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Abstract

Multi-HFE (Chen et al., 2009) is one of cryptosystems whose public key is a set of
multivariate quadratic forms over a finite field. Its quadratic forms are constructed by a set
of multivariate quadratic forms over an extension field. Recently, Bettale et al. (2013) have
studied the security of HFE and multi-HFE against the min-rank attack and found that
multi-HFE is not more secure than HFE of similar size. In the present paper, we propose a
new attack on multi-HFE by using a diagonalization approach. As a result, our attack can
recover equivalent secret keys of multi-HFE in polynomial time for odd characteristic case.
In fact, we experimentally succeeded to recover equivalent secret keys of several examples of
multi-HFE in about fifteen seconds on average, which was recovered in about nine days by
the min-rank attack.

Keywords. multivariate public-key cryptosystems, multi-HFE, post-quantum cryptography

1 Introduction

A multivariate public key cryptosystem (MPKC) is a cryptosystem whose public key is a set
of multivariate quadratic forms over a finite field. It is known that the problem of finding a
solution of a system of multivariate quadratic forms over a finite field is NP hard [19] and then
MPKC has been expected as a candidate of Post-Quantum Cryptography.

One of major ideas to design MPKCs is to generate quadratic forms by a polynomial map
over an extension field. Matsumoto-Imai’s scheme [26] and Hidden Field Equations (HFE) [28]
are representative schemes constructed in this way; in fact, their quadratic forms are derived
from a high degree univariate monomial/polynomial over an extension field. Multi-HFE [7]
is also one of such MPKCs, whose quadratic forms are constructed by a set of multivariate
quadratic forms over an extension field. While its security against the Gröbner basis attack is
considered to be enough [7], Bettale et al. [4] found that multi-HFE is not more secure than HFE
of similar size against the min-rank attack. However, the complexity of the min-rank attack on
multi-HFE [4] highly depends on the number of variables of quadratic forms over the extension
field and then the min-rank attack is not feasible when its number is not small.

In the present paper, we propose a new attack on multi-HFE. Since the coefficient matrices
of the quadratic forms in the public key of multi-HFE are described by linear transforms of
diagonal type matrices, a key recovery attack using an approach similar to diagonalization of
matrices is available for odd characteristic case. Our attack is much faster than the min-rank
attack [4]. In fact, we succeeded to recover equivalent secret keys of an example of multi-HFE
in about fifteen seconds on average, which was recovered in about nine days by the min-rank
attack. Furthermore, different to the min-rank attack, the complexity of our attack does not
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Table 1: Examples of MPKCs constructed by a polynomial map over an extension field
univariate multivariate

quadratic Square [8, 5] MFE [31, 11], multi-HFE [7, 4]

high degree MI [26, 27], HFE [28], ZHFE [30] lIC [13, 18]

variants Sflash [1, 14], Quartz [29, 9], etc.

depend on the number of variables of the quadratic forms over the extension field. This means
that our attack can reduce the security of (not only multi-HFE but) most MPKCs constructed
by a “quadratic” map over an extension field.

2 Multi-HFE

2.1 Construction

A multivariate public key cryptosystem (MPKC) is a cryptosystem whose public key is a set of
multivariate quadratic forms

f1(x1, · · · , xn) =
∑

1≤i≤j≤n

a
(1)
ij xixj +

∑

1≤i≤n

b
(1)
i xi + c(1),

...

fm(x1, · · · , xn) =
∑

1≤i≤j≤n

a
(m)
ij xixj +

∑

1≤i≤n

b
(m)
i xi + c(m),

over a finite field. We now describe the construction of multi-HFE.
Let n,N, r ≥ 1 be integers with Nr = n and q a power of prime. Denote by k a finite field

of order q and K an extension field of k with [K : k] = r. Then multi-HFE is as follows.

Multi-HFE

Secret Keys: Two affine maps S, T : kn → kn and a quadratic map G : KN → KN :

G(X1, . . . , XN ) = (G1(X1, . . . , XN ), . . . ,GN (X1, . . . , XN ))t ,

G1(X1, . . . , XN ) =
∑

1≤i≤j≤N

α
(1)
ij XiXj +

∑

1≤i≤N

β
(1)
i Xi + γ(1),

...

