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Abstract. Midori is a lightweight block cipher designed by Banik et al.
at ASIACRYPT 2015. One version of Midori uses a 64-bit state, another
uses a 128-bit state and we denote these versions Midori-64 and Midori-
128. Each of these versions uses a 128-bit key. In this paper, we focus on
the key-recovery attacks on reduced-round Midori-64 with meet-in-the-
middle method. We use the differential enumeration technique and key-
dependent sieve technique which are popular to analyze AES to attack
Midori-64. We propose a 6-round distinguisher, and achieve a 10-round
attack with time complexity of 299.5 10-round Midori-64 encryptions,
data complexity of 261.5 chosen-plaintexts and memory complexity of
292.7 64-bit blocks. After that, by adding one round at the end, we get
an 11-round attack with time complexity of 2122 11-round Midori-64
encryptions, data complexity of 253 chosen-plaintexts and memory com-
plexity of 289.2 64-bit blocks. Finally, with a 7-round distinguisher, we
get an attack on 12-round Midori-64 with time complexity of 2125.5 12-
round Midori-64 encryptions, data complexity of 255.5 chosen-plaintexts
and memory complexity of 2106 64-bit blocks. To the best of our knowl-
edge, this is recently the best attack on Midori-64.
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1 Introduction

In the past few years, lightweight cryptography has become a popular research
discipline with a number of ciphers and hash functions proposed. The goals of
these ciphers range from minimizing the hardware area [2,17,16] to low latency[3].
However, the optimization goal of low energy for block cipher design has not
attached much attention. At ASIACRYPT 2015, Banik et al. present a new
lightweight block cipher Midori that is optimized with respect to the energy
consumed by the circuit per bit in encryption or decryption operation [1]. Mi-
dori is based on the Substitution-Permutation Network (SPN). One version of
Midori uses a 64-bit state, another uses a 128-bit state and we denote these
versions Midori-64 and Midori-128. Each of these versions uses a 128-bit key.

Meet-in-the-middle attack is first proposed by Diffie and Hellman to attack
DES [9]. In recent years, it is widely researched due to its effectiveness against
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block cipher AES [4]. For AES, Gilbert and Minier show in [11] some collision
attacks on 7-round AES. At FSE 2008, Demirci and Selçuk improve the Gilbert
and Minier attacks using meet-in-the-middle technique instead of collision idea.
More specifically, they show that the value of each byte of 4-round AES cipher-
text can be described by a function of the δ-set, i.e. a set of 256 plaintexts where
a byte (called active byte) can take all values and the other 15 bytes are con-
stant, parameterized by 25 [6] and 24 [7] 8-bit parameters. The last improvement
is due to storing differences instead of values. This function is used to build a
distinguisher in the offline phase, i.e. they build a lookup table containing all the
possible sequences constructed from a δ-set. In the online phase, they identify
a δ-set, and then partially decrypt the δ-set through some rounds and check
whether it belongs to the table. At ASIACRYPT 2010, Dunkelman, Keller and
Shamir develop many new ideas to solve the memory problems of the Demirci
and Selçuk attacks [10]. First of all, they only store multiset, i.e. an unordered
sequence with multiplicity, rather than the ordered sequence. The second and
main idea is the differential enumeration technique which uses a special prop-
erty on a truncated differential trail to reduce the number of parameters that
describes the set of functions from 24 to 16. Furthermore, Derbez, Fouque and
Jean present a significant improvement to the Dunkelman et al.’s differential
enumeration technique at EUROCRYPT 2013 [8], called efficient tabulation. Us-
ing this rebound-like idea, they show that many values in the precomputation
table are not reached at all under the constraint of a special truncated differ-
ential trail. Actually, the size of the precomputation table is determined by 10
byte-parameters only. At FSE 2014, Li et al. introduce the key-dependent sieve
technique, which filters the wrong states based on the key relations, to further
reduce the complexity in the precomputaion phase [13]. Then they give an attack
on 9-round AES-192. In [14], Li et al. give an attack on 10-round AES-256 with
differential enumeration technique and key-dependent sieve technique.
Our contributions. In this paper, we carefully study and apply the variants of
Derbez et al. attack on Midori-64. With the differential enumeration technique
and key-dependent sieve technique, we present a 6-round distinguisher on Midori-
64. Based on this distinguisher, we add 1 round at the beginning and 3 rounds
at the end to present a 10-round meet-in-the-middle attack on Midori-64. The
time complexity of this attack is 299.5 10-round Midori-64 encryptions, the data
complexity is 261.5 chosen-plaintexts and the memory complexity is 292.7 64-bit
blocks. After that, by adding one round at the end, we get an 11-round attack
with time complexity of 2122 11-round Midori-64 encryptions, data complexity
of 253 chosen-plaintexts and memory complexity of 289.2 64-bit blocks. To the
best of our knowledge, this is recently the best attack on Midori-64. Finally,
with a 7-round distinguisher, we get an attack on 12-round Midori-64 with time
complexity of 2125.5 12-round Midori-64 encryptions, data complexity of 255.5

chosen-plaintexts and memory complexity of 2106 64-bit blocks.
Organizations of this paper. The rest of this paper is organized as follows.
In section 2, we provide a brief description of Midori-64, some definitions and
properties, a brief recall of the previous meet-in-the-middle distinguisher and
the attack scheme. In section 3, we give our attack on 10-round Midori-64. In
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section 4, we give our attack on 11-round Midori-64. In section 5, we give our
attack on 12-round Midori-64. In section 6, we conclude this paper.

2 Preliminaries

In this section we give a short description of Midori-64 and gives some definitions
and propositions used throughout this paper. Then we briefly recall the previous
meet-in-the-middle distinguisher. Finally, the attack scheme is given.

2.1 Description of Midori-64

Midori is a lightweight block cipher designed by Banik et al. at ASIACRYPT 2015
[1] and is based on the Substitution-Permutation Network (SPN). One version
of Midori uses a 64-bit state, another uses a 128-bit state and we denote these
versions Midori-64 and Midori-128. Each of these versions uses a 128-bit key.
In this paper, we focus on the 64-bit version of Midori, so we describe it here.
The Midori-64 block cipher operates on 64-bit state, and uses the following 4×4
array called state as a data expression:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


where the size of each cell is 4 bits.

