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Abstract

With the rise of Internet computing, outsourcing difficult computational tasks
became an important need. Yet, once the computation is outsourced, the job owner
loses control, and hence it is crucial to provide guarantees against malicious actions
of the contractors involved. Cryptographers have an almost perfect solution, called
fully homomorphic encryption, to this problem. This solution hides both the job
itself and any inputs to it from the contractors, while still enabling them to perform
the necessary computation over the encrypted data. This is a very strong security
guarantee, but the current constructions are highly impractical.

In this paper, we propose a different approach to outsourcing computational
tasks. We are not concerned with hiding the job or the data, but our main task is to
ensure that the job is computed correctly. We also observe that not all contractors
are malicious; rather, majority are rational. Thus, our approach brings together
elements from cryptography, as well as game theory and mechanism design. We
achieve the following results: (1) We incentivize all the rational contractors to
perform the outsourced job correctly, (2) we guarantee high fraction (e.g., 99.9%)
of correct results even in the existence of a relatively large fraction (e.g., 33%) of
malicious irrational contractors in the system, (3) and we show that our system
achieves these while being almost as efficient as running the job locally (e.g., with
only 3% overhead). Such a high correctness guarantee was not known to be achieved
with such efficiency.

Keywords: Outsourced Computation, Cloud Computation, Crowdsourcing, Fair Payments.

1 Introduction

Internet computing is an important field, both for academic research, and for the industry.
With the rise of distributed computing, cloud computing, and crowdsourcing, outsourcing
difficult computational tasks presented itself both as a challenge and as an opportunity.
Mainly, two types of computation outsourcing is considered in the literature. In one
type, the task is outsourced to a single powerful entity, who has more resources to run
the task. For example, outsourcing a computational job to an Amazon EC2 server would
be of this kind. In the second type, the job is outsourced to multiple small entities,



such as in the SETI@Home project. In the SETIQ@Home project, people’s desktops and
laptops are performing the computation. There are two possible gains from such an
outsourcing: (1) the entities to which the job is outsourced collectively will have greater
resources, or (2) simply put, the job will be outsourced, freeing up the resources of the
outsourcer. In this paper, we will focus on this second type of outsourcing where a task
is sent to multiple entities, calling the outsourcer the boss and the participating entities
the contractors. As long as the boss employs multiple contractors, our solution
does not need to differentiate between outsourcing to multiple cloud providers
or crowdsourcing to people’s computers.

In our scenario, the boss would like to outsource a computational task to untrusted
contractors. Furthermore, the setting is that the diligent contractors who act honestly
will be rewarded by the boss, whereas the lazy contractors who act maliciously (and get
caught) will be fined. Contractors in the system are divided into three groups: Honest
contractors who always perform the job diligently, rational contractors who would cheat
if the utility of cheating is better than not doing so, and malicious contractors who would
cheat as much as possible, even though its utility may be worse than acting diligently.
Note that in essence, honest and malicious contractors are not rational. This setting
has been analyzed in our previous work ([4]) and solutions were developed to incentivize
rational contractors to act honestly. As explained in [4], it is impossible to limit the
damage of the malicious contractors without using fines, since they are irrational. In our
current work, we extend our previous work to handle the following:

e We present a game for multiple contractors in a framework where diligent
contractors who help catch the lazy ones get an extra reward in the form of a
bounty. We show how to set up this game to obtain a strict Nash equilibrium of
all contractors acting diligently. Our previous work considered this setting only for
two contractors. Moreover, we show that the bounty is not necessarily an extra cost
to the boss.

e We analyze four different types of malicious contractors that correspond to various
real world attack scenarios, and present results in mixed maliciousness setting. Our
previous work only considers two of these types, and does not present any theoretical
bounds for the bounty framework.

e We have implemented the boss and the contractors (including all types of malicious
contractors) in Java, and present numbers from real runs. We then compare these
results to the theoretical ones. Our previous work only presented theoretical results.
Presenting real results is not only interesting, but it also is essential when one mixes
different types of malicious contractors. Theoretical analysis of mixed fractions of
various types of malicious contractors gets complicated very quickly.

e The experimental results show that it is possible for the boss to obtain 99.9%
correct results with only 3% extra work, even when about a third of all the
contractors are malicious.

e Our previous work considers the boss as a trusted party, and lets the boss handle
all monetary issues (i.e., the payment of rewards and the deduction of fines). In
this work, we assume the boss is untrusted, and employ cryptographic payment



mechanisms to perform payments, with the help of a trusted bank, creating a
realistic setting for practical use.

In doing these, our main goal is to ensure the outsourced job is computed correctly.
We not only require that all the rational contractors will have incentive to compute the
job honestly, but also enforce a bound on the damage any fraction of malicious contractors
can cause. The main damage malicious contractors may cause on the system is letting
the boss accept incorrect results without realizing it. We also consider an additional type
of attack where the malicious contractors elongate the job computation time by sending
incorrect results that are detected (since the job shall be re-outsourced in that case). We
provide proven bounds limiting both of these attack types.

Thus, in summary, we present a multi-contractor outsourcing game and show that
with proper values of fines, rewards, and bounties, we achieve a strict Nash equilibrium,
and can incentivize all rational contractors to act diligently. We further analyze malicious
contractors and present theoretical results about how much extra work they can cause,
and how good the correctness guarantee of our system is in the presence of malicious
contractors. Our experimental results confirm the validity of the theoretical results in
this paper. Finally, we present a payment scheme for the fines and rewards, such that the
boss and the contractors mutually distrust each other, but there is a trusted bank in the
system. We argue that even though the boss would want to pay fewer rewards and the
contractors would try not to pay the fines, using our scheme such attacks are thwarted.

1.1 Related Work

Outsourced computation approaches differ greatly in the type of guarantees they provide,
the techniques they employ, and the efficiency of the solution. On one end of this broad
spectrum lies solutions based on fully homomorphic encryption [25]. These solutions
can provide very strong security guarantees where a single powerful entity is playing the
role of the contractor. The security guarantee is that both the job to be computed and the
input to it are hidden from the contractor (or anyone other than the boss). Unfortunately,
these solutions are still highly impractical for general use [26].

Another line of work for outsourcing computation to multiple intercommunicating
participants is based on secure multi-party computation (SMPC) [27, 6]. SMPC is a
general technique that lets multiple users compute a known function over private inputs.
Normally, it is not used for outsourced computation, but indeed for joint computation.
Yet, recently there is interest in bringing these techniques to the outsourced computation
setting [36, 35, 43]. Some special purpose SMPC schemes can be highly efficient, leading
to practical outsourcing capabilities. Unfortunately, SMPC for general computation is not
efficient, and thus we are still required to seek other options for outsourcing computation.

A main requirement from outsourced computation in terms of security is the
correctness of the returned results. This can be achieved using zero-knowledge proofs
[30, 28, 5]. This way, the contractor may prove to the boss that the computation is done
properly, and the result that was returned is indeed the correct one. When the job or the
input/output is not necessarily hidden from the contractor, one does not need the extra
zero-knowledge property, and may use regular proofs. Outsourcing computation this way
is called verifiable computing [24]. Similar to above, this technique is efficient for some



special cases, but not when used for general computation. In Section 6.2 we show that
using our system results in more than 4 orders of magnitude better performance
at the contractor side compared to employing Pantry [10] verifiable computation (one of
the state of the art in verifiable computation). See [59] for a survey of such techniques.

Other outsourced computation techniques include ones based on attribute-based
encryption [49], functional encryption or secure function evaluation [50], trusted hardware
[50], and probabilistically checkable proofs [29, 57]. There are also several implementations
besides ours [48, 57, 52, 53, 10], and architectural contributions [11]. Some application-
specific solutions exist as well, such as algebraic computations (8], polynomial evaluation
23, 7], map-reduce [61], sequence comparisons [3], linear programming [60], modular
exponentiation [34, 18], and outsourcing to sensor devices [32]. Furthermore, distributed
computation solutions such as Byzantine agreement or Byzantine fault tolerance
techniques may also be employed [9, 1, 42], but again these techniques are inefficient
when it comes to solutions supporting general computation.

Verifying correctness of an outsourced computation by making contractors perform
extra work that is easy to check has also been an interesting direction [31, 22, 51,
55, 56]. In essence, the inner state hash technique we employ from Belenkiy et al.
[4] also fits into this category. The contractors need to compute some hashes during
the computation, and the boss can easily verify those by comparing against the hashes
provided by the other contractors. We show in this paper that this is a very cheap
technique in terms of wasted contractor time, much faster than some other proposals
(e.g., Pantry [10]). Furthermore, our solution requires extremely small amount of work
at the boss (just a simple equality comparison of results and hashes), while some other
solutions require re-computing the outsourced task up to a point [45].

Incentivizing crowdsourcing to human contractors have also been considered
(63, 33]. In such works, there is an additional mediator (e.g., Amazon Mechanical Turk,
Yahoo Answers) and the main concern is to maximize the profits. See [62, 64] for a survey
of such works.

In terms of payments of the rewards and fines, Carbunar and Tripunitara
[15] present a system using ringers [31], achieving success rates up to 99%. This is
an important contribution, since most schemes assume trusted payment exchanges. In
comparison, our solution is cryptographically strong. Their scheme was later improved
by Chen et al. [19], but without considering the payment of the fines as we do in our
setting.

Lastly, it is worth mentioning how real world systems are working. Prominent
examples include SETI@Home! and Rosetta@Home?, as well as other BOINC?, World
Community Grid*, and Distributed.net® projects. These projects are in the multi-
contractor setting that we described. Unfortunately, these systems currently offer no
guarantees on the correctness of the results [44]. Moreover, even though the current
systems do employ rewards, they do not employ fines, and so as explained in [4], they
cannot achieve the security guarantees we provide against irrational malicious contractors.