GN (X1, . . . , XN ) =
∑

1≤i≤j≤N

α
(N)
ij XiXj +

∑

1≤i≤N

β
(N)
i Xi + γ(N),

where α
(l)
ij , β

(l)
i , γ(l) ∈ K.

Public Key: The quadratic map F := T ◦ φ−1 ◦ G ◦ φ ◦ S : kn → kn, where φ : kn → KN is
a one-to-one map.

F : kn S−→ kn φ−→ KN G−→ KN φ−1

−−→ kn T−→ kn.

Encryption: For a plain-text x ∈ kn, the cipher y ∈ km is y = F (x).
Decryption: First, compute y′ := T−1(y) and put Y ′ := φ(y′). Next, find Z ∈ KN with
G(Z) = Y ′. Finally, let z := φ−1(Z) and compute x = S−1(z).
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N quadratic equations of N variables over K

Multi-HFE−−−−−−−−→ n quadratic equations of n variables over k

2.2 Efficiency

When N is small enough, G is inverted efficiently by the Gröbner basis algorithm. See Table
1 of [7] for several examples of efficiency of multi-HFE with N = 2, 3, 4. However, when N is
not small enough and G is chosen randomly, the decryption by the Gröbner basis algorithm is
not efficient. Then for such N , a special structure of G like MFE [31, 11] is required for fast
decryptions.

2.3 Security against known attacks

Direct attacks. The direct attack is to find a common solution x ∈ kn of f1(x) = y1, . . . , fn(x) =
yn for a given cipher text (y1, . . . , yn)t ∈ kn directly. One of major approaches of the direct at-
tack is by using the Gröbner basis algorithm [15, 16, 2, 3]. In [3], the complexity is estimated
by O(2m(3.31−3.62/ log2 q)) if log2 q ¿ n and {f1(x) − y1, . . . , fn(x) − yn} is “semi-regular”. On
HFE, it is known that the “degree of regularity” of the system {f1(x) − y1, . . . , fn(x) − yn} is
bounded by 1

2(q − 1)dlog De + 2 [21, 10], where D is the degree of the central univariate poly-
nomial of HFE over an extension field. This means that HFE with smaller q is less secure. For
multi-HFE, while there have been less results compared with HFE, the authors of [7] claimed
that the complexity against Gröbner basis attack is almost same to the random systems.

Min-Rank attacks. The min-rank attacks have been proposed by Kipnis-Shamir [23] for HFE
and improved by Bettale-Faugère-Perret [4] for HFE and (generalized) multi-HFE. On HFE and
multi-HFE, it is known that the coefficient matrices of the quadratic forms F1, . . . , Fn are linear
sums of matrices of small rank over K (its rank is at most N on multi-HFE given in §2.1,). The
min-rank attack is to recover (partial information of) T by finding α1, . . . , αn ∈ K such that
α1F1 + · · ·+ αnFn is of small rank. In Proposition 13 and its proof of [4], the complexity of the
min-rank attack is estimated by O

((
n+N+1

N+1

)ω
)

under several conditions, where 2 ≤ ω < 3 is
the exponent of the Gaussian elimination.

3 Proposed attacks on multi-HFE

In this section, we propose our attack on multi-HFE. First we prepare notations and several
lemmas to explain our attack.

3.1 Notations and lemmas

For integers n1, n2 ≥ 1, let Mn1,n2(k) be the set of n1 × n2 matrices of k entries. Denote by
In ∈ Mn,n(k) the identity matrix and by 0n1,n2 ∈ Mn1,n2(k) the zero matrix. For simplicity,
we write Mn(k) := Mn,n(k) and 0n := 0n,n. For a matrix A = (aij)i,j , a polynomial g(t) =
c0 + c1t + · · ·+ cdt

d and an integer l ≥ 1, put

A(l) :=
(
al

ij

)
i,j

, g(l)(t) := cl
0 + cl

1t + · · ·+ cl
dt

d.
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For square matrices A1 ∈ Mn1(k), . . . , Al ∈ Mnl
(k), A1 ⊕ · · · ⊕Al means

A1 ⊕ · · · ⊕Al :=




A1

. . .
Al


 ∈ Mn1+···+nl

(k).

