
Strength in Numbers: Threshold ECDSA
to Protect Keys in the Cloud

Marc Green and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{marcgreen,teisenbarth}@wpi.edu

Abstract. Side-channel attacks utilize information leakage in the imple-
mentation of an otherwise secure cryptographic algorithm to extract se-
cret information. For example, adversaries can extract the secret key used
in a cryptographic algorithm by observing cache-timing data. Threshold
cryptography enables the division of private keys into shares, distributed
among several nodes; the knowledge of a subset of shares does not leak in-
formation about the private key, thereby defending against memory dis-
closure and side-channel attacks. This work shows that applying thresh-
old cryptography to ECDSA—the elliptic curve variant of DSA—yields
a fully distributive signature protocol that does not feature a single point
of failure. Our security analysis shows that Threshold ECDSA protects
against a wide range of side-channel attacks, including cache attacks, and
counteracts memory disclosure attacks. We further provide the first per-
formance analysis of Threshold ECDSA, and provide a proof of concept
of the protocol in practice.

Keywords: Threshold Cryptography, Elliptic Curve Cryptography, ECDSA,
SSL/TLS, Side-channel Attacks, Cloud Computing

1 Introduction

Side-channel attacks such as cache attacks are receiving increased attention since
the advent of cloud computing. Cloud-based services such as Amazon’s EC2
and Microsoft’s Azure run multiple virtual machines (VM s), one (or more) per
customer, on each hardware unit for efficiency. Since VMs are known to pro-
vide logical isolation between themselves, each other, and their host operating
system, it was (mistakenly) assumed that they were secure in terms of keep-
ing sensitive data confidential. However, resource sharing—the base concept be-
hind cloud computing—prevents complete isolation between VMs, thus creating
side-channels that can be exploited by adversaries. These attacks exploit shared
microarchitectural resources such as caches to infer sensitive data across VM
boundaries. With an increasing number of studies demonstrating that the VM
co-location problem is surmountable [33, 34, 36], several successful cross-VM side-
channel attacks were proposed with applicability in the cloud: The Flush+Reload
cache attack, for example, was shown to recover RSA keys [38] and AES keys [17]

across cores and across VM boundaries; Benger et al. recovered ECDSA private
keys using Flush+Reload [2]. Recently, Liu et al. and Irazoqui et al. have both
developed new cross-VM attacks using the Prime+Probe method that do not
rely on memory deduplication [25, 16], making cache attacks a realistic concern
for today’s public clouds.

Existing defenses against cache attacks fall under two categories: architec-
tural countermeasures and algorithmic countermeasures. The former prevent
the exploitability of side-channels on the architectural level. They can be im-
plemented at the hardware [35, 23, 10], the hypervisor, or the OS level [21, 39].
Architectural countermeasures generally come at a performance overhead. Since
the overhead usually applies to all applications, not only security critical ones,
they are often viewed as too expensive. Algorithmic countermeasures, on the
other hand, usually armor the implementation or algorithm of the used cryp-
tosystems. Protection methods include: (i) The use of isochronal algorithms,
thus preventing data dependent timing differences from arising [27]; (ii) The use
of software diversification to randomize control flow and thus hide leaked in-
formation [8]; (iii) The use of threshold cryptography to prevent sensitive data
from appearing in memory at all (e.g., [30]). Unlike architectural countermea-
sures, only the security-critical code is protected in algorithmic countermeasures.
Hence, performance penalties are restricted to security-critical code and do not
affect other applications.

Our Contribution: In this paper, we propose Nephele, a cloud-based system
resilient to cross-VM side-channel attacks on ECDSA through the use of thresh-
old cryptography. Our approach is completely transparent to the end user and
can work as a drop-in replacement for existing ECDSA implementations. Our
fundamental technique comes from the application of threshold cryptography:
the ECDSA private key is split into multiple shares and distributed to multiple
VMs. To sign a message, each VM will use its private key share to compute a
partial signature; the partial signatures are then combined to produce the full
signature. A certain threshold of shares is needed to compute signatures or re-
cover the full private key. This means we’ve raised the bar for adversaries so
that they must now successfully compromise several VMs to steal the private
key. Furthermore, for added security, our design calls for frequent re-sharing of
the private key. Key re-sharing invalidates all previous private key shares and
replaces them with new ones, thus nullifying any partial work the adversary
has accomplished. We also provide a fully distributed key generation algorithm
for ECDSA so the private key can be generated without the need for a trusted
third party, effectively removing the last remaining single point of failure. The
distributed key generation, together with the distributed signature generation
and distributed key re-sharing algorithms, provide a fully functional ECDSA
interface without the need for a private key to ever appear in memory. Hence,
our approach helps mitigate a wide range of attacks, since the private key isn’t
available to simply be stolen by an adversary who has root-compromised a subset
of VMs. Our approach can also scale with changing security requirements. The
number of shares needed to recover the full key can be adjusted to meet security,

performance, and budget constraints. Our benchmarks show that Nephele in-
curs a reasonable performance overhead over unprotected ECDSA. In summary,
Nephele:

– presents the first fully distributed threshold implementation of ECDSA. This
is achieved by providing fully distributed key generation and signature gen-
eration algorithms. Based on the protocol proposed in [15], we show several
tweaks that further enhance performance.

– allows for fully distributed key re-sharing, effectively limiting the number
of observations and hence the amount of information that a side-channel
adversary can aggregate per key share.

– significantly raises the bar for any attacker by requiring the compromise of
at least t+ 1 machines to recover any sensitive information.

Results are backed up by a detailed security and performance analysis of Nephele,
as well as a proof-of-concept implementation1.

The rest of the paper is organized as follows. We give relevant background
information in Section 2. Threshold ECDSA and our modifications are described
in Section 3, and we analyze their security in Section 4. We deploy a proof-of-
concept of Nephele to a realistic cloud-based setting and analyze its perfor-
mance in Section 5. We discuss Nephele with respect to related and future
work in Section 6. Finally, we conclude in Section 7.

