
Construction of Transition Matrices
for Binary FCSRs

Zhiqiang Lin1, Dingyi Pei2 and Dongdai Lin1

1 the State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
2 College of Mathematics and Information Science, Guangzhou University,

Guangzhou 510006, China
linzhiqiang@iie.ac.cn; ddlin@iie.ac.cn; gztcdpei@scut.edu.cn

Abstract. Stream ciphers based on Linear Feedback Shift Registers
(LFSRs) have faced algebraic attacks. To avoid this kind of attacks,
Feedback with Carry Shift Registers (FCSRs) have been proposed as
an alternative. In order to eliminate a so-called LFSRization weakness,
FCSRs have been implemented using ring representation instead of the
Galois one. A ring FCSR is determined by its transition matrix A. Its
connection integer, which is related to the properties of the output se-
quences, is q = det(I − 2A). In this paper, we show how to calculate
the determinant det(I − 2A) of transition matrices with a critical path
of length 1 and fan-out 2. Moreover, we propose algorithms to construct
such transition matrices (binary case) based on searching target connec-
tion integers.

Keywords: stream cipher, l-sequences, 2-adic ring, FCSRs, tran-
sition matrix

1 Introduction

Linear Feedback Shift Registers (LFSRs) are widely used in information theory,
coding theory and cryptography. However, for cryptographic applications their
linear structure has the drawback that it may help algebraic attacks. Klapper
and Goresky have introduced Feedback with Carry Shift Registers (FCSRs) as
an alternative to LFSRs ([10],[11],[12]). FCSRs share many of the good prop-
erties of LFSRs, such as proven large period and good statistical properties,
but also is possible to recover the structure of a sequence as for LFSRs ([13]).
The main difference is the fact that the elementary additions in LFSRs are ad-
ditions modulo 2, but in FCSRs are addition of integers with propagation of
carries. This makes FCSRs to have quadratic transition functions and provide
an intrinsic nonlinearity.

FCSRs have two traditional representations: Fibonacci or Galois representa-
tions ([7]). In Fibonacci mode all the feedback bits influence a single cell, while
in the Galois mode a single feedback bit influences all the carry cells. The Galois

representation is more efficient than the Fibonacci one for hardware implemen-
tations, because its feedback computations are performed in parallel. By using
a linear filter on the cells of a Galois FCSR automaton, Arnault et al have pro-
posed family of hardware stream ciphers: F-FCSR ([1]). They are resistant to
many regular attacks. Furthermore, a software version of FCSR-based stream
cipher: the X-FCSR family have been proposed by using word-ring FCSRs ([5]).

However, in Galois mode due to the dependency between the binary carries
and the single feedback bit, it is possible to maintain linear behavior for several
clock cycles in its main register. Hell and Johansson have exploited this LFS-
Rization of FCSR to mount a very powerful attack against all the version of
stream ciphers based on Galois FCSR ([9], [18]).

Arnault et al have responded to this attack by introducing a new FCSR
representation called ring FCSR ([2]). In this new mode, any binary cell can be
used as a feedback bit for any other cells in the main register. The LFSRization
behavior seems to have disappeared when this new mode is used.

1.1 Ring FCSR

Definition 1. A ring FCSR is composed of a main shift register of n binary
cells m = (m0,m1, . . . ,mn−1)T (T indicates the column vector.) and a carry
register of n integer cells c = (c0, c1, . . . , cn−1)T . It is updated using the following
relations:

m(t+ 1) = Am(t) + c(t) (mod 2)

c(t+ 1) = Am(t) + c(t) (div 2) (X div 2 =
X − (X (mod 2))

2
),

where A = (al,d)1≤l,d≤n is an n×n matrix with entries in {0, 1}, called transition
matrix, of this form:

∗ 1
∗ 1 (∗)
∗ 1
. . .

. . .

(∗) ∗ 1
1 ∗

.

It is easy to see that ring FCSRs are totally determined by their transition
matrices through Definition 1. As the main register of an FCSR is by definition
a shif register, the over-diagonal of the transition matrix A is full of ones, i.e.
for all 1 ≤ l ≤ n we have a

l,l+1 (mod n)
= 1. If al,d is 1, then md−1 is used to

feedback to ml−1.

An output sequence of an FCSR can be seen as a power series in the ring
of 2-adic integers. The maximal period FCSR-sequences, called l-sequences, are
similar to m-sequences and also have good properties ([13]).

Theorem 1. ([2]) Let F be a ring FCSR with transition matrix A. Let q =
det(I − 2A) be an integer, where I is an n × n identity matrix. q is called the
connection integer of F . Then an output sequence of F is an l-sequence with
period |q| − 1 if and only if |q| is prime and 2 is a primitive root of |q|.

A widely used approach to construct stream ciphers is to combine an FCSR
automaton with a filtering function (such as F-FCSRs). The filtering function
extracts keystream bits from the states of the main register. Hence the period
of the keystream is always a factor of |q| − 1. In order to guarantee the period
as large as possible, we usually assume that (|q|− 1)/2 is a prime, i.e. (|q|− 1)/2
is a Sophie-Germain prime and |q| is called its associated safe prime. Therefore,
for the design of stream ciphers, |q| must satisfy the following conditions:

C1 |q| is a prime with 2 as its primitive root.
C2 (|q| − 1)/2 is also a prime.

Such |q| is called a safe prime.
Recently, another attack on FCSRs based stream ciphers is presented in

([20]). It is a distinguishing attack based on an inherent linear bias of l-sequences
([19]). Wang et al have shown the attack on the F-FCSR-H v3, an F-FCSR that
uses a ring FCSR, with an online time complexity of only 237.2. The off-line
time complexity (for finding a linear relation) is 256.2. It breaches the exhaustive
search complexity limit. However, this attack does not indicate that FCSRs are
useless but limits the usefulness of FCSRs for cryptography, such as not to use
a linear filter. So when constructing ring FCSRs, we do not take into account
this attack.

In ([15]) a class of ring FCSRs called “defective FCSRs” are found not to
remove the LFSRization behavior. A feature of them is that feedbacks are all
from a few blocks of serial simple shifting cells. So we should avoid to construct
“defective FCSRs”.