We now recall that n,N, r ≥ 1 are integers with n = Nr, q is a power of prime, k is a finite
field of order q and K is an extension field of k with [K : k] = r. Choose a basis {θ1, . . . , θr}
of K over k and a one-to-one map φ : kn → KN . For simplicity, suppose that φ is chosen such
that φ(a11, . . . , a1N , a21, . . . , . . . , arN ) = (a11θ1 + · · ·+ ar1θr, . . . , a1Nθ1 + · · ·+ arNθr)t. Let LN

be a subset of Kn with

LN :=
{(

a1, . . . , aN , aq
1, . . . , . . . , a

qr−1

N

)t
| a1, . . . , aN ∈ K

}
,

ψ : LN → KN a one-to-one map with ψ
(
a1, . . . , aN , aq

1, . . . , . . . , a
qr−1

N

)
= (a1, . . . , aN )t and

Θ ∈ Mn(K) a matrix with

Θ :=
(
θqi−1

j IN

)
1≤i,j≤r

=




θ1IN θ2IN · · · θrIN

θq
1IN θq

2IN · · · θq
rIN

...
...

. . .
...

θqr−1

1 IN θqr−1

2 IN · · · θqr−1

r IN


 .

Then the following lemma holds.

Lemma 3.1. The matrix Θ gives a one-to-one map from kn to LN and it holds φ = ψ ◦Θ.

Proof. For a = (a11, . . . , a1N , a21, . . . , . . . , arN )t ∈ kn, we have

Θa = (a1, . . . , aN , aq
1, . . . , . . . , a

qr−1

N )t, (1)

where ai := a1iθ1 + · · ·+ ariθr ∈ K. Then Θ gives a map from kn to LN and we can easily check
that it is one-to-one. Furthermore, due to (1), we have ψ(Θa) = (a1, . . . , aN )t = φ(a).

For an integer m ≥ 1, define the sets Am ⊂ Mn,m(K),Bm ⊂ Mm,n(K), C ⊂ Mn(K) of
matrices as follows.

Am :=








A

A(q)

...

A(qr−1)




∣∣∣∣∣∣∣∣
A ∈ MN,m(K)





,

Bm :=

{(
B, B(q), · · · , B(qr−1)

) ∣∣∣∣∣ B ∈ Mm,N (K)

}
,

C :=





(
C

(qi−1)
(j−i mod r)+1

)
1≤i,j≤r

=




C1 C2 · · · Cr

C
(q)
r C

(q)
1 · · · C

(q)
r−1

...
...

. . .
...

C
(qr−1)
2 C

(qr−1)
3 · · · C

(qr−1)
1




∣∣∣∣∣∣∣∣
C1, . . . , Cr ∈ MN (K)





,

Lemma 3.2. For any m ≥ 1, we have

Am = Θ ·Mn,m(k), Bm = Mm,n(k) ·Θ−1, C = Θ ·Mn(k) ·Θ−1. (2)
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Proof. First, choose A1, . . . , Ar ∈ MN,m(k) arbitrary. We have

Θ




A1

A2

...
Ar


 =




A1θ1 + · · ·+ Arθr

A1θ
q
1 + · · ·+ Arθ

q
r

...

A1θ
qr−1

1 + · · ·+ Arθ
qr−1

r


 =




A1θ1 + · · ·+ Arθr

(A1θ1 + · · ·+ Arθr)
(q)

...

(A1θ1 + · · ·+ Arθr)
(qr−1)


.

This means that Θ · Mn,m(k) ⊂ Am. Since #(Θ · Mn,m(k)) = #Am = qmn, we obtain Am =
Θ ·Mn,m(k).

Next, choose B ∈ Mm,N (K) arbitrary. We have(
B,B(q), · · · , B(qr−1)

)
Θ =

(
Bθ1 + B(q)θq

1 + · · ·+ B(qr−1)θqr−1

1 , . . .

. . . , Bθr + B(q)θq
r + · · ·+ B(qr−1)θqr−1

r

)
.

