xq},M)]

= max
x1,...,x`

Pr[∃i : rank(M(xi)) < k].
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For a fixed x it holds that rank(M(x)) < k if there exists a j ∈ {log q, . . . , t − 1} with rank(Sj + x2
j

I) < k.
Since Sj is chosen uniformly at random it holds by Lemma 5 that

Pr[rank(Sj + x2
j

I) < k] = Pr[rank(Sj) < k] ≤ 1

p− 1
.

By a union bound over the j it holds that Pr[rank(M(x)) < k] ≤ t
p−1 . By another union bound over

i = 1, . . . , q it holds that

Pr[∃i : rank(M(xi)) < k] ≤ qt

p− 1

We conclude ε2 ≤ qt/(p− 1) and therefore ε1 ≥ ε− qt/(p− 1).
Now let `∗ = 2dlog(q)e. We will now construct a PPT distinguisher D′ that distinguishes the bounded

PRF F`∗ with advantage ε2. The distinguisher D′ is given in Figure 3.

Distinguisher D′
Has access to oracle O(·)
Slog(q), . . . ,St ←$ Zk×kp

b′ ← DO
′(·)(1λ)

return b′

O′(x):
y0 ← O(x)

y ← y

∏t−1
j=log(q)

(Sj+x
2j I)

0

return y

Fig. 3. The distinguisher D′

First assume that D′’s oracle O implements the function F`∗(K`∗ , x) = ga
>∏log(q)−1

j=0 (Sj+x
2j I) where K` =

(a,S0, . . . ,Slog(q)−1) is a uniformly chosen key for F`∗ . Then the oracle O′ implements the function

O′(x) =

(
ga
>∏log(q)−1

j=0 (Sj+x
2j I)

)∏t−1
j=log(q)

(Sj+x
2j I)

= g

(
a>
∏log(q)−1

j=0 (Sj+x
2j I)

)
·
∏t−1

j=log(q)
(Sj+x

2j I)

= ga
>∏t−1

j=0(Sj+x
2j I).

Thus O′ implements exactly F (1). On the other hand, if D′’s oracle O implements a random function R with

R(x) = gr(x)
>

, where r : Zp → Zkp is a random function, then the oracle O′ implements the function

O′(x) =
(
gr
>(x)

)∏t−1
j=log(q)

(Sj+x
2j I)

= g
r>(x)·

∏t−1
j=log(q)

(Sj+x
2j I)

.

Thus O′(x) implements exactly F (2). We conclude that

Adv(D′) = |Pr[D′F`∗ (K`∗ ,·) = 1]− Pr[D′R = 1]|

= |Pr[DF
(1)

= 1]− Pr[DF
(2)

= 1]| = ε1 ≥ ε−
qt

p− 1
.

By Theorem 6 this yields a distinguisher D∗ with advantage 1
k·log(q) ·

(
ε− qt

(p−1)

)
against k-LIN in G. This

concludes the proof.
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PRF with Shorter Keys. Escala et al. [11] suggested a framework that generalizes Diffie-Hellman like
decisional assumptions and proposed a variant of the Lewko-Waters PRF with short keys based on the so-
called Matrix-DDH (MDDH) assumption. The proof of Theorem 6 immediately generalizes to this setting.
Theorem 7 also holds in this setting, given that the distribution of aggregated transformation matrices T
corresponding to the matrix distribution D`,k (c.f. [11], Section 5.3) used in the MDDH problem satisfies
Pr[rank(T + x · I) < k] ≤ negl for all x ∈ Zp.
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