A Midori-64 round applies the following four operations to the state matrix:

– SubCell: Apply the non-linear 4× 4 S-box in parallel on each nibble of the
state.

– ShuffleCell: Each nibble of the state is preformed as follows:

(s0, s1, · · · , s15)← (s0, s10, s5, s15, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

– MixColumn: Midori-64 utilizes an involutive binary matrix M defined as
follows:

M =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


M is applied to every 4-nibble column of the state S, i.e.

t(si, si+1, si+2, si+3)←M ·t (si, si+1, si+2, si+3) and i = 0, 4, 8, 12.

– KeyAdd: The ith 64-bit round key rki is xored to a state S.

Before the first round, an additional KeyAdd operation is applied, and in
the last round the ShuffleCell and MixColumn operations are omitted. The total
round number of Midori-64 is 16.

The key-schedule of Midori-64 is quite simple. A 128-bit secret key K is
denoted as two 64-bit keys k0 and k1 as K = k0||k1. Suppose we focus on
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Midori-64 reduced to R-round, the whiten key and the last sub-key are rk−1 =
rkR−1 = k0 ⊕ k1, and the sub-key for round i is rki = k(i mod 2) ⊕ αi, where
0 ≤ i ≤ R− 2 and αi is a constant.

In this paper, the plaintext is denoted by P , the ciphertext is denoted by C.
Let xi, yi, zi and wi denote the intermediate states before SubCell, ShuffleCell,
MixColumn and KeyAdd operations of round i. xi[j] denotes the jth nibble of
round i. xki [j] denotes the kth element of a set of some xi[j]. ∆x

k
i [j] denotes the

difference of the kth element and 0th element of a set, i.e. ∆xki [j] = xki [j]⊕x0i [j].
In some cases, we are interested in interchanging the order of the MixColumn

and KeyAdd operations. As these operations are linear, they can be interchanged
by first xoring the data with an equivalent key rui = MixColumn−1(rki) and
then applying the MixColumn operation. And we denote the intermediate state
after xoring with ui by wi. We also denote ui = MixColumn−1(ki), where
i = 0, 1.

2.2 Definitions and Propositions

In [4], Daemen et al. first proposed the definition of δ-set of byte. After that,
δ-set was used in the meet-in-the-middle attacks on AES and other ciphers. In
[12], Li et al. extended the definition of δ-set to T active cells, and got T -δ-set.
In this paper, we use 2-δ-set which defines as follows.

Definition 1 (2-δ-set). Let a 2-δ-set be a set of 22×4 states that are all differ-
ent in two state nibbles (active nibbles) and all equal in the other state nibbles
(inactive nibbles).

In [5], Daemen et al. gave the definition of super S-box for AES. For Midori,
we can give a similar definition as follows.

Definition 2 (Super S-box). For each value of one column of rk3, a Midori
Super S-box maps one column of z3 to one column of y4 as shown in Fig. 1.
It consists of one SubCell operation, one MixColumn operation, one KeyAdd
operation and one SubCell operation.

SubCellShuffleCell MixColumn

KeyAdd

SubCellMixColumn

x3 y3z3 w3

x4 y4rk3(k1)ru3 (u1)

Fig. 1. Super S-box for Midori-64.

For one S-box, we have the following proposition.
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Proposition 1 (Differential Property of S-box, [8]). Given ∆i and ∆0 two
non-zero differences, the equation of S-box

S(x)⊕ S(x⊕∆i) = ∆0, (1)
has one solution in average.

This proposition also applies to super S-box.

Proposition 2 (Differential Property of Super S-box). Given ∆i and ∆0

two non-zero differences in F216 , the equation of super S-box

Super − S(x)⊕ Super − S(x⊕∆i) = ∆0, (2)

has one solution in average for each key value.

For rui, we have the following proposition.

Proposition 3. As shown in Fig. 1, if the first column of z3 is active only in
the last 3 nibbles, Proposition 2 holds for each equivalent sub-key ru3[1, 2, 3].

Proof. We use the equivalent sub-key in this proof. For each y4[0, 1, 2, 3] and
ru3[1, 2, 3], since ∆y4[0, 1, 2, 3] is known, one can get w3[0, 1, 2, 3] and ∆w3[0, 1, 2,
3]. With the probability of 2−4, y3[0, 1, 2, 3] is active only in the last 3 nibbles.
By adding ru3[1, 2, 3], one can get ∆z3[1, 2, 3].

Therefore, for each ∆i and ∆0, the average number of input values of Super
S-box is 216−12−4 = 1 for each equivalent sub-key.

�

2.3 Reviews of Former Works

In this section, we review the previously meet-in-the-middle distinguishers on
AES in [6,10,8].
Demirci and Selçuk distinguisher. Consider the set of functions

f : {0, 1}8 −→ {0, 1}8

that maps a byte of a δ-set to another byte of the state after four AES rounds.
A convenient way is to view f as an ordered byte sequence (f(0), . . . , f(255))
so that it can be represented by 256 bytes. The crucial observation made by
the generalizing Gilbert and Minier attacks [11] is that this set is tiny since it
can be described by 25 byte-parameters (225·8 = 2200) compared with the set

of all functions of this type which counts as may as 28·2
8

= 22048 elements [6].
Considering the differences (f(0) − f(0), f(1) − f(0), . . . , f(255) − f(0)) rather
than values, the set of functions can be described by 24 parameters [7]. The 24
byte-parameters which map x1[0] to ∆x5[0] are presented as gray cells in Fig. 2.