'http://setiathome.berkeley.edu
2http://boinc.bakerlab.org/rosetta/
3http://boinc.berkeley.edu
“http://www.worldcommunitygrid.org
Shttp://www.distributed.net



Interestingly enough, van Dijk and Juels claim that cryptography alone is not enough
for many cloud computing applications [58]. In essence, this claim backs up
our solution in this paper, since we employ cryptography as well as game theory and
mechanism design to provide a secure system for outsourced computation.

1.2 Contributions

The need: As we have seen, cryptographic solutions for general computation
are inefficient, purely game-theoretical solutions fail to provide guarantees
against irrational malicious contractors, and Belenkiy et al. [4] solution does not
provide fair payments unless the boss is trusted by all. Therefore, there is a need for
efficiently outsourcing computation to untrusted contractors such that the results are
correct with high probability and the overhead is small, even when there is a relatively
high fraction of malicious contractors in the system. To that end, our contributions are
as follows:

e We follow Belenkiy et al. [4] observation that fines are an efficient way to
incentivize rational contractors and are necessary for resilience against malicious
contractors. In addition to that observation, we create a multi-player outsourced
computation game that includes an additional bounty given to the diligent
contractors who help catch the lazy (cheating) contractors. We incentivize
all rational contractors to act diligently in this new multi-player bounty
framework.

e To the best of our knowledge, we categorize the malicious contractors into four
different types with various abilities matching realistic scenarios, for the first time.
This presents the opportunity to analyze a more realistic setup.

e For the first time, to the best of our knowledge, we consider payments of rewards
and fines using a trusted bank. In the payment setting, we assume the boss is
interested in paying fewer rewards and the contractors are interested in not paying
the fine, if possible. We devise a cryptographic mechanism to enforce fair
payments.

e We implement the boss, and different types of contractors, including honest and
malicious ones. We present real experiment results from this implementation and
compare against theoretical results. We also implemented the inner state hash
mechanism for the first time, obtaining only 0.2% overhead.

e Via our implementation, we can, for the first time, present results for a system with
different fractions of various types of malicious contractors. Our tests using a mixed
fraction of different types of malicious contractors yield 99.9% correct results
from outsourced computations, even though one-third of all the contractors are
malicious. We note that measuring this limit is a hard task to tackle theoretically,
but becomes easy with our implementation.

e We show that our system’s expected outsourcing overhead compared to
executing the task locally is 2%, even when a quarter of all contractors are
malicious.



1.3 Overview

As discussed before, our goal is to very efficiently ensure correctness of the
computation results. We are considering the setting where the boss wants to outsource
the same job to multiple contractors. In general, job assignment to contractors will be
done randomly. When all the contractors assigned to the same job return their answers,
the boss will compare them. If all the answers match, the boss will reward the
contractors and accept that answer as the result of the computation. We prove
that this result will be correct with very high probabilities, even though a relatively high
fraction of the users are malicious.

If there is a mismatch between the answers returned for the same job, then the boss
must somehow find the correct answer, and then reward the contractors who returned
the correct result and fine the ones who returned a different answer. In addition, the
contractors who returned the correct result will be provided an extra reward in the form
of a bounty, since they helped the boss catch the lazy or malicious contractors.

There are multiple methods for the boss to understand who returned the correct
result, in cases of mismatches. One possibility is for the boss to re-do the computation
and find the correct result himself. Another possibility is for him to use a different
verification algorithm. For example, if the computation is an NP computation, then
it has a verification algorithm in P. The boss can run this verification algorithm to
determine which answer is the correct one. Yet another alternative is for the boss to
re-outsource the computation to another random set of contractors, until an all-matching
response set is obtained. Then, he can go back and compare the previous response sets
and distribute the fines, rewards, and bounties accordingly. This last method is the one
we suggest and analyze in this paper.6

In our presentation, we first describe the system assuming all the contractors are
rational; they either act diligently and return the correct result, or act lazily and
return a possibly incorrect answer. Then, we include irrational contractors who may
behave honestly or maliciously. In both discussions (only rational contractors case,
or including irrational contractors), we provide provable results in the strongest form
possible: We consider the worst-case scenarios for the boss, and assume all lazy or
malicious contractors are colluding together to harm the system (either by making the
boss accept incorrect results, or by forcing him to spend his resources to deal with
the mismatches). We carefully formulate and prove our theorems against these
strongest form of attackers. Note that purely game-theoretical mechanisms fail to
provide solutions against irrational malicious contractors.

Realize that contractors may cause two main types of harm to such an outsourcing
system. The worst one is that they may (jointly) try to make the boss accept an
incorrect result without realizing that it is incorrect. In our system, remember that
if all the answers match, then the boss would accept the result as correct. Thus, if all
contractors that are assigned to the same job return the same incorrect answer, then
the boss will mistakenly consider it as the right answer. Unfortunately, this is a common
scenario, where all lazy or malicious contractors use the same fake algorithm that we call a
q-algorithm. (See Section 4.1 for more discussion and real examples of fake algorithm uses

6The boss may choose to take the majority answer in cases of mismatch, but this requires additional
theoretical analysis not shown in this paper.



in practice.) Fortunately, we formulate our system according to this worst-case setting
and show that by setting our system’s parameters properly, the boss can ensure a
very high fraction of correct results.

The other type of harm that the malicious contractors may cause is to elongate the
job computation time by returning inconsistent results. Remember that the boss
would re-outsource the job if the answers are not all matching. In such a case, the boss
is not accepting an incorrect result, but instead is realizing that there is a problem, and
hence needs to spend more effort in obtaining the correct answer eventually. We will
again provide bounds on the expected total effort spent, and show that the overhead
would be very small even in settings with a high fraction of malicious contractors.

Our experimental results are given for scenarios with high fraction of malicious
contractors, confirming our theoretical results, as well as more realistic mixed-
maliciousness scenarios where not all malicious contractors are colluding together, but
rather some are independently malicious. We realize that in this realistic (but still
conservative) setting, with proper fine to reward ratio settings, the boss obtains more
than 99.9% correct results with only 3% extra work, even though we assume
about one-third of all contractors are malicious.

Finally, we also tackle the problem of fair payment of fines and rewards. This is
important in the settings where the contractors and the boss mutually distrust each other.
We solve this problem using newly-developed optimistic fair exchange mechanisms that
are specialized for this outsourced computation setting with multiple contractors. Note
that in our scheme, the boss needs to give a reward each time all the answers returned by
the contractors assigned to the same job match. Essentially, this means a contractor can
prove he is diligent by making the trusted bank also compare these results, if the boss
fails to keep his promise. To help this process, we use a simple timestamping server who
certifies that a particular contractor indeed returned a particular result at a particular
time. This timestamping server acts as a notary such that the bank can later verify the
claimed results. Similarly, a contractor may try to cheat by not paying the fine even when
he returns an incorrect result. We show that our protocol achieves fair payments
against cheating attempts by both the boss and the contractors.

2 Setup and Model

Remember that we call the entity who outsources the job the boss, and the entities who
perform the outsourced task the contractors. In our model, we assume there is a single
boss (who might as well be acting on behalf of other entities outside the model), and there
are many candidates for contractors. The reward given by the boss to the contractors,
who the boss believes to have performed the job correctly, is denoted r, and the fine
taken from the malicious contractors, who the boss catches to have cheated, is denoted
f. Furthermore, in the bounty framework, the bounty given to the diligent contractors
who help the boss catch the cheating contractors is denoted b.

We consider three main types of contractors. When we say that a contractor is honest,
we mean she performs the job exactly as requested by the boss. If a contractor is rational,
then she performs the job exactly as requested by the boss, as long as she has an incentive
to do so. In particular, the utility of performing the job correctly must be greater than the



utility of doing anything else. Of course, by our assumption that the entity is willing to
become a contractor, this implies that the reward r is greater than the cost of performing
the job. Lastly, if a contractor is malicious, then she tries to harm the system, mainly
by trying to get the boss accept incorrect results without detection of cheating, or trying
to elongate the job completion time by forcing the boss to re-outsource, as long as these
are within her capabilities. Since there is a fine taken from malicious contractors when
they get caught, as we will see, it is tmpossible for a malicious contractor to always cheat.
Indeed, most of the time, they are forced to act diligently.

To model the utilities of these different types of contractors, we first need to model
the cost of executing a task. Note that dishonest contractors may try to employ some
other, presumably cheaper, algorithm for the job, still trying to get the reward. We define
a generic class of such algorithms as follows:

Definition 2.1 (g-Algorithm). An algorithm that a contractor uses to compute an
assigned job that outputs the correct answer with probability q is a q-algorithm. When
the contractor uses the original prescribed algorithm, it means ¢ = 1. If the contractor
cheats, it is necessarily the case that ¢ < 1 (since using another algorithm that always
returns the correct answer is not necessarily considered cheating, if such an algorithm
exists). The cost of employing a q-algorithm is denoted as cost(q).

We will denote with cost(1) the cost of performing the job exactly as prescribed
by the boss. With this definition, if a contractor cheats, we require that ¢ < 1 and
cost(q) < cost(1), meaning that the cost of cheating will be less than the cost of running
the original task, since otherwise it would be irrational to cheat anyway. For malicious
contractors, it may make sense to still cheat even if cost(q) = cost(1), but the existence
or non-existence of the equality will not change any of our results.

Following Belenkiy et al. [4], we assume that the outsourced task is composed of a
finite number of atomic operations. Also define the inner state of an algorithm as the
concatenation of all the input/outputs of the atomic operations of the algorithm. The
critical observation here is that when one employs a collision-resistant hash function,
the hash of the inner state of the original algorithm would, with high probability, be
different from the hash of the inner state of any other g-algorithm. In other words, the
probability that any other g-algorithm outputs the correct inner state hash as
the original algorithm is negligible [4]. This essentially means that by concatenating
the output with the inner state hashes, we have ¢ = 0 for any algorithm other than the
original algorithm.

The high level idea in such an outsourced computation setting is to outsource the same
job to a group of contractors (group size m > 1), and then collect back their answers
together with the hash value of the inner state. Even when the output of an algorithm is
long or there are many steps of the algorithm, the hash values will be very short having
constant length (e.g., 160 bits). The beauty of this approach is two-fold. First, as we
show in the performance results, the overhead of the additional inner state bookkeeping
and hashing necessary is very minimal, around 0.2% compared to the original algorithm
running time. Second, the boss’s job is extremely easy and fast: just compare outputs
and inner state hashes for equality. If all the returned results are the same, the boss will
just accept one of the answers (e.g., the first answer) as the correct answer. If there is a
discrepancy, the job needs to be re-outsourced.



We now define the notation for the utility of a contractor. Remember that the
diligent contractors are the ones who performed the job correctly by running the original
algorithm, and the lazy contractors used some other g-algorithm instead. Let ug(q) be
the utility of a contractor when there are k lazy contractors in the rest of the group,
and when he uses a g-algorithm. Further let U(k, m) be the total combined utility of k
malicious contractors out of a group of m contractors to whom the job is outsourced.

3 Rational Contractors

In this section, we consider the case where the boss employs a group of m randomly-
chosen rational contractors for a given job. The boss accepts an answer only if all the
returned results match, and re-outsources the job otherwise. Our goal is to incentivize
all rational contractors to act diligently.

3.1 Two Contractor Case

Belenkiy et al. [4] define a Prisoner’s Dilemma-like game, where the contractors are
socially better off if they act maliciously simultaneously. Table 1 shows a two player
game, listing the expected utility of a player depending on whether the other player is
diligent or lazy. Notation-wise, u(1) denotes the utility of a diligent contractor, and u(q)
denotes the utility of a lazy (cheating) contractor.

If this contractor is diligent, regardless of what the other contractor does, she will
be rewarded r, but she pays the cost cost(1) of performing the job as directed. If both
contractors are lazy, the boss will accept an incorrect result, since he only verifies the
results in case of a mismatch, and we are considering the worst-case scenario where both
contractors use the same ¢g-algorithm and return the same incorrect result. They will both
be rewarded r, and pay only the cost cost(q) of the g-algorithm that they used. On the
other hand, if this contractor is lazy while the other is diligent (second column first row),
she will be caught if she returns an incorrect answer (which happens with probability
1 —¢q). When she gets caught, she will be fined f. If she happens to return the correct
answer (which happens with probability ¢),then she will be rewarded r for her work. In
any case, she incurs the cost of the g-algorithm that she used. Table 1 presents this logic
clearly.

Other \ This contractor Diligent Lazy
Diligent u(l) =r —cost(1) | u(q) =rq— f(1 —q) — cost(q)
Lazy u(1) = r — cost(1) u(q) = r — cost(q)

Table 1: 2-contractor game from [4].

There are two Nash equilibria in this game: Both players lazy (cheating), or both
players diligent (honest). The goal is to incentivize all contractors to act diligently.
For this purpose, Belenkiy et al. [4] introduce a bounty scheme which breaks the lazy
equilibrium, leaving both contractors being diligent the only Nash equilibrium. The idea
is that, if one contractor is diligent and the other is lazy, the diligent one who helped
the boss catch the lazy contractor is rewarded an extra bounty b. Essentially, the cell at



the intersection of the Lazy row and the Diligent column of the table will be updated
with a +b. Realize that this bounty must ensure that r — cost(1) + b > r — cost(q) =
b > cost(1) — cost(q) so that both players being lazy is no longer an equilibrium. Since
cost(q) > 0 we need b > cost(1). Unfortunately, they only consider two contractors being
employed, and they do not consider the burden to the boss who needs to pay this extra
reward (bounty).

3.2 Multi Contractor Case

We extend this 2-player game to m contractors, and precisely specify all the details.
In particular, we lift the burden on the boss in terms of paying bounty. Our solution
requires that the lazy contractors pay some extra fine, which will be distributed back
to the diligent contractors by the boss. The total amount of the bounty given and the
extra fine received will be equal. Even though the main goal here is to lift the burden on
the boss, as we will see in Section 4, this technique also helps us deal with the malicious
contractors. We now define our m-contractor game.

Remember that up(q) denotes the utility function of a contractor when there are
k € {0,1,...,m — 1} lazy contractors out of the other m — 1 contractors in the same
group (who are assigned the same job) and when this contractor uses a g-algorithm.
When all the other m — 1 contractors are lazy, the diligent contractor will obtain the
following utility: u,,—1(1) = r + b(1 — ¢) — cost(1). This is because by returning the
correct answer, she will get rewarded, and if the lazy contractors return a wrong answer
(which happens with probability 1 — ¢, since we are assuming that the lazy contractors
are all using the same deterministic g-algorithm)”, she will get an extra bounty as well.
In any case, by performing the job diligently, she pays the original algorithm’s cost. At
the other end of the spectrum, when all the other m — 1 contractors are diligent, the lazy
contractor will obtain the following utility: ug(q) = rq — (f + b(m — 1))(1 — q) — cost(q).
The reason is that, when the g-algorithm used by the lazy contractor returns the correct
answer (which happens with probability ¢), then she will obtain the reward r. But if she
returns an incorrect answer (with probability 1 — ¢), the diligent contractors will ensure
that the boss catches her, and thus she will need to pay both the fine and the bounty
that will be given to the m — 1 diligent contractors. In any case, she incurs the cost of
the g-algorithm. Table 2 shows the m-contractor game.

Others \ This

Diligent

Lazy

All Diligent

ug(l) = r — cost(1)

uo(q) =rq — (f +b(m —

1))(1 — q) — cost(q)

k Lazy

ug(l) =r +b(1 — q) — cost(1)

ug(q) =7q — (f +

k1) (1 — ) — cost(q)

All Lazy

Um—1(1) =7+ b(1 — ¢q) — cost(1)

Um-1(q) = r — cost(q)

Table 2: Utility of a contractor in an m-contractor game, based on the actions of the
other contractors.

"Remember that this is the worst-case for the boss since the probability of accepting incorrect answers
is much higher. If the lazy contractors were all using independent g¢-algorithms, then this probability
would have been negligibly smaller (due to the inner-state hash), and we would not need to analyze such
an attack. More discussion and examples of real cases of using the same g-algorithm can be found in
Section 4.1.
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Theorem 3.1. If the boss sets the bounty as b > r/(1 — q), then all diligent is a unique
and strict Nash equilibrium in the game defined in Table 2.

Proof. First, realize that if we generalize the 2-contractor game in Table 1 without any
bounty, we still have two Nash equilibria. The goal is to break the all-lazy equilibrium
and make the all-diligent equilibrium strict, so that no contractor will be better off being
lazy. Hence, we have to start by breaking the all-lazy equilibrium. To do this, it must be
the case that even if all other contractors are lazy (k = m — 1), a contractor has to be
strictly better off acting honestly:

cost(1) — cost(q)
lL—q

Un—1(1) > upm_1(q) = r+b(1 — q) — cost(1) > r — cost(q) = b >

Since cost(1) < r (i.e., it is worth performing the task) and cost(q) > 0 (i.e., no negative
cost), then we have cost(1) — cost(q) < r. If the boss sets the bounty as

cost(1) — cost(q) <7

<b
1—¢q “1l—q

then the all-lazy equilibrium will no longer be an equilibrium.

Second, we have to make sure that the all-diligent equilibrium is strict. Therefore,
it must be the case that when all the other contractors are diligent (£ = 0), it must be
strictly better to be diligent as well:

up(1) > ug(q) = r —cost(1) > rqg — (f +b(m —1))(1 — q) — cost(q)
This is also achieved by setting the bounty as before (since m > 2):

_ 1) —
rq — r + cost(1) cost(q)< rq T Cr<bor<btf<bm—1)+f (1)

1—gq “1-q 1—gq

since the reward, fine, and bounty are all non-negative.
Lastly, when 0 < k£ < m — 1 of the contractors are lazy, it must be strictly better to
be diligent as well:

ug(1) > ug(q) = r+b(1 —¢q) —cost(1l) > rq— (f+b(m—k—1)/(k+1))(1 — q) — cost(q)
Using Equation 1 above, for all k € {1,2,...,m — 2} we again have

rq — r + cost(1) — cost(q)
L—q

<b—r<b+f<b+f+bm—k—-1)/(k+1)

O

Corollary 3.0.1. Belenkiy et al. [4] show how to set q arbitrarily close to 0 by employing
hash functions, based on their unique inner state assumption. Thus, it is sufficient for
the boss to set b = r for practical purposes.

Note that we naturally obtain the same limit to bounty as Belenkiy et al. [4], since
their game is a special case of our game with m = 2. Yet, observe that this bounty is
no longer a cost to the boss, since it is taken as an extra fine from the lazy contractors.
Next, we see how this works in presence of malicious contractors.
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4 Malicious Contractors

Up till this section, we presented a solution to the outsourced computation problem with
multiple contractors, assuming all the contractors are rational. However, as we first
described our model, in reality there are honest and malicious entities in addition to
the rational ones. Honest contractors are always welcome to an outsourced computation
system. Thus, our goal is to limit possible damage that malicious contractors can incur.

There are two types of damage the malicious contractors can inflict on our system.
In the first type of attack, the malicious contractors’ goal is to make the boss accept an
incorrect answer. In the second type, their goal is to make the boss perform extra work.
These two attacks were analyzed by Belenkiy et al. [4] for a no-bounty scenario, and
without taking into account all four different types of malicious contractors below. We
now perform a detailed analysis for our m-contractor bounty-based game defined above,
when malicious contractors are present.

Remember that in our setting, the boss accepts an answer, only if all the m returned
answers match, including the hashes of the inner states. If all the answers match, there
is no bounty to be given (since no contractor catches a lazy contractor). Therefore, this
corresponds exactly to the case of Belenkiy et al. [4], and the related result is included
in the Appendix for the sake of completeness of the results in this paper.

In terms of causing the boss perform extra work, the malicious contractors will aim to
create a discrepancy among the returned results. In general, it may be enough to insert
just one different answer to force the boss re-outsource the same job. Once we define
the capabilities of different types of malicious contractors, we can analyze both results
formally, and thereafter present the results from the real runs of the system.

4.1 Types of Malicious Contractors

We categorize malicious contractors into 4 types based on their capabilities. We also
relate each type to real attacks.

Fully-Independent Malicious Contractors These contractors may act irrationally,
but they do not collude at all. Each such malicious contractor acts completely
independently. Remember that the boss selects a random group of m > 2
contractors, and outsources the same job to this group. The probability that fully-
independent malicious contractors will return the same answer without computing
the original algorithm is negligible, due to the unique inner state assumption of
Belenkiy et al. [4].

Semi-Independent Malicious Contractors These contractors may provide the same
wrong result. This may be achieved by the contractors downloading a fake client
on purpose or accidentally (believing that it is the correct client software e.g.,
through phishing or DNS-spoofing). Such attacks are already known to exist in
outsourcing systems®?19. This fake client may give the same incorrect answer to

8http://tinyurl.com/truxoft
http://home.hccnet.nl/adas/pfp-m20010130a.html
Ohttp://tinyurl.com/rosettaextracredit
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all the contractors who downloaded it. Hence, we still consider these contractors
kind of independent, but the results they provide are indeed dependent.

If there is at least one honest or rational contractor aside from these semi-
independent malicious contractors in the group that is assigned the same job,
then the cheating ones will be caught (since rational contractors will act diligently
according to Theorem 3.1). Even though this is a very realistic type of attack, we
will not delve deeper since its effect on the system is very limited (indeed, their
effect is exponentially small in m). (See Appendix.)

Semi-Colluding Malicious Contractors There are multiple ways for malicious
contractors to collude. For example, there may be a bulletin board type of web
site where the one who found the result first can post it and the other contractors
get it for free (their cost would be almost 0). However, if the results returned are
correct, there is no problem to the boss. The only advantage to the these colluding
set of malicious contractors would be that their costs are less and some of them will
get paid without doing the job. Yet, the boss is already willing to pay that money
for obtaining the correct answer to the task.

As another alternative, there may be a more advanced fake client that learns and
communicates how many contractors are being employed for that assignment (i.e.,
m) and how many of these contractors are using this client (i.e., k). This way, it can
act more intelligently, and return the same wrong answer only if all the contractors
being employed are using this client (i.e., k = m). Even though the boss selects the
contractors randomly, they can collude without knowing each other with this fake
client set-up. Furthermore, the semi-colluding malicious contractors can collude in a
way that they give inconsistent answers, so that the boss will need to re-outsource
the job. To achieve this attack, the fake client can return the correct answer to
some of the contractors and a wrong answer to some others. However, the colluders
considered in this scenario are independent in terms of their budget.

Fully-Colluding Malicious Contractors In this type of attack, we assume that the
malicious contractors can jointly decide on their outputs, as well as share their
budgets. One possible realization will be through the most advanced version of the
fake client, which controls the contractors’ output and budget. Another possible
realization would be through the Sybil attack [21], where one party impersonates
many to make sure the random selection of the contractors would result in some of
his identities being selected with some good probability.

Realize that this type of malicious contractors are the hardest to defend against.
In the next section, we prove that our system s resilient to even this type of
contractors.

4.2 Attacks of Fully-Colluding Malicious Contractors

Since fully-colluding malicious contractors are able to incur the most damage to the
system, in this section we present provable bounds on this worst-case damage that can
be caused in our system. Suppose the boss assigns the job to m contractors, where
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k of them happen to be fully-colluding malicious contractors, where a ¢ fraction of all
contractors in the system are fully-colluding. A crucial observation is that, to be able to
be employed by the boss, each contractor must keep a balance that is enough to pay the
fine whenever necessary. Therefore, even malicious contractors must act diligently from
time to time to ensure that they have enough balance to be employed. If a contractor
does not have enough money to pay the fine, the boss will not hire him. Since colluders
are trying to make the boss perform extra work by forcing him to re-outsource the job by
submitting inconsistent answers, intuitively only one of them will submit a wrong answer,
while the other colluders will still submit the correct answer. This way, they are trying
to compensate for the fine that one colluder needs to pay. Remember, that they share
the budget. The next theorem proves that this is indeed their best attack strategy.

Theorem 4.1. For a group of k colluders to make the boss perform the most amount
of extra work, their best strategy (the strategy with the highest combined utility) is that
one colluder will submit a wrong answer (and get fined) and the rest (k—1 of them) will
submit the right answer, and collect the reward and the bounty.

Proof. Suppose the number of malicious contractors who act diligently is n with 0 < n <
k. Since their goal is to make the boss to do extra work, there has to be at least one
non-matching answer (n < k — 1).1%12 The n diligent colluders will receive r + b each as
the reward plus the bounty, and the remaining k —n contractors will have to pay the fine
f each, and the extra fine (m —k+n)b in total (i.e., there will be m —k+mn correct results
since m — k non-malicious contractors will act diligently, and n malicious contractors will
do the same as well). The total utility (the payment received minus the total fine paid,
also considering the costs incurred) of the group of malicious contractors will be:

U(k,m) = n[r+b( —q)— cost(1)]
k= m)frg — (7 + AT

Since the colluders want to trick the boss to do extra work, they must return at least
one wrong answer with probability 1 (therefore ¢ = 0). Moreover, we can assume the
worst case that cost(0) = 0 because the contractor can simply return a random answer.
Therefore,

)(1 —q) — cost(q)]

U(k,m) = n(r+b—cost(l)) — f(k—n)—b(m—k+n))
n(r+ f —cost(1)) — kf — b(m — k)

In this utility function, the only part that is related to the number n is (r + f — cost(1)).
Since r > cost(1) and f > 0, we have (r + f — cost(1)) > 0. Thus, whatever the values
of r, f,b,m and k are; if n is higher, the colluders will be better off. Therefore, the best
strategy for them is to set n = kK — 1. Hence one colluder will submit a wrong answer and
the rest will submit the right answer. O

UTf all of the contractors are malicious and colluding (k = m) and all of them are cheating (n = 0),
the boss cannot detect cheating since all the answers are the same wrong answers. In terms of making
the boss accept an incorrect answer, please see Theorem A.1 in the Appendix.

121f the goal of the colluders is to make the boss to perform extra work, they should set 1 < n. When
k # m, they can set n = 0 as well since this time there are other rational contractors who will act
honestly. But the lower bound on n does not affect the proof of this theorem.
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Now that we know the best strategy that will be employed by the fully-colluding
malicious contractors, we bound the possible damage they can incur on the system.

Theorem 4.2. If the fraction of fully-colluding malicious contractors in the system is
g, and the boss outsources the job to a group of m contractors, then the fraction of jobs
fully-colluding malicious contractors can cause extra work for boss is at most rgm/(r+ f),
where r is the reward and f is the fine.

Before we prove Theorem 4.2, we need two intermediate results. Let P(k,m) =
(7]?) g*(1 — g)™ % be the probability that there are exactly k colluders in a group of size
m. Furthermore, let A = >, P(k,m) be the probability that there is at least one
colluder in the group. Finally, let B = "/" | P(k,m)k. According to Lemma A.1 in the

Appendix, we have A =1— (1 —g)™ and B = gm [4]. We also have the following lemma:
Lemma 4.1. Am — B > 0.

Proof.

0<g<l = 0<1—g<1l=>(1-—9)"'<l=2101-9g"<1l—yg
= g<1-(1-g)"=gn<(1-(1-g)")m
= B<Am=Am - B >0

0

of Theorem 4.2. Whatever the contractors do, they must keep their balance non-
negative.!® Since fully-colluding malicious contractors share their budget, it is necessary
and sufficient for them to keep their total utility non-negative. Let y be the probability
that colluders apply the best strategy presented in Theorem 4.1. Then, x = 1 — y is the
probability that all colluders return the correct answer (when they are forced to do so
to keep their shared budget non-negative). The boss wants to limit y and wants z to be
high.

Let k£ be the number of colluders out of m contractors employed for the same task.
Realize that all m — k contractors will act diligently since they are either honest or
rational who are incentivized to act diligently. When the colluders all act honestly (with
probability z), they all get the reward r. (Since no one has cheated, no bounty is given.)
When they apply their best strategy (with probability y), each of the & — 1 diligent ones
will get the bounty b and the reward r, and one of them will pay the fine f as well as the
extra fine b(m — 1), which is equal to the total bounty given, including the bounty given
to the other (honest/rational) contractors. Thus, the total utility of the colluders will be
U(k,m) = xkr + y((k — 1)(b+r) — (f +b(m — 1)). We now take the expectation over

13Indeed, they need to keep a balance at least as much as the fine to be employed at all, but for the
sake of a worst-case proof, since the fine is non-negative, they must keep a non-negative budget.
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different values of 1 < k < m.!"

P(k,m)U(k,m) = Y P(k,m)[zkr +y((k—1)(b+7) — (f + b(m — 1))]

1 k=1

- Z P(k,m)[zkr + ykr —yr —yf —yb(m — k))]

= arB+yrB —yrA—yfA—yb(mA — B)
= rB—yrA—yfA—yb(mA— B)

NE

e
I

At the last two steps, we substituted the values for A, B and used the fact that xt+y = 1.
Colluders must keep this utility non-negative. Moreover, it is best for them to maximize
y. Then, we can write

rB rB rgm

y= rA+ fA+b(mA — B) = rA+fA A(r+f)

using basic algebraic operations and Lemma 4.1.

If the colluding group cheats at y fraction of the jobs they were assigned, they can
trick the boss to do extra work. The probability that there is at least one colluder among
the employed group of contractors is A. Therefore, the fraction of the jobs where the
colluders can force the boss to do extra work is Ay which is at most rgm/(r + f). O

It is interesting to note that the result of this theorem also includes the result that
Belenkiy et al. proved for the case where there is no bounty in the system. If we plug
their way of setting the fine as f = %d, where they use p as the probability of catching a
cheating contractor and d is some deterrent factor, then rgm/(r + f) becomes pgm/(p +
d) ([4] Theorem 9). Therefore, we essentially proved that the bounty system, while
incentivizing all rational contractors to act diligently, does not introduce any weaknesses
against malicious contractors to the system.

Finally, we note that the payment of the bounty by the lazy contractors have a two-
fold effect. First, it eases the load of the boss since he does not need to pay extra for
the job. Second, it keeps the damage by the malicious contractors low.

4.3 Expected Completion Time of a Job

Remember that we are considering the boss’s strategy to accept the returned result when
all m contractors return a matching output. When there is a controversy in the answers,
the boss must differentiate which answers are correct and which are not, so that he can
correctly distribute the reward and the fine, as well as the bounty.

The first method is that the boss verifies the answers himself. This can be done in
two ways: by running the original algorithm for the job himself, or using some other
verification algorithm. In some applications, the verification can be very simple. For
example, in the integer factorization problem, the computation of the factors is hard, but

4Remember that all our bounds are for the worst cases. Even when k = m it is presumable that the
attackers try to force the boss to perform extra work instead of making him accept an incorrect answer,
by using their best strategy.
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their verification is relatively simple. In general, for all problems that are believed to be
in NP — P, there is no currently-known solution in P, and verification (in P) is simpler
than computing the answer. Even if the job itself is in P, verification may be easier
(e.g., consider a matrix multiplication job with complexity O(n?), for which there exists
a (probabilistic) verification algorithm that is O(n?) [8]). However in some situations,
the verification can be as hard as the job itself, or the boss may even need to re-compute
the job himself to verify the outputs. Even if the fraction of verifications is low, this may
greatly reduce the benefits of outsourcing. Besides, in some situations, the boss may not
have enough power to verify the answers.

The second method is that the boss again employs contractors to verify the answers
provided by the other contractors. This can be done by re-outsourcing the job to a new
group of (m random) contractors, until all the answers in the same group are the same.
This method is the method we suggest and analyze below. The drawback of this method
is that it consumes even more resources of the system as a whole; but the key point here
is that those resources do not belong to the boss. Theorem 4.3 investigates the amount
of the extra resource consumption.

Theorem 4.3. If the fraction of times that there is a dispute among the returned results
is E (i.e., from Theorem 4.2), then the expected number of times a job is outsourced is
1/(1 — E) (including the first outsourcing), assuming the boss keeps outsourcing until
there is no dispute.

Proof. Obviously, we outsource a job at least once. If there is a mismatch in the answers
(which happens with probability F) then we re-outsource it. If there is a problem again
(now with probability E?), we outsource the same job again etc. The expected number
of times a job is outsourced is (with 0 < E < 1):

I+ E+E 4. = ——

O

Corollary 4.1.1. The expected total number of the contractors employed for one job is
m/(1—E).

Corollary 4.1.2. If we assume that a job can normally be completed in time t, then the
expected total time required to complete that job will be on the order of t/(1 — E).*

Corollary 4.1.3. Note that if the boss were to compute the job herself, she would have
also spent at least t time to compute the job. Thus, the overhead of outsourcing in our
system is around E/(1 — E) fraction of the local computation time.'®

15Tt is assumed that the time passed during the network communication is very small compared to
the time required for computing the job, and the contractors always start the job immediately and send
the results back once the algorithm is finished. Even though these assumptions may make it sound like
in reality the actual time would be larger, it is possible that the contractors have faster machines and
thus the total time in reality may even be smaller than the time that the boss would have needed to
compute locally. Furthermore, as our performance results show, the slowdown due to the inner state
computation is very small as well.
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Our game-theoretic analysis ends here. We will provide evaluation results in Section 6.
But before that, we provide a mechanism that ensures the payments of the fines and
rewards are done fairly, even though both the boss and the contractors may try to cheat.
The reader may choose to skip Section 5 for the first reading.

5 Ensuring Fair Payments

In the Belenkiy et al. [4] scenario, the contractors are untrusted, but the boss also acts as
the bank, holding the balances of the contractors, and has the ability to fine and reward
them at will. Unfortunately, this is not a practical setting, since it assumes the boss is
ultimately trusted by all contractors. Instead, in practice, we have banks who are trusted
to handle monetary transactions, and the boss may cheat since he may not want to pay
the reward that the diligent contractors deserved. The contractors, as before, may try
to cheat so as not to pay the fine. In this section, we show how to modify the payment
system such that even when the boss and the contractors are all untrusted, the payments
are fair as long as we have a trusted bank.

The techniques we employ in this section include electronic checks [17] or electronic
cash [16], and fair exchange [2, 41]. Depending on the constructions, there may be specific
choices of the underlying primitives to be employed for the sake of efficiency. For example,
Kiipgii and Lysyanskaya [41] recommend using Endorsed E-cash [13] with Camenisch-
Shoup verifiable encryption [14] to obtain an efficient and anonymous protocol. On the
other hand, they recommend using simple electronic checks if anonymity is not desired.
Note that fair exchange requires a trusted third party [46, 37|, called the arbiter [41, 39].
Since we already have a trusted bank in the system, and since fairness here is for the sake
of the payment of the rewards and fines, we will employ the bank as the arbiter as well.

Our goal includes the fair processing of the following payments:

e Payment of the reward by the boss to the diligent contractors.
e Payment of the fine by the cheating contractors to the boss.

Note that even though we have presented a bounty setting, for the sake of simple
presentation, we focus on the payments of the rewards and fines. Payment of the
bounty can be handled via similar techniques, since it requires both the payments by
the cheating contractors to the boss (like fines), and the payments by the boss to the
diligent contractors (like rewards).

One key issue any payment system for outsourced computation needs to address is the
definition of “correct computation”, or equivalently, the “diligent contractor”. The naive
way would be to define the correct computation using the desired output. But the whole
point of outsourcing computation is that the boss does not know the output ahead of the
time. Yet, in our setting, there exists a very natural and useful definition. We define a
“diligent contractor” to be the one who returns the answer that agrees with
all the m answers, where m is the cardinality of the set of contractors employed for the
same job. In case of mismatch between the m answers, the identification of the diligent
and cheating contractors would be delayed, until further outsourcings of the same job
are finished. Once an outsourcing of the same job returns m matching answers (call
that answer correct), then the contractors who returned the same answer correct in any
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previous outsourcing of the same job will be considered diligent. All other contractors
are, by definition, cheating.

Observe that this definition of diligent allows colluding malicious contractors to be
seen as diligent, if the whole group for the same outsourcing of a job consists of colluding
malicious contractors. Yet, under the assumption that the boss accepts matching answers,
they deserve getting paid the reward. Therefore, this does not constitute a problem of
our system.

Any boss who wants to oursource a task to m contractors must have enough balance to
pay m rewards (i.e., balance > mr). Similarly, any contractor who wants to be employed
must have enough balance to pay the fine (i.e., balance > f). Yet, just obtaining a signed
statement from the bank attesting to this is not enough, since the contractor may try
to present such a signature to multiple bosses or for multiple jobs, even when she has
balance enough to pay only one fine. The solution we propose involves escrowing the
necessary amount to the trusted bank.

An escrow is encryption of some value under the public key of the bank. Since our
context is payments, the escrow would contain some form of a payment (electronic checks
[17] or electronic cash [16]). A wverifiable escrow of a payment is essentially an encryption
of the payment under the bank’s public key, while the receiver of the verifiable escrow can
verify (without decrypting) that it indeed contains the necessary payment. For example,
as suggested by Kiip¢ii and Lysyanskaya [41], if a Camenisch-Shoup verifiable escrow [14]
contains an Endorsed E-cash [13] e-coin, then the recipient can verify that the e-coin is
valid (including the amount that it is worth), without actually obtaining the payment.
A verifiable escrow also contains a public non-malleable contract, which describes the
conditions that the bank would decrypt it and give the payment to the requester.

It is important to note that the rewards and fines are one-use payments'®, and thus if
a contractor already had the reward, or if the boss already obtained some fine, they gain
no additional payment by trying to use it again.

Realize that if the boss did not send the reward, then we need a mechanism for
the diligent contractors to obtain the reward (via the bank). Similarly, observe that a
malicious contractor may choose not to send a response (or not to sign it, see below).
As far as the boss is concerned, this is equivalent to sending a wrong result. For these
purposes, we introduce job timeouts, fine timeouts, and reward timeouts to the system.!”-1®
Moreover, to ensure that the contractors indeed performed the computation within the
required time, we employ a trusted timestamping/notary server [12]. Assume that the
boss is registered to the timestamping server so that the server knows him. Each time
a contractor asks for a timestamp on some value, the server returns the stamp to the
contractor, and forwards the value together with the stamp to the boss.

The notation we employ in the protocol is as follows: V E(item; contract) specifies
a verifiable escrow encrypting some item and labeled with a contract. The reward is
denoted r, and the fine is denoted f, as usual. jid denotes the job identifier, out is the

16This is already simply done using serial numbers for both electronic checks and electronic cash.

1"The standard way of introducing a timeout in a fair exchange is adding it to the contract of verifiable
escrows [40].

180bviously, the fine timeout —the deadline to send the verifiable escrow of the fine, signaling
acceptance of the job— needs to be earlier than the job timeout, and the job timeout —the deadline
to complete the job and return the response— needs to be earlier than the reward timeout —the deadline
for the boss to send the reward or the wait signal to the contractor—.
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output of the computation (including the inner state hash value). signg(msg) denotes
a signature on the message msg using the secret signing key sk. The signature can
be verified using the corresponding public verification key pk. Each contractor signs the
output out and the job identifier jid. The timestamp ¢ is created on these values and their
signature s using the time of the trusted timestamping server. Similarly, the timestamp
tf is the stamp over the verifiable escrow of the fine that the contractor sends.

5.1 Fair Payment Protocol

Boss ) pk; @®  Contractori
©) job,vr; = VE(r;jid, time, pk;)
! verify vr;
® vf; = VE(f ;jid, time, pk;)
[Timestamping
Vuth Server the |
verify vfi, tf; compute job to obtain out;
if invalid or fine timeout — o ;s

S; = (jid, out;

replace misbehaving contractor G signsk, (jid, out; )

outi, Si

Timestamping
® out, it [ Server t;
verify s; t;
compare all out;
if mismatch or job timeout

v

wait

inform bank
reoutsource with jid = hash(jid)

else
r
o > .
if reoutsourced if reward timeout
Boss Resolve Contractor Resolve

Figure 1: Our fair payment protocol overview.

The protocol summarized in Figure 1 works as follows (please employ the circled
numbers to match the text to the figure). (D At the beginning of the protocol, each
contractor ¢ generates her signature public-secret key pair pk;, sk;, and sends the public
verification key pk; to the boss. This public key will be used to tie the contractors’
answers to their escrowed fines and rewards. This way, the boss will be able to prove
which contractors did indeed cheat, or the contractor will be able to prove that she did
not cheat. If a public key infrastructure exists, then it can be employed instead (then
we do not need this first step, and we do not need to put the signature public keys into
the escrow contracts), but such an infrastructure is not necessary. Note that all public
signature verification keys need to be distinct. Otherwise, the boss should not outsource
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to those contractors.!® Realize that this may also be thought as a one-time registration
with the boss.

@ Next, for the payment of the rewards, the boss creates m separate verifiable escrows
vr; each worth r, and sends one to each employed contractor. Each verifiable escrow will
contain a unique job identifier jid in its contract, which is computed as the hash of the
job (which is the prescribed program together with its input). The contract also indicates
the fine timeout, the job timeout, and the reward timeout (all abbreviated in the figure
notation as time). Furthermore, the contract of each vr; indicates the signature public
key pk; of the contractor 7. The boss also sends the job, but the contractors do not start
computing it yet. Each contractor i will verify the escrow vr; she receives (including the
contract?), and stops if something is wrong.

@ Now that the contractors each have a verifiable escrow from the boss, they each
create a verifiable escrow v f; worth f. These escrows also contain the same contract. Each
contractor sends her vf; to the timestamping server who does two things: 1) creates a
timestamp tf; on it and sends this timestamp back to the contractor, and 2) forwards
the verifiable escrow v f; together with the timestamp tf; to the boss.

@ Just as the contractors verified the boss’s escrows, the boss also verifies each such
escrow it receives. If something is wrong (some verifiable escrows did not verify or the boss
did not receive some with valid timestamps before the fine timeout), the boss replaces
the problematic contractor. To replace a contractor, the boss sends the job and verifiable
escrow vr; of the reward to some new contractor j (with updated fine timeout). If that
new contractor sends back the verifiable escrow vf; of the fine before her fine timeout,
then the group is complete, and the boss starts waiting for the job results.

® Once the contractor 7 sends her verifiable escrow v f; in time and obtains back the
timestamp ¢ f;, she starts computing the job (i.e., she does not need to wait until the fine
timeout). At the end, she obtains the output out; (including the inner state hash value),
and then she creates a signature s; on it (along with the job identifier) using the secret key
sk; matching the public key pk; in the contract of her verifiable escrow v f;. She sends the
output and the signature out;, s; to the timestamping server. The timestamping server
generates a timestamp t; and sends it to the contractor, while forwarding the out;, s;, t; to
the boss. This will be used to prove that the contractor indeed computed the job before
the job deadline.

©® Now the boss verifies the signatures (and timestamps) and compares all the outputs
(including the inner state hashes). If they all match, he sends the rewards to the
contractors, and the protocol ends. If there is a mismatch (or some contractors did
not return the result until the job timeout, or sent the result with an incorrect inner
state hash, or sent the result with an invalid signature), the boss tells the current set of
m contractors to wait, and re-outsources the job to another group of m contractors (until
he receives all matching answers). The boss also contacts the bank to inform about the
mismatch for that particular job id so that the bank delays the reward timeout for that
particular job. Each re-outsourcing requires the same procedures, but the re-outsourced
job identifier is computed as the hash of the current job identifier.

9The boss may also ask for a signature on a random dummy message to ensure that the contractor
knows the corresponding secret signing key.

20She checks the contract to ensure that the public key is hers, the jid is indeed the hash of the job,
and the timeout values are as expected.
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(@ Finally, the boss receives m matching answers from the same (re-)outsourcing. Let
us call the final matching set of m answers correct. The boss sends the reward to all
contractors who also returned the same answer correct in any one of the outsourcings
of the same job. He then contacts the bank to obtain the fines, if re-outsourcing was
necessary. The protocol between the bank and the boss is called Boss Resolve.

After sending the result and obtaining the timestamp, each contractor waits to
hear from the boss until the reward timeout. If the boss asks the contractor to wait, she
waits for one more reward timeout. If the boss did not ask the contractor to wait and
did not send the reward before the reward timeout, the contractor contacts the bank.
This operation is called Contractor Resolve.

Boss Resolve: Remember that this protocol is executed only if the boss needed
to re-outsource the job and needs to obtain some fines (assuming the lazy or malicious
contractors did not already willingly pay the fines). For the boss to obtain the fine from
the bank, he needs to prove that the contractor sent an incorrect result or did not send
a signed result in time. We need to employ the help of the timestamping server here.

To obtain the fine of a cheating contractor i, the boss presents the verifiable escrow
v f; of that contractor with job identifier jid, and the m verifiable escrows, results, and
signatures of those who sent the answer correct. For simplicity of the presentation, assume
that the second time the job is outsourced, all results matched. Therefore, all m correct
signed results must belong to the job identifier jid' = hash(jid), and the bank verifies
this.?! The bank also verifies that all m results contain the same correct answer, and
have valid signatures when verified using the public keys in the corresponding verifiable
escrows of fines.

It is safe to assume that a cheating contractor would not send a signed incorrect
answer, and that the boss who wants to obtain the fine would not present values in favor
of the contractor. Therefore, the bank employs the help of the timestamping server, and
proceeds as follows:

1. The bank asks the timestamping server for all the out;, s; values for the job identifier
jid. There are two options:

(a) If none of the results returned by the timestamping server has a verifying
signature under the public key pk; in the verifiable escrow v f;, meaning that
the contractor ¢ did not perform the job, the bank decrypts vf; to obtain f
and pays the boss the fine f.

(b) If one of the returned results has a verifying signature s; under the public
key pk; in the verifiable escrow vf;, then the bank uses that out; value. If
the associated timestamp is valid but late or the output out; is incorrect (i.e.,
different from the m correct outputs), the bank decrypts v f; to obtain f and
pays the boss the fine f.

21Tt is very easy to generalize this idea. For example, assume the job is outsourced three times, where
in the first two there were mismatches. Note that if the first outsourcing had job identifier jid, then
the second one would have jid' = hash(jid), and the third one would have jid” = hash(jid'). Also
observe that this means in the first two outsourcings, there was at least one cheating contractor each
time. Suppose contractor ¢ cheated in the first outsourcing, and contractor j cheated in the second.
Thus, the boss must provide the bank vf; with job identifier jid, vf; with job identifier jid', and m
matching outputs all with job identifier jid”. Furthermore, the bank knows how many times a particular
job is re-outsourced, since each before re-outsourcing the boss informs the bank.
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Contractor Resolve: This protocol is executed if the contractor did not get the
reward until the reward timeout for a job she completed. Note that the reward timeout
resets after a wait signal from the boss, and hence by the reward timeout here we mean
the latest version of it.

If contractor i contacts the bank to obtain the reward, she needs to present out;, s;, t;
(the output together with the inner state hash, the signature, and the timestamp) and
the verifiable escrow vr; of her reward. She also presents her verifiable escrow v f; of the
fine, together with the timestamp tf; on it. The bank proceeds as follows:

1. If it is before the reward timeout, the bank aborts. Note that at each re-outsourcing,
the boss contacts the bank so that the reward timeout is delayed for one more
outsourcing. By the reward timeout here, we mean the last version of it (for the
last re-outsourcing of the same job).

2. If the verifiable escrow v f; fails to verify, or the contracts of v f; and vr; are different,
or tf; timestamp is later than the fine timeout in the verifiable escrow contracts, or
timestamp t; is later than the job timeout in the verifiable escrow contracts, or the
signature s; does not verify using the public key in the verifiable escrow contracts,
then the bank aborts the process.

3. At this point, if the process is continuing, it is already after the reward timeout,
and the bank knows that all the values (except out;) provided by the contractor are
valid. Now, there are two options:

(a) If the boss never contacted the bank about the job identifier in vr; until the
reward timeout, this means that there were no problems, and thus the bank
decrypts vr; to obtain r, and rewards the contractor.

(b) If the boss performed Boss Resolve with the bank, then the bank checks if the
answer given by contractor i is the correct answer for that job identifier (or a
hash-related job identifier). If so, the bank again rewards the contractor.

5.2 Fairness Analysis

First of all, observe that if all contractors performed the job diligently and the boss
acted honestly as well, then the bank is not involved at all. This is akin to the
optimistic behavior in fair exchange protocols [2] or official arbitration protocols [38].
The timestamping server is always involved, but it is a very simple server that signs the
given value together with the current time without any check, sends the timestamp to
the contractor, forwards the value together with the timestamp to the boss, and stores
the value together with the timestamp in case the bank asks. We are assuming the boss
registered with the timestamping server initially, so that the timestamping server can
easily forward the associated values to him. The timestamping server storage also need
not be indefinite, as we discuss in the next section. Moreover, we took great care in our
protocol to make sure the timestamping server only needs to know the boss, but not the
individual contractors. This is one of the key points of our solution, and makes the design
much harder (as otherwise anything can go through the timestamping server).
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When the job is outsourced, note that its identifier jid is computed as the hash of
the job. This helps create unique identifiers and ties the job to the verifiable escrows.
The job identifiers for re-outsourcings are related in a hash-chain manner, which can be
easily verified by the bank. Furthermore, the outputs and their inner state hashes are
also tied to the job id via the contractors’ signatures. Moreover, the signature ties a
particular output to the related verifiable escrow. Finally, the timestamp bundles the
output (including the inner state hash) and the signature all together. It also allows us
to verify against the job timeout using the time value in the verifiable escrows’ contracts.
The verifiable escrow timestamp signals acceptance of the job by a contractor, and is
necessary both for the contractor to obtain the reward, and for the boss to obtain the
fine.

If we look at the protocol step by step, we observe that for a contractor to be able
to obtain the reward, she must have sent her verifiable escrow of the fine before the fine
timeout. That escrow essentially signals that the contractor accepts the job. She must
also return the correct result before the job timeout to be able to obtain the reward.

Furthermore, realize that during Contractor Resolve, the contractor provides the
correct result, signed and timestamped before the job deadline. This is one of the two
ways for the contractor to obtain the reward. The second way would be if the boss never
informed the bank about a re-outsourcing of the job. In such a case, this implies that all
the results matched, and the contractor deserves the reward as long as she accepted the
job by sending her verifiable escrow of the fine before the fine timeout and returned the
result correctly before the job deadline, which can be checked via the timestamps. Since
obtaining the same reward multiple times (e.g., once from the boss, and once from the
bank) is useless due to one-use payments, this does not constitute a fairness problem.

As for the boss to obtain fines via the Boss Resolve process, he needs to prove via help
from the timestamping server that the contractor did not compute the correct output.
If the timestamping server already timestamped that contractor’s result such that the
time is late or the output is incorrect while the signature verifies, then the bank pays the
contractor’s fine to the boss. Alternatively, if the contractor never even contacted the
timestamping server with proper results and a valid signature, then again the bank pays
the contractor’s fine to the boss.

Thus, if the contractor was diligent, and performed the job correctly on time, then the
timestamping server will have the matching result, and the contractor will not be fined
during Boss Resolve, and will be guaranteed to obtain her reward during Contractor
Resolve. If the contractor cheated, then the bank will be paying the contractor’s fine to
the boss during Boss Resolve.

There is an interesting attack the contractors may try to perform. Consider that
the boss chose m = 2 contractors, and sent them vr; and vry verifiable escrows of the
reward. Then, suppose that he received back v f; but not vfy. Note that if the boss did
not receive v fy until the fine timeout with a valid timestamp, it means it does not exist
since otherwise the timestamping server would have forwarded that to the boss. At this
point, the boss needs to outsource to a third contractor, by sending vrs and receiving
vf3. But now assume that contractors 2 and 3 are working together, such that the
contractor 3 sends the correct output (including the inner state hash) to contractor 2.22

221f contractors 2 and 3 did not collude, it is improbable for contractor 2 to send back a correct output
with a correct inner state hash for a job that it does not know.
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Their goal is to obtain rewards such that the boss ends up paying 3 rewards, even though
he outsourced the job to 2 contractors in total. Yet, realize that for the contractors to
obtain the reward, they must have contacted the timestamping server such that: 1) the
verifiable escrow of the fine is timestamped before the fine timeout, and 2) the correct
result is timestamped before the job timeout. Still, since the boss did not receive the v f,
before the fine timeout, he can rest assured that the bank will not reward contractor 2.2

Finally, the boss may also try to trick the re-outsourcing system, as best described
via an example: Consider m = 5 contractors are assigned to a task, where 3 of them
returned the correct answer (which can only be realized to be correct after some re-
outsourcing of the same job returns 5 matching answers) and 2 of them an incorrect
answer (similarly realized later on). Then the boss re-outsourced, and now another 3
contractors returned the correct answer, and another 2 of them returned an incorrect
answer. Finally, after the third time the boss re-outsourced the job, all 5 contractors
returned the same answer (and at this point the boss knows who returned the correct
answer in the previous outsourcings). Interestingly enough, just to pay fewer rewards,
the boss may try to claim to the bank that this is indeed what happened: “When I first
outsourced, I received 4 incorrect answers and 1 correct answer, and when I outsourced
again, I received 5 correct answers”. He will not lie about the number of incorrect answers
since he wants to obtain the fines, but he may lie about the total number of correct
answers. Luckily, this attack is impossible in our protocol due to the use of unique job
ids, collision resistant hash functions, and the fact that before each re-outsourcing the
boss must contact the bank and use the hash of the previous job id as the next job id.
This way, the boss cannot lie about the job identifiers and the bank can easily check what
actually happened.

As future work, we imagine a mechanism that can handle fair payments for a bundle
of jobs, instead of a single job, increasing efficiency. It may be possible that a tree-based
payment mechanism enables payment of n bundled jobs in logn steps, increasing the
efficiency.

5.3 Setting the timeouts

In this section we enlighten the practical use of our protocol by discussing the timeouts.
Once the job and the verifiable escrow of the reward is sent, the boss starts waiting until
the fine timeout. In normal operation, such a wait should allow for the network delays,
verification of the reward escrow, preparation of the time escrow, and timestamping.
Overall, we imagine that several seconds should be a realistic value, and can be set
empirically. All timeouts should be per-job timeouts (e.g., if the job is large in size,
network delays may require the fine timeout to be large, and if the job is long in time,
the associated job timeout and the reward timeout need to be large).

The job timeout depends on the hardness of the job. It may be from several minutes,
to several hours, or even days. What is important is that, the reward timeout is set as
the job timeout, plus several seconds to minutes for the boss to compare the results and
send the wait signal and inform the bank.

2In a real implementation, to adjust for timing differences between the boss and the timestamping
server, we can let the boss wait for a little more than the fine timeout to replace a contractor. Eventually,
the bank will employ the timestamping server’s time value.
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Overall, we imagine that for most of the cases, the fine timeout will be very
insignificant compared to the job and reward timeouts so that replacing a contractor
does not necessitate changing the job and reward timeouts. But, if the job is short,
then replacing a contractor may require setting different job and reward timeouts for
that contractor. In such a case, if this later added contractor did not return the result
until close to the reward timeout of the original group of contractors, then the boss
should signal the original group to wait, and inform the bank, even though there is not
necessarily a mismatch.

Lastly, we are assuming that the job is expected to be re-outsourced only so many
times (e.g., 5 times). As we have proven game-theoretically and experimentally, the
number of expected outsourcings of the same job is actually very close to 1. Thus,
this would be a very conservative system-wide value. What this would enable is that no
contractor waits indefinitely (e.g., the boss can send at most 4 wait signals to a contractor
for a particular job), and the timestamping server does not need to keep an indefinitely-
growing storage (e.g., it needs to store timestamps associated with a particular job only
for 5 reward timeouts).

6 Performance Evaluation

We implemented an outsourcing system that includes the boss, honest contractors, and
all four types of malicious contractors. Note that once the system parameters are
set according to our theorems, all rational contractors will become honest contractors,
and hence there is no need to implement them separately. We further implemented a
very simple mechanism to modify the actual jobs to also return the hash of the inner
state. Then, we evaluated our solution under various scenarios, and confirmed that our
theoretical results hold. All source code is available on our group’s web page [20].

6.1 Inner State Hash Performance

Remember that our goal is to keep an inner state

4 hash of an algorithm given a particular input. The
S I main purpose of an inner state hash is to distinguish
2: u Merge Sort between jobs: if a different algorithm other than the

Pit Mining original is employed, or a different input is used, then

the inner state hashes should be different.
For implementing the inner state hash, we used the

Percent Overhead
=
w N

[N

0s ﬁ — AspectJ Eclipse extension. We created an aspect that
o ‘ .

s00 1000 2000 2000 hashes all the inputs and return values of each method

Inner State Hash Threshold (string size) called in a Java code. Outsourcing in our system is

very simple. Once a Java code containing the actual
Figure 2: Percentage overhead job is compiled with our Aspect] aspect, it is ready
of computing inner state hash t5 he outsourced. (Similarly, an AspectC++ aspect
that is necessary for the boss’s can be used for C++ codes.) No changes to the
comparisons. actual code is necessary. At the end of its run, the

program will output the hash of its inner state as well
as its original output.
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We tested the overhead of this inner state hash computation on a machine with 2.27
GHz CPU and 4 GB RAM, using SHA-1 as the hash function. If we follow the original
proposal of Belenkiy et al. [4] and first compute the whole inner state with a final hash
computation at the end, then the inner state would grow very big, consuming memory
and slowing down the computation due to string concatenation operations. Therefore,
we programmed our aspect to let the inner state grow up to a threshold, and each time
the threshold length is reached, we hashed the inner state to shrink it back. We tested
our setup with three computational tasks: a prime number test, merge sort algorithm,
and a pit mining task.

Figure 2 shows the overhead of the inner state hash computation when compared
to the original running time of these three algorithms. It shows that the overhead the
inner state hash computation incurs is extremely small: around 0.2% for all tasks using
tweaked thresholds. Therefore, outsourcing a task with this inner state hash comparison
idea incurs virtually no cost over running just the task itself.

6.2 Fully Colluding Contractors

Parameters: Using our implementation of the boss,

50% the honest contractors, and the four type of malicious
EZZj ~~~~~~ so%Maicous  contractors in Java, we tested various scenarios. We
€ 350 === 25%Malicious  pran 1000 jobs for each scenario, where each job was
] . N L
S 0% 1%Malicious  ytsourced to a group of 2 random contractors among
) o N e . .

S % vt a pool of 60 contractors. All malicious contractors
s 20% — . e ey
- were fully-colluding. All contractors were initiated
% 10% 1A with credits twice the value of the fines. Note that
D TP 3 3 3 :
& 5% I T using the inner state hash, it does not matter which ¢-
0% o i o 2 . lgorithm the lazy and malicious contractors use, since
Fine / Reward Ratio its output will be different from the original algorithm

with high probability (because ¢ ~ 0 including the
Figure 3: Extra work due to fact that the inner state hash needs to be the correct
malicious contractors, based on as well).
experiments. Figure 3 shows the percentage of extra work
that different fractions of fully-colluding malicious
contractors may cause the boss to perform. As the fine to reward ratio increases, the
extra work caused by the malicious contractors decreases quickly.

Consider the results of Theorem 4.3 and its corollaries in the light of Figure 3. In the
theorem, the E value indeed corresponds to the values shown in the figure. Thus, the
figure shows that the boss can set £ < 2% (e.g., by setting fine to reward ratio as 20 even
when a quarter of all contractors are malicious). Therefore, according to the theorem,
a job is outsourced, in expectation, only 1.02 times. This corresponds to employing, on
average, 2.04 contractors for each job. Including the 0.2% overhead of the inner state
hash calculation, the total overhead of our system per Corollary 4.1.3 is 2% in
expectation, even with the existence of a large percentage of malicious contractors in
the system.

In comparison, consider Pantry verifiable computation scheme [10]. Pantry converts
a DNA substring matching job that takes 0.2 seconds of local computation to 5.7 minutes
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Figure 4: Comparison of theoretical and experimental results.

of outsourced computation, creating an overhead of 171000% (and 71560% overhead on
average for the five different tasks they measured). Thus, for correctness of the answer,
using our system results in more than 4 orders of magnitude better performance
than employing Pantry [10] verifiable computation. Note that most of the verifiable
computation works mainly focus on the time spent by the verifier (i.e., the boss) [59].
While that time is small in those works and is extremely small in our work, what we
focus on is the overhead of outsourcing the job versus performing it locally. The time
required at the prover (i.e., the contractor) side in the verifiable computation works is
as discussed above, and thus their performance degradation is extreme compared to our
neglectable overhead. Even when we expect the contractor to be a powerful cloud server
having much more resources than the boss, we do not expect it to have 71560% more
resources.

Figure 4 compares the theoretical results with the experimental results, for a fixed
fine to reward ratio of 30. Figure 4(a) shows the percentage of incorrect results accepted
by the boss, as a result of all the contractors that are assigned to the same job being
colluders. The figure proves that the theoretical results of Theorem A.1 closely match the
reality. It also shows that as the group size, meaning the number of contractors employed
for the same job, increases, the boss accepts almost no incorrect results.

Interestingly, while the increase in the group size diminishes the possibility of
accepting incorrect results, it may increase the percentage of extra work required, as
Figure 4(b) shows. The reason is that a larger group has a higher probability of containing
at least one malicious contractor. The graph confirms the results of Theorem 4.2 and
Corollary 4.1.3. Note that the main reason that the experimental results are slightly above
the theoretical ones in this figure is due to the fact that we provide starting balance equal
to twice the fine in our experiments. Overall, from Figure 4, we see that the practice
closely follows the theoretical results, and verifies their validity.

6.3 Experiments with Mixed Fraction of Malicious Contractors

In this section, we use our implementation to present results involving a mix of various
types of malicious contractors. To present a realistic, but still overly cautious scenario, we
used figures from Symantec [54] and Panda Labs [47]. Panda Labs report says worldwide
infection rate is around 32%. Thus, we take this as the total fraction of malicious users
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in our system. Symantec ranks the top 10 malware, where the top malware caused 6.9%
of all infections. Let us assume this top malware corresponds to the most destructive
scenario, and all of its users are fully-colluding malicious contractors. Thus, in our test,
we let 32%%6.9% = 2.2% of all users to be fully-colluding. The next best malware caused
5.1% of infections. Let us take this as the semi-colluding malicious contractor fraction.
Hence, overall we let 32% % 5.1% = 1.6% of all users to be semi-colluding. Out of the
remaining 32% — 2.2% — 1.6% = 28.2%, we let half to be semi-independent and the other
half to be fully-independent.

Parameters: To simulate this scenario, we

35% outsource a job to 100 contractors, 2 of which are
0% 1A - == ExtraWork fully-colluding, 2 of which are semi-colluding, 14 of
‘\\ incorrectAnswer wwhich are semi-independent, and 14 of which are fully-
S Y independent. The remaining contractors act diligently,
20% ‘:\ since they are incentivized to do so. We keep the
155 ‘\\ group size as 2 to allow the possibility that colluding
\ malicious contractors may make up the whole group,
1o% '\ and outsource 1000 jobs. All contractors were initiated
5% e with credits twice the value of the fines.
oo | | ~T_---—.. Figure 5 shows the results of these experiments.
0 10 20 30 20  With proper fine to reward ratio settings, the boss

Fine / Reward Ratio

obtains more than 99.9% correct results with
only 3% extra work. At this point we remind
ourselves that this scenario still assumes a highly
exaggerated setting where around one third of the
contractors are malicious in one way or the other,
and a good fraction of them are colluding or semi-
independent.

Figure 5: Extra work done
and incorrect results accepted
in mixed types of malicious
contractor experiments.

7 Conclusions

In this work, we analyzed the outsourced computation setting where the boss outsources
a job to multiple contractors, rewarding the diligent ones and fining the lazy ones. We
have introduced a bounty mechanism and modeled the system as a multi-contractor game,
where the diligent contractors who help catch the lazy ones are given an extra reward
in the form of a bounty, which is taken as an extra penalty from the lazy contractors.
We showed how the boss should set the relative fine, reward, and bounty to incentivize
all rational contractors to act honestly. We proved that this extra bounty is indeed not
an extra burden to the boss. We further categorized malicious contractors according to
their capabilities, matching realistic scenarios, and theoretically analyzed the damage
they can cause. We realized that purely game-theoretical solutions cannot prevent
maliciousness, and existing cryptographic solutions are very inefficient. Therefore, we
integrated cryptographic mechanisms together with game theoretic mechanism designs
in our system.

We also presented, for the first time, a fair mechanism for the payment of rewards
and fines using a trusted bank and a timestamping server, assuming both the boss and
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the contractors may try to cheat the payment mechanism.

We implemented our outsourcing system, including the boss and the contractors (both
honest and malicious). Our implementation not only helped verify our theoretical results,
but also enabled presentation of results in a mixed malicious contractor setting, which
is hard to analyze theoretically. We showed that overall our outsourcing system,
in expectation, incurs only 2% overhead against running a task locally, even
when a quarter of all contractors are malicious and fully colluding. We also
presented that, in realistic but overly cautious experiments, with proper fine to reward
ratio settings, the boss obtains more than 99.9% correct results with only 3%
extra work. This is by far the best known efficiency when compared to the related work
achieving such high levels of correctness guarantees.

APPENDIX

Theorems from [4] presented for the sake of convenience:

Theorem A.1. If the fraction of colluding contractors in the system is g, the probability
that the boss accepts an incorrect result s at most g™ .

Note that the theorem above applies to all types of malicious contractors in our case,
except fully-independent ones.

Lemma A.1. Let P(k,m) = (7)g*(1 — g)™* be the probability that there are ezactly
k colluders in a group of size m, assuming a g fraction of all contractors are colluding.
Furthermore, let A=Y "7" | P(k,m), be the probability that there is at least one colluder
in the group. Then, A=1—(1—g)"™. Finally, let B=>";", P(k,m)k. Then, B = gm.
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