2 Background

2.1 Threshold Cryptography

Threshold cryptography, an application of secure multiparty computation [13],
splits sensitive data into multiple shares and distributes them among a set of
n participants. To compute cryptographic operations, a subset of participants
use their shares to compute partial results, which are then combined to produce
the final result. A threshold t ≤ n is defined such that t or less shares cannot
be used to compute the final result, but t + 1 or more shares can be. We refer
to these as (t, n)-threshold secret sharings. When applied to a digital signature
scheme, the signer’s private key is shared so that partial signatures are computed
by the participants. The partial signatures are combined to produce the full
signature, identical to one that could be computed with the unshared private
key. The mathematical techniques used in these operations are designed such that
the unshared private key never appears during computation. Thus, while side-
channels could still be used to attack a threshold signature scheme, the adversary
cannot recover the sensitive data unless t + 1 shares are recovered. Note that
the use of threshold cryptography thus protects against all side-channel attacks,
not only cache-timing attacks.

Gennaro, et al., apply threshold cryptography to DSS in [12]. We use their
protocol as a basis for Nephele. In [30], Pattuk, et al. use existing threshold

1 All source code will be available online upon acceptance of this paper.

Table 1. Notation and Definitions

m Message being signed.
n The number of participants.
d Private key, shared into (d1, . . . , dn)

CURVE The elliptic curve field and equation used.
G A generator of CURVE with large prime order q.
q Order of G, cardinality of CURV E.

t
“Threshold”, the maximum number of shares that reveal no information about the
secret. The secret can be recovered with t+ 1 shares.2

cryptographic algorithms to create a cloud-based system resilient to key leak-
age. To defend against cross-VM side-channel attacks, their system distributes
key shares among a set of cooperating VMs. We adopt their system model in
developing our own proof-of-concept system for Nephele.

2.2 ECDSA

ECDSA, standardized by NIST in 2003 [28], is a variant of DSA that uses ellip-
tic curve cryptography. It is supported in TLS as part of the key exchange and
client authentication algorithms [4]. ECDSA is also supported in OpenSSL, first
introduced in version 0.9.8. The main benefit of using elliptic curve cryptography
is that the keys and generated signatures are significantly smaller in size. For ex-
ample, for 128 bits of security, ECDSA requires a 256 bit key, whereas DSA and
RSA require 3248 bits [9]. This additional security of ECDSA comes from the in-
tractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Unlike
the Integer Factorization Problem and the ordinary Discrete Logarithm Prob-
lem (DLP), there is no subexponential-time algorithm known for the ECDLP,
substantially increasing its strength-per-key-bit [19]. Another benefit is that the
performance of ECDSA signature generation scales well with key sizes. While
ECDSA and RSA have comparable signing performance for small keys (less than
409 and 7680 bits, respectively), ECDSA becomes significantly faster with larger
keys [18].

3 Threshold ECDSA (TECDSA)

A robust threshold ECDSA has been proposed by Ibrahim et al. in [15]. That
protocol is, in principle, the elliptic curve version of the threshold DSS intro-
duced by Gennaro et al. [12]. Note that, for Nephele, we have slightly modified
key generation and signature generation by dropping robustness, making key
generation explicitly distributed, and improving efficiency by reordering some of
the steps of the algorithms. We further introduce a key re-sharing algorithm used
to refresh the secret key shares as an additional defense mechanism. ECDSA’s
signature verification algorithm processes no secret information and is not dis-
cussed further. The parameters of the protocol are introduced in Table 1 and
are used throughout the rest of this paper.

2 This definition is from [12].

Algorithm 1 TECDSA Key Generation

Domain Parameters: CURV E, cardinality q, generator G
Input: None
Output: Public key: Q, private key shares: di
1: Generate private key shares di ← Z∗q with JRSS . JRSS requires n broadcasts.
2: Broadcast fi = G× di
3: Q = Exp-Interpolate(f1, . . . , fn) . [= G× d] ; See below for Exp-Interpolate()’s definition.
4: return (di, Q)

Algorithm 2 Re-sharing private key d

Input: Participant Pi’s share of private key, di
Output: Pi’s new private key share, d′i
1: Generate zero share zi ← Z∗q with JZSS . JZSS requires n broadcasts.

2: d′i = di + zi
3: return d′i

Key Generation We have modified the ECDSA key generation algorithm to
make our signature scheme fully distributed. The private key is collectively cho-
sen at random by all participants using JRSS. The threshold key generation
algorithm is given in Algorithm 1. Each step of the algorithm is to be executed
by every participant and ought to be carried out synchronously due to its in-
teractive nature. Note that, while Ibrahim et al. [15] did not realize they could
simply make the key generation fully distributed, their joint random verified se-
cret sharing scheme (EC-JRVSS, c.f. Appendix A) can be used to make this key
generation robust.

Signature Generation While threshold signature generation is well explained
in [15], we give a slightly modified version in Algorithm 3 in Appendix B. Our
version is closer to the protocol found in [12] (titled DSS-Thresh-Sig-1) and
shows slightly more efficient performance that the version by Ibrahim et al.

Re-sharing the Private Key The fully distributed key re-sharing is achieved
by having the participants execute one round of JZSS, and adding the resulting
zero-share to the participant’s private key share (see Algorithm 2). As long as one
participant is honest during JZSS and introduces randomness, the resulting zero-
shares will be random. The use of JZSS allows us to additively mask the private
key share without changing the actual private key. Note that key re-sharing is
an excellent measure to prevent aggregation of potential key leakage. Like the
other distributed algorithms, each step of this algorithm is to be executed by
every participant and ought to be carried out synchronously due to its interactive
nature.