Dunkelman et al. distinguisher and Derbez et al. distinguisher. In
[10], Dunkelman et al. introduced two new improvements to further reduce the
memory complexity of [7]. The first uses multiset which is an unordered sequence
with multiplicity to replace ordered sequence in the offline phase, since there is
enough information so that the attack succeeds. The second improvement uses
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SB

SR

1z1x 2x

MC

ARK

1 round

3x 4x

1 round

5x4y

SB SR

MC,ARK

m

Fig. 2. The 4-round AES distinguisher used in [7]. The gray cells represent 24 byte-
parameters, δ represents the δ-set and m represents the differential sequence to be
stored.

a novel idea named differential enumeration technique. The main idea of this
technique is to use a special 4-round property on a truncated differential trail to
reduce the number of parameters which describes the set of functions from 24
to 16.

In [8], Derbez et al. used the efficient tabulation to improve Dunkelman et al.’s
differential enumeration technique. Combining with the rebound-like idea, many
values in the precomputation table are not reached at all under the constraint
of a truncated differential trail.

Proposition 4 (Efficient Tabulation , [8]). If a message of δ-set belongs to
a pair conforming to the 4-round truncated differential trail outlined in Fig. 3,
the values of multiset are only determined by 10 byte-parameters of intermediate
state ∆z1[0]||x2[0, 1,
2, 3]||∆x5[0]||z4[0, 1, 2, 3] presented as gray cells in this figure.

SB

SR

1z1x 2x

MC

ARK

1 round

3x 4z

1 round

5x3y

SB SR

MC,ARK

Fig. 3. The truncated differential trail of 4-round AES used in [6], the gray cells rep-
resent 10 byte-parameters, ∆ represents difference.

The main idea of their works is that suppose one get a pair of messages con-
forming to this truncated differential trail, the differences ∆x3 and ∆y3 can be
determined by these 10 byte-parameters. By Proposition 1, part of the 24 byte-
parameters in the Demirci and Selçuk distinguisher, i.e. x3, can be determined.

2.4 Attack Scheme

In this section, we present a unified view of the meet-in-the-middle attack, where
R rounds of block cipher can be split into three consecutive parts: r1, r, and
r2, such that a particular set of messages may verify a certain property that we
denote ? in the sequel in the middle r rounds as shown in Fig. 4.

The general attack scheme uses two successive phases:

Precomputation phase
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r roundsr1 rounds r2 rounds

Fig. 4. General scheme of meet-in-the-middle attack, where some messages in the mid-
dle rounds may verify a certain ? property used to perform the meet-in-the-middle
method.

1. In the precomputation phase, we build a lookup table T containing all
the possible sequences constructed from a 2-δ-set such that one message
verifies a truncated differential trail.

Online phase
2. In the online phase, we need to identify a 2-δ-set containing a message
m verifying the desired property. This is done by using a large number
of plaintexts and ciphertexts, and expecting that for each key candidate,
there is one pair of plaintexts satisfying the truncated differential trail.

3. Finally, we partially decrypt the associated 2-δ-set through the last r2
rounds and check whether it belongs to T .

3 Meet-in-the-Middle Attack on 10-Round Midori-64

In this section, we first propose a 6-round meet-in-the-middle distinguisher with
differential enumeration technique and key-dependent sieve technique on Midori-
64. Then, we apply this distinguisher to 10-round Midori-64 by adding 1 round
at the beginning and 3 rounds at the end.

3.1 6-Round Distinguisher on Midori-64

Since w6[9] = z6[8]⊕ z6[10]⊕ z6[11] and w6[10] = z6[8]⊕ z6[9]⊕ z6[11], we have
w6[9]⊕w6[10] = z6[9]⊕ z6[10]. Let ein = z6[9]⊕ z6[10] and eout = x7[9]⊕x7[10],
then eout = ein⊕rk6[9]⊕rk6[10], the 6-round distinguisher on Midori-64 is based
on the proposition below.

Proposition 5. Let {w0
0, w

1
0, · · · , w255

0 } be a 2-δ-set where w0[5] and w0[10] are
the active nibbles. Consider the encryption of the first 33 values (w0

0, w
1
0, · · · , w33

0 )
of the 2-δ-set through 6-round Midori-64, in the case of that a message of the 2-
δ-set belongs to a pair which conforms to the truncated differential trail outlined
in Fig. 5, then the corresponding 128-bit ordered sequence (e1out ⊕ e0out, e

2
out ⊕

e0out, · · · , e32out ⊕ e0out) only takes about 2104 values (out of the 2128 theoretically
values).

Proof. As shown in Fig. 5, for the encryption of the first 33 values of the 2-δ-set,
the output sequence (e1out ⊕ e0out, e2out ⊕ e0out, · · · , e32out ⊕ e0out) is determined by
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the 42 nibble-parameters:

w0[5, 10]||x1[5, 10]||x2[0, 1, 2, 3]||x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]|| (3)

x4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]||rk4[0, 2, 5, 8, 10, 13]||rk5[3, 12]

At round 1, since ∆xm1 [5, 10] = ∆wm
0 [5, 10] (0 < m ≤ 33), we can get z1[1, 2]

by the knowledge of x1[5, 10]. Since the ShuffleCell, MixColumn and KeyAdd op-
erations are linear, ∆xm2 [0, 1, 2, 3] can be got. Similarly, ∆ym2 [0, 1, 2, 3] can be got
by the knowledge of x2[0, 1, 2, 3],∆ym3 [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15] can be got
by the knowledge of x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15],∆ym4 [0, 1, 2, 3, 5, 6, 7, 8, 9,
10, 11, 12, 14, 15] can be got by the knowledge of x4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12,
14, 15], ∆ym5 [0, 2, 5, 8, 10, 13] can be got by the knowledge of rk4[0, 2, 5, 8, 10, 13],
and ∆zm6 [9, 10] can be got by the knowledge of rk5[3, 12]. Then we get the
value of emin ⊕ e0in. Since emout ⊕ e0out = emin ⊕ e0in, we can get (e1out ⊕ e0out, e2out ⊕
e0out, · · · , e32out ⊕ e0out).

