Cryptanalysis of multi-HFE

Yasufumi Hashimoto *

Abstract

Multi-HFE (Chen et al., 2009) is one of cryptosystems whose public key is a set of multivariate quadratic forms over a finite field. Its quadratic forms are constructed by a set of multivariate quadratic forms over an extension field. Recently, Bettale et al. (2013) have studied the security of HFE and multi-HFE against the min-rank attack and found that multi-HFE is not more secure than HFE of similar size. In the present paper, we propose a new attack on multi-HFE by using a diagonalization approach. As a result, our attack can recover equivalent secret keys of multi-HFE in polynomial time for odd characteristic case. In fact, we experimentally succeeded to recover equivalent secret keys of several examples of multi-HFE in about fifteen seconds on average, which was recovered in about nine days by the min-rank attack.

Keywords. multivariate public-key cryptosystems, multi-HFE, post-quantum cryptography

1 Introduction

A multivariate public key cryptosystem (MPKC) is a cryptosystem whose public key is a set of multivariate quadratic forms over a finite field. It is known that the problem of finding a solution of a system of multivariate quadratic forms over a finite field is NP hard [19] and then MPKC has been expected as a candidate of Post-Quantum Cryptography.

One of major ideas to design MPKCs is to generate quadratic forms by a polynomial map over an extension field. Matsumoto-Imai's scheme [26] and Hidden Field Equations (HFE) [28] are representative schemes constructed in this way; in fact, their quadratic forms are derived from a high degree univariate monomial/polynomial over an extension field. Multi-HFE [7] is also one of such MPKCs, whose quadratic forms are constructed by a set of multivariate quadratic forms over an extension field. While its security against the Gröbner basis attack is considered to be enough [7], Bettale et al. [4] found that multi-HFE is not more secure than HFE of similar size against the min-rank attack. However, the complexity of the min-rank attack on multi-HFE [4] highly depends on the number of variables of quadratic forms over the extension field and then the min-rank attack is not feasible when its number is not small.

In the present paper, we propose a new attack on multi-HFE. Since the coefficient matrices of the quadratic forms in the public key of multi-HFE are described by linear transforms of diagonal type matrices, a key recovery attack using an approach similar to diagonalization of matrices is available for odd characteristic case. Our attack is much faster than the min-rank attack [4]. In fact, we succeeded to recover equivalent secret keys of an example of multi-HFE in about fifteen seconds on average, which was recovered in about nine days by the min-rank attack. Furthermore, different to the min-rank attack, the complexity of our attack does not

[^0]Table 1: Examples of MPKCs constructed by a polynomial map over an extension field

	univariate	multivariate
quadratic	Square [8, 5]	MFE [31, 11], multi-HFE [7, 4]
high degree	MI $[26,27]$, HFE [28], ZHFE [30]	$l \mathrm{IC}[13,18]$
variants	Sflash [1, 14], Quartz [29, 9], etc.	

depend on the number of variables of the quadratic forms over the extension field. This means that our attack can reduce the security of (not only multi-HFE but) most MPKCs constructed by a "quadratic" map over an extension field.

2 Multi-HFE

2.1 Construction

A multivariate public key cryptosystem (MPKC) is a cryptosystem whose public key is a set of multivariate quadratic forms

$$
\begin{gathered}
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j}^{(1)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(1)} x_{i}+c^{(1)}, \\
\vdots \\
f_{m}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j}^{(m)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(m)} x_{i}+c^{(m)},
\end{gathered}
$$

over a finite field. We now describe the construction of multi-HFE.
Let $n, N, r \geq 1$ be integers with $N r=n$ and q a power of prime. Denote by k a finite field of order q and K an extension field of k with $[K: k]=r$. Then multi-HFE is as follows.

Multi-HFE

Secret Keys: Two affine maps $S, T: k^{n} \rightarrow k^{n}$ and a quadratic map $\mathcal{G}: K^{N} \rightarrow K^{N}$:

$$
\begin{aligned}
\mathcal{G}\left(X_{1}, \ldots, X_{N}\right)= & \left(\mathcal{G}_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, \mathcal{G}_{N}\left(X_{1}, \ldots, X_{N}\right)\right)^{t} \\
\mathcal{G}_{1}\left(X_{1}, \ldots, X_{N}\right)= & \sum_{1 \leq i \leq j \leq N} \alpha_{i j}^{(1)} X_{i} X_{j}+\sum_{1 \leq i \leq N} \beta_{i}^{(1)} X_{i}+\gamma^{(1)}, \\
& \vdots \\
\mathcal{G}_{N}\left(X_{1}, \ldots, X_{N}\right)= & \sum_{1 \leq i \leq j \leq N} \alpha_{i j}^{(N)} X_{i} X_{j}+\sum_{1 \leq i \leq N} \beta_{i}^{(N)} X_{i}+\gamma^{(N)},
\end{aligned}
$$

where $\alpha_{i j}^{(l)}, \beta_{i}^{(l)}, \gamma^{(l)} \in K$.
Public Key: The quadratic map $F:=T \circ \phi^{-1} \circ \mathcal{G} \circ \phi \circ S: k^{n} \rightarrow k^{n}$, where $\phi: k^{n} \rightarrow K^{N}$ is a one-to-one map.

$$
F: k^{n} \xrightarrow{S} k^{n} \xrightarrow{\phi} K^{N} \xrightarrow{\mathcal{G}} K^{N} \xrightarrow{\phi^{-1}} k^{n} \xrightarrow{T} k^{n} .
$$

Encryption: For a plain-text $x \in k^{n}$, the cipher $y \in k^{m}$ is $y=F(x)$.
Decryption: First, compute $y^{\prime}:=T^{-1}(y)$ and put $Y^{\prime}:=\phi\left(y^{\prime}\right)$. Next, find $Z \in K^{N}$ with $G(Z)=Y^{\prime}$. Finally, let $z:=\phi^{-1}(Z)$ and compute $x=S^{-1}(z)$.
N quadratic equations of N variables over K
$\xrightarrow{\text { Multi-HFE }} n$ quadratic equations of n variables over k

2.2 Efficiency

When N is small enough, \mathcal{G} is inverted efficiently by the Gröbner basis algorithm. See Table 1 of [7] for several examples of efficiency of multi-HFE with $N=2,3,4$. However, when N is not small enough and \mathcal{G} is chosen randomly, the decryption by the Gröbner basis algorithm is not efficient. Then for such N, a special structure of \mathcal{G} like MFE [31, 11] is required for fast decryptions.

2.3 Security against known attacks

Direct attacks. The direct attack is to find a common solution $x \in k^{n}$ of $f_{1}(x)=y_{1}, \ldots, f_{n}(x)=$ y_{n} for a given cipher text $\left(y_{1}, \ldots, y_{n}\right)^{t} \in k^{n}$ directly. One of major approaches of the direct attack is by using the Gröbner basis algorithm [15, 16, 2, 3]. In [3], the complexity is estimated by $O\left(2^{m\left(3.31-3.62 / \log _{2} q\right)}\right)$ if $\log _{2} q \ll n$ and $\left\{f_{1}(x)-y_{1}, \ldots, f_{n}(x)-y_{n}\right\}$ is "semi-regular". On HFE, it is known that the "degree of regularity" of the system $\left\{f_{1}(x)-y_{1}, \ldots, f_{n}(x)-y_{n}\right\}$ is bounded by $\frac{1}{2}(q-1)\lceil\log D\rceil+2[21,10]$, where D is the degree of the central univariate polynomial of HFE over an extension field. This means that HFE with smaller q is less secure. For multi-HFE, while there have been less results compared with HFE, the authors of [7] claimed that the complexity against Gröbner basis attack is almost same to the random systems.
Min-Rank attacks. The min-rank attacks have been proposed by Kipnis-Shamir [23] for HFE and improved by Bettale-Faugère-Perret [4] for HFE and (generalized) multi-HFE. On HFE and multi-HFE, it is known that the coefficient matrices of the quadratic forms F_{1}, \ldots, F_{n} are linear sums of matrices of small rank over K (its rank is at most N on multi-HFE given in §2.1,). The min-rank attack is to recover (partial information of) T by finding $\alpha_{1}, \ldots, \alpha_{n} \in K$ such that $\alpha_{1} F_{1}+\cdots+\alpha_{n} F_{n}$ is of small rank. In Proposition 13 and its proof of [4], the complexity of the min-rank attack is estimated by $O\left(\binom{n+N+1}{N+1}^{\omega}\right)$ under several conditions, where $2 \leq \omega<3$ is the exponent of the Gaussian elimination.

3 Proposed attacks on multi-HFE

In this section, we propose our attack on multi-HFE. First we prepare notations and several lemmas to explain our attack.

3.1 Notations and lemmas

For integers $n_{1}, n_{2} \geq 1$, let $\mathrm{M}_{n_{1}, n_{2}}(k)$ be the set of $n_{1} \times n_{2}$ matrices of k entries. Denote by $I_{n} \in \mathrm{M}_{n, n}(k)$ the identity matrix and by $0_{n_{1}, n_{2}} \in \mathrm{M}_{n_{1}, n_{2}}(k)$ the zero matrix. For simplicity, we write $\mathrm{M}_{n}(k):=\mathrm{M}_{n, n}(k)$ and $0_{n}:=0_{n, n}$. For a matrix $A=\left(a_{i j}\right)_{i, j}$, a polynomial $g(t)=$ $c_{0}+c_{1} t+\cdots+c_{d} t^{d}$ and an integer $l \geq 1$, put

$$
A^{(l)}:=\left(a_{i j}^{l}\right)_{i, j}, \quad g^{(l)}(t):=c_{0}^{l}+c_{1}^{l} t+\cdots+c_{d}^{l} t^{d} .
$$

For square matrices $A_{1} \in \mathrm{M}_{n_{1}}(k), \ldots, A_{l} \in \mathrm{M}_{n_{l}}(k), A_{1} \oplus \cdots \oplus A_{l}$ means

$$
A_{1} \oplus \cdots \oplus A_{l}:=\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{l}
\end{array}\right) \in \mathrm{M}_{n_{1}+\cdots+n_{l}}(k) .
$$

We now recall that $n, N, r \geq 1$ are integers with $n=N r, q$ is a power of prime, k is a finite field of order q and K is an extension field of k with $[K: k]=r$. Choose a basis $\left\{\theta_{1}, \ldots, \theta_{r}\right\}$ of K over k and a one-to-one map $\phi: k^{n} \rightarrow K^{N}$. For simplicity, suppose that ϕ is chosen such that $\phi\left(a_{11}, \ldots, a_{1 N}, a_{21}, \ldots, \ldots, a_{r N}\right)=\left(a_{11} \theta_{1}+\cdots+a_{r 1} \theta_{r}, \ldots, a_{1 N} \theta_{1}+\cdots+a_{r N} \theta_{r}\right)^{t}$. Let L_{N} be a subset of K^{n} with

$$
L_{N}:=\left\{\left(a_{1}, \ldots, a_{N}, a_{1}^{q}, \ldots, \ldots, a_{N}^{q^{r-1}}\right)^{t} \mid a_{1}, \ldots, a_{N} \in K\right\}
$$

$\psi: L_{N} \rightarrow K^{N}$ a one-to-one map with $\psi\left(a_{1}, \ldots, a_{N}, a_{1}^{q}, \ldots, \ldots, a_{N}^{q^{r-1}}\right)=\left(a_{1}, \ldots, a_{N}\right)^{t}$ and $\Theta \in \mathrm{M}_{n}(K)$ a matrix with

$$
\Theta:=\left(\theta_{j}^{q^{i-1}} I_{N}\right)_{1 \leq i, j \leq r}=\left(\begin{array}{cccc}
\theta_{1} I_{N} & \theta_{2} I_{N} & \cdots & \theta_{r} I_{N} \\
\theta_{1}^{q} I_{N} & \theta_{2}^{q} I_{N} & \cdots & \theta_{r}^{q} I_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\theta_{1}^{q^{r-1}} I_{N} & \theta_{2}^{q^{r-1}} I_{N} & \cdots & \theta_{r}^{q^{r-1}} I_{N}
\end{array}\right)
$$

Then the following lemma holds.
Lemma 3.1. The matrix Θ gives a one-to-one map from k^{n} to L_{N} and it holds $\phi=\psi \circ \Theta$.
Proof. For $a=\left(a_{11}, \ldots, a_{1 N}, a_{21}, \ldots, \ldots, a_{r N}\right)^{t} \in k^{n}$, we have

$$
\begin{equation*}
\Theta a=\left(a_{1}, \ldots, a_{N}, a_{1}^{q}, \ldots, \ldots, a_{N}^{q^{r-1}}\right)^{t}, \tag{1}
\end{equation*}
$$

where $a_{i}:=a_{1 i} \theta_{1}+\cdots+a_{r i} \theta_{r} \in K$. Then Θ gives a map from k^{n} to L_{N} and we can easily check that it is one-to-one. Furthermore, due to (1), we have $\psi(\Theta a)=\left(a_{1}, \ldots, a_{N}\right)^{t}=\phi(a)$.

For an integer $m \geq 1$, define the sets $\mathcal{A}_{m} \subset \mathrm{M}_{n, m}(K), \mathcal{B}_{m} \subset \mathrm{M}_{m, n}(K), \mathcal{C} \subset \mathrm{M}_{n}(K)$ of matrices as follows.

$$
\begin{aligned}
\mathcal{A}_{m} & :=\left\{\left.\left(\begin{array}{c}
A \\
A^{(q)} \\
\vdots \\
A^{\left(q^{r-1}\right)}
\end{array}\right) \right\rvert\, A \in \mathrm{M}_{N, m}(K)\right\}, \\
\mathcal{B}_{m} & :=\left\{\left(B, B^{(q)}, \cdots, B^{\left(q^{r-1}\right)}\right) \mid B \in \mathrm{M}_{m, N}(K)\right\}, \\
\mathcal{C} & :=\left\{\left.\left(C_{(j-i \bmod r)+1}^{\left(q^{i-1}\right)}\right)_{1 \leq i, j \leq r}=\left(\begin{array}{cccc}
C_{1} & C_{2} & \cdots & C_{r} \\
C_{r}^{(q)} & C_{1}^{(q)} & \cdots & C_{r-1}^{(q)} \\
\vdots & \vdots & \ddots & \vdots \\
C_{2}^{\left(q^{r-1}\right)} & C_{3}^{\left(q^{r-1}\right)} & \cdots & C_{1}^{\left(q^{r-1}\right)}
\end{array}\right) \right\rvert\, C_{1}, \ldots, C_{r} \in \mathrm{M}_{N}(K)\right\},
\end{aligned}
$$

Lemma 3.2. For any $m \geq 1$, we have

$$
\begin{equation*}
\mathcal{A}_{m}=\Theta \cdot \mathrm{M}_{n, m}(k), \quad \mathcal{B}_{m}=\mathrm{M}_{m, n}(k) \cdot \Theta^{-1}, \quad \mathcal{C}=\Theta \cdot \mathrm{M}_{n}(k) \cdot \Theta^{-1} . \tag{2}
\end{equation*}
$$

Proof. First, choose $A_{1}, \ldots, A_{r} \in \mathrm{M}_{N, m}(k)$ arbitrary. We have

$$
\Theta\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{r}
\end{array}\right)=\left(\begin{array}{c}
A_{1} \theta_{1}+\cdots+A_{r} \theta_{r} \\
A_{1} \theta_{1}^{q}+\cdots+A_{r} \theta_{r}^{q} \\
\vdots \\
A_{1} \theta_{1}^{\theta_{1}^{r-1}}+\cdots+A_{r} \theta_{r}^{\theta_{r}^{r-1}}
\end{array}\right)=\left(\begin{array}{c}
A_{1} \theta_{1}+\cdots+A_{r} \theta_{r} \\
\left(A_{1} \theta_{1}+\cdots+A_{r} \theta_{r}\right)^{(q)} \\
\vdots \\
\left(A_{1} \theta_{1}+\cdots+A_{r} \theta_{r}\right)^{\left(q^{r-1}\right)}
\end{array}\right) .
$$

This means that $\Theta \cdot \mathrm{M}_{n, m}(k) \subset \mathcal{A}_{m}$. Since $\#\left(\Theta \cdot \mathrm{M}_{n, m}(k)\right)=\# \mathcal{A}_{m}=q^{m n}$, we obtain $\mathcal{A}_{m}=$ $\Theta \cdot \mathrm{M}_{n, m}(k)$.

Next, choose $B \in \mathrm{M}_{m, N}(K)$ arbitrary. We have

$$
\begin{aligned}
\left(B, B^{(q)}, \cdots, B^{\left(q^{r-1}\right)}\right) \Theta= & \left(B \theta_{1}+B^{(q)} \theta_{1}^{q}+\cdots+B^{\left(q^{r-1}\right)} \theta_{1}^{q^{r-1}}, \ldots\right. \\
& \left.\ldots, B \theta_{r}+B^{(q)} \theta_{r}^{q}+\cdots+B^{\left(q^{r-1}\right)} \theta_{r}^{q^{r-1}}\right) .
\end{aligned}
$$

Since $B^{\left(q^{r}\right)}=B$ and $\theta_{l}^{q^{r}}=\theta_{l}$, we see that

$$
\begin{aligned}
\left(B \theta_{l}+B^{(q)} \theta_{l}^{q}+\cdots+B^{\left(q^{r-1}\right)} \theta_{l}^{q^{r-1}}\right)^{(q)} & =B^{(q)} \theta_{l}^{q}+\cdots+B^{\left(q^{r-1}\right)} \theta_{l}^{q^{r-1}}+B \theta_{l} \\
& =B \theta_{l}+B^{(q)} \theta_{l}^{q}+\cdots+B^{\left(q^{r-1}\right)} \theta_{l}^{q^{r-1}}
\end{aligned}
$$

for $1 \leq l \leq r$. It is well-known that $a \in K$ satisfies $a^{q}=a$ if and only if $a \in k$. This means that $\mathcal{B}_{m} \cdot \Theta \subset \mathrm{M}_{m, n}(k)$. It is clear that $\# \mathcal{B}_{m}=\#\left(\mathrm{M}_{m, n}(k) \cdot \Theta^{-1}\right)=q^{m n}$. We then obtain $\mathcal{B}_{m}=\mathrm{M}_{m, n}(k) \cdot \Theta^{-1}$.

Finally, choose $C_{1}, \ldots, C_{r} \in \mathrm{M}_{N}(K)$ arbitrary and put $C:=\left(C_{(j-i \bmod r)+1}^{\left(q^{i-1}\right)}\right)_{1 \leq i, j \leq r} \in \mathcal{C}$. The (i, j)-block $C_{i j}^{\prime}$ in $C \cdot \Theta$ is

$$
\begin{aligned}
C_{i j}^{\prime} & =C_{(1-i \bmod r)+1}^{\left(q^{i-1}\right)} \theta_{j}+C_{(2-i \bmod r)+1}^{\left(q^{i-1}\right)} \theta_{j}^{q}+\cdots+C_{r-i+1}^{\left(q^{i-1}\right)} \theta_{j}^{q^{r-1}} \\
& =\left(C_{1} \theta_{j}+\cdots+C_{r} \theta_{j}^{q^{r-1}}\right)^{\left(q^{i-1}\right)}=\left(C_{1 j}^{\prime}\right)^{\left(q^{i-1}\right)} .
\end{aligned}
$$

This means that $\mathcal{C} \cdot \Theta \subset \mathcal{A}_{n}=\Theta \cdot \mathrm{M}_{n}(k)$. Since $\# \mathcal{C}=\#\left(\Theta \cdot \mathrm{M}_{n}(k) \cdot \Theta^{-1}\right)=q^{n^{2}}$, we obtain $\mathcal{C}=\Theta \cdot \mathrm{M}_{n}(k) \cdot \Theta^{-1}$.

For a monic polynomial $h(t)=c_{0}+c_{1} t+\cdots+c_{d-1} t^{d-1}+t^{d}$ of degree d, let

$$
C(h):=\left(\begin{array}{cccc}
0 & \cdots & 0 & -c_{0} \\
1 & & 0 & -c_{1} \\
& \ddots & & \vdots \\
0 & & 1 & -c_{d-1}
\end{array}\right) .
$$

The matrix $C(h)$ is called the companion matrix of $h(t)$. Then the following lemma holds.
Lemma 3.3. (see [22]) For a matrix $H \in \mathrm{M}_{n}(k)$, let $h(t):=\operatorname{det}\left(t \cdot I_{n}-H\right)$ be the characteristic polynomial of H and $h(t)=h_{1}(t) \cdots h_{l}(t)$ is the factorization of $h(t)$ over k. Suppose that $h(t)$ is square free and put $d_{i}:=\operatorname{deg}\left(h_{i}(t)\right)$ for $1 \leq i \leq l$. Then the following (i) and (ii) hold.
(i) There exists an invertible matrix $P \in \mathrm{M}_{n}(k)$ such that

$$
P^{-1} H P=C\left(h_{1}\right) \oplus \cdots \oplus C\left(h_{l}\right) .
$$

(ii) If $P_{1}, P_{2} \in \mathrm{M}_{n}(k)$ satisfy $P_{1}^{-1} H P_{1}=P_{2}^{-1} H P_{2}=C\left(h_{1}\right) \oplus \cdots \oplus C\left(h_{l}\right)$, then there exist matrices $M_{1} \in \mathrm{M}_{d_{1}}(k), \ldots, M_{l} \in \mathrm{M}_{d_{l}}(k)$ such that

$$
P_{1}^{-1} P_{2}=M_{1} \oplus \cdots \oplus M_{l} .
$$

3.2 Quadratic forms in multi-HFE

In this subsection, we study the structure of the quadratic forms in multi-HFE.
Recall that the public key of multi-HFE is a quadratic map $F: k^{n} \rightarrow k^{n}$ is given by

$$
F=T \circ \phi^{-1} \circ \mathcal{G} \circ \phi \circ S,
$$

where $S, T: k^{n} \rightarrow k^{n}$ are invertible affine maps, $\mathcal{G}: K^{N} \rightarrow K^{N}$ is a quadratic map and $\phi: k^{n} \rightarrow K^{N}$ is a one-to-one map. Due to Lemma 3.1, we have

$$
F=\left(T \circ \Theta^{-1}\right) \circ\left(\psi^{-1} \circ \mathcal{G} \circ \psi\right) \circ(\Theta \circ S) .
$$

Then, by the definition of ψ and \mathcal{G}, we see that

$$
\begin{align*}
F(x)= & \left(T \circ \Theta^{-1}\right) . \\
& \left(\mathcal{G}_{1}((\Theta \circ S) x), \ldots, \mathcal{G}_{N}((\Theta \circ S) x), \mathcal{G}_{1}((\Theta \circ S) x)^{q}, \ldots, \ldots, \mathcal{G}_{N}((\Theta \circ S) x)^{q^{r-1}}\right)^{t} . \tag{3}
\end{align*}
$$

For $X=\left(X_{1}, \ldots, X_{N}\right)^{t} \in K^{N}$, let $\bar{X}:=\psi^{-1}(X)=\left(X_{1}, \ldots, X_{N}, X_{1}^{q}, \ldots, \ldots, X_{N}^{q^{r-1}}\right)^{t} \in L_{N}$. Since $\mathcal{G}_{1}(X), \ldots, \mathcal{G}_{N}(X)$ are quadratic forms, there exists matrices $G_{1}, \ldots, G_{N} \in \mathrm{M}_{N}(K)$, low vectors $\beta_{1}, \ldots, \beta_{N} \in \mathrm{M}_{1, N}(K)$ and constants $\gamma_{1}, \ldots, \gamma_{N} \in K$ such that

$$
\mathcal{G}_{l}(X)=X^{t} G_{l} X+\beta_{l} X+\gamma_{l}, \quad(1 \leq l \leq N) .
$$

Then the polynomials $\mathcal{G}_{l}(X), \mathcal{G}_{l}(X)^{q}, \ldots, \mathcal{G}_{l}(X)^{q^{r-1}}$ are expressed as quadratic forms of \bar{X} as follows.

$$
\begin{align*}
\mathcal{G}_{l}(X)= & \bar{X}^{t}\left(G_{l} \oplus 0_{n-N}\right) \bar{X}+\left(\beta_{l}, 0_{1, n-N}\right) \bar{X}+\gamma_{l}, \\
\mathcal{G}_{l}(X)^{q}= & \bar{X}^{t}\left(0_{1, N} \oplus G_{l}^{(q)} \oplus 0_{1, n-2 N}\right) \bar{X}+\left(0_{1, N}, \beta_{l}^{(q)}, 0_{1, n-2 N}\right) \bar{X}+\gamma_{l}^{q}, \tag{4}\\
& \vdots \\
\mathcal{G}_{l}(X)^{q^{r-1}}= & \bar{X}^{t}\left(0_{n-N} \oplus G_{l}^{\left(q^{r-1}\right)}\right) \bar{X}+\left(0_{1, n-N}, \beta_{l}^{\left(q^{r-1}\right)}\right) \bar{X}+\gamma_{l}^{q^{r-1}} .
\end{align*}
$$

Since the affine maps S, T are given by $S x=S_{0} x+s, T y=T_{0} y+t$ with matrices $S_{0}, T_{0} \in \mathrm{M}_{n}(k)$ and column vectors $s, t \in \mathrm{M}_{n, 1}(k)$, the quadratic forms $f_{1}(x), \ldots, f_{n}(x)$ in the public key F are described as follows.

$$
\begin{align*}
f_{l}(x)= & x^{t} S_{0}^{t} \Theta^{t}\left(E_{l} \oplus E_{l}^{(q)} \oplus \cdots \oplus E_{l}^{\left(q^{r-1}\right)}\right) \Theta S_{0} x \\
& +x^{t} S_{0}^{t} \Theta^{t}\left(E_{l} \oplus E_{l}^{(q)} \oplus \cdots \oplus E_{l}^{\left(q^{r-1}\right)}\right) \Theta s+s^{t} \Theta^{t}\left(E_{l} \oplus E_{l}^{(q)} \oplus \cdots \oplus E_{l}^{\left(q^{r-1}\right)}\right) S_{0} x \tag{5}\\
& +\left(b_{l}, b_{l}^{(q)}, \ldots, b_{l}^{\left(q^{r-1}\right.}\right) \Theta S_{0} x+(\text { constant }),
\end{align*}
$$

where $E_{1}, \ldots, E_{n} \in \mathrm{M}_{N}(K)$ are matrices and $b_{1}, \ldots, b_{n} \in \mathrm{M}_{1, N}(K)$ are low vectors given by

$$
\begin{align*}
\left(E_{1}, \ldots, E_{n}\right)^{t} & =\left(T_{0} \Theta^{-1}\right)\left(G_{1}, \ldots, G_{N}, 0_{N}, \ldots, 0_{N}\right)^{t}, \\
\left(b_{1}, \ldots, b_{n}\right)^{t} & =\left(T_{0} \Theta^{-1}\right)\left(\beta_{1}, \ldots, \beta_{N}, 0_{N}, \ldots, 0_{N}\right)^{t} . \tag{6}
\end{align*}
$$

3.3 Proposed attack on multi-HFE

We now propose our attack on multi-HFE for odd characteristic case as follows.

Proposed Attack on multi-HFE

Input: Public key $F(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)^{t}$ of multi-HFE.
Output: Two invertible matrices $S^{\prime}, T^{\prime} \in \mathrm{M}_{n}(k)$ such that

$$
\phi \circ T^{\prime} \circ F \circ S^{\prime} \circ \phi^{-1}: K^{N} \rightarrow K^{N}
$$

is a quadratic map.
Step 1. Let $F_{1}, \ldots, F_{n} \in \mathrm{M}_{n}(k)$ be the symmetric matrices with

$$
f_{l}(x)=x^{t} F_{l} x+(\text { linear })
$$

Take two linear sums W_{1}, W_{2} of F_{1}, \ldots, F_{n} such that W_{1} is invertible and put

$$
W:=W_{1}^{-1} W_{2}
$$

Step 2. Compute the characteristic polynomial $w(t):=\operatorname{det}\left(t \cdot I_{n}-W\right)$ of W and factor $w(t)$ over K. Choose a polynomial $w_{0}(t)$ of degree N such that

$$
w(t)=w_{0}(t) w_{0}^{(q)}(t) \cdots w_{0}^{\left(q^{r-1}\right)}(t)
$$

Step 3. If $w(t)$ is square free and $w_{0}(t)$ is irreducible, go to the next step. If not, go back to Step 1.
Step 4. Find a matrix $P_{0} \in \mathrm{M}_{n, N}(K)$ satisfying $w_{0}(W) P_{0}=0$ and put

$$
P:=\left(P_{0}, P_{0}^{(q)}, \cdots, P_{0}^{\left(q^{r-1}\right)}\right) \in \mathrm{M}_{n}(k) \cdot \Theta^{-1}
$$

Step 5. If P is invertible, go to the next step. If not, go back to Step 4.
Step 6. Let $\hat{F}_{l}:=P^{t} F_{l} P$. Find a matrix $Q_{0} \in \mathrm{M}_{N, n}(K)$ with

$$
Q_{0}\left(\begin{array}{c}
\hat{F}_{1} \\
\vdots \\
\hat{F}_{n}
\end{array}\right)=\left(\begin{array}{c}
\hat{E}_{1} \oplus 0_{n-N} \\
\vdots \\
\hat{E}_{N} \oplus 0_{n-N}
\end{array}\right)
$$

Step 7. If

$$
Q:=\left(\begin{array}{c}
Q_{0} \\
Q_{0}^{(q)} \\
\vdots \\
Q_{0}^{\left(q^{r-1}\right)}
\end{array}\right) \in \Theta \cdot \mathrm{M}_{n}(k)
$$

is invertible, go to the next step. If not, go back to Step 7.
Step 8. Output $S^{\prime}=P \Theta$ and $T^{\prime}=\Theta^{-1} Q$.

Once S^{\prime}, T^{\prime} are recovered, the problem of inverting F is reduced to the problem of finding a common solution of N quadratic equations of N variables. This means that, if \mathcal{G} is chosen randomly, the decryption without secret keys is as fast as the decryption with secret keys. Even if \mathcal{G} has a special structure for fast decryptions, the security is much less than expected since solving N equations of N variables is much faster than solving n equations of n variables in general.
n quadratic equations of n variables over k
$\xrightarrow{\text { Our Attack }} N$ quadratic equations of N variables over K
We now explain why our attack is available.
Table 2: Probability (\%) that $\operatorname{det}\left(t \cdot I_{N}-W_{0}\right)$ is irreducible for $q=31$

N	2	3	4	5	6	7	8	9	10	\cdots
Prob.	49.2	33.4	25.2	19.5	17.4	13.7	12.7	11.2	9.9	\cdots

The equation (5) gives

$$
F_{l}=\left(\Theta S_{0}\right)^{t}\left(E_{l} \oplus \cdots \oplus E_{l}^{\left(q^{r-1}\right)}\right)\left(\Theta S_{0}\right)
$$

the matrix W is written by

$$
\begin{equation*}
W=\left(\Theta S_{0}\right)^{-1}\left(W_{0} \oplus \cdots \oplus W_{0}^{\left(q^{r-1}\right)}\right)\left(\Theta S_{0}\right) \tag{7}
\end{equation*}
$$

for some $W_{0} \in \mathrm{M}_{N}(K)$ and the polynomial $w(t)$ is

$$
w(t)=\operatorname{det}\left(t \cdot I_{N}-W_{0}\right) \cdots \operatorname{det}\left(t \cdot I_{N}-W_{0}^{\left(q^{r-1}\right)}\right)
$$

If $\operatorname{det}\left(t \cdot I_{N}-W_{0}\right)$ is irreducible, we have

$$
\begin{equation*}
w_{0}(t)=\operatorname{det}\left(t \cdot I_{N}-W_{0}^{\left(q^{l}\right)}\right) \tag{8}
\end{equation*}
$$

for some $0 \leq l \leq r-1$. Then it is easy to see that there exists $L \in \mathrm{M}_{N}(K)$ with $L^{-1} W_{0}^{\left(q^{l}\right)} L=$ $C\left(w_{0}\right)$ and it holds

$$
\begin{align*}
& \left(\sigma^{l}\left(L \oplus \cdots \oplus L^{\left(q^{r-1}\right)}\right)\right)^{-1}\left(W_{0} \oplus \cdots \oplus W_{0}^{\left(q^{r-1}\right)}\right)\left(\sigma^{l}\left(L \oplus \cdots \oplus L^{\left(q^{r-1}\right)}\right)\right) \tag{9}\\
& =C\left(w_{0}\right) \oplus \cdots \oplus C\left(w_{0}\right)^{\left(q^{r-1}\right)}
\end{align*}
$$

where $\sigma:=\left(\begin{array}{cccc} & I_{N} & & \\ & & \ddots & \\ & & & I_{N}\end{array}\right) \in \mathrm{M}_{n}(k)$ is a permutation matrix. On the other hand, due to (i) of Lemma 3.3, we see that there exists an invertible matrix $P \in \mathrm{M}_{n}(K)$ such that

$$
\begin{equation*}
P^{-1} W P=C\left(w_{0}\right) \oplus \cdots \oplus C\left(w_{0}\right)^{\left(q^{r-1}\right)} \tag{10}
\end{equation*}
$$

and it is easy to check that P in Step 4 satisfies (10). Applying (7), (9), (10) into (ii) of Lemma 3.3 , we get

$$
\begin{equation*}
\Theta S_{0} P=\sigma^{l}\left(\tilde{S} \oplus \cdots \oplus \tilde{S}^{\left(q^{r-1}\right)}\right) \tag{11}
\end{equation*}
$$

for some invertible matrix $\tilde{S} \in \mathrm{M}_{N}(K)$. Then the matrix \hat{F}_{l} in Step 6 is given by

$$
\begin{equation*}
\hat{F}_{l}=P^{t} F_{l} P=\left(\Theta S_{0} P\right)^{t}\left(E_{l} \oplus \cdots \oplus E_{l}^{\left(q^{r-1}\right)}\right)\left(\Theta S_{0} P\right)=\hat{E}_{l} \oplus \cdots \oplus \hat{E}_{l}^{\left(q^{r-1}\right)} \tag{12}
\end{equation*}
$$

for some $\hat{E}_{l} \in \mathrm{M}_{N}(K)$. Due to (6), we see that there exists Q_{0} in Step 7 and it is found by the Gaussian elimination. It is easy to see that Q in Step 8 satisfies

$$
\begin{equation*}
Q T_{0} \Theta^{-1}=\sigma^{l_{1}}\left(\tilde{T} \oplus \cdots \oplus \tilde{T}^{\left(q^{r-1}\right)}\right) \tag{13}
\end{equation*}
$$

for some $0 \leq l_{1} \leq r-1$ and $\tilde{T} \in \mathrm{M}_{N}(K)$. Combining (5), (11) and (13), we can conclude that the map

$$
\begin{aligned}
\phi \circ T^{\prime} \circ F \circ S^{\prime} \circ \phi^{-1} & =\psi \circ\left(\Theta \circ T^{\prime} \circ T \circ \Theta^{-1}\right) \circ\left(\psi^{-1} \circ \mathcal{G} \circ \psi\right) \circ\left(\Theta \circ S \circ S^{\prime} \circ \Theta^{-1}\right) \circ \psi^{-1} \\
& =\psi \circ\left(Q \circ T \circ \Theta^{-1}\right) \circ\left(\psi^{-1} \circ \mathcal{G} \circ \psi\right) \circ(\Theta \circ S \circ P) \circ \psi^{-1}
\end{aligned}
$$

is a quadratic map from K^{N} to K^{N}.

Table 3: Experimental results of our attack for $q=31$

n	N	r	min-rank attack	our attack
30	3	10	37.2 bit $(1 \mathrm{~h} 38 \mathrm{~m})$	1.23 s
45	3	15	$42.5 \mathrm{bit}(2 \mathrm{~d} 1 \mathrm{~h})$	4.96 s
54	3	18	$44.8 \mathrm{bit}(9 \mathrm{~d} 16 \mathrm{~h})$	15.0 s
60	3	20	46.3 bit	22.3 s
75	3	25	49.2 bit	75.5 s
40	4	10	48.5 bit	3.37 s
60	4	15	55.1 bit	15.6 s
72	4	18	58.2 bit	45.5 s
50	5	10	59.9 bit	7.65 s
60	5	12	63.4 bit	12.8 s
75	5	15	67.9 bit	33.9 s
60	6	10	71.3 bit	15.0 s
72	6	12	75.4 bit	40.6 s
70	7	10	82.7 bit	38.9 s
72	8	9	91.0 bit	38.0 s
72	9	8	98.3 bit	41.7 s
70	10	7	$104 . \mathrm{bit}$	34.7 s

Complexity. In Step 1, the attacker takes several basic computations of $n \times n$ matrices over k and then the complexity of Step 1 is $\ll n^{3}$. Step 2 is for computing the characteristic polynomial of $n \times n$ matrix W and factoring a polynomial $w(t)$ of degree n over $K(r$-extension of $k)$. Then the complexity of Step 2 is $\ll n^{3} \cdot r$.

It is well known that the probability that randomly chosen polynomial of degree N is irreducible is about N^{-1} [24]. In this case, while it is difficult to prove that W_{0} is distributed randomly since W_{1}, W_{2} are symmetric, Table 2 shows that its probability seems about N^{-1}.

Step 4 is for finding kernel matrix of $w_{0}(W)$ and then its complexity is $\ll n^{3} \cdot r$. In Step 6 and 7 , the attacker takes the Gaussian eliminations and basic linear operations $n \times n$ matrices over K.

We thus conclude that the total complexity of our attack is $\ll n^{3} r \cdot N \ll n^{4}$ on average.
Experiments. In Table 3, we compare our attack with the min-rank attack [4] for $q=31$. In this table, "min-rank attack" means the complexity $\binom{n+N+1}{N+1}$ of the min-rank attack (see Proposition 13 and its proof of [4]) with $\omega=2.4$ and the experimental results in Table 5 of [4] by using Magma [25] ver.2.16-10 on 2.93 GHz Intel ${ }^{\circledR}{ }^{\circledR}$ Xeon ${ }^{\circledR} \mathrm{CPU}$, and "our attack" means the average of the running times of 100 times experiments of our attack by using Magma [25] ver. $2.15-10$ on Windows 7 , Core-i 7.67 GHz . Table 3 shows that our attack is much faster than the min-rank attack and it is feasible also for larger N.

3.4 Remarks on even characteristic cases

When q is odd, we can choose symmetric matrices F_{1}, \ldots, F_{n} as coefficient matrices of quadratic forms in the public key F. On the other hand, F_{l} cannot be symmetric when q is even. Then we should use $F_{l}+F_{l}^{t}$ instead of F_{l} when q is even. It is easy to see that these matrices are
symmetric and their diagonal entries matrices are zero. For such matrices, the following lemma holds.

Lemma 3.4. Let k be a finite field of even characteristic, $N \geq 1$ an integer and $A, B \in \mathrm{M}_{N}(k)$ symmetric matrices. Suppose that the diagonal entries of A, B are zero. Then we have
(i) if N is odd then $\operatorname{det} A=\operatorname{det} B=0$.
(ii) if N is even and $\operatorname{det} A \neq 0$, then the polynomial $\operatorname{det}\left(t \cdot I_{N}-A^{-1} B\right)$ is a square of another polynomial of degree $N / 2$.

Proof. When k is of even characteristic, the determinant of the matrix $X=\left(x_{i j}\right)_{1 \leq i, j \leq N} \in$ $\mathrm{M}_{N}(k)$ is given by

$$
\begin{equation*}
\operatorname{det} X=\sum_{\sigma \in \mathfrak{S}_{N}} x_{1 \sigma(1)} x_{2 \sigma(2)} \cdots x_{N \sigma(N)} \tag{14}
\end{equation*}
$$

where \mathfrak{S}_{N} is the set of permutations among $1, \ldots, N$. It is easy to see that

$$
x_{1 \sigma^{-1}(1)} x_{2 \sigma^{-1}(2)} \cdots x_{N \sigma^{-1}(N)}=x_{\sigma(1) 1} x_{\sigma(2) 2} \cdots x_{\sigma(N) N} .
$$

Then, when X is symmetric and its diagonal entries are zero, we have

$$
\begin{equation*}
\operatorname{det} X=\sum_{\sigma \in \mathfrak{S}_{N}^{(2)}} x_{1 \sigma(1)} x_{2 \sigma(2)} \cdots x_{N \sigma(N)} \tag{15}
\end{equation*}
$$

where $\mathfrak{S}_{N}^{(2)}:=\left\{\sigma \in \mathfrak{S}_{N} \mid \sigma^{2}=\operatorname{id}, \sigma(i) \neq i, 1 \leq \forall i \leq N\right\}$. For a permutation $\sigma \in \mathfrak{S}_{N}^{(2)}$, there exist pairs $\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)$ such that $\sigma\left(i_{l}\right)=j_{l}, \sigma\left(j_{l}\right)=i_{l},\left\{i_{1}, j_{1}, \ldots, i_{s}, j_{s}\right\}=\{1, \ldots, N\}$ and $i_{1}, j_{1}, \ldots, i_{s}, j_{s}$ are distinct to each other When N is odd, there are no such pairs. This means that $\mathfrak{S}_{N}^{(2)}$ is empty and then (i) holds. When N is even, there are such pairs and, for $\sigma \in \mathfrak{S}_{N}^{(2)}$,

$$
x_{1 \sigma(1)} \cdots x_{N \sigma(N)}=\left(x_{i_{1} j_{1}} \cdots x_{i_{N / 2} j_{N / 2}}\right)^{2} .
$$

Since k is of even characteristic, we have

$$
\begin{equation*}
\operatorname{det} X=\left(\sum_{\sigma \in \mathfrak{S}_{N}^{(2)}} x_{i_{1} j_{1}} \cdots x_{i_{N / 2} j_{N / 2}}\right)^{2} \tag{16}
\end{equation*}
$$

where $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{N / 2}, j_{N / 2}\right)\right\}$ depends on σ. Since $\operatorname{det}\left(t I_{N}-A^{-1} B\right)=(\operatorname{det} A)^{-1} \operatorname{det}(t A-B)$, (ii) follows immediately from (16).

This lemma shows that our attack on multi-HFE given in $\S 3.3$ cannot be used for even characteristic cases directly, since W_{2} in Step 1 cannot be invertible when N is odd and $w_{0}(t)$ in Step 3 cannot be irreducible when N is even. We will arrange it in the future.

4 Conclusion

We propose a new attack on multi-HFE to recover equivalent secret keys for odd characteristic cases, which is much faster than the the min-rank attack [4]. While our attack is not presently available for even characteristic cases, we can claim that MPKCs derived from a "quadratic" map over an extension field cannot be recommended for practical use.

Acknowledgment. The author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) no. 26800020.

References

[1] M.L. Akkar, N. Courtois, L. Goubin, R. Duteuil, A fast and secure implementation of Sflash, PKC'03, LNCS 2567 (2003), pp.267-278.
[2] M. Bardet, J.C. Faugère, B. Salvy, B.Y. Yang, Asymptotic Expansion of the Degree of Regularity for Semi-Regular Systems of Equations, MEGA'05 (2005).
[3] L. Bettale, J.C. Faugère, L. Perret, Solving Polynomial Systems over Finite Fields: Improved Analysis of the Hybrid Approach, ISSAC 2012 (2012), pp.67-74.
[4] L. Bettale, J.C. Faugere, L. Perret, Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic, Designs, Codes and Cryptography 69 (2013), pp.1-52.
[5] O. Billet and G. Macario-Rat: Cryptanalysis of the Square cryptosystems, Asiacrypt'09, LNCS 5912 (2009), pp.451-468.
[6] A.I.T. Chen, M.S. Chen, T.R. Chen, C.M. Chen, J. Ding, E.L.H. Kuo, F.Y.S. Lee, B.Y. Yang, SSE Implementation of Multivariate PKCs on Modern x86 CPUs, CHES'09, LNCS 5747 (2009), pp.33-48.
[7] C.H.O. Chen, M.S. Chen, J. Ding, F. Werner, B.Y. Yang, Odd-char multivariate Hidden Field Equations, http://eprint.iacr.org/2008/543.
[8] C. Clough, J. Baena, J. Ding, B.-Y. Yang, and M.-S. Chen: Square, a new multivariate encryption scheme, CT-RSA'09, LNCS 5473 (2009) pp.252-264.
[9] N.T. Courtois, M. Daum, P. Felke, On the security of HFE, HFEv- and Quartz, PKC'03, LNCS 2567 (2003), pp.337-350.
[10] J. Ding, T. J. Hodges, Inverting HFE systems is quasi-polynomial for all fields, Crypto'11, LNCS 6841 (2011), pp.724-742.
[11] J. Ding, L. Hu, X. Nie, J. Li, and J. Wagner: High Order Linearization Equation (HOLE) attack on multivariate public key cryptosystems, PKC'07, LNCS 4450 (2007), pp.233-248.
[12] J. Ding, D. Schmidt, Rainbow, a new multivariate polynomial signature scheme, ACNS'05, LNCS 3531 (2005), pp.164-175.
[13] J. Ding, C. Wolf, B.Y. Yang, l-invertible cycles for Multivariate Quadratic (MQ) public key cryptography, PKC'07, LNCS 4450 (2007), pp.266-281.
[14] V. Dubois, P.A. Fouque, A. Shamir, J. Stern, Practical cryptanalysis of SFLASH, Crypto'07, LNCS 4622 (2007), pp.1-12.
[15] J.C. Faugère, A new efficient algorithm for computing Grobner bases $\left(F_{4}\right)$, J. Pure and Applied Algebra 139 (1999), pp.61-88.
[16] J.C. Faugère, A. Joux, Algebraic cryptanalysis of Hidden Field Equations (HFE) using Grobner bases, Crypto'03, LNCS 2729 (2003), pp.44-60.
[17] J.C. Faugère, F. Levy-dit-Vehel, L. Perret, Cryptanalysis of MinRank, Crypto'08, LNCS 5157 (2008), pp.280-296.
[18] P.A. Fouque, G. Macario-Rat, L. Perret, J. Stern, Total break of the l-IC signature scheme, PKC'08, LNCS 4939 (2008), pp.1-17.
[19] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NPcompleteness, W.H. Freeman, 1979.
[20] J. Gathen, D. Panario, Factoring Polynomials Over Finite Fields: A Survey, J. Symbolic Computation 31 (2001), pp.3-17.
[21] L. Granboulan, A. Joux, J. Stern, Inverting HFE is quasipolynomial, Crypto'06, LNCS 4117, pp.345-356.
[22] Y. Hashimoto, Cryptanalysis of the multivariate sigature scheme proposed in PQCrypto 2013, PQCrypto'14, LNCS 8772, (2014), pp.108-125.
[23] A. Kipnis, A. Shamir, Cryptanalysis of the HFE public key cryptosystem by relinearization, Crypto'99, LNCS 1666 (1999), pp.19-30.
[24] R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley, 1983.
[25] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), pp.235-265.
[26] T. Matsumoto, H. Imai, Public quadratic polynomial-tuples for efficient signatureverification and message-encryption, Eurocrypt'88, LNCS 330 (1988), pp.419-453.
[27] J. Patarin, Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88, Crypto'95, LNCS 963 (1995), pp.248-261.
[28] J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms, Eurocrypt'96, LNCS 1070 (1996), pp.33-48.
[29] , J. Patarin, N. Courtois, L. Goubin, QUARTZ, 128-bit long digital signatures, CT-RSA'01, LNCS 2020, pp.282-297.
[30] J. Porras, J. Baena, and J. Ding, ZHFE, a new multivariate public key encryption scheme, PQCrypto'14, LNCS 8772, pp.229-245.
[31] L.C. Wang, B.Y. Yang, Y.H. Hu, and F. Lai, A "medium-field" multivariate public-key encryption scheme, CT-RSA'06, LNCS 3860 (2006), pp.132-149.

[^0]: *Department of Mathematical Science, University of the Ryukyus/JST CREST