4 Security Analysis

The proposed protocol, which we will refer to as TECDSA, extends ECDSA, and
as such any security results are upper-bounded by the security of ECDSA. The
threshold implementation of ECDSA improves security with respect to attacks

that arise when cryptography is used by an implementation in practice. These
attacks are usually not considered in the security discussion of the cryptosystem
itself. Specifically, our system protects against memory disclosure attacks as long
as at most t parties are affected. It also protects against implementation attacks
such as side-channel attacks.

4.1 Scenario

We assume protocol participants are to be instantiated as independent VMs and
there are enough VMs to support the desired threshold. Specifically, n ≥ 2t+ 1.
The participants have pair-wise private channels they can use to communicate
with one another. These are used whenever the protocol needs to execute an
instance of SSS, JRSS, or JZSS. Also, the private key is created in a shared
fashion by invoking the key generation algorithm described in Section 3. The
key is to be re-shared according to Section 3. Under these assumptions, we
define our security goals as follows:

1. The system should withstand side-channel attacks of a passive, potentially
co-located adversary.

2. The system should be able to tolerate memory disclosure attacks on up
to t participants. These memory disclosure attacks can be viewed as an
attacker managing to break into a VM and read the entire memory content,
including all keys. Similarly, it describes a system that has been successfully
compromised by means of a side-channel attack.

3. The system should remain operational when up to t participants have been
compromised by an adversary. In addition, the remaining honest majority
should be able to identify misbehaving nodes that try to compromise the
protocol operation.

Based on the scenario and the security goals, we now define the adversary. The
adversary’s primary goal is to learn the secret key d. A secondary goal is to
disrupt service, e.g., by dropping network messages or sending bogus partial
signatures. We define three types of adversaries:

An eavesdropping side-channel adversary is able to observe all traffic sent
over the network. In addition, the adversary can observe a subset of physical
machines participating in TECDSA. This will allow the adversary to col-
lect partial information on secrets processed by the monitored participants
through side-channels. This passive adversary is only trying to steal keys
and will not actively corrupt messages.

A persistent adversary is one who compromises one of the participating VMs
in order to witness at least one execution of the protocol. This includes
eavesdropping on secure channels and gaining root privileges on the VM.
Like the eavesdropping side-channel adversary, the persistent adversary will
not attempt to corrupt signatures throughout execution of the protocol.

An active adversary is a persistent adversary who additionally has the means
and intent to manipulate or halt communication sent by compromised VMs.
Compromised VMs will be able to exchange information and collude.

4.2 Security Analysis

The security of TECDSA against the above adversaries comes from the use of
threshold cryptography; the adversary can no longer directly extract the secret
key d from any one participant, since no participant has knowledge of d on
its own. Instead, at least t + 1 shares of d must be extracted, each of which
is stored with a different participant (in the cloud, each participant would be a
different VM, and each VM would run on a different machine). Ideally, t is chosen
such that it is infeasible to execute t+ 1 successful cross-VM attacks before the
secret key is re-shared. Recall that the aforementioned VM co-location problem is
hard and thus it is unlikely an adversary can mount these attacks concurrently.
In [12], a threshold signature scheme is secure if it is unforgeable and robust.
While TECDSA is unforgeable (discussed below), it does not currently satisfy
the robustness requirement. However, Ibrahim et al. [15] showed that adding
robustness to TECDSA is possible and straightforward. We chose to exclude
robustness, as it incurs a large network performance penalty. Thus, TECDSA
protects against the eavesdropping side-channel adversary and the persistent
adversary only.

An eavesdropping side-channel adversary does not win upon extraction of
a single participant’s secret key share di; the adversary must extract at least
t+ 1 secret key shares from the participants. A proof of this is given in [12] for
DSS. The proof applies to ECDSA as long as the ECDLP remains as intractable
as the original DLP. Since the secret key d is periodically re-shared, the adver-
sary’s window to extract t + 1 shares is limited; Note that any extracted key
shares become invalid and useless upon re-sharing the secret key. Both t and the
frequency of re-sharing can be adjusted to achieve an appropriate security level.

A persistent adversary who eavesdrops on secure channels will learn the secret
shares. During signature generation, the adversary can observe ki, ai, bi, and ci
of the compromised participant and thus reconstruct its secret key share di
(see step 10 of Algorithm 3). While the adversary will still need to acquire an
additional t shares of the private key d to win, re-sharing d will not thwart it
due to its persistence.

An active adversary who influences any of the three algorithms of TECDSA
can send bogus data to the other participants during the protocol to force gener-
ation of an invalid signature. While TECDSA cannot currently withstand bogus
data, the use of Verifiable Secret Sharing (VSS) [11] would enable the detection of
bogus shares (and their authors), and would allow the protocol to continue nor-
mally, even under attack. (That is, replacing SSS with VSS will allow TECDSA
to satisfy the robustness requirement.) An active adversary can also prevent the
compromised VM from even participating in the protocol. Assuming n ≥ 3t+ 1,
TECDSA allows for up to t participants to not participate (see [12] for a proof).
Note that, even without VSS, each participant can detect potential manipulation
by verifying the generated signature.

None of these adversaries are able to extract meaningful information from
other, non-compromised participants. The use of JRSS and JZSS during ephem-
eral key generation provides randomness as long as there is at least one honest

participant supplying random input. (Generating a unique, random ephemeral
key k for every signature is crucial for protecting the private key d.) Further,
the use of the random masks throughout the protocol prevents information from
being leaked during computation.

Regardless of the type of adversary, generating a signature in TECDSA re-
quires knowledge of at least t + 1 secret key shares. By definition, TECDSA is
unforgeable in the presence of an eavesdropping side-channel adversary and a
persistent adversary. Since an active adversary, despite being able to influence
signature generation, cannot learn the secret key shares of non-compromised
participants, TECDSA is unforgeable in its presence as well.