However, if a pair of messages conforms to the truncated differential trail
outlined in Fig. 5, the above 42 nibble-parameters are determined by the 27
nibble-parameters:

∆z1[1, 2]||x2[0, 1, 2, 3]||x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]|| (4)

y5[0, 2, 5, 8, 10, 13]||y6[3, 12]||∆z6[9]

Since ∆z1[1, 2] is known, we can get ∆x2[0, 1, 2, 3]. Since ∆y2[0, 1, 2, 3] can be
got by the knowledge of x2[0, 1, 2, 3], we can get∆x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13,
15], and ∆x4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15] can be got by the knowledge of
x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]. For the backward direction, since ∆w6[8] =
∆z6[9]⊕∆z6[10]⊕∆z6[11],∆z6[11] = 0 and∆w6[8] = 0, we can get that∆z6[9] =
∆z6[10]. For the same reason as the forward direction,∆y4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10,
11, 12, 14, 15] can be got by the knowledge of y5[0, 2, 5, 8, 10, 13]||y6[3, 12]||∆z6[9].
According to Property 1, we get one value of intermediate state x4[0, 1, 2, 3, 5, 6, 7,
8, 9, 10, 11, 12, 14, 15] on average for the fixed difference ∆x4[0, 1, 2, 3, 5, 6, 7, 8, 9,
10, 11, 12, 14, 15]||∆y4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]. Apparently, ru2[0, 7,
9, 14]||rk4[0, 2, 5, 8, 10, 13]||rk5[3, 12] is also deduced for every 27 nibble-parameters.
Since z3[13, 14, 15] is known, w3[12] can be got. Then rk3[12] can be deduced for
the reason that rk3[12] = x4[12] ⊕ w3[12]. According to the key-schedule of
Midori-64, rk3[12] and rk5[12] are affected by the same nibble of k1. By the
key-dependent sieve technique, there are 2104 possible values for the 27 nibble-
parameters.

Since z3[1, 2, 3] and x4[0, 1, 2, 3] are known, ru3[1, 2, 3] can be got. According
to the key-schedule, rk3[3] can be got by the knowledge of rk5[3]. Since rk3[3] =
ru3[0]⊕ ru3[1]⊕ ru3[2], ru3[0] can be got. Then rk3[0, 1, 2, 3] can be got. After
that, we can deduce rk1[0, 1, 2, 3]. We can also deduce rk0[5, 10] from rk4[5, 10].
Therefore, we can get w0[5, 10] and x1[5, 10] from x2[0, 1, 2, 3].

So the 42 nibble-parameters (3) are determined by 27 nibble-parameters (4),
i.e. the sequence (e1out ⊕ e0out, e2out ⊕ e0out, · · · , e32out ⊕ e0out) can take about 2104

values.
�
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3.2 Attack on 10-Round Midori-64

The attack is made up of two phase: precomputation phase and online phase.
Precomputation phase: In the precomputation phase, we need to build a table
that contains all the sequence (e1out⊕ e0out, e2out⊕ e0out, · · · , e32out⊕ e0out) described
in Propostion 6.

1. Guess y6[12]||y5[2, 8, 13], and compute x6[12] and w5[12]. Deduce rk5[12]
from x6[12]||w5[12]. Store y5[2, 8, 13] in a table T1 with the index of rk5[12]||
y6[12]. There are about 28 values of y5[2, 8, 13] for each index.

2. For each 48-bit ru3[1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15], do the following steps.

(a) Guess ∆z6[9]. Since ∆w6[8] = ∆z6[11] = 0, we can deduce ∆z6[10]. De-
duce rk5[12] from ru3[13, 14, 15]. Guess y6[3, 12]||y5[0, 5, 10], look up the
table T1 to get about 28 values of y5[2, 8, 13] by the index of rk5[12]||y6[12].
Then compute x5[0, 2, 5, 8, 10, 13]||∆x5[0, 2, 5, 8, 10, 13]. Deduce rk5[3] from
y6[3] and y5[0, 5, 10], then deduce rk1[0, 1, 2, 3] from rk5[3] and ru3[1, 2, 3].
Store rk1[0, 1, 2, 3]||x5[0, 2, 5, 8, 10, 13] in a table T2 with the index of
∆x5[0, 2, 5, 8, 10, 13]. There are about 28 values for each index.

(b) For all 240 values of ∆y2[0, 1, 2, 3] and ∆x5[0, 2, 5, 8, 10, 13], deduce ∆x3
and∆y4. According to Proposition 3, we can get x3[1, 2, 3, 4, 5, 6, 8, 10, 11,
12, 13, 15] and y4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]. Then compute
w4[0, 2, 5, 8, 10, 13], and store x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]||x4[0, 1,
2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]||w4[0, 2, 5, 8, 10, 13]||∆x5[0, 2, 5, 8, 10, 13]
in a table T3 with the index of ∆y2[0, 1, 2, 3]. There are about 224 values
for each index.

(c) For each ∆z1[1, 2]||x2[0, 1, 2, 3], do the following sub-steps:
i. Compute ∆y2[0, 1, 2, 3] from ∆z1[1, 2] and x2[0, 1, 2, 3]. Then look up

the table T3 to get about 224 values x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]||
x4[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]||w4[0, 2, 5, 8, 10, 13]||∆x5[0, 2,
5, 8, 10, 13]. For each of these values, look up the table T2 to get about
28 values rk1[0, 1, 2, 3]||x5[0, 2, 5, 8, 10, 13]. Deduce rk4[0, 2, 5, 8, 10, 13]
from x5[0, 2, 5, 8, 10, 13] and w4[0, 2, 5, 8, 10, 13], then deduce rk0[5, 10]
from rk4[5, 10]. Compute x1[5, 10] from rk1[0, 1, 2, 3] and x2[0, 1, 2, 3],
then compute w0[5, 10] from x1[5, 10] and rk0[5, 10]. Therefore, we
get the 42 nibble-parameters (3).

ii. Compute the sequence (e1out ⊕ e0out, e2out ⊕ e0out, · · · , e32out ⊕ e0out), and
store them along with a 16-bit value ru2[0, 9, 14]||ru3[1] in a table
T4.