1.2 Design criteria of hardware ciphers

Ring FCSRs are suitable for hardware implementations ([2, 3]). The cells of the
main register can be built as a cascade of flip flops. The feedbacks are imple-
mented by adders-with-carry (can be used to sum up two 2-adic integers). Good
hardware designs are required to

– Critical path length: The critical path length is the maximum number of
adders the signal have to pass through. If this number is low, the circuit can
be clocked at a higher rate.

– Fan-out: A given signal should drive minimum adder number.
– Cost: The number of adders must be as small as possible to lower consump-

tion. However, more adders may need to ensure the complexity when using
for cryptography.

The optimal criteria is a critical path of length 1 and fan-out 2. A transition
matrix A with these criteria can be described by the following conditions:

C3 A is an n × n matrix with entries in {0, 1}, and the over-diagonal entries
a
l,l+1 (mod n)

(1 ≤ l ≤ n) must be 1.

C4 The number of nonzero entries for a given row or a given column must be at
most 2.

Another design criterion is called diffusion delay. This criterion represents the
diffusion capacity of an FCSR. This parameter is important for cryptographic
purpose where small differences in keys or in messages are required to have a
large impact. Moreover, a lower diffusion delay would speed up the so-called
initialization phase in stream cipher designs.

Definition 2. ([4]) Let F be a ring FCSR with transition matrix A. Denote by
D the digraph consists of n points called vertices defined by A, i.e., if al,d 6= 0
then there exists a directed edge from vertex d and to vertex l. The diffusion
delay is equal to the diameter of D.

Considering the Fibonacci and Galois representations, the associated diffu-
sion delay is n − 1 because the cells on each side m0 and mn−1 require n − 1
clocks to mix together. The ring representation allows to achieve a better diffu-
sion delay.

1.3 Construction of ring FCSRs

A ring FCSR suitable for hardware implementations should satisfy the conditions
from C1 to C4. Normally the number of its feedbacks is about f = n/2 for a
tradeoff between consumption and safety.

In ([3]), Arnault et al have proposed an algorithm to construct ring FCSRs.
The algorithm has two loops. In its first loop, the algorithm randomly pick a
matrix A, with f−1 feedbacks, satisfying the conditions C3 and C4 at first. Then
it computes det(I − 2A) and the cofactor matrix of (I − 2A). In its second loop,
the last feedback is also placed to satisfy the condition C4. Then using a property
of determinant one could obtain roughly n2 − n · f connection integers and test
if one of them satisfies also the condition C1 (C2 is not considered there!). The
complexities of the computations of the determinant and the cofactor matrix are
both O(n3). In addition, since there may be some equal cofactors in the cofactor
matrix, the number of connection integers for testing in the second loop may be
less than n2 − n · f in one iteration. Hence, we need more efficient algorithms.

([14],[17]) have presented algorithms to construct ternary ring FCSRs (a kind
of extensional ring FCSRs also suitable for hardware implementations) satisfying
the conditions C3 and C4 with connection integers specified. The authors have
given an affirmative answer to the following conjecture: for any given connection
integer there exist ternary transition matrices with a critical path of length 1 and
fan-out 2. This construction is based on a correspondence between the so-called
non-adjacent form (NAF) of integers and the matrices (I − 2A). However, this
method seems hard to graft onto the binary case.

In this paper, we show how to calculate the determinant det(I − 2A), where
A is a transition matrix with a critical path of length 1 and fan-out 2. According

to this calculation, we propose a method of constructing binary ring FCSRs.
We first construct a specific initial matrix (satisfying the conditions C3 and C4).
Then based on its connection integer and another parameter, we seek a target
integer (satisfying the conditions C1 and C2) and immediately get an expected
binary ring FCSR by this integer. In the search part, this method only needs to
do some additions and simple tests, thus efficient.

This paper is organized as follows. In Section 2 we show how to calculate the
determinant det(I − 2A) and propose a generalized algorithm for constructing
ternary ring FCSRs with given connection integers. Section 3 shows the ma-
jor results, algorithms to construct binary ring FCSRs. Finally, this paper is
concluded in Section 4.

2 Calculation of the determinant det(I − 2A)

2.1 Calculation method

Let F be a ring FCSR with a critical path of length 1 and fan-out 2, and let
A be its transition matrix. Then A satisfies the conditions C3 and C4. Suppose
there is no binary cell feedback to itself, that is al,l = 0 for all 1 ≤ l ≤ n, and
suppose there are f adders (f ≤ n): al1,d1 = 1, al2,d2 = 1, . . . , alf ,df = 1 (di 6= li
and di 6= li + 1 for 1 ≤ i ≤ f) in A. Let 1 ≤ l1 < l2 < · · · < lf ≤ n without loss
of generality.

Denote the matrix B = I − 2A and call it connection matrix. Let B =
(bl,d)1≤l,d≤n. Then we have

– bl,l = 1 (1 ≤ l ≤ n) and b
l,l+1 (mod n)

= −2 (1 ≤ l ≤ n). We call them

diagonal entries and shifts respectively;
– bl1,d1 = −2, bl2,d2 = −2, . . . , blf ,df = −2, called feedbacks;
– bl,d = 0 for others.

The determinant of B can be calculated as follows:

Theorem 2. Let B be a connection matrix. The feedbacks in B are: bl1,d1 =
−2, bl2,d2 = −2, . . . , blf ,df = −2. Then we have

det(B) = −2n + 1 +
∑

(i1,i2,...,it)⊆(1,2,...,f)

Si1,i2,...,it , (1)

where (i1 < i2 < . . . < it) runs over all subsets of (1, 2, . . . , f) and

Si1,i2,...,it =

(−1)ε(di1 ,di2 ,...,dit)+t · 2

t+
t∑
r=1

(lir−d
′
ir

)
if d′i1 ≤ li1 < d′i2 ≤ li2 < · · · < d′it ≤ lit

(−1)ε(di1 ,di2 ,...,dit)−1 · 2
n+t+

t∑
r=1

(lir−d
′
ir

)
if li1 < d′i1 ≤ li2 < d′i2 ≤ · · · ≤ lit < d′it

0 otherwise,

where ε(σ) is the inverse number of permutation σ and (d′i1 , d
′
i2
, . . . , d′it) is the

sequential permutation of (di1 , di2 , . . . , dit). For convenience, we call the two
nonzero cases of Si1,i2,...,it “Case I” and “Case II” respectively.