Key Re-sharing Most side-channel attacks aggregate key leakage over several
observations to finally recover a full long-term key. In fact, this is usually consid-
ered one of the strengths of these attacks, as it allows an attacker to exploit even
the faintest leakage channels. The more generic cross-core attacks not relying
on deduplication [25, 16], i.e. the more realistic ones, need at least a few hun-
dred observations to find and exploit critical key leakage. Even the ECC-centric
cache-attacks that assume deduplication [2, 32] or even core-co-residency [6] need
several observations to efficiently extract key information. For this reason, we
propose to periodically re-share the private key across all participants. This key
re-sharing increases the security of the system by bounding the adversary’s time
to aggregate leakage on at least t+ 1 shares of d. If the adversary fails to extract
t + 1 secret shares within the given time period, the discovered secret shares
become invalid, and the adversary must start over. Unlike [30], which relies on
a trusted dealer for key re-sharing, our system re-shares the secret key fully dis-
tributively, avoiding a single point of failure that the dealer poses in Hermes.

Conclusion By tolerating up to t key share compromises, and by periodically
re-sharing these key shares, TECDSA can withstand side-channel attacks of a
passive adversary. Further, TECDSA can tolerate up to t memory disclosure
attacks because there is not enough information in the collective memory to
reconstruct the secret key. Thus, TECDSA meets the first two security goals we
defined in Section 4.1.

5 Protocol in Practice

Nephele is a system similar to [30] that uses TECDSA in a cloud setting to
combat various attacks including side-channel attacks. Since our system is fully
distributed, key generation, signing, and key re-sharing happen in a distributed
fashion. The system consists of a set of n networked VMs, Pi, 1 ≤ i ≤ n, each
ready to participate in the protocol. The value of n determines the maximum
threshold allowed: t ≤ n−1

2 (equivalently, n ≥ 2t + 1). The intuition behind
this is as such: Since the protocol essentially involves multiplying two t-degree
polynomials (step 5 of Algorithm 3), we need 2t + 1 shares to interpolate the
2t-degree polynomial formed by their product (step 6 of Algorithm 3).

Key generation is performed once during setup. Key re-sharing can be per-
formed at frequent intervals and, like key generation, only involves interaction

ParticipantE1

ParticipantE2 ParticipantEn

Defender'sEnetworkEofEvirtualEmachines

Client

1.ERequestEsignatureEforEm
Combiner

2.ETECDSA

3.EReturnEsignatureE(r, s)

d1

d2

dn

Fig. 1. System Overview. The client connects to Participant 2, making it the combiner.
The combiner initiates TECDSA and returns the resulting signature to the client.

between the participants. Signature generation is triggered by an outside node.
The input is a message m to be signed, sent from a client to one of the par-
ticipating computers, and the output is the signature (r, s) for m, sent from
the participant back to the client. Without loss of generality, we use the term
combiner, denoted Pc, to refer to the participant that initiates the protocol, i.e.,
the one requesting a signature for m on behalf of the client. See Figure 1 for an
overview of the system.

5.1 Implementation Details

We modify Algorithm 3 slightly to optimize the protocol under the assumption
that network latency is a limiting factor while bandwidth is not. Note that key
generation and re-sharing can be done any time, i.e. only the signing itself will
influence latency. The applied optimizations are discussed in detail in Section
5.2. The abridged modified signing protocol is as follows:

1. Pc broadcasts m to all participants. (n− 1 network messages)
2. (a) The participants generate ki, ai, bi, and ci through known secret sharing

techniques. (n2 − n network messages, can be computed offline)
(b) Each participant computes vi and wi.
(c) All participants send vi and wi to Pc. (n− 1 network messages)

3. Upon receiving all vis and wis, Pc computes r and broadcasts it to the others.
(n− 1 network messages)

4. (a) Each participant computes si.
(b) All participants send si to Pc. (n− 1 network messages)

5. Pc calculates s and outputs the signature (r, s).

The proof-of-concept is written in Python 2.7 using Sage 6.5. In order to
achieve reasonably good performance in spite of Python/Sage, we optimized the
polynomial interpolation and the ECC point multiplication. Our polynomial in-
terpolation implementation is optimized to only calculate the free term of the

polynomial, as that is the shared secret and the only term of interest. The rele-
vant parts of the inverse of the Vandermonde matrix is precomputed, so that only
the matrix vector multiplication must be performed during computation. Our
elliptic curve point multiplication implementation is written in C and interfaced
through Python. This bypasses a technical limitation in Sage and helps give
more accurate performance results. We use Elliptic Curve P-192, standardized
by NIST is 1999, which provides 96 bits of security [29, 9].

5.2 Performance Overhead

Theoretical Analysis The modified protocol reduces the number of networks
messages down to 4(n− 1), not including messages involved with secret sharing
(i.e., generating ki, ai, bi, and ci), by taking advantage of the fact that only Pc
needs the signature. This is in comparison with Algorithm 3, which calls for
about 2n2 network messages (again, not including the messages involved with
secret sharing). However, because messages are sent out in parallel in each of the
four broadcast steps, the network latency per signature is roughly equivalent to
2 round-trip-times (RTTs).

The secret sharing steps (specifically JRSS and JZSS, steps 1-3 in Algorithm
3) use a mesh network of communication, generating n(n − 1) ≈ n2 network
messages (assuming all three steps are carried out simultaneously, and their
data is bundled into a single message). These steps, however, are independent of
the input to the algorithm. Thus, in practice, these secret shares are generated
offline when a client is not waiting for a signature. For example, in a (1,3)-
threshold secret sharing of an arbitrary secret, 8 messages are sent through the
network during signature generation, in addition to the 6 messages needed for
the secret sharing steps.

The computational overhead for the combiner consists of 2 point multiplica-
tions, 2 calls to Interpolate(), and 1 call to Exp-Interpolate(). The other par-
ticipants compute neither the polynomial interpolations nor one of the point
multiplications. Note that the point multiplication computed by the combiner
and not the others (calculating r) does not depend on the system’s input and
can thus be computed offline. Integer additions and multiplications are negligible
and are not included in the overhead.