Since B(qr) = B and θqr

l = θl, we see that
(
Bθl + B(q)θq

l + · · ·+ B(qr−1)θqr−1

l

)(q)
=B(q)θq

l + · · ·+ B(qr−1)θqr−1

l + Bθl

=Bθl + B(q)θq
l + · · ·+ B(qr−1)θqr−1

l

for 1 ≤ l ≤ r. It is well-known that a ∈ K satisfies aq = a if and only if a ∈ k. This means
that Bm · Θ ⊂ Mm,n(k). It is clear that #Bm = #

(
Mm,n(k) ·Θ−1

)
= qmn. We then obtain

Bm = Mm,n(k) ·Θ−1.

Finally, choose C1, . . . , Cr ∈ MN (K) arbitrary and put C :=
(
C

(qi−1)
(j−i mod r)+1

)
1≤i,j≤r

∈ C.
The (i, j)-block C ′

ij in C ·Θ is

C ′
ij =C

(qi−1)
(1−i mod r)+1θj + C

(qi−1)
(2−i mod r)+1θ

q
j + · · ·+ C

(qi−1)
r−i+1θ

qr−1

j

=
(
C1θj + · · ·+ Crθ

qr−1

j

)(qi−1)
= (C ′

1j)
(qi−1).

This means that C · Θ ⊂ An = Θ ·Mn(k). Since #C = #
(
Θ ·Mn(k) ·Θ−1

)
= qn2

, we obtain
C = Θ ·Mn(k) ·Θ−1.

For a monic polynomial h(t) = c0 + c1t + · · ·+ cd−1t
d−1 + td of degree d, let

C(h) :=




0 · · · 0 −c0

1 0 −c1

. . .
...

0 1 −cd−1


.

The matrix C(h) is called the companion matrix of h(t). Then the following lemma holds.

Lemma 3.3. (see [22]) For a matrix H ∈ Mn(k), let h(t) := det(t ·In−H) be the characteristic
polynomial of H and h(t) = h1(t) · · ·hl(t) is the factorization of h(t) over k. Suppose that h(t)
is square free and put di := deg(hi(t)) for 1 ≤ i ≤ l. Then the following (i) and (ii) hold.
(i) There exists an invertible matrix P ∈ Mn(k) such that

P−1HP = C(h1)⊕ · · · ⊕ C(hl).

(ii) If P1, P2 ∈ Mn(k) satisfy P−1
1 HP1 = P−1

2 HP2 = C(h1) ⊕ · · · ⊕ C(hl), then there exist
matrices M1 ∈ Md1(k), . . . , Ml ∈ Mdl

(k) such that

P−1
1 P2 = M1 ⊕ · · · ⊕Ml.
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3.2 Quadratic forms in multi-HFE

In this subsection, we study the structure of the quadratic forms in multi-HFE.
Recall that the public key of multi-HFE is a quadratic map F : kn → kn is given by

F = T ◦ φ−1 ◦ G ◦ φ ◦ S,

where S, T : kn → kn are invertible affine maps, G : KN → KN is a quadratic map and
φ : kn → KN is a one-to-one map. Due to Lemma 3.1, we have

F = (T ◦Θ−1) ◦ (ψ−1 ◦ G ◦ ψ) ◦ (Θ ◦ S).

Then, by the definition of ψ and G, we see that

F (x) =(T ◦Θ−1)·
(
G1 ((Θ ◦ S)x) , . . . ,GN ((Θ ◦ S)x) ,G1 ((Θ ◦ S)x)q , . . . , . . . ,GN ((Θ ◦ S)x)qr−1

)t
. (3)

For X = (X1, . . . , XN )t ∈ KN , let X̄ := ψ−1(X) =
(
X1, . . . , XN , Xq

1 , . . . , . . . , Xqr−1

N

)t
∈ LN .

Since G1(X), . . . ,GN (X) are quadratic forms, there exists matrices G1, . . . , GN ∈ MN (K), low
vectors β1, . . . , βN ∈ M1,N (K) and constants γ1, . . . , γN ∈ K such that

Gl(X) = XtGlX + βlX + γl, (1 ≤ l ≤ N).

Then the polynomials Gl(X),Gl(X)q, . . . ,Gl(X)qr−1
are expressed as quadratic forms of X̄ as

follows.
Gl(X) =X̄t(Gl ⊕ 0n−N )X̄ + (βl, 01,n−N )X̄ + γl,

Gl(X)q =X̄t
(
01,N ⊕G

(q)
l ⊕ 01,n−2N

)
X̄ +

(
01,N , β

(q)
l , 01,n−2N

)
X̄ + γq

l ,

...