Proof. We have

det(B) =
∑

σ=(j1,j2,...,jn)

(−1)ε(σ) · b1,j1b2,j2 · · · bn,jn , (2)

where σ = (j1, j2, . . . , jn) runs over all possible permutations of (1, 2, . . . , n).
A nonzero term in (2) only consists of diagonal entries, shifts and feedbacks. It

is easy to see that there are only two nonzero terms in (2) without any feedback:
(−1)ε(1,2,...,n) · b1,1b2,2 · · · bn,n = 1 and (−1)ε(2,3,...,n,1) · b1,2b2,3 · · · bn,1 = −2n.

Suppose in a nonzero term (−1)ε(σ) · b1,j1b2,j2 · · · bn,jn there are t (1 ≤ t ≤
f) feedbacks: bli1 ,di1 , . . . , blit ,dit , where (i1 < i2 < . . . < it) is a subset of
(1, 2, . . . , f). Then except these feedbacks, the left n − t entries can only be
either diagonal entries or shifts. Suppose (d′i1 , d

′
i2
, . . . , d′it) is the sequential per-

mutation of (di1 , di2 , . . . , dit). We have:

Case I: If d′i1 ≤ li1 < d′i2 ≤ li2 < · · · < d′it ≤ lit . Since jlir = dir for
1 ≤ r ≤ t, jdir can only be dir + 1. It implies that jl = l + 1 for l =
d′ir , d

′
ir

+ 1, . . . , lir − 1 successively. We also have jd′ir−1
= d′ir − 1. It implies

that jl = l for l = d′ir − 1, d′ir − 2, . . . , lir−1
+ 1 (2 ≤ r ≤ t) successively and

for l = 1, 2, d′i1 − 1, lit + 1, . . . , n. So this term is only one possibility:

jl =

dir l = lir (1 ≤ r ≤ t) (feedbacks)
l + 1 l = d′ir , d

′
ir

+ 1, . . . , lir − 1 (1 ≤ r ≤ t) (shifts)
l otherwise (diagonal entries).

To compute the inverse number of σ, we first sort (di1 , di2 , . . . , dit), then sort
(d′ir + 1, d′ir + 2, . . . , lir , d

′
ir

) (1 ≤ r ≤ t) respectively. So we have

ε(σ) = ε(di1 , di2 , . . . , dit) +
t∑

r=1
ε(d′ir + 1, . . . , lir , d

′
ir

)

= ε(di1 , di2 , . . . , dit) +
t∑

r=1
(lir − d′ir)

Hence
(−1)ε(σ) · b1,j1b2,j2 · · · bn,jn

= (−1)
ε(di1 ,di2 ,...,dit)+

t∑
r=1

(lir−d
′
ir

)
· (−2)

t+
t∑
r=1

(lir−d
′
ir

)

= (−1)ε(di1 ,di2 ,...,dit)+t · 2
t+

t∑
r=1

(lir−d
′
ir

)
.

Case II: If li1 < d′i1 ≤ li2 < d′i2 ≤ · · · ≤ lit < d′it , similar to Case I, the
nonzero term is only one possibility:

jl =

dir l = lir (1 ≤ r ≤ t) (feedbacks)
l + 1 l = d′ir , d

′
ir

+ 1, . . . , lir+1 − 1 (1 ≤ r ≤ t− 1) and l = 1, 2, . . . , li1 − 1, d′it , d
′
it

+ 1, . . . , n (shifts)
l otherwise (diagonal entries).

To compute the inverse number of σ, we first sort (di1 , di2 , . . . , dit) and re-
order it as (d′it , d

′
i1
, d′i2 , . . . , d

′
it−1

), then sort (d′ir + 1, d′ir + 2, . . . , lir+1 , d
′
ir

)

(1 ≤ r ≤ t− 1) and (2, 3, . . . , li1 , d
′
i1
, d′it + 1, d′it + 2, . . . , n, 1) respectively. So

we have

ε(σ) = ε(di1 , di2 , . . . , dit) + t− 1 + ε(2, 3, . . . , li1 , d
′
it
, d′it + 1, d′it + 2, . . . , n, 1) +

t−1∑
r=1

ε(d′ir + 1, . . . , lir+1
, d′ir)

= ε(di1 , di2 , . . . , dit) + t− 1 + n− d′it + li1 +
t−1∑
r=1

(lir+1
− d′ir)

= ε(di1 , di2 , . . . , dit) + t− 1 + n+
t∑

r=1
(lir − d′ir).

Hence

(−1)ε(σ) · b1,j1b2,j2 · · · bn,jn

= (−1)
ε(di1 ,di2 ,...,dit)+t−1+n+

t∑
r=1

(lir−d
′
ir

)
· (−2)

t+n−d′it+li1+
t−1∑
r=1

(lir+1
−d′ir)

= (−1)ε(di1 ,di2 ,...,dit)−1 · 2
t+n+

t∑
r=1

(lir−d
′
ir

)
.

Otherwise: If lir and d′ir are not interleaving, then there exists k (1 ≤
k ≤ t − 1) such that no lir (1 ≤ r ≤ t) satisfies that d′ik ≤ lir ≤ d′ik+1

, or

no lir (1 ≤ r ≤ t) satisfies that 1 ≤ lir ≤ d′i1 or d′it ≤ lir ≤ n. In the first
situation, it implies that jl = l+ 1 for l = d′ik , d

′
ik

+ 1, . . . , d′ik+1
successively.

So jd′ik+1−1
= d′ik+1

. It is a contradiction. In the second situation, there exists

a similar contradiction.