Experimental Analysis Several experiments were conducted to explore the
performance overhead of Nephele, using our proof of concept implementation.
These experiments were run on a Dell PowerEdge R720 server with an Intel Xeon
2670v2 processor (10 cores) and 32GB of RAM, running 64-bit Ubuntu Linux
14.04. Our experiments involved running Nephele on Ubuntu 14.04 virtual
machines hypervised by KVM, each given 1 CPU core and 2GB of RAM.

We benchmarked our own implementation of ECDSA, written in Python with
Sage, as a control group. We ran the control group twice: once on a single VM
with no other CPU activity, and once on three VMs simultaneously to better
model the conditions that Nephele will be run. We then benchmarked our proof
of concept implementation of Nephele, also written in Python with Sage, with

Table 2. Average (N = 1000) ECDSA and Nephele itemized signature generation
times (in milliseconds). The Total without Secret Sharing is included because secret
sharing can be conducted offline.

Comp. Network Sec. Sh. Total Total w/o Sec. Sh.

ECDSA (1 VM) 1.77 N/A N/A 1.77 1.77
ECDSA (3 VMs) 2.32 N/A N/A 2.32 2.32
(1,3)-TECDSA 6.81 1.16 8.83 16.8 7.97

Table 3. Average (N = 1000) Nephele itemized signature generation times and
(N = 100) key generation times for varying t and n (in milliseconds). Each column
represents a different (t,n)-threshold setup.

Operation (1,3) (2,5) (3,7) (4,9) (1,9)

Signature Generation
Computation 6.81 7.64 9.51 12.99 12.58
Network 1.16 2.24 3.37 4.94 4.82
Secret Sharing 8.83 12.67 17.41 24.60 20.31
Total 16.80 22.55 30.29 42.53 37.71
Total w/o Secret Sharing 7.97 9.88 12.88 17.93 17.40

Key Generation 33.03 45.08 55.22 67.96 65.30
Key Re-sharing 4.47 7.11 9.41 12.18 11.50

three VMs (t = 1, n = 3). One VM took the role of the combiner, and the other
two took the role of normal participants. The combiner did not interact with a
client, but it initiated the protocol with random messages as if it had been. The
results of these experiments are in Table 2. Our benchmarks measure the average
signature generation time, itemizing the time spent in computation and sending
data through the network. We also separately itemize the time spent secret
sharing, since that can be computed offline in an optimized implementation.

Nephele incurs non-trivial computational overhead, taking 6.81 ms com-
pared to 2.32 ms for ECDSA. The dominating computational factors in Nephele
are the elliptic curve point multiplications and the exp-interpolation operations.
Table 4 shows the time it takes to execute each of these operations for vari-
ous (t,n)-threshold schemes. In every threshold scheme, they together consti-
tute more than 80% of the total computation time. In a production version of
Nephele, the point multiplication could be sped up by using an elliptic curve
optimized for speed (for example, Curve25519 [3]). Further, the exp-interpolation
operation could be implemented in a clever manner that reduces redundant com-
putation. Note that the exp-interpolation is initially faster than the tabulated
point multiplications, because the scalars used are initially very small. Even
without these improvements, assuming secret sharing is conducted offline, (1,3)-
Nephele is not significantly slower than ECDSA.

Table 3 shows the performance degradation of Nephele as t and n increase.
Since the exp-interpolation computation significantly degrades with more partic-
ipants, the higher threshold schemes take longer than the (1,3)-threshold scheme.
The time it takes to secret share also significantly increases with the num-

Table 4. Average (N = 1000) Nephele point multiplication and polynomial inter-
polation times (in milliseconds). Each column represents a different (t,n)-threshold
setup.

(1,3) (2,5) (3,7) (4,9) (1,9)

wi = G× ai 2.84 2.80 2.93 3.46 3.38

Rx = [β × µ−1]x 2.15 2.22 2.33 2.78 2.66
β = Exp-Interp(w1, . . . , wn) 0.70 1.49 2.97 5.20 5.08

Sum 5.69 6.51 8.23 11.44 11.12
% of Total Computation 83.55% 85.20% 86.54% 88.06% 88.39%

Table 5. Comparison of average signature generation time between Hermes and
Nephele (in milliseconds).

(t,n) = (1,3) (t,n) = (2,5) (t,n) = (4,9)

Hermes [30] 12.03 12.04 15.88
Nephele 7.97 9.88 17.93

ber of participants, emphasizing the necessity to move this operation offline.
The time spent waiting on network communications (ignoring secret sharing)
increases with the number of participants as well, but not as significantly. How-
ever, in an implementation that has optimized the point multiplications and
exp-interpolations, the network communications might become the bottleneck
of the protocol. Table 3 also shows the performance of Nephele’s key gener-
ation and key re-sharing algorithms. Expectedly, the performance degrades as
the number of participants increases. Note that key generation is a one-time cost
and key re-sharing will be executed offline where performance is not as critical.

Comparing the benchmarks of the (1,9)-threshold and (4,9)-threshold schemes,
we see that increasing t has a much smaller effect on performance than increasing
n. Since the threshold t determines the security of the system, we recommend
setting it to the theoretical maximum, n−1

2 , for a given n.

Table 5 compares our results with the performance results of Hermes, a
comparable leakage-resilient system for RSA (from [30]). These results do not
take into account secret sharing, as that can be done offline in both systems.
We see that Nephele is faster in the lower threshold schemes, but is slower in
the (4,9) scheme. This is due to the poor scaling of the exp-interpolation im-
plementation in Nephele. While this comparison gives insight into the relative
performance of Nephele, there are significant differences between implementa-
tions that must be noted: Hermes is written in C as an extension to OpenSSL
and exclusively works with RSA, whereas Nephele is written in Python and
works with ECDSA. Being written in a lower-level language, we expect Her-
mes to have a faster run-time execution. However, the results from Hermes
include the time it takes to establish an SSL connection, whereas the results
from Nephele do not. In addition, although ECDSA can outperform RSA in
terms of signature generation, this only happens with large enough keys (accord-
ing to [18], this happens around 409 and 7680 bits, respectively). Hermes does

not state the RSA key size used, but it is unlikely they picked a large enough
one to see significant performance degradation.