3. We build two tables T 0
5 and T 2

5 for online phase. As shown in Fig. 6, for col-
umn 0, guess ∆C[0, 1, 2, 3]||∆z8[0, 1], and deduce ∆x9[0, 1, 2, 3] and ∆y9[0, 1,
2, 3]. By Proposition 1, we can deduce y9[0, 1, 2, 3]. Guess C[1, 3], rk9[1, 3] can
be got. One can deduce rk−1[1, 3] from rk9[1, 3], and store x9[0, 1, 2, 3]||∆z8[0,
1] in a table T 0

5 with the index of rk−1[1, 3]||∆C[0, 1, 2, 3]||C[1, 3]. There is
one value for each index in average. Similarly, we can get a table T 2

5 for
column 2.
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4. We build a table T6 for online phase. Guess x7[9, 10]||∆x7[9], one can deduce
∆y7[9, 10] and y7[9, 10] since ∆x7[9] = ∆x7[10]. Then ∆x8[0, 2, 3, 9, 10, 11]
can be deduced. Guess∆y8[0, 2, 3, 9, 10, 11], then x8[0, 2, 3, 9, 10, 11] and y8[0,
2, 3, 9, 10, 11] can be deduced by Proposition 1. Deduce ru7[1, 8] from x7[9, 10]
and x8[0, 2, 3, 9, 10, 11], and deduce ru8[1, 8]⊕ ru9[1, 8] from ru7[1, 8]. Let χ
denote z8[1, 8] ⊕ ru8[1, 8] ⊕ ru9[1, 8]. Store y8[0, 2, 3, 9, 10, 11]||ru7[1, 8] in a
table T6 with the index of χ||∆z8[0, 1, 6, 8, 9, 14]. There are 24 values for each
index.

5. We build another table T7 for online phase. For all 36-bit sub-keys ru7[1, 8]||
ru8[0, 1, 6, 8, 9, 14], decrypt all 24-bit values w8[0, 1, 6, 8, 9, 14] and obtain the
value eout. Store eout with the index of ru7[1, 8]||ru8[0, 1, 6, 8, 9, 14]||w8[0, 1, 6,
8, 9, 14] in a table T7.

Online phase: In the online phase of the attack, we first find at least one
pair which satisfies the truncated differential trail in Fig. 5. To find the right
pair, instead of guessing the sub-keys and checking whether this pair satisfy the
truncated differential trail, we deduce the sub-keys which make it satisfy the
truncated differential trail for each pair. Then we identify the 2-δ-set, caculate
the sequence (e1out⊕e0out, e2out⊕e0out, · · · , e32out⊕e0out) and check whether it belongs
to the table T4. Finally, we use ru2[0, 9, 14]||ru3[1] to filter the reminding keys
and retrieve the correct key.

1. Define a structure of 224 plaintexts where P [1, 3, 6, 9, 11, 14] take all the
possible values, and the remaining 10 nibbles are fixed to some constants.
Hence, we can generate 224× (224− 1)/2 ≈ 247 pairs satisfying the plaintext
difference. Choose 229 structures to get about 229+47 = 276 pairs. As shown
in Fig. 6, the probability to get the truncated differential trail in the forward
and backward direction is 2(2−6+1−16)×4 = 2−76, then about 1 pair follows
the truncated differential trail for each guess of the key. Among the 276 pairs,
we expect about 276−8 = 268 pairs to verify that ∆C[6, 14] = 0.

2. For each of the 268 remaining pairs, we do the following sub-steps.
(a) Guess ∆w0[5, 10], and deduce ∆y0[1, 3, 6, 9, 11, 14]. According to Propo-

sition 1, x0[1, 3, 6, 9, 11, 14] can be got from ∆y0[1, 3, 6, 9, 11, 14] and
∆P [1, 3, 6, 9, 11, 14]. Then rk−1[1, 3, 6, 9, 11, 14] can be got.

(b) For each of the 28 deduced sub-key in (a), encrypt the plaintext pair
and get the value w0[4, 6, 7, 8, 9, 11]. Change the value of w0[5, 10] to be
(0, 1, · · · , 32) and compute their corresponding plaintexts (P 0, P 1, · · · ,
P 32), then get the corresponding ciphertexts.

(c) For each of the deduced rk−1[1, 3, 6, 9, 11, 14], compute rk9[1, 3] (resp.
rk9[9, 11]). Look up the table T 0

5 (resp. T 2
5 ) to get about one value

x9[0, 1, 2, 3]||∆z8[0, 1] (resp. x9[8, 9, 10, 11]||∆z8[8, 9]) with the index of
rk−1[1, 3]||∆C[0, 1, 2, 3]||C[1, 3] (resp. rk−1[9, 11]||∆C[8, 9, 10, 11]||C[9,
11]). Deduce rk9[0, 2] (resp. rk9[8, 10]) from the ciphertext.

(d) Guess ∆z8[6, 14], and deduce ∆x9[4, 5, 7, 12, 13, 15]. Then rk9[4, 5, 7, 12,
13, 15] and x9[4, 5, 7, 12, 13, 15] can be got. Deduce ru9[1, 8] from rk9[0, 2,
3, 9, 10, 11], and deduce w8[1, 8] from x9[0, 2, 3, 9, 10, 11]. Then we can get
χ′ = ru9[1, 8]⊕w8[1, 8], i.e. χ′ = z8[1, 8]⊕ru8[1, 8]⊕ru9[1, 8]. Look up the
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table T6 to get about 24 values y8[0, 2, 3, 9, 10, 11]||ru7[1, 8] with the index
of χ′||∆z8[0, 1, 6, 8, 9, 14]. Deduce ru8[0, 1, 6, 8, 9, 14] from y8[0, 2, 3, 9, 10,
11] and x9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15].

(e) For about 220 values rk−1[1, 3, 6, 9, 11, 14]||rk9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11,
12, 13, 15]||ru8[0, 1, 6, 8, 9, 14]||ru7[1, 8] we have got, decrypt the corre-
sponding ciphertexts we made in (b) and get (e1out⊕e0out, e2out⊕e0out, · · · ,
e32out ⊕ e0out) using T7. Check whether it lies in the precomputation table
T4. If not, try another one. If so, we check whether ru2[0, 9, 14]||ru3[1]
matches ru8[0, 9, 14]||ru7[1]. So the probability for a wrong sub-key to
pass this test is 2−24−16 = 2−40.