Therefore, a nonzero term in (2) can only be two cases: Case I and Case II.
2

According to (1), det(B) can be calculated by the coordinates of the feed-
backs. If the feedbacks are randomly selected we have to compute f ! terms and
their sum. However, f ! is too big even if f is not big. For example, f = 64 and
64! is very large. In order to reduce computational effort, we will set up some
qualifications to the selection of feedbacks. A simplest case is as follows:

Proposition 1. Let B be a connection matrix with feedbacks bl1,d1 = −2, bl2,d2 =
−2, . . . , blf ,df = −2 , where di 6= li and di 6= li + 1 for 1 ≤ i ≤ f . If there exist
integers 1 ≤ u < v ≤ n that li ∈ {u, u+ 1, . . . , v} and di ∈ ({1, 2, . . . , n}/{u, u+
1, . . . , v}) for all 1 ≤ i ≤ f , or di ∈ {u, u+1, . . . , v} and li ∈ ({1, 2, . . . , n}/{u, u+
1, . . . , v}) for all 1 ≤ i ≤ f , then

det(B) = −2n + 1−
f∑
i=1

2(li−di (mod n))+1.

Proof. According to (1), for any Si1,i2,...,it (t ≥ 2), we have lir ∈ {u, u+1, . . . , v}
and dir ∈ ({1, 2, . . . , n}/{u, u + 1, . . . , v}) for al 1 ≤ r ≤ t, or dir ∈ {u, u +
1, . . . , v} and lir ∈ ({1, 2, . . . , n}/{u, u + 1, . . . , v}) for all 1 ≤ r ≤ t. It implies

that Si1,i2,...,it = 0. Hence

det(B) = −2n + 1 +
f∑
i=1

Si

= −2n + 1−
f∑
i=1

2(li−di (mod n)+1).

2

This property can be used to construct ternary ring FCSRs.

2.2 Construction of ternary ring FCSRs with given connection
integers

In ([3]), a kind of 2-adic automaton, extending the entries of the transition matrix
to {−1, 0, 1}, called ternary FCSRs, is proposed for hardware implementations.
Corresponding to the −1 in transition matrices, one has introduced a subtracter-
with-carry to compute the difference between two 2-adic integers.

Algorithm 1 proposes a method of constructing ternary ring FCSRs for a
given integer q. The non-adjacent form (NAF) of q is an expression q =

∑n
i=0 qi2

i

where qi ∈ {−1, 0, 1} and no two consecutive digits qi are both nonzero. NAF(q)
can be efficiently computed using an algorithm proposed in ([8]). Algorithm
1 is a generalization of the method proposed in ([14],[17]). In fact, if we let
1 ≤ df < df−1 < · · · < d1 < n/2 < l1 < l2 < · · · < lf < n, then it is the case in
([14],[17]). An efficient operation of step 4 and step 8 is as follows:

1. Randomly choose 1 ≤ f0 ≤ f − 1.

2. (li, di) =

{
(si + bn−si2 c, 1 + bn−si2 c) 1 ≤ i ≤ f0
(1 + d si2 e, n+ 2− si + d si2 e) f0 < i ≤ f,

where bxc denotes the largest integer smaller than x and dxe denotes the smallest
integer larger than x.

Theorem 3. Let A be a transition matrix constructed by Algorithm 1 with a
given positive odd q, then det(I − 2A) = −q.

Proof. If q0 = −1, the proof is similar to Proposition 1, replacing the feedbacks
of the connection matrix B by bli,di = −2qi. If q0 = 1, in step 7 let bn,n = −1,
then the term (−1)ε(1,2,...,n) · b1,1b2,2 · · · bn,n = −1 and the sum of the nonzero
terms without feedbacks is −2n − 1. Moreover, if li > di, the term Si must
contain bn,n = −1. So it will change the sign. The rest of the proof is according
to Proposition 1. 2

Example 1. Let q = 347. Then NAF(347) = 29 − 27 − 25 − 22 − 1. Let the
feedbacks be a8,4 = −1, a7,6 = −1, a1,3 = −1. Then the transition matrix is

Algorithm 1 Construction of ternary ring FCSRs with a given connection in-
teger

Input: A positive odd q.
Output: A transition matrix A with a critical path of length 1, a fan-out of 2 and

det(I − 2A) = −q.
1: Compute NAF(q) = 2n +

∑f
i=1 qi2

si + q0, where qi = ±1 (0 ≤ i ≤ f), n ≥ sf + 2
and si+1 ≥ si + 2 (1 ≤ i ≤ f − 1).

2: A← (al,d)1≤l,d≤n with al,d ←
{

1 if d ≡ l + 1 (mod n)
0 otherwise

3: if q0=-1 then
4: Found (li, di) (1 ≤ i ≤ f) such that li−di(mod n) = si−1 and there exist integers

1 ≤ u < v ≤ n that all li ∈ {u, u + 1, . . . , v} and all di ∈ ({1, 2, . . . , n}/{u, u +
1, . . . , v}), or all di ∈ {u, u+1, . . . , v} and all li ∈ ({1, 2, . . . , n}/{u, u+1, . . . , v}).

5: ali,di ← qi for 1 ≤ i ≤ f
6: else
7: an,n ← 1
8: Found (li, di) (1 ≤ i ≤ f) such that li−di(mod n) = si−1 and there exist integers

1 ≤ u < v ≤ n − 1 that all li ∈ {u, u + 1, . . . , v} and all di ∈ ({1, 2, . . . , n −
1}/{u, u + 1, . . . , v}), or all di ∈ {u, u + 1, . . . , v} and all li ∈ ({1, 2, . . . , n −
1}/{u, u+ 1, . . . , v}).

9: for 1 ≤ i ≤ f do
10: if li > di then
11: ali,di ← −qi
12: else
13: ali,di ← qi
14: end if
15: end for
16: end if
17: return A

A =

0 1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 −1 0 0 0 0 1
1 0 0 0 0 0 0 0 0

and det(I − 2A) = −q. 2

A ternary ring FCSRs constructed by Algorithm 1 is a “defective FCSR”
proposed in ([14]), with the number of feedbacks less than n/2. So we have to
use methods presented in ([17]) to add some adders and subtracters for improving
its security. We have no intention to traverse the methods here.

