
Armadillo: a compilation chain for privacy

preserving applications

Sergiu Carpov, Paul Dubrulle, Renaud Sirdey

CEA, LIST,
Embedded Real Time & Security Laboratory,

Point Courrier 94, 91191 Gif-sur-Yvette Cedex, France.
{sergiu.carpov,paul.dubrulle,renaud.sirdey}@cea.fr

Abstract

In this work we present Armadillo a compilation chain used for com-
piling applications written in a high-level language (C++) to work on
encrypted data. The back-end of the compilation chain is based on homo-
morphic encryption. The tool-chain further automatically handle a huge
amount of parallelism so as to mitigate the performance overhead of using
homomorphic encryption.

1 Introduction

In parallel with the research work which has lead to dramatic improvements
with respect to the computational overhead of homomorphic encryption (re-
search which has been conducted for the most part within the cryptographic
community) the compilation and parallelism community has also started to grow
a strong interest to homomorphic encryption techniques as a new execution en-
vironment for computer programs with a highly promising practical relevance.
In particular, it should be emphasized that an homomorphic encryption system
mostly provides bit-level operators, hence intrinsically low level. Thus, mak-
ing the connection between an algorithm written in a high-level programming
language and such a low-level execution environment requires a sequence of non-
trivial transformations, that is, a compiler. This even more so if it is required
that the performance hit of homomorphic execution be mitigated, as much as
possible, by means of optimised code generation and parallelism.

In this paper, we present Armadillo, a compiler and code generation envi-
ronment aiming at bridging the gap between the level of abstraction of rather
complex programs and algorithms, level of abstraction at which application de-
signers are working, and the low-level formalism of homomorphic encryption.
Armadillo aims at addressing the software engineering issues of cost-e�ectively
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writing programs for execution over encrypted data and automatically handling
the large amount of parallelism required to do so with non prohibitive perfor-
mances. Indeed, parallel programming and parallel program debugging are very
di�cult tasks for mainstream applicative programmers and generally must be
automated in order not to induce large (and often underestimated) development
costs. By providing an optimizing compiler and parallel runtime environment,
Armadillo is thus a �rst attempt to address both facets of the software engi-
neering cost issue of operationnally using homomorphic encryption. The �rst
version of Armadillo is a pragmatic assembly of software building-blocks, some
of them already existing and borrowed for seemingly unrelated �elds, which
demonstrates the possibility of building a full blown compiler environment for
homomorphic encryption-based computing over encrypted data as well as of do-
ing so at low software engineering cost and with decent performances on simple
yet useful algorithms. In essence, Armadillo also provide a platform for the
development and validation of more advanced homomorphic encryption code
generation and optimization techniques. Furthermore, other cryptographic con-
structions (e.g. garbled circuits, functional encryption) can be integrated in
Armadillo compilation chain.

2 Fully homomorphic encryption

An encryption scheme describes the way of encrypting and decrypting plaintext
messages such that �nding which is the plaintext message from encrypted data
(or ciphertext in what follows) is either very hard or even impossible. An encryp-
tion scheme is said to be homomorphic when some operations on plaintext mes-
sages can be done homomorphically, that is directly in the space of ciphertexts
(without decrypting them). Addition and multiplication are two operations on
plaintexts which can be done homomorphically, although other operations can
be found in the literature. An encryption scheme is called fully homomorphic
when both operations (addition and multiplication) are supported. A fully ho-
momorphic encryption scheme allows to execute any boolean circuit directly
on encrypted data. The �rst practical fully homomorphic encryption (FHE)
scheme was proposed by Gentry [12].

For security reasons a noise component is added to the ciphertext during the
encryption. The noise component is a common characteristic for FHE schemes.
Each new homomorphic operation applied on the ciphertexts increases the noise
component in the resulting ciphertext. After a (prede�ned) number of homo-
morphic operations the noise is so large that no decryption is possible. Usually
the noise growth induced by the addition operation is smaller than the noise
growth induced by the multiplication operation. That is why many authors
consider only the multiplicative depth1 of evaluated circuits when FHE schemes
are parametrized.

1Multiplicative depth is the number of sequential homomorphic multiplications which can
be done on freshly encrypted ciphertexts in order to be able to decrypt and retrieve the result
of multiplications.
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The ciphertext and plaintext in FHE schemes are either integer or polyno-
mial ring elements. According to the literature the schemes over polynomial
rings are asymptotically more e�cient than the schemes based on integer rings
[6]. If the ciphertexts sizes in both cases are roughly the same then the compu-
tations are heavier and the additional data (public and evaluation keys) have
larger sizes for schemes over integer rings. In return the learning with errors
(LWE) problem, on which is based the security of integer ring schemes, is better
understood than the ring-LWE problem.

It can be considered that the plaintext space in FHE schemes are integer quo-
tient rings Zt (t ≥ 2), in other words the plaintext are integers modulo t. We
shall use modulo 2 plaintext in order to extend the set of supported high-level
programming language instructions. Actually using FHE schemes encrypted
data dependent control instructions are realisable only when the plaintext is bi-
nary. The majority of FHE schemes have a common set of operations: parameter
generation, key generation, encryption/decryption, homomorphic addition and
multiplication of ciphertexts, etc. Addition and multiplication operations can
also be performed with one non-encrypted input, in this case the homomorphic
operations are much lighter.

3 Armadillo compilation chain

In what follows, we consider fully homomorphic encryption schemes which sup-
port two operations: addition and multiplication modulo 2. These operations
can be seen as XOR and AND logic gates. A boolean circuit is Turing com-
plete so any program written in a high-level language can be transformed into a
boolean circuit in order to be able to execute it homomorphically. The Armadillo
compilation chain provides an easy to use compiler which builds a privacy-
preserving binary for an application written in a high-level language. The com-
pilation chain is classically composed of 3 layers: a front-end, a middle-end
and a back-end. The front-end transforms code written in the input language
(C++) into its boolean circuit representation. The middle-end layer optimizes
the boolean circuit produced by the front-end. The back-end constructs a bi-
nary which homomorphically executes the boolean circuit on encrypted data.
In this work we limited ourselves only to shared memory architecture back-end
(using C++/OpenMP language), but the software design of Armadillo allows
to easily add supplementary backends. In the next sections we describe each
layer of the compilation chain.

3.1 Front-end

The front-end aims to transform a C++ code into the form of a boolean circuit.
This representation is build using a transparent programming interface. The
boolean circuit and the programming interface which builds it is de�ned in
what follows.
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3.1.1 Boolean circuit

A boolean circuit is an acyclic directed graph G = (V,E) with a set of vertices
V and a set of edges E. The set of vertices can be split into 3 independent
sub-sets:

• Vertices without a predecessor de�ne circuit inputs. An input vertex can
be either a boolean input variable or a boolean constant (�0� or �1� input
vertices).

• Vertices each representing a gate applying a basic boolean function to the
values of its predecessors. The input degree of gate functions is either 1
or 2, de�ned by the function they represent.

• Vertices without a successor de�ne circuit outputs. An output vertex has
a single predecessor.

3.1.2 Generation

The generation phase builds the boolean circuit representing all the operations
applied to the input bits during a normal execution. To achieve this, from an
algorithm expressed in C++, we take advantage of the so-called template classes.
We provide a class SlicedInteger whose instantiations represent encrypted
variables used in the algorithm.

The template class of composite integers SlicedInteger encodes a collection
of objects representing its bits, and thus splits integer operations in a bit-wise
fashion. Splitting algorithms at bit level is not novel and has been used before
[19, 9]. Adding two objects of this class is implemented as a standard adder with
carry propagation. The template is instantiated with a basic integer type, which
de�nes its size in bits. The bits are represented by objects of a BitTracker class,
which tracks operations and records them under the form of a boolean circuit.
Although any boolean circuit can be represented in a restricted basis with only
two boolean operators (e.g. AND and NOT is a complete basis) we provide more
boolean operators in order to ease the building of integer operations. Objects of
an instantiated SlicedInteger template are compatible with the basic integer
used as template parameter, which allows the generation of a boolean circuit
from common code. Except that only variable declarations must be changed
from basic integer type to SlicedInteger. Some important compiler features
must be respected in the implementation of the SlicedInteger class, such
as signedness and integer conversions. Conversion operations from basic integer
types to SlicedInteger type are provided. In this way it is possible to combine
and integrate seamlessly basic integer types with SlicedInteger in a C++
algorithm, thus non-encrypted and encrypted variables (in agreement with FHE
semantics).

When a sliced integer is instantiated from a constant, all its bits refer to
the corresponding constant input vertex in the boolean circuit. The only way
to de�ne a variable value for the bits of a sliced integer is to read it from
a standard C++ stream object. Doing so creates new input vertices in the
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#include <iostream>
#include <stdint.h>
#include "integer.h"
void f
  (std::istream &i,
   std::ostream &o)
{
  SlicedInteger<int8_t> a,b;
  i >> a >> b;
  o << a;  
}

a7 a6 a0... 10b7 b6 b0...

...o7 o6 o0

(a) Instantiation of input and output nodes in boolean circuit. The execution of
the C++ code on the left creates the boolean circuit on the right. Inputs have a
white border and outputs a black one. Edges are added to refer the written bits.

#include <iostream>
#include <stdint.h>
#include "integer.h"
void f
  (std::istream &i,
   std::ostream &o)
{
  SlicedInteger<int8_t> a,b;
  i >> a >> b;
  b = b ^ 0x01;
  a &= b;
  o << a;
}

a7 a6 a0... 10b7 b6 b0...

xor xor xor...

...

and

o7 o6 o0

andand ...

(b) Instantiation of gate nodes in boolean circuit. The execution of the C++ code
on the left creates the boolean circuit on the right. Input nodes corresponding to
C++ input variables are treated using boolean XOR and AND gates.

Figure 1: Boolean circuits generation from C++ code examples.

boolean circuit and the read bits refer to these new vertices. Writing a bit to
a standard C++ stream creates new output vertices in the boolean circuit and
the written bits refer to these new vertices. The number of created (input or
output) nodes correspond the the bit-size of the instantiated SlicedInteger

class. Sub-�gure 1a gives an example of this concept.
Performing operations on the sliced integers creates gate vertices in the

boolean circuit. When a logic operation is applied to two bits, a gate ver-
tex is created. The resulting bit refers to this new gate vertex, and the vertices
referenced by the input bits are added as predecessors to the new gate vertex.
Sub-�gure 1b gives an example of this concept.

In our interface header �le integer.h, we de�ne an integer type per possible
integer size. The de�nition of these types depends on a con�guration compi-
lation �ag CONFIG_INTEGER, which allows to switch from a normal algo-
rithm to a sliced version one transparently: EXECUTE � the integer type is
the same as the basic integer type, execution goes as usual and allows normal
developping/debugging of the algorithm; COMPILE � the integer type is an
instantiation of the SlicedInteger class with the corresponding basic integer
type, the execution tracks the operations and builds the boolean circuit.

The implementation of algorithms using encrypted variables has an issue:
the data-dependent control. Control �ow statements (conditionals, loops) are
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accepted by our compiler only with non-encrypted data parameters. The follow-
ing things are impossible: conditional instructions (jumps) with an encrypted
integer in the condition and data-dependent loops. These limitations are in-
evitable, otherwise some information on the plaintext of the variables would
leak from the control �ow. For example one could �nd encrypted variable value
in a loop condition from the number of loop iterations.

It can seem that this issue seriously limits the usefulness of the compila-
tion chain but as we shall see further several operations which depend on data
are possible. For conditional assignment, as in the C++ ternary instruction
d=c?a:b, the problem is solved by providing function select(a, b, c) which re-
turns a when c equals to one and b when c equals to zero. This function is
implemented using boolean expression (c&a [i]) ⊕ (c̄&b [i]) applied on each bit
i of variables a and b. Conditional assignment is equivalent to a two-input
multiplexer circuit. Array dereferencing (with an encrypted index) is a gen-
eralization of conditional assignment where the condition variable has multiple
values. Array dereferencing can be done by creating an array object which when
dereferenced would insert several multi-input multiplexers. Equivalent circuits
are described in [17]. Even under these limitations we were able to implement
several real life applications. One example is the AES cipher which we will
describe later.

3.2 Middle end

Homomorphic encryption schemes must be parametrized in function of the mul-
tiplicative depth of circuits to evaluate. Execution time of a homomorphic mul-
tiplication (AND gate) is signi�cantly larger than that of an addition (XOR
gate). In �gure 2 are represented empirical measurements of homomorphic op-
erations execution times. Homomorphic addition is more than 100 times faster
than homomorphic multiplication. More details about our implementation are
given in section �3.3. In what follows we shall ignore the number of XOR gates in
the circuit because their execution time is signi�cantly smaller when compared
to execution time of AND gates.

The middle-end phase of the compilation chain aims at optimizing the boolean
circuit obtained from the C++ code generated in the precedent phase. The pur-
pose is to decrease the total execution time of the boolean circuit on encrypted
data.

The primary objective will be to minimize the multiplicative depth of the
boolean circuit. Reducing the multiplicative depth of a circuit allows to decrease
the execution time of every AND gate. It is possible to reduce the multiplica-
tive depth at the price of an increased number of AND gates as long as the
total execution time is smaller2. A secondary objective will be to minimize the
number of logical AND gates in the boolean circuit. The multiplicative depth
must not increase in the latter case.

2For example if the multiplicative depth of a circuit decreases from 8 to 7 then the number
of AND gates could increase at most by 30% and the resulting execution time will not increase.
We have used execution time measures from �gure 2.
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Figure 2: Execution times of homomorphic operations in function of multi-
plicative depth. Measurements have been performed using FHE scheme [10]
(parameters: security λ = 128, cyclotomic polynomial x1024 + 1).

In the literature one can �nd lots of works on boolean circuit optimization in
the �eld of hardware synthesis (FPGA/ASIC). Circuit optimization algorithms
from hardware synthesis have objectives and constraints that di�er from the op-
timization needed in our case. For example XOR gates implemented in hardware
are more expensive than the AND gates, which is completely in contradiction
with optimization on boolean circuits for FHE. In hardware synthesis the prop-
agation delay can be an optimization goal besides circuit size. The propagation
delay is equivalent to the circuit depth computed with distinct propagation de-
lays on each gate. The minimization of the circuit depth is not equivalent to
the minimization of the circuit multiplicative depth.

Despite the fact that hardware boolean circuit optimization tools are not
well suited for FHE boolean circuit optimization we have, as a �rst approach,
adapted existing tools to our case. Besides, doing so allows us to take advantage
from the existing expertise in the hardware synthesis domain. An open source
software system used for hardware synthesis is ABC [2]. ABC software system
comprises a set of tools used for synthesis and veri�cation of boolean circuits. It
is an open-source environment providing implementations of the state-of-the-art
combinational and sequential synthesis algorithms.

ABC optimization tools are based on And-Inverter Graphs (AIGs). AIGs
are logic circuits with two-input AND gates and inverters (negations) on edges.
Logic circuit with only one gate type promise to decrease the complexity and the
search space of circuit optimization algorithms. For more details about AIGs
and ABC optimization tools refer to [20]. ABC reads di�erent circuit formats
and transforms them into AIG representation before applying various optimiza-
tion algorithms. The front-end of our compilation chain exports boolean circuits
in blif format [1]. The same format is used for boolean circuit outputted by the
middle-end, once optimized.

We can assume that the AIG representation is bene�cial to the optimization
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of FHE boolean circuits. ABC optimization tools have two objectives: circuit
size and delay minimization. The size of an AIG circuit equals to the number
of AND gates it contains and the delay is the length of the longest path from
input to output nodes. At �rst sight it seems that this corresponds perfectly to
optimization objectives for FHE boolean circuits, as AIG size correspond to FHE
circuit size (number of AND gates) and AIG delay corresponds to FHE circuit
multiplicative depth. Unfortunately this is not quite true. A counterexample
is the XOR gate which corresponds to 3 AND gates and depth 2 circuit when
transformed to AIG.

ABC package is script based. ABC takes a succession of optimization steps as
input and applies them onto a boolean circuit. After several empirical studies we
have deduced that the following optimization script gives satisfactory optimiza-
tion results: resyn2;if -g -K 15 -C 1024;resyn2;if -g -K 15 -C 1024;map.

First step (resyn2) is a re-synthesis command which aims at minimizing
circuit size as primary objective and circuit depth as secondary objective. Next
command (if) aims to decrease circuit depth even if the circuit size increases
lightly [21, ?]. These operations are applied twice. Boolean circuit optimization
for homomorphic execution allows a non-negligible increase in circuit size when
the multiplicative depth of the circuit lowers. In ABC we were not able to
express such type of constraints.

The last command map performs standard cell mapping of the AIG circuit.
In this way we hope to additionally decrease circuit size and depth by mapping
3 AND gates to one XOR (inverse transformation described earlier). We use a
cell library containing AND, OR, XOR and NOT gates. ABC was unable to
perform cell mapping using a library with AND and XOR gates only. We remind
that an OR gate can be expressed using one AND gate and several XORs, so an
OR gate is equivalent to an AND gate for FHE circuit minimization objectives.
A NOT gate can be expressed using a XOR. The gates AND, OR have unit
size and delay and XOR, NOT gates have zero size and delay. The mapping
algorithm will be forced to use less AND and OR gates in this case.

The execution time of ABC is not an issue for medium-sized circuits we have
tested. Although one could sacri�ce more time on optimization steps for gaining
in homomorphic circuit execution time.

Circuit multiplicative depth and size in terms of AND gates is not always
minimized by the previous ABC optimization script, sometimes it even increases.
When building the AIG graph from the initial circuit each XOR gate is replaced
by an equivalent sub-graph of only AND gates. The optimizations performed
by the ABC tool minimize the total number of AND gates disregarding inherent
structures representing XOR gates. The AND gates of these structures are po-
tentially merged/simpli�ed so that the initial XOR gates cannot be recovered
by the mapping step. In this case we apply only simple redundancy remov-
ing optimizations (balance) so that XOR gates could be recovered during the
mapping step. The following script is used: balance;map.
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3.3 Back-end

The back-end takes as input an optimized boolean circuit from the middle-end
step and generates a binary which executes the boolean circuit homomorphically.
Additionally, in this step, are generated encryption, decryption and key-chain
generation binaries. The generated binaries are linked to a homomorphic en-
cryption library which is dimensioned dynamically to support the multiplicative
depth of the boolean circuit to execute.

We have implemented the FHE scheme described in [10] without the boot-
strapping step. The ciphertexts in this scheme are polynomial ring elements.
Using the Chinese Remainder Theorem several plaintext bits can be packed into
a ciphertext, see more details on this batching technique in [13]. The number
of packed bits depends on the cyclotomic polynomial de�ning the ciphertext
polynomial ring. In the actual con�guration of our back-end only SIMD ex-
ecution is supported (no ciphertext slot permutation has been implemented).
The dimensioning of this FHE scheme is done automatically in function of the
multiplicative depth, the desired security level (λ parameter) and eventually
on the number of plaintext bits to pack into a ciphertext. Cyclotomic polyno-
mial operations used in the dimensioning procedure (e.g. polynomial factoring
used for batching) are performed using Sage [22]. The dimensioning parameters
(cyclotomic polynomial de�ning the polynomial ring, ciphertext coe�cient size,
random distribution parameters, etc.) are read at execution from a con�gura-
tion �le. The �int [15] library is used to perform polynomial operations. Our
FHE scheme has a generic interface. Other FHE schemes implementing this
interface can be seamlessly incorporated into the compilation chain.

The boolean circuit generated by the middle-end has 4 types of gates: AND,
OR, XOR and NOT. Each OR and NOT gate are replaced by an equivalent cir-
cuit composed of AND and XOR gates. The negation gate is replaced by a XOR
gate on of whose inputs is one. The OR gate has two equivalent representations:
(i) a ‖ b = (a&b) ⊕ a ⊕ b with 2 XORs or (ii) a ‖ b = ((a⊕ 1) & (b⊕ 1)) ⊕ 1
with 3 XOR gates. We use the one with 3 gates. Although one more XOR gate
is used, these XORs are performed with a non-encrypted input (constant value
one), which in FHE schemes are lighter.

A C++ code is generated from the boolean circuit composed of AND and
XOR gates. Each gate is executed using a call to a respective function from the
homomorphic encryption library. The generated C++ corresponds to either
sequential circuit execution or parallel (for shared memory platforms) circuit
execution. In the latter case circuit gates are scheduled o�-line using a list
schedule algorithm. We use a FIFO priority queue for dispatching gate execu-
tions. In the tests we have performed, the priority function did not signi�cantly
changed circuit execution time. The number of parallel execution threads to
use is explicitly speci�ed by user.
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4 AES implementation example

In this section we are going to show the easiness of implementing the AES-128
cipher using our compilation chain. We start by a brief overview of the AES
cipher.

The AES is a block cipher which takes a 128-bit input data block, a 128-bit
cipher key and outputs a 128-bit output. It consists of 10 equal rounds (with
di�erent round keys) applied sequentially on the input data block transformed
into a 4× 4 state matrix of bytes. Each round is divided into 4 steps which are
applied on the state matrix: AddKey, SubBytes, ShiftRows and MixColumns

(not applied at last round). In what follows we describe the steps used in
encryption mode. AddKey is a XOR of the state matrix with the current round
key. The ShiftRows step is a rotation to the left of state matrix row k by a
k − 1 places. SubBytes or S-box operation performs an inversion in the �nite
�eld GF

(
28
)
followed by an a�ne transformation. Finally, the MixColumns step

multiplies (�nite �eld GF
(
28
)
multiplication) the state matrix by a prede�ned

4× 4 matrix.
Round keys are obtained from the cipher key using a key expansion or key

schedule procedure. From the cipher key rk0 (the cipher key acts as the �rst
round key) 10 more 128-bit keys rk1, . . . , rk10 are derived, one for each round.
The cipher key rk0 is used for the additional AddKey step applied on input data.
Key expansion starts from the cipher key arranged in a 4× 4 matrix. The �rst
column of the next round key rkp is obtained by adding together (additions are
done in a �nite �eld, i.e. bitwise XOR) the �rst and the modi�ed last column of
round key rkp−1. The modi�cation of the last column (ScheduleCore) consists
in rotating the column one byte to the left. Applying S-box operation on each
column element and adding to the �rst column element 2 exponentiated to the
round number (in Rijndael's �nite �eld). Other columns (2, 3 and 4) of rkp
are obtained by simply adding previous column from rkp to the column on the
same position from rkp−1.

The decryption of an AES encrypted block is done equivalently by apply-
ing a set of inverse round steps in the opposite direction. The round keys are
computed using the same key expansion procedure and are respectively applied
in reversed order. Key expansion procedure does not change in the standard
implementation of AES regardless of the used mode (encryption or decryption).
The multiplicative depth of the AES-128 encryption is 