3. In the end, there are about 222×4−40 = 244 sub-keys remaining. Then ex-
haustively search for the 244 sub-keys and 10 unknown key-nibbles to recover
the master key.

Complexity analysis. In the precomputation phase, in order to construct T4,
we need to perform 2104 partial encryptions on 33 messages. The time com-
plexity of this phase is about 2104+5−2 = 2107 10-round Midori-64 encryptions,
the memory complexity is about 2104+7.2−6 = 2105.2 64-bit blocks. In the online
phase, we need to perform 220+68 partial encryptions on 33 messages. The time
complexity of this phase is about 288+5−3 = 290 10-round Midori-64 encryptions,
the data complexity is 224+29 = 253 chosen-plaintexts and the memory complex-
ity is 253 64-bit blocks. With data/time/memory tradeoff, the adversary only
need to precompute a fraction of 2−8.5 of possible sequences, then the time com-
plexity becomes 2107−8.5 = 298.5, the memory complexity becomes 296.7 64-bit
blocks. But in the online phase , the adversary will repeat the attack 28.5 times
to offset the probability of the failure. So the data complexity increases to 261.5

chosen-plaintexts, and the time complexity increases to 290+8.5 = 298.5. Other-
wise, we can divide the whole attack into series of weak-key attacks according
to the relations between the subkeys in the online phase and the precomputa-
tion phase as Li et al. presented in [13]. Using the relation of ru3[1] (step 2
in the precomputation phase) and ru7[1] (step 4 in the precomputation phase
and step 2(d) in the online phase), the attack can be divided into 24 weak-key
attacks. The memory complexity can be reduced by a fraction of 2−4. In total,
the time complexity of this attack is 299.5 10-round Midori-64 encryptions, the
data complexity is 261.5 chosen-plaintexts and the memory complexity is 292.7

64-bit blocks.

4 Attack on 11-Round Midori-64

Based on the 10-round attack, we can add one round at the end to mount an
11-round attack on Midori-64.

The precomputation is almost the same as the 10-round attack except the
following steps.

1. At step 3, we need to build four tables T i
5 (i = 0, · · · , 3). As shown in Fig. 7,

for column 0, guess ∆C[0, 1, 2, 3]||∆z9[0, 1, 2, 3], and deduce ∆x10[0, 1, 2, 3]
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and ∆y10[0, 1, 2, 3]. By Proposition 1, we can deduce y10[0, 1, 2, 3]. Guess
C[1, 3], rk10[1, 3] can be got. One can deduce rk−1[1, 3] from rk10[1, 3], and
store x10[0, 1, 2, 3]||∆z9[0, 1, 2, 3] in a table T 0

5 with the index of rk−1[1, 3]||
∆C[0, 1, 2, 3]||C[1, 3]. There are 28 values for each index in average. Similarly,
we can get one table T i

5 for column i (i = 1, · · · , 3), and there are 28 values
for each index in each table.

2. At step 4, Guess x7[9, 10]||∆x7[9], one can deduce ∆y7[9, 10] and y7[9, 10]
since ∆x7[9] = ∆x7[10]. Then ∆x8[0, 2, 3, 9, 10, 11] can be deduced. Guess
∆y8[0, 2, 3, 9, 10, 11]||∆y9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15], then x8[0, 2, 3,
9, 10, 11] and y8[0, 2, 3, 9, 10, 11] can be deduced by Proposition 1, and x9[0, 1,
2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15] and y9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15]
can be also deduced by Proposition 1. Deduce ru7[1, 8] from x7[9, 10] and
x8[0, 2, 3, 9, 10, 11], and deduce ru8[0, 1, 6, 8, 9, 14] from y8[0, 2, 3, 9, 10, 11] and
x9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15]. Deduce ru10[1, 8] from ru7[1, 8] and
ru8[1, 8], and deduce ru10[0, 1, 6, 8, 9, 14]⊕ru9[0, 1, 6, 8, 9, 14] from ru8[0, 1, 6,
8, 9, 14]. Let χ denote z9[0, 1, 6, 8, 9, 14]⊕ru10[0, 1, 6, 8, 9, 14]⊕ru9[0, 1, 6, 8, 9,
14]. Store y9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15]||ru7[1, 8]||ru8[0, 1, 6, 8, 9, 14]
in a table T6 with the index of ru10[1, 8]||χ||∆z9[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12,
13, 14, 15]. There are 24 values for each index. We can also reduce the size of
T6 by dividing it into small tables.

3. Besides, we need to build two more tables for online phase. For all 28-bit sub-
keys ru9[0, 2, 5, 7, 9, 12, 14], decrypt all 28-bit values w9[0, 2, 5, 7, 9, 12, 14] and
obtain w8[0, 1, 6]. Store w8[0, 1, 6] with the index of ru9[0, 2, 5, 7, 9, 12, 14]||
w9[0, 2, 5, 7, 9, 12, 14] in a table T 0

8 . For all 28-bit sub-keys ru9[1, 3, 6, 8, 10, 13,
15], decrypt all 28-bit values w9[1, 3, 6, 8, 10, 13, 15] and obtain w8[8, 9, 14].
Store w8[8, 9, 14] with the index of ru9[1, 3, 6, 8, 10, 13, 15]||w9[1, 3, 6, 8, 10, 13,
15] in a table T 1

8 .

The online phase is different from the 10-round attack at step 2(c), 2(d) and
2(e). And since all nibbles of ciphertext are active, we should try all the 276

pairs.

1. At step 2(c), for each of the deduced rk−1[1, 3], compute rk10[1, 3]. Look up
the table T 0

5 to get about 28 values x10[0, 1, 2, 3]||∆z9[0, 1, 2, 3] with the index
of rk−1[1, 3]||∆C[0, 1, 2, 3]||C[1, 3]. Deduce rk10[0, 2] from the ciphertext. Do
the same things to column i and T i

5 (i = 1, 2, 3), and deduce about 232 values
rk10||x10||∆z9[0,
1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15].