3 Construction of binary transition matrices

3.1 Main idea

To construct a binary ring FCSR, the method proposed for the ternary case
is hard to be used, because there is no binary signed digit representation of
integers like the non-adjacent form and the elementary transformations of con-
nection matrices proposed in ([17]) for adding feedbacks are not suitable for the
binary case. Therefore, we have to consider some more complicated cases than
Proposition 1.

Proposition 2. Let B be a connection matrix with f1 feedbacks in the lower
triangular: bli,di (1 ≤ i ≤ f1), where li > di and any two different (li, di),
(lj , dj) (lj > li) have only two forms dj < di < li < lj or di < li < dj < lj,
and f2 feedbacks in the upper triangular: bl′i,d′i (l′i < d′i, 1 ≤ i ≤ f2). Consider
term Si1,i2,...,it of (1) in Case I. Then for any upper triangular feedback bl′µ,d′µ
in this term, there exists a lower triangular feedback blν ,dν in this term that
dν ≤ l′µ < d′µ ≤ lν .

Proof. Suppose there is a upper triangular feedback blik ,d
′
i
k̃

in the term Si1,i2,...,it

of (1) in Case I, where 1 ≤ k < k̃ ≤ t. Then the number of lir < lik is k − 1,
and the number of d′ir ≤ lik is k. It implies that there is at least one d′ir̃ of a
feedback bl′ir̃ ,d

′
ir̃

, where l′ir̃ > lik . If l′ir̃ ≥ d
′
ik̃

, then we have d′ir̃ ≤ lik < d′ik̃ ≤ l
′
ir̃

.

Otherwise, lik < l′ir̃ < d′ik̃ . Suppose the number of such d′ir̃ is τ (τ ≥ 1) and the

maximum of their corresponding l′ir̃ is liλ . Then the number of lir < liλ which
have yet to match feedbacks is λ−τ −1, and the number of d′ir ≤ liλ which have
yet to match feedbacks is λ − τ . Hence there is at least one d′ir̃ of a feedback
bl′ir̃ ,d

′
ir̃

, where l′ir̃ > liλ . If lik ≤ d′ir̃ < d′ik̃ then for bl′ir̃ ,d
′
ir̃

and bliλ ,diλ we have

diλ < d′ir̃ < liλ < l′ir̃ . It is a contradiction. Then d′ir̃ < lik < d′ik̃ ≤ l
′
ir̃

. 2

Proposition 3. Let B be a connection matrix. Let Si1,i2,...,it1 and Sj1,j2,...,jt2
be two nonzero terms of (1) in Case I. If lit1 < d′j1 , then we have

Si1,i2,...,it1 ,j1,j2,...,jt2 = Si1,i2,...,it1 · Sj1,j2,...,jt2 .

Proof. Suppose (d′i1 , d
′
i2
, . . . , d′it1

) and (d′j1 , d
′
j2
, . . . , d′jt2

) are the sequential per-

mutations of (di1 , di2 , . . . , dit1) and (dj1 , dj2 , . . . , djt2) respectively. If lit1 < d′j1 ,
then d′it1

< d′j1 and we have

Si1,i2,...,it1 ,j1,j2,...,jt2

= (−1)t1+t2+ε(di1 ,di2 ,...,dit1 ,dj1 ,dj2 ,...,djt2) · 2
t1+t2+

t1∑
r=1

(lir−d
′
ir

)+
t2∑
r=1

(ljr−d
′
jr

)

= (−1)t1+ε(di1 ,di2 ,...,dit1) · 2
t1+

t1∑
r=1

(lir−d
′
ir

)
· (−1)t2+ε(dj1 ,dj2 ,...,djt2) · 2

t2+
t2∑
r=1

(ljr−d
′
jr

)

= Si1,i2,...,it1 · Sj1,j2,...,jt2 .

2

According to Proposition 2 and Proposition 3, we propose a method of con-
structing binary ring FCSRs. As is shown in Algorithm 2, we first construct a
transition matrix A0 with f1 feedbacks. The coordinate (i, j) of any feedback sat-
isfies 1 ≤ i, j < x. We compute q0 = det(I−2A0) and the sum p of all Si1,i2,...,it1
of (1) in Case I of (I − 2A0). Then in the loop, we randomly choose a vector

(i1, i2, . . . , if2) ⊆ (1, 2, . . . , (n− x+ 1)/2), compute q = q0 − (p+ 1)
f2∑
r=1

4ir , and

test whether |q| is a safe prime and 2 is its primitive root. The test of primitive

can be reduced to test whether 2
|q|−1

2 ≡ 1, because there are only two possible
values of the order of 2 modulo a safe prime |q|, i.e. (|q| − 1) and (|q| − 1)/2. If q
passes the tests, then we set up f2 feedbacks corresponding to the chosen vector.

For a pre-constructed A0, we should require gcd(q0, p+1) = 1. Otherwise, |q|
can never be a prime. Another requirement is q < −2n. In fact, an n length ring
FCSR may have its connection integer of about n/2 length. For example, consider
an n length ring FCSR with only two feedbacks an,n2 +1 = 1 and an

2 ,1
= 1, then

its connection integer is 2
n
2 +1+1. According to Theorem 1, the output sequences

of such an FCSR are with period smaller than expected. Hence we propose some
tests to avoid this problem.

The correctness of Algorithm 2 is shown in the following theorem:

Theorem 4. Let A be a transition matrix constructed by Algorithm 2, then
det(I − 2A) = q.

Proof. Let B = I− 2A. There are f1 feedbacks bl,d = −2 where 1 ≤ l, d < x and
f2 feedbacks bn+x−1

2 +jr,
n+x+1

2 −jr = −2 for 1 ≤ r ≤ f2 where (j1, j2, . . . , jf2) ⊆
(1, 2, . . . , (n − x + 1)/2) (suppose j1 < j2 < · · · < jf2). Firstly, suppose a term
Si1,i2,...,it of (1) includes k (k ≥ 2) feedbacks: bn+x−1

2 +jr1 ,
n+x+1

2 −jr1
, . . . , bn+x−1

2 +jrk ,
n+x+1

2 −jrk
,

where (r1, . . . , rk) ⊆ (1, . . . , f2) and r1 < r2 < · · · < rk. Then we have · · · <
(d′it−k+1

= n+x+1
2 − jrk) < · · · < (d′it = n+x+1

2 − jr1) < (lit−k+1
= n+x−1

2 + jr1) <

· · · < (lit = n+x−1
2 +jrk), thus Si1,i2,...,it = 0. Hence a nonzero term Si1,i2,...,it of

(1) can not include more than one bn+x−1
2 +j,n+x+1

2 −j (j = 1, 2, . . . , (n−x+1)/2).

Suppose a nonzero term Si1,i2,...,it includes bn+x−1
2 +j,n+x+1

2 −j , then we have

lit = n+x−1
2 + j and d′it = dit = n+x+1

2 − j. So if t > 1, the term Si1,i2,...,it−1

must be in Case I and the feedbacks in this term must all of bl,d = −2 where
1 ≤ l, d < x. On the other hand, suppose Si1,i2,...,it′ is a nonzero term of (1) in
Case I where lit′ < x and let lit′+1

= n+x−1
2 + j, dit′+1

= n+x+1
2 − j (1 ≤ j ≤

(n− x+ 1)/2). According to Proposition 3, we have

Si1,i2,...,it′ ,it′+1

= Si1,i2,...,it′ · (−2
li
t′+1
−di

t′+1
+1

)
= Si1,i2,...,it′ · (−22j)
= −4j · Si1,i2,...,it′ .

(3)

The above argument implies that any nonzero term of (1) in Case II only
have feedbacks such as bl,d where 1 ≤ l, d < x. Denote the sum of them by S(II).

Denote the sum of all nonzero terms of (1) in Case I by S(I). Suppose at the
end of the loop we have chose (j1, j2, . . . , jf2) in step 4, according to (3) we have

det(B)
= −2n + 1 + S(I) + S(II)

= −2n + 1 + S(II) + p− p ·
f2∑
r=1

4jr −
f2∑
r=1

4jr

= q0 − (p+ 1) ·
f2∑
r=1

4jr

= q.

2

The efficiency of Algorithm 2 will be further discussed in the next subsection.

3.2 Practical constructions

In Algorithm 2, after the pre-construction we search a safe prime with 2 is its
primitive root by the loop from step 3 to step 12. In each iteration, there are
some additions and tests. The efficiency is roughly equal to a random search of a
such integer. The density of such integers can be estimated according to Sophie-
Germain Prime Density Conjecture and Artin’s Conjecture in number theory. By
Sophie-Germain Prime Density Conjecture there is about 1.32N

ln2
N

Sophie-Germain

primes ≤ N . Then there is about 1.32(N ′−1)/2
ln2

(N ′−1)/2
safe primes ≤ N ′. Artin’s Conjec-

ture argues that there is about 1/3 primes such that 2 is their primitive root.
For instance, we estimate the number of safe primes with 2 is its primitive

root in range (2160, 2161). It is about 1
3 · (

1.32·2160

ln2
2160

− 1.32·2159

ln2
2159

). Hence the density

of such integers in range (2160, 2161) is about 0.000018. We do a simulation:
Randomly select 225 integers from range (2160, 2161). In these integers, there are
854 safe primes with primitive root 2. The density is about 0.000025.

So we should select appropriate x and f2 so that the search space is large
enough comparing to the estimated density. For example, when n = 160, let
x = 81 an f2 = 28, then there are

(
(n−x+1)/2

f2

)
=
(
40
28

)
possible integers for

search. It is much larger than the necessity.
An remaining problem is that we should design an effectiveness pre-construction

in which the sum of all Si1,i2,...,it of (1) in Case I is easy to be calculated. A most
natural idea is let all feedbacks bl,d where 1 ≤ d < l < x meet the conditions
of Proposition 2 and let l − d be small. Then according to Proposition 2 and
Proposition 3 we may easily calculate the sum. A simplest method is presented
in Algorithm 3.

The computations of Algorithm 3 are simple except for the computation
of a determinant in step 6. However, on average we need a few iterations to
finish the pre-construction, because the pass probability of the test in step 7
can be estimated as follows: Suppose the probability q0 < −2n is 1/2. Since the
probabilities of q0 6≡ 0 (mod 3) and q0 6≡ 0 (mod 7) are 1/2 and 3/4 respectively,
the pass probability is about 3/16. Therefore Algorithm 3 is effectiveness.

The following theorem proves the correctness of Algorithm 3:

Theorem 5. Let A be a transition matrix constructed by Algorithm 3 and B =
I − 2A. Then the sum S(I) of all nonzero terms of (1) in Case I is p.

Proof. We can see that the lower triangular feedbacks of B meet the conditions
of Proposition 2. Since any upper triangular feedback bl,d has d − l ≥ 3, then
any nonzero term in Case I includes no upper triangular feedback according to
Proposition 2. On the other hand, suppose a term Si1,i2,...,ik of (1) contains just k
(1 ≤ k ≤ g) lower triangular feedbacks: bli1 ,di1 , . . . , blik ,dik , where (i1, . . . , ik) ⊆
(1, . . . , g) and i1 < i2 < · · · < ik, then we have di1 < li1 < di2 < li2 < · · · <
dik < lik , thus in Case I. Therefore, according to Proposition 3, we have

S(I) =
∑

(i1,...,ik)⊆(1,...,g)
Si1,i2,...,ik

=
∑

(i1,...,ik)⊆(1,...,g)
Si1 · Si2 · · · · · Sik

= (S1 + 1) · (S2 + 1) · · · · · (Sg + 1)− 1

= (
g∏
i=1

(−2li−di+1 + 1))− 1

= 3δ1 · 7δ2 − 1
= p.

2

Now we can use Algorithm 2 and Algorithm 3 to construct binary ring FCSRs
for hardware implementations. To verify the effectiveness of our construction, we
do this construction 1000 times by randomly selecting n from range [128, 256]
and choosing appropriate integers x, g, f1, f2. Every time we can successfully get
an expected binary ring FCSR. We present two examples below. They can be
applied to the stream cipher F-FCSR-H v3 and the stream cipher F-FCSR-16
v3 respectively.

Example 2. A ring FCSR of size 160 bits for F-FCSR-H v3

The transition matrix A = (al,d)1≤l,d≤160 is given by:

a
l,l+1 (mod 160)

= 1 for 1 ≤ l ≤ 160

al,d = 1 for (l, d) ∈ U
al,d = 0 otherwise

where U is the set:

(1, 35) (2, 26) (3, 2) (4, 49) (7, 6) (9, 62) (10, 38) (11, 24) (12, 11)
(13, 30) (14, 45) (15, 32) (18, 17) (19, 46) (20, 27) (22, 58) (23, 44) (24, 23)
(25, 37) (27, 25) (28, 56) (29, 42) (31, 29) (33, 40) (34, 33) (35, 39) (36, 43)
(37, 36) (38, 60) (40, 54) (41, 55) (42, 41) (43, 48) (48, 71) (49, 47) (51, 50)
(52, 69) (53, 52) (55, 63) (56, 64) (58, 57) (59, 78) (60, 67) (63, 61) (64, 68)
(65, 75) (66, 76) (68, 66) (69, 73) (70, 74) (71, 80) (72, 79) (74, 72) (79, 77)

(123, 118) (125, 116) (126, 115) (127, 114) (128, 113) (129, 112) (131, 110) (132, 109) (133, 108)
(134, 107) (135, 106) (136, 105) (137, 104) (138, 103) (140, 101) (144, 97) (145, 96) (146, 95)
(147, 94) (148, 93) (149, 92) (152, 89) (153, 88) (154, 87) (155, 86) (157, 84) (159, 82)
(160, 81)

This FCSR has a connection integer q = −1487313350806314084413054565211940314824339404819

which is safe prime with 2 as its primitive root. It has a cost of 82 adders-with-
carry, a critical path of length 1 and fan-out 2, and a diffusion delay of 56.
2

Example 3. A ring FCSR of size 256 bits for F-FCSR-16 v3
The transition matrix A = (al,d)1≤l,d≤256 is given by:

a
l,l+1 (mod 256)

= 1 for 1 ≤ i ≤ 256

al,d = 1 for (l, d) ∈ U
al,d = 0 otherwise

where U is the set:

(2, 86) (3, 2) (6, 4) (7, 46) (12, 10) (15, 51) (17, 15) (18, 69) (19, 48)
(20, 18) (22, 59) (24, 22) (26, 25) (27, 54) (28, 38) (31, 30) (34, 33) (37, 52)
(38, 37) (39, 77) (41, 40) (43, 62) (44, 43) (45, 101) (46, 75) (47, 89) (48, 57)
(50, 49) (53, 76) (55, 53) (57, 67) (58, 85) (59, 82) (60, 58) (63, 80) (64, 96)
(65, 99) (66, 65) (67, 100) (70, 81) (71, 70) (72, 90) (73, 88) (74, 72) (78, 83)
(79, 78) (83, 117) (86, 84) (87, 93) (88, 97) (89, 87) (91, 95) (92, 102) (93, 91)
(94, 110) (95, 104) (96, 105) (97, 111) (98, 106) (99, 109) (100, 98) (103, 107) (104, 116)
(105, 103) (106, 120) (107, 113) (108, 121) (109, 114) (110, 108) (113, 122) (114, 112) (115, 119)
(116, 124) (117, 115) (118, 127) (119, 118) (121, 128) (122, 126) (124, 123) (127, 125) (194, 191)
(195, 190) (196, 189) (197, 188) (198, 187) (200, 185) (201, 184) (202, 183) (204, 181) (205, 180)
(206, 179) (209, 176) (210, 175) (211, 174) (213, 172) (214, 171) (215, 170) (216, 169) (218, 167)
(219, 166) (220, 165) (222, 163) (223, 162) (224, 161) (226, 159) (228, 157) (229, 156) (230, 155)
(232, 153) (233, 152) (234, 151) (236, 149) (237, 148) (238, 147) (239, 146) (240, 145) (241, 144)
(242, 143) (243, 142) (245, 140) (246, 139) (247, 138) (248, 137) (249, 136) (250, 135) (251, 134)
(252, 133) (253, 132) (254, 131) (256, 129)

This FCSR has a connection integer q = −1552901260807307149842535424039

12423188027751232308607544737047876915834077259 which is safe prime with
2 as its primitive root. It has a cost of 130 adders-with-carry, a critical path of
length 1 and fan-out 2, and a diffusion delay of 89. 2

4 Conclusion

Ring FCSRs are applied to hardware stream ciphers. In this paper, we have
presented how to calculate the determinant det(I−2A) for transition matrices of
ring FCSRs by observing their feedbacks. According to the calculation method,
we have proposed algorithms of constructing binary ring FCSRs suitable for
hardware implementations. The efficiency of the construction is near to randomly
search safe primes with primitive root 2. In addition, a generalized algorithm for
constructing ternary ring FCSRs with given connection integers also has been
proposed.

Interestingly enough, we found that these results can be trivially grafted onto
the construction of ring LFSRs. The problem of construction of ring LFSRs have
been proposed in ([4],[16]).

References

1. F. Arnault and T. P. Berger, “F-FCSR: Design of a new class of stream ciphers,”
in Fast Software Encryption. Berlin, Germany: Springer-Verlag, 2005, pp. 83-97.

2. F. Arnault, T. Berger, C. Lauradoux, M. Minier, and B. Pousse, “A new approach
for FCSRs,” in Selected Areas in Cryptography (Lecture Notes in Computer Sci-
ence), vol. 5867, M. J. Jacobson, Jr., V. Rijmen, and R. Safavi-Naini, Eds. New
York, NY, USA: Springer-Verlag, 2009, pp. 433-448.

3. F. Arnault, T. P. Berger, and B. Pousse, “A matrix approach for FCSR automata,”
Cryptography Commun., vol. 3, no. 2, pp. 109C139, Jun. 2011.

4. F. Arnault, T. Berger, M. Minier, and B. Pousse, “Revisiting LFSRs for crypto-
graphic applications,” IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 8095-8113, Dec.
2011.

5. T. Berger, M. Minier, and B. Pousse, “Software oriented stream ciphers based
upon FCSRs in diversified mode,” in Progress in Cryptology-INDOCRYPT 2009,
pp. 119-135.

6. S. Fischer, W. Meier, and D. Stegemann, “Equivalent representations
of the F-FCSR keystream generator,” in Proc. ECRYPT Netw. Ex-
cellence, SASC Workshop, Feb. 2008, pp. 87-94. [Online]. Available:
http://www.ecrypt.eu.org/stvl/sasc2008/

7. M. Goresky and A. M. Klapper, “Fibonacci and Galois representations of feedback-
with-carry shift registers,” IEEE Trans. Inf. Theory, vol. 48, no. 11, pp. 2826C2836,
Nov. 2002.

8. D. Hankerson, S. Vanstone, A. Menezes. “Guide to Elliptic Curve Cryptography,”
New York: Springer, 2004.

9. M. Hell and T. Johansson, “Breaking the stream ciphers F-FCSR-H and F-FCSR-
16 in real time,” J. Cryptol., vol. 24, no. 3, pp. 427-445, 2011.

10. A. Klapper and M. Goresky, “2-adic shift registers,” in Fast Software Encryption,
vol. 809, R. Anderson, Ed. Berlin, Germany: Springer-Verlag, 1994, pp. 174-178.

11. A. Klapper and M. Goresky, “Feedback shift registers, 2-adic span, and combiners
with memory,” J. Cryptol., vol. 10, no. 2, pp. 111-147, Mar. 1997.

12. A. Klapper, “A survey of feedback with carry shift registers,” in Sequences and
Their Applications (Lecture Notes in Computer Science), vol. 3486, T. Helleseth,
D. Sarwate, H.-Y. Song, and K. Yang, Eds. Berlin, Germany: Springer-Verlag,
2005, pp. 56-71.

13. A. Klapper and M. Goresky, “large period nearly debruijn FCSR sequences,” ad-
vances in cryptologyeurocrypt’95, Springer-Berlin Heidelberg, 1995 pp. 263-273.

14. L. Zhiqiang and P. Dingyi, “Constructing a ternary FCSR with a given connection
integer,” Tech. Rep. 2011/358. [Online]. Available: http://eprint.iacr.org/

15. L. Zhiqiang, K. Lishan, L. Dongdai, and G. Jian: “On the LFSRization of a Class
of FCSR Automata,” IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences Vol. 98, no. 1, pp. 434-440, 2015.

16. G. Mrugalski, J. Rajski, and J. Tyszer, “Ring generatorsNew devices for embedded
test applications,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
23, no. 9, pp. 1306-1320, Sep. 2004.

17. P. Dingyi, L. Zhiqiang and Z. Xiaolei, “Construction of Transition Matrices for
Ternary Ring Feedback with Carry Shift Registers,” IEEE Trans. Inf. Theory, vol.
61, no. 5, pp. 2042-2951, 2015.

18. P. Stankovski, M. Hell, and T. Johansson, “An efficient state recovery attack on
the X-FCSR family of stream ciphers,” J. Cryptol., vol. 27, no. 1, pp. 1-22, 2014.

19. T. Tian and W.-F. Qi, “Linearity properties of binary FCSR sequences,” Designs,
Codes Cryptography, vol. 52, no. 3, pp. 249-262, Sep. 2009.

20. H. Wang, P. Stankovski, and T. Johansson, “A generalized birthday approach for
efficiently finding linear relations in `-sequences,” Designs, Codes Cryptography,
vol. 74, no. 1, pp. 41-57, 2015.

Algorithm 2 Construction of binary ring FCSRs for hardware implementations

Input: n the length of the FCSR, x (x < n) an integer where n − x is odd, f1 the
number of feedbacks for the pre-construction and f2 (f2 <

n+x−1
2

) the number of
feedbacks for randomly selections.

Output: A binary transition matrix A with f1 + f2 feedbacks and meeting the con-
ditions from C1 to C4.

1: A← (al,d)1≤l,d≤n with al,d ←
{

1 if l ≡ d+ 1 (mod n)
0 otherwise

2: Pre-construction:

– Choose f1 feedbacks al,d ← 1 meeting condition C4, where 1 ≤ l, d < x
– q0 ← det(I − 2A)
– if q0 > −2n then
4: Redo pre-construction
– end if
– Compute p: the sum of all Si1,i2,...,it of (1) in Case I
– if gcd(q0, p+ 1) 6= 1||q0 − 1

3
(p+ 1)(4f2+1 − 4) > −2n then

7: Redo pre-construction
– end if
– for 1 ≤ i ≤ n+x−1

2
do

10: pi ← −4i · (p+ 1)
– end for

12: loop
13: Randomly choose (i1, i2, . . . , if2) ⊆ (1, 2, . . . , (n− x+ 1)/2)

14: Compute q = q0 +
f2∑
r=1

pir

15: if |q| is a safe prime & 2
|q|−1

2 6≡ 1 then
16: for 1 ≤ r ≤ f2 do
17: an+x−1

2
+ir,

n+x+1
2

−ir ← 1

18: end for
19: break
20: end if
21: end loop
22: return A, q

Algorithm 3 A practical pre-construction

1: Randomly choose 1 ≤ d1 < l1 < d2 < l2 < · · · < dg < lg < x, where li − di = 1
or 2 (1 ≤ i ≤ g) and g is even. Count δ1 and δ2 the numbers of li − gi = 1 and 2
(1 ≤ i ≤ g) respectively.

2: for 1 ≤ i ≤ g do
3: ali,di ← 1
4: end for
5: Randomly choose f1 − g feedbacks al,d ← 1 satisfying condition C4, where l ∈

({1, . . . , x− 1}/{l1, . . . , lg}), d ∈ ({1, . . . , x− 1}/{d1, . . . , dg}) and d− l ≥ 3
6: q0 ← det(I − 2A)
7: if q0 > −2n||q0 ≡ 0 (mod 3)||q0 ≡ 0 (mod 7) then
8: Goto step 1
9: end if

10: p← 3δ1 · 7δ2 − 1
11: for 1 ≤ i ≤ n+x−1

2
do

12: pi ← −4i · (p+ 1)
13: end for