6 Related Work

Nephele is an implementation of Threshold ECDSA that protects against a
range of practical attacks, including cache and other side-channel attacks, as
well as full memory disclosure attacks of up to tparticipant machines. A natural
application scenario for Nephele is for cryptographic services run in the cloud,
where additional participants can be created in a cheap and effective manner.

Algorithmic Countermeasures Protecting cryptographic implementations
against side-channel leakage has been well-studied since the mid-nineties. Coun-
termeasures originally proposed to protect fast modular exponentiation such as
base and exponent blinding [22] or the Montgomery powering ladder [27] are
now also widely used to protect elliptic curve cryptography [26, 7]. Various other
methods to make scalar multiplication constant-time and constant execution
flow have been proposed, e.g. [3, 20, 5]. Unlike the above countermeasures, our
method even protects against memory disclosure and hence full compromise of
up to t participants. Furthermore, it forces an adversary to compromise at least
t + 1 participants to recover a secret key. This means practical attacks will be-
come harder, since, e.g., the co-location problem needs to be overcome t + 1
times, not just once.

In addition, the key re-sharing limits the number of aggregatable observations
per key. That means that many of the above countermeasures can and should be
combined with Nephele: while the above countermeasures reduce the amount
of observable leakage per execution, key re-sharing reduces the amount of ag-
gregatable observations per key. Hence, in combination, they can thwart much
stronger attacks. This is especially useful for attacks that succeed with a single
observation (e.g. [37]), where key re-sharing by itself is not effective, and thus
the security would entirely rely on the threshold property.

Threshold Cryptography Modern works such as [24] improve over existing
work in threshold signatures by allowing fully distributed key generation and
non-interactive signature generation. While Nephele also provides fully dis-
tributed key generation, our servers need to communicate during signature gen-
eration. However, unlike Nephele, which implements ECDSA signatures and
can thus be used in existing implementations of TLS libraries, the scheme by
Libert et al. requires bilinear maps, which are computationally expensive and
are not compatible with commonly standardized crypto-protocols such as TLS.

Threshold cryptography was first applied to elliptic curves in [15]. Like the
approach presented here, the scheme builds on the concepts of [12]. We improve
over that work by introducing a key re-sharing mechanism to counteract side-
channel analysis and providing a fully distributed key generation that does not
rely on a trusted dealer. We furthermore present first implementation results and
show that the scheme is applicable in practical scenarios, while only providing a
limited overhead over a non-threshold ECDSA implementation.

Nephele is more comparable to Hermes [30], which also uses threshold
cryptography to prevent various cloud-based attacks. Unlike Hermes, our work
does not require a server out of the reach of the attacker that holds the secret
key at all times. Instead, Nephele is able to create, use, and re-share keys fully
distributively, i.e. in a shared fashion in the cloud, without ever creating a single
point of failure during the entire life cycle. A more complex and robust threshold
implementation of ECDSA has been proposed to secure the protection of bitcoin
wallets [14]. While their protocol is robust and requires n ≥ t + 1 instead of
n ≥ 2t+ 1, this comes at the cost of a huge performance overhead. Please note
that they measure execution time in (single to double digit) seconds while we
use (single to double digit) milliseconds.

Future Work Nephele currently only exists as a proof-of-concept implemen-
tation and does not come as a drop-in replacement of the ECDSA engine of TLS
for any of the current cryptographic libraries. In order to make Nephele a plugin
for a cryptographic library like OpenSSL, the code needs to be entirely ported
to C, which should give further performance benefits. Furthermore, TECDSA
is not currently robust, meaning it cannot work unhindered in the presence of
corrupted participants. Providing robustness can be achieved by using verifiable
secret sharing instead of Shamir’s secret sharing. While the solution is simple,
VSS requires significantly more network overhead than SSS, so research must be
done on how to implement VSS efficiently.

7 Conclusion

We have developed Nephele, the first cross-VM side-channel resistant defense
for ECDSA. We have analyzed the security of our protocol from a theoretical
and practical perspective; our protocol remains secure in the presence of a lim-
ited number of compromised machines, and thus resists cross-VM side-channel
attacks. We also found Nephele to resist all other side-channel attacks, and,
in fact, all memory disclosure attacks. We developed a realistic system model
in which our protocol could be applied, and found the induced performance
overhead is small.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing. pp. 1–10. STOC ’88,
ACM, New York, NY, USA (1988)

2. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: ”Ooh Aah... Just a Little Bit”:
A Small Amount of Side Channel Can Go a Long Way. In: Batina, L., Robshaw,
M. (eds.) Cryptographic Hardware and Embedded Systems — CHES 2014, LNCS,
vol. 8731, pp. 75–92. Springer (2014)

3. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. In: In Public Key
Cryptography (PKC), Springer-Verlag LNCS 3958. p. 2006 (2006)

4. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492

5. Brumley, B.B.: Faster software for fast endomorphisms. Cryptology ePrint Archive,
Report 2015/036 (2015), http://eprint.iacr.org/

6. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
Advances in Cryptology — ASIACRYPT 2009, Lecture Notes in Computer Science,
vol. 5912, pp. 667–684. Springer Berlin Heidelberg (2009)

7. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koc, C., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems, LNCS, vol. 1717, pp. 292–302. Springer (1999)

8. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity (2015)

9. of Excellence in Cryptology II, E.N.: ECRYPT II yearly report on algorithms and
keysizes (2011-2012) (September 2012)

10. Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev, D.: Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks.
ACM Trans. Archit. Code Optim. 8(4), 35:1–35:21 (Jan 2012)

11. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Proceedings of the 28th Annual Symposium on Foundations of Computer Science.
pp. 427–438. SFCS ’87, IEEE Computer Society, Washington, DC, USA (1987)

12. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold dss signatures.
In: Proceedings of the 15th Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques. pp. 354–371. EUROCRYPT’96, Springer-
Verlag, Berlin, Heidelberg (1996)

13. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing.
pp. 101–111. PODC ’98, ACM, New York, NY, USA (1998)

14. Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J.A., Felten, E.W.,
Narayanan, A.: Securing Bitcoin wallets via a new DSA/ECDSA threshold signa-
ture scheme (June 2015), available at http://cryptolibrary.org/handle/21/456

15. Ibrahim, M., Ali, I., Ibrahim, I., El-sawi, A.: A robust threshold elliptic curve
digital signature providing a new verifiable secret sharing scheme. In: Circuits and
Systems, 2003 IEEE 46th Midwest Symposium on. vol. 1, pp. 276–280 (2003)

16. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: A Shared Cache Attack that Works
Across Cores and Defies VM Sandboxing—and its Application to AES. In: 36th
IEEE Symposium on Security and Privacy (2015)

17. Irazoqui, G., Inci, M., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-
vm attack on aes. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) Research in
Attacks, Intrusions and Defenses, Lecture Notes in Computer Science, vol. 8688,
pp. 299–319. Springer International Publishing (2014)

18. Jansma, N., Arrendondo, B.: Performance comparison of elliptic curve and rsa
digital signatures. Tech. rep., University of Michigan College of Engineering (2004)

19. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). International Journal of Information Security 1(1), 36–63 (2001)

20. Käsper, E.: Fast elliptic curve cryptography in openssl. In: Danezis, G., Dietrich,
S., Sako, K. (eds.) Financial Cryptography and Data Security, Lecture Notes in
Computer Science, vol. 7126, pp. 27–39. Springer Berlin Heidelberg (2012)

21. Kim, T., Peinado, M., Mainar-Ruiz, G.: Stealthmem: System-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security sym-
posium. pp. 189–204 (2012)

22. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) Advances in Cryptology — CRYPTO ’96,
LNCS, vol. 1109, pp. 104–113. Springer (1996)

23. Kong, J., Aciicmez, O., Seifert, J.P., Zhou, H.: Deconstructing new cache designs
for thwarting software cache-based side channel attacks. In: Proceedings of the
2Nd ACM Workshop on Computer Security Architectures. pp. 25–34. CSAW ’08,
ACM, New York, NY, USA (2008)

24. Libert, B., Joye, M., Yung, M.: Born and raised distributively: Fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In: Pro-
ceedings of the 2014 ACM Symposium on Principles of Distributed Computing.
pp. 303–312. PODC ’14, ACM, New York, NY, USA (2014)

25. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-Level Cache Side-Channel
Attacks are Practical. In: 36th IEEE Symposium on Security and Privacy (2015)

26. López, J., Dahab, R.: Fast multiplication on elliptic curves over gf(2m) without
precomputation. In: Koc, C., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems, LNCS, vol. 1717, pp. 316–327. Springer (1999)

27. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

28. National Institute of Standards and Technology: FIPS PUB 186-4: Digital Signa-
ture Standard (DSS) (Jul 2013)

29. NIST: Recommended elliptic curves for federal government use (July 1999)
30. Pattuk, E., Kantarcioglu, M., Lin, Z., Ulusoy, H.: Preventing cryptographic key

leakage in cloud virtual machines. In: 23rd USENIX Security Symposium (USENIX
Security 14). pp. 703–718. USENIX Association, San Diego, CA (Aug 2014)

31. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91, LNCS,
vol. 576, pp. 129–140. Springer (1992)

32. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)
Topics in Cryptology — CT-RSA 2015, Lecture Notes in Computer Science, vol.
9048, pp. 3–21. Springer International Publishing (2015)

33. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM conference on Computer and communications security. pp. 199–
212. ACM (2009)

34. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerabil-
ity study in multi-tenant public clouds. In: 24th USENIX Security Symposium
(USENIX Security 15). pp. 913–928. USENIX Association, Washington, D.C. (Aug
2015)

35. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture. pp. 494–505. ISCA ’07, ACM, NY, NY, USA (2007)

36. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security Symposium (USENIX Security 15). pp. 929–944.
USENIX Association, Washington, D.C. (Aug 2015)

37. Yarom, Y., Benger, N.: Recovering openssl ecdsa nonces using the flush+reload
cache side-channel attack. Cryptology ePrint Archive, Report 2014/140 (2014),
http://eprint.iacr.org/

38. Yarom, Y., Falkner, K.: Flush+reload: A high resolution, low noise, l3 cache side-
channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14). pp.
719–732. USENIX Association, San Diego, CA (Aug 2014)

39. Zhang, Y., Reiter, M.K.: Düppel: Retrofitting Commodity Operating Systems to
Mitigate Cache Side Channels in the Cloud. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security. pp. 827–838. CCS
’13, ACM, New York, NY, USA (2013)

A Existing Tools for Secret Sharing

The following known techniques are used to share secrets in our protocol.

Shamir’s Secret Sharing (SSS) [11]: Given a secret s, choose a random poly-
nomial f(x) with coefficients in Zq of degree t, such that f(0) = s. Give each
participant Pi (where i ∈ Z∗q) the value f(i) mod q, as its share. We denote

this sharing as (s1, . . . , sn)
(t,n)←→ s mod q.3 The secret can be reconstructed

using polynomial interpolation over t+1 (or more) shares. SSS works because
t + 1 points define a polynomial of degree t. Since SSS chooses a t-degree
polynomial and distributes n > t coordinates to the participants, as long as
t + 1 participants collaborate, the polynomial will be able to be recovered.
Evaluating the polynomial at x = 0 reveals the secret.

Joint Random Secret Sharing (JRSS) [31]: The goal of this technique is
for a group of participants to collectively share a secret without knowledge
of the secret. Each participant picks a random local secret and shares it with
the group using SSS. Each participant then adds all of the shares received
from the participants, including its own. This sum is the joint random secret
share. Note that the randomness introduced by a single honest participant is
enough to keep the joint secret unknown (in the event that other participants
pick non-random local secrets).

Joint Zero Secret Sharing (JZSS) [1]: Similar to JRSS, but each partici-
pant locally shares 0 instead of a random value. Shares produced with this
technique are used to blind potential weakpoints in the algorithm.

Ibrahim et al. [15] also proposed two verifiable secret sharing protocols for
elliptic curve cryptography, Joint Random Verifiable Secret Sharing (EC-JRVSS)
and Joint Zero Verifiable Secret Sharing (EC-JZVSS). These protocols extend
JRSS and JZSS by having each party broadcast its polynomial coefficients and
evaluation points, protected by EC scalar multiplication. Then all parties verify
the correctness of each other’s polynomials and shares, adding robustness, but
also significant performance overhead to the protocol.

B Threshold ECDSA Signature Generation

The threshold ECDSA signature generation protocol is based on the threshold
DSS signature generation protocol found in [12] and has first been proposed
in [15]. Unsurprisingly, the fundamental difference between our protocol and

3 This notation is from [12].

Algorithm 3 TECDSA Signature Generation

Domain Parameters: CURV E, cardinality q, generator G
Input: Message m to be signed, private key share di ∈ Z∗q
Output: Signature (r, s) ∈ Z∗q

2 for m

Distributed Key Generation . JRSS/JZSS require n broadcasts.
1: Generate ephemeral key shares ki ← Z∗q with JRSS
2: Generate mask shares ai ← Zq with JRSS

3: Generate masks shares bi, ci ← Zq
2 with JZSS

Signature Generation
4: e = H(m)
5: Broadcast vi = kiai + bi mod q and wi = G× ai
6: µ = Interpolate(v1, . . . , vn) mod q . [= ka mod q]
7: β = Exp-Interpolate(w1, . . . , wn) . [= G× a]

8: (Rx, Ry) = β × µ−1 . [= G× k−1]
9: r = Rx mod q. If r = 0, go to step 1.

10: Broadcast si = ki(e+ dir) + ci mod q
11: s = Interpolate(s1, . . . , sn) mod q. If s = 0, go to step 1.
12: return (r, s)

theirs stems from the difference between ECDSA and DSA. This can be seen
in steps 5 and 8 of Algorithm 3, in which instances of the ECDLP are con-
structed instead of instances of the DLP. Note that this protocol outputs the
computed signature to every participant. See Section 5 for a modified version
that only outputs the signature to the initiating participant for efficiency. The
threshold signature generation algorithm is given in Algorithm 3. We describe
the algorithm in prose below. It is assumed that the secret key generation has
already been performed and the message was distributed prior to initiating the
algorithm. Each step of the algorithm is to be executed by every participant and
ought to be carried out synchronously due to its interactive nature.

1. Generate ephemeral key shares ki
The participants generate the ephemeral key k, uniformly distributed in Z∗q ,

with a polynomial of degree t, using JRSS, which creates shares (k1, . . . , kn)
(t,n)←→

k mod q. Shares of k are to be kept secret by each participant.

2. Generate mask shares ai
The participants generate a random value a, uniformly distributed in Zq,
with a polynomial of degree t, using JRSS to create shares (a1, . . . , an)

(t,n)←→
a mod q. These are used to multiplicatively mask ki. The shares of a are to
be kept secret by the corresponding participant .

3. Generate mask shares bi, ci
Execute two instances of JZSS with polynomials of degrees 2t. Denote the

shares created in these protocols as (b1, . . . , bn)
(2t,n)←→ b mod q and (c1, . . . , cn)

(2t,n)←→
c mod q. These are used as additive masks. The polynomial must be of degree
2t because the numbers being masked involve the products of two polynomi-
als of degree t, doubling the number of shares required to recover the secret.
The shares of b and c are to be kept secret by the participants.

4. Compute digest of message m: e = H(m)

5. Broadcast vi = kiai + bi mod q and wi = G× ai
Participant Pi broadcasts vi = kiai+bi mod q and wi = G×ai. If Pi does not

participate his values are set to null. Notice that (v1, . . . , vn)
(2t,n)←→ ka mod q.

6. Compute µ = Interpolate(v1, . . . , vn) mod q
Interpolate() [12]: If {v1, . . . , vn}(n ≥ 2t + 1) is a set of values, such that
at most t are null and all the remaining ones lie on some t-degree polyno-
mial F (·), then µ = F (0). The polynomial can be computed by standard
polynomial interpolation.

7. Compute β = Exp-Interpolate(w1, . . . , wn)
Exp-Interpolate() [12]: If {w1, . . . , wn}(n ≥ 2t + 1) is a set of values, such
that at most t are null and the remaining ones are of the form G×ai, where
the ai’s lie on some t-degree polynomial H(·), then β = G×H(0). This can
be computed by β =

∑
i∈V wi × λi =

∑
i∈V (G×H(i)) × λi, where V is a

(t + 1)-subset of the correct wi’s and λi’s are the corresponding Lagrange
interpolation coefficients.

8. Compute (Rx, Ry) = β × µ−1

9. Assign r = Rx mod q
If r = 0, go to step 1.

10. Broadcast si = ki(e+ dir) + ci mod q

If Pi does not participate, its values are set to null. Notice that (s1, . . . , sn)
(2t,n)←→

k(m+ dr) mod q.
11. Compute s = Interpolate(s1, . . . , sn) mod q

If s = 0, go to step 1. See Step 6 for the definition of Interpolate().
12. Return (r, s)