Gl(X)qr−1
=X̄t

(
0n−N ⊕G

(qr−1)
l

)
X̄ +

(
01,n−N , β

(qr−1)
l

)
X̄ + γqr−1

l .

(4)

Since the affine maps S, T are given by Sx = S0x+s, Ty = T0y+ t with matrices S0, T0 ∈ Mn(k)
and column vectors s, t ∈ Mn,1(k), the quadratic forms f1(x), . . . , fn(x) in the public key F are
described as follows.

fl(x) =xtSt
0Θ

t
(
El ⊕ E

(q)
l ⊕ · · · ⊕ E

(qr−1)
l

)
ΘS0x

+ xtSt
0Θ

t
(
El ⊕ E

(q)
l ⊕ · · · ⊕ E

(qr−1)
l

)
Θs + stΘt

(
El ⊕ E

(q)
l ⊕ · · · ⊕ E

(qr−1)
l

)
S0x

+
(
bl, b

(q)
l , . . . , b

(qr−1

l

)
ΘS0x + (constant),

(5)

where E1, . . . , En ∈ MN (K) are matrices and b1, . . . , bn ∈ M1,N (K) are low vectors given by

(E1, . . . , En)t =(T0Θ−1)(G1, . . . , GN , 0N , . . . , 0N )t,

(b1, . . . , bn)t =(T0Θ−1)(β1, . . . , βN , 0N , . . . , 0N )t.
(6)

3.3 Proposed attack on multi-HFE

We now propose our attack on multi-HFE for odd characteristic case as follows.
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Proposed Attack on multi-HFE

Input: Public key F (x) = (f1(x), . . . , fn(x))t of multi-HFE.
Output: Two invertible matrices S′, T ′ ∈ Mn(k) such that

φ ◦ T ′ ◦ F ◦ S′ ◦ φ−1 : KN → KN

is a quadratic map.

Step 1. Let F1, . . . , Fn ∈ Mn(k) be the symmetric matrices with

fl(x) = xtFlx + (linear).

Take two linear sums W1,W2 of F1, . . . , Fn such that W1 is invertible and put

W := W−1
1 W2.

Step 2. Compute the characteristic polynomial w(t) := det (t · In −W ) of W and factor
w(t) over K. Choose a polynomial w0(t) of degree N such that

w(t) = w0(t)w
(q)
0 (t) · · ·w(qr−1)

0 (t).

Step 3. If w(t) is square free and w0(t) is irreducible, go to the next step. If not, go back to
Step 1.
Step 4. Find a matrix P0 ∈ Mn,N (K) satisfying w0(W )P0 = 0 and put

P :=
(
P0, P

(q)
0 , · · · , P

(qr−1)
0

)
∈ Mn(k) ·Θ−1.

Step 5. If P is invertible, go to the next step. If not, go back to Step 4.
Step 6. Let F̂l := P tFlP. Find a matrix Q0 ∈ MN,n(K) with

Q0




F̂1

...

F̂n


 =




Ê1 ⊕ 0n−N

...

ÊN ⊕ 0n−N


.

Step 7. If

Q :=




Q0

Q
(q)
0

...

Q
(qr−1)
0


 ∈ Θ ·Mn(k)

is invertible, go to the next step. If not, go back to Step 7.
Step 8. Output S′ = PΘ and T ′ = Θ−1Q.

Once S′, T ′ are recovered, the problem of inverting F is reduced to the problem of finding
a common solution of N quadratic equations of N variables. This means that, if G is chosen
randomly, the decryption without secret keys is as fast as the decryption with secret keys. Even
if G has a special structure for fast decryptions, the security is much less than expected since
solving N equations of N variables is much faster than solving n equations of n variables in
general.

n quadratic equations of n variables over k

Our Attack−−−−−−−−−→ N quadratic equations of N variables over K

We now explain why our attack is available.
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Table 2: Probability (%) that det (t · IN −W0) is irreducible for q = 31
N 2 3 4 5 6 7 8 9 10 · · ·

Prob. 49.2 33.4 25.2 19.5 17.4 13.7 12.7 11.2 9.9 · · ·

The equation (5) gives

Fl = (ΘS0)t
(
El ⊕ · · · ⊕ E

(qr−1)
l

)
(ΘS0),

the matrix W is written by

W = (ΘS0)−1
(
W0 ⊕ · · · ⊕W

(qr−1)
0

)
(ΘS0) (7)

for some W0 ∈ MN (K) and the polynomial w(t) is

w(t) = det (t · IN −W0) · · · det
(
t · IN −W

(qr−1)
0

)
.