2. At step 2(d), deduce ru10[0, 1, 6, 8, 9, 14] from rk10, and deduce w9[0, 1, 6, 8, 9,
14] from x10. Then we can get χ′ = ru10[0, 1, 6, 8, 9, 14]⊕ w9[0, 1, 6, 8, 9, 14],
i.e. χ′ = z9[0, 1, 6, 8, 9, 14]⊕ru9[0, 1, 6, 8, 9, 14]⊕ru10[0, 1, 6, 8, 9, 14]. Look up
the table T6 to get about 24 values y9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15]||
ru7[1, 8]||ru8[0, 1, 6, 8, 9, 14] with the index of ru10[1, 8]||χ′||∆z9[0, 1, 2, 3, 5, 6,
7, 8, 9, 10, 12, 13, 14, 15]. Deduce ru9[0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15] from
y9[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15] and x10.

3. At step 2(e), for about 244 values rk−1[1, 3, 6, 9, 11, 14]||rk10||ru9[0, 1, 2, 3, 5,
6, 7, 8, 9, 10, 12, 13, 14, 15]||ru8[0, 1, 6, 8, 9, 14]||ru7[1, 8] we have got, decrypt
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the corresponding ciphertexts we made in (b) and get (e1out ⊕ e0out, e2out ⊕
e0out, · · · , e32out ⊕ e0out) using T7, T 0

8 and T 1
8 . Check whether it lies in the

precomputation table T4. If not, try another one. If so, we check whether
ru2[0, 9, 14]||ru3[1] matches ru8[0, 9, 14]||ru7[1]. So the probability for a wrong
sub-key to pass this test is 2−24−16 = 2−40.

Complexity analysis. The time complexity of the precomputation phase is
the same as the 10-round attack. In the online phase, we need to perform 244+76

partial encryptions on 33 messages. The time complexity of this phase is about
2120+5−3 = 2122 11-round Midori-64 encryptions, the data complexity is 224+29 =
253 chosen-plaintexts and the memory complexity is 253 64-bit blocks. Otherwise,
we can divide the whole attack into series of weak-key attacks according to
the relations between the subkeys in the online phase and the precomputation
phase as Li et al. presented in [13]. Using the relation of ru2[0, 9, 14]||ru3[1]
(precomputation phase) and ru8[0, 9, 14]||ru7[1] (online phase), the attack can
be divided into 216 weak-key attacks. The memory complexity can be reduced
by a fraction of 2−16. In total, the time complexity of this attack is 2122 11-
round Midori-64 encryptions, the data complexity is 253 chosen-plaintexts and
the memory complexity is 289.2 64-bit blocks.

5 Attack on 12-round Midori-64

In this section, we first propose a 7-round meet-in-the-middle distinguisher with
differential enumeration technique and key-dependent sieve technique on Midori-
64. Then, we apply this distinguisher to 12-round Midori-64 by adding 1 round
at the beginning and 4 rounds at the end.

5.1 7-Round Distinguisher on Midori-64

Since w7[5] = z7[4] ⊕ z7[6] ⊕ z7[7] and w7[6] = z7[4] ⊕ z7[5] ⊕ z7[7], we have
w7[5]⊕w7[6] = z7[5]⊕ z7[6]. Let ein = z7[5]⊕ z7[6] and eout = x8[5]⊕x8[6], then
eout = ein ⊕ rk7[5]⊕ rk7[6], the 7-round distinguisher on Midori-64 is based on
the proposition below.

Proposition 6. Let {w0
0, w

1
0, · · · , w255

0 } be a 2-δ-set where w0[5] and w0[10] are
the active nibbles. Consider the encryption of the first 33 values (w0

0, w
1
0, · · · , w33

0 )
of the 2-δ-set through 7-round Midori-64, in the case of that a message of the 2-
δ-set belongs to a pair which conforms to the truncated differential trail outlined
in Fig. 8(a), then the corresponding 128-bit ordered sequence (e1out⊕ e0out, e2out⊕
e0out, · · · , e32out ⊕ e0out) only takes about 2124 values (out of the 2128 theoretically
values).

Proof. As shown in Fig. 8(a), for the encryption of the first 33 values of the 2-δ-
set, the output sequence (e1out ⊕ e0out, e2out ⊕ e0out, · · · , e32out ⊕ e0out) is determined



14

by the 58 nibble-parameters:

w0[5, 10]||x1[5, 10]||x2[0, 1, 2, 3]||x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]||x4 (5)

rk4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15]||rk5[1, 3, 4, 9, 11, 12]||rk6[4, 11]

However, if a pair of messages conforms to the truncated differential trail
outlined in Fig. 8(a), the above 58 nibble-parameters are determined by the 41
nibble-parameters:

∆z1[1, 2]||x2[0, 1, 2, 3]||x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15]|| (6)

y5[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15]||y6[1, 3, 4, 9, 11, 12]||y7[4, 11]||∆z7[5]

Meanwhile, ru2[0, 7, 9, 14]||ru3[1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15]||rk4[0, 1, 2, 3,
4, 5, 6, 8, 9, 10, 11, 12, 13, 15]||rk5[1, 3, 4, 9, 11, 12]||rk6[4, 11] can be determined by
the above 41 nibble-parameters. Since ru4[0, 7, 9, 14] can be deduced from rk4[0,
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], rk3[4, 12] can de deduced from ru3[5, 6, 7, 13,
14, 15] and rk3[3, 11] can be deduced from ru3[1, 2, 3, 9, 10, 11]||ru5[1, 9], accord-
ing to the key-schedule of Midori-64, ru2[0, 7, 9, 14]||rk3[3, 4, 11, 12]||rk6[4, 11]
and ru4[0, 7, 9, 14]||rk5[3, 4, 11, 12]||rk4[4, 11] are affected by the same nibbles
of the master key. By the key-dependent sieve technique, there are 2124 possible
values for the 41 nibble-parameters.