If det (t · IN −W0) is irreducible, we have

w0(t) = det
(
t · IN −W

(ql)
0

)
(8)

for some 0 ≤ l ≤ r − 1. Then it is easy to see that there exists L ∈ MN (K) with L−1W
(ql)
0 L =

C(w0) and it holds
(
σl

(
L⊕ · · · ⊕ L(qr−1)

))−1 (
W0 ⊕ · · · ⊕W

(qr−1)
0

)(
σl

(
L⊕ · · · ⊕ L(qr−1)

))

= C(w0)⊕ · · · ⊕ C(w0)(q
r−1),

(9)

where σ :=




IN

. . .

IN
IN


 ∈ Mn(k) is a permutation matrix. On the other hand, due to (i)

of Lemma 3.3, we see that there exists an invertible matrix P ∈ Mn(K) such that

P−1WP = C(w0)⊕ · · · ⊕ C(w0)(q
r−1) (10)

and it is easy to check that P in Step 4 satisfies (10). Applying (7), (9), (10) into (ii) of Lemma
3.3, we get

ΘS0P = σl
(
S̃ ⊕ · · · ⊕ S̃(qr−1)

)
, (11)

for some invertible matrix S̃ ∈ MN (K). Then the matrix F̂l in Step 6 is given by

F̂l =P tFlP = (ΘS0P )t
(
El ⊕ · · · ⊕ E

(qr−1)
l

)
(ΘS0P ) = Êl ⊕ · · · ⊕ Ê

(qr−1)
l (12)

for some Êl ∈ MN (K). Due to (6), we see that there exists Q0 in Step 7 and it is found by the
Gaussian elimination. It is easy to see that Q in Step 8 satisfies

QT0Θ−1 = σl1
(
T̃ ⊕ · · · ⊕ T̃ (qr−1)

)
(13)

for some 0 ≤ l1 ≤ r − 1 and T̃ ∈ MN (K). Combining (5), (11) and (13), we can conclude that
the map

φ ◦ T ′ ◦ F ◦ S′ ◦ φ−1 =ψ ◦ (Θ ◦ T ′ ◦ T ◦Θ−1) ◦ (ψ−1 ◦ G ◦ ψ) ◦ (Θ ◦ S ◦ S′ ◦Θ−1) ◦ ψ−1

=ψ ◦ (Q ◦ T ◦Θ−1) ◦ (ψ−1 ◦ G ◦ ψ) ◦ (Θ ◦ S ◦ P ) ◦ ψ−1

is a quadratic map from KN to KN .
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Table 3: Experimental results of our attack for q = 31
n N r min-rank attack our attack
30 3 10 37.2bit (1h38m) 1.23s
45 3 15 42.5bit (2d1h) 4.96s
54 3 18 44.8bit (9d16h) 15.0s
60 3 20 46.3bit 22.3s
75 3 25 49.2bit 75.5s
40 4 10 48.5bit 3.37s
60 4 15 55.1bit 15.6s
72 4 18 58.2bit 45.5s
50 5 10 59.9bit 7.65s
60 5 12 63.4bit 12.8s
75 5 15 67.9bit 33.9s
60 6 10 71.3bit 15.0s
72 6 12 75.4bit 40.6s
70 7 10 82.7bit 38.9s
72 8 9 91.0bit 38.0s
72 9 8 98.3bit 41.7s
70 10 7 104.bit 34.7s

Complexity. In Step 1, the attacker takes several basic computations of n× n matrices over k
and then the complexity of Step 1 is ¿ n3. Step 2 is for computing the characteristic polynomial
of n×n matrix W and factoring a polynomial w(t) of degree n over K (r-extension of k). Then
the complexity of Step 2 is ¿ n3 · r.

It is well known that the probability that randomly chosen polynomial of degree N is ir-
reducible is about N−1 [24]. In this case, while it is difficult to prove that W0 is distributed
randomly since W1,W2 are symmetric, Table 2 shows that its probability seems about N−1.