So the 58 nibble-parameters (5) are determined by 41 nibble-parameters (6),
i.e. the sequence (e1out ⊕ e0out, e2out ⊕ e0out, · · · , e32out ⊕ e0out) can take about 2124

values.
�

5.2 12-Round Attack on Midori-64

The attack is made up of two phase: precomputation phase and online phase.
Precomputation phase: In the precomputation phase, we need to build a table
that contains all the sequence (e1out⊕ e0out, e2out⊕ e0out, · · · , e32out⊕ e0out) described
in Propostion 6.

1. For each 120-bit value ∆z2[0, 7, 9, 14]||∆w4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13,
15]||ru3[1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15], deduce x3[1, 2, 3, 4, 5, 6, 8, 10, 11, 12,
13, 15]||y4 by Proposition 3. Compute w2[0, 7, 9, 14] and z4[0, 7, 9, 14], and let
ς1 = w2[0, 7, 9, 14]⊕ z4[0, 7, 9, 14]. Deduce rk3[4, 12] from ru3[5, 6, 7, 13,
14, 15], and let ς2 = rk3[4, 12]||ru3[1, 9]⊕ ru3[3, 11]. Store x3[1, 2, 3, 4, 5, 6,
8, 10, 11, 12, 13, 15]||x4||w4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15] in a table T1
with the index of w4[4, 11]||ς1||ς2||∆z2[0, 7, 9, 14]||∆w4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10,
11, 12, 13, 15]. There are 28 values for each index.

2. For each 92-bit value ∆z7[5]||∆x7[4, 11]||∆x6[1, 3, 4, 9, 11, 12]||∆w4[0, 1, 2, 3,
4, 5, 6, 8, 9, 10, 11, 12, 13, 15], deduce ∆z7[6] since ∆z7[6] = ∆z7[5], then de-
duce x7[4, 11], x6[1, 3, 4, 9, 11, 12] and x5[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15]
by Proposition 1. Deduce rk6[4, 11] and rk5[1, 3, 4, 9, 11, 12]. Store x5[0, 1, 2, 3,
4, 5, 6, 8, 9, 10, 11, 12, 13, 15]||rk6[4, 11]||rk5[1, 3, 4, 9, 11, 12]||∆w4[0, 1, 2, 3, 4, 5,
6, 8, 9, 10, 11, 12, 13, 15] in a table T2.
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3. For each 24-bit value∆z1[1, 2]||∆y2[0, 1, 2, 3], deduce y2[0, 1, 2, 3]. Store y2[0, 1,
2, 3]||∆z2[0, 7, 9, 14] in a table T3.

4. For each value of table T2 and T3, do the following steps.

(a) Compute w4[4, 11] from rk5[4, 11] and x5[4, 11], and compute ς ′1 = z2[0, 7,
9, 14]⊕w4[0, 7, 9, 14] from y2[0, 1, 2, 3] and x5[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13, 15]. Deduce ς ′2 = rk3[4, 12]||ru3[1, 9]⊕ru3[3, 11] from rk5[1, 3, 4, 9,
11, 12]. Look up the table T1 to get about 28 values of x3[1, 2, 3, 4, 5, 6, 8,
10, 11, 12, 13, 15]||x4||w4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15] with the in-
dex of w4[4, 11]||ς ′1||ς ′2||∆z2[0, 7, 9, 14]||∆w4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12,
13, 15]. Deduce rk4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15], rk1[0, 1, 2, 3] and
rk0[5, 10], then deduce x1[5, 10] and w0[5, 10]. Therefore, we get the 58
nibble-parameters (5).

(b) Compute the sequence (e1out⊕e0out, e2out⊕e0out, · · · , e32out⊕e0out), and store
them along with a 60-bit value ru4[0, 1, 2, 7, 8, 9, 10, 11, 14]||ru3[0, 1, 7, 8, 9,
15] in a table T4.

The online phase and the construction of tables T i
5 (i = 0, · · · , 3), T6, T7,

T 0
8 and T 1

8 are almost the same as the 11-round attack except the position of
nibbles. The procedure of this phase is shown in Fig. 8(b).

Therefore, the time complexity of the precomputation phase is 2124+5−2 =
2127 12-round Midori-64 encryptions, the memory complexity is 2124+7.2−6 =
2125.2 64-bit blocks. The time complexity of the online phase is about 2120+5−3 =
2122 12-round Midori-64 encryptions, the data complexity is 224+29 = 253 chosen-
plaintexts and the memory complexity is 253 64-bit blocks. By data/time/memory
tradeoff and weak-key attacks, the time complexity of this attack is about 2125.5

12-round Midori-64 encryptions, the data complexity is 255.5 chosen-plaintexts
and the memory complexity is 2106 64-bit blocks1.

6 Conclusions and Further Work

In this paper, we discussed the security of Midori-64 against meet-in-the-middle
attacks. Using the differential enumeration technique and key-dependent sieve
technique, we proposed a 6-round meet-in-the-middle distinguisher on Midori-
64. Based on this distinguisher, we added 1 round at the beginning and 3 rounds
at the end to present a 10-round attack with time complexity of 299.5 10-round
Midori-64 encryptions, data complexity of 261.5 chosen-plaintexts and memory
complexity of 292.7 64-bit blocks. After that, by adding one round at the end,
we got an 11-round attack with time complexity of 2122 11-round Midori-64
encryptions, data complexity of 253 chosen-plaintexts and memory complexity of
289.2 64-bit blocks. Finally, with a 7-round distinguisher, we got an attack on 12-
round Midori-64 with time complexity of 2125.5 12-round Midori-64 encryptions,
data complexity of 255.5 chosen-plaintexts and memory complexity of 2106 64-bit
blocks.

1 The memory comes from the construction of T1
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There are many further works possible: the way to apply this kind of attacks
to Midori-128, the way to get better attack complexity with meet-in-the-middle
method and the security level against other cryptanalytic methods (e.g. impos-
sible differential and zero-correlation linear) for Midori.
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