Step 4 is for finding kernel matrix of w0(W ) and then its complexity is ¿ n3 · r. In Step 6
and 7, the attacker takes the Gaussian eliminations and basic linear operations n× n matrices
over K.

We thus conclude that the total complexity of our attack is ¿ n3r ·N ¿ n4 on average.

Experiments. In Table 3, we compare our attack with the min-rank attack [4] for q = 31.
In this table, “min-rank attack” means the complexity

(
n+N+1

N+1

)ω
of the min-rank attack (see

Proposition 13 and its proof of [4]) with ω = 2.4 and the experimental results in Table 5 of
[4] by using Magma [25] ver.2.16-10 on 2.93 GHz IntelR© Xeon R© CPU, and “our attack” means
the average of the running times of 100 times experiments of our attack by using Magma [25]
ver.2.15-10 on Windows 7, Core-i7 2.67GHz. Table 3 shows that our attack is much faster than
the min-rank attack and it is feasible also for larger N .

3.4 Remarks on even characteristic cases

When q is odd, we can choose symmetric matrices F1, . . . , Fn as coefficient matrices of quadratic
forms in the public key F . On the other hand, Fl cannot be symmetric when q is even. Then
we should use Fl + F t

l instead of Fl when q is even. It is easy to see that these matrices are
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symmetric and their diagonal entries matrices are zero. For such matrices, the following lemma
holds.

Lemma 3.4. Let k be a finite field of even characteristic, N ≥ 1 an integer and A,B ∈ MN (k)
symmetric matrices. Suppose that the diagonal entries of A,B are zero. Then we have
(i) if N is odd then det A = detB = 0.
(ii) if N is even and detA 6= 0, then the polynomial det (t · IN −A−1B) is a square of another
polynomial of degree N/2.

Proof. When k is of even characteristic, the determinant of the matrix X = (xij)1≤i,j≤N ∈
MN (k) is given by

det X =
∑

σ∈SN

x1σ(1)x2σ(2) · · ·xNσ(N), (14)

where SN is the set of permutations among 1, . . . , N . It is easy to see that

x1σ−1(1)x2σ−1(2) · · ·xNσ−1(N) = xσ(1)1xσ(2)2 · · ·xσ(N)N .

Then, when X is symmetric and its diagonal entries are zero, we have

det X =
∑

σ∈S
(2)
N

x1σ(1)x2σ(2) · · ·xNσ(N), (15)

where S
(2)
N := {σ ∈ SN | σ2 = id, σ(i) 6= i, 1 ≤ ∀i ≤ N}. For a permutation σ ∈ S

(2)
N , there

exist pairs (i1, j1), . . . , (is, js) such that σ(il) = jl, σ(jl) = il, {i1, j1, . . . , is, js} = {1, . . . , N} and
i1, j1, . . . , is, js are distinct to each other When N is odd, there are no such pairs. This means
that S

(2)
N is empty and then (i) holds. When N is even, there are such pairs and, for σ ∈ S

(2)
N ,

x1σ(1) · · ·xNσ(N) =
(
xi1j1 · · ·xiN/2jN/2

)2
.

Since k is of even characteristic, we have

detX =




∑

σ∈S
(2)
N

xi1j1 · · ·xiN/2jN/2




2

, (16)

where {(i1, j1), . . . , (iN/2, jN/2)} depends on σ. Since det (tIN −A−1B) = (detA)−1 det (tA−B),
(ii) follows immediately from (16).

This lemma shows that our attack on multi-HFE given in §3.3 cannot be used for even
characteristic cases directly, since W2 in Step 1 cannot be invertible when N is odd and w0(t)
in Step 3 cannot be irreducible when N is even. We will arrange it in the future.

4 Conclusion

We propose a new attack on multi-HFE to recover equivalent secret keys for odd characteristic
cases, which is much faster than the the min-rank attack [4]. While our attack is not presently
available for even characteristic cases, we can claim that MPKCs derived from a “quadratic”
map over an extension field cannot be recommended for practical use.

Acknowledgment. The author is partially supported by JSPS Grant-in-Aid for Young Scien-
tists (B) no. 26800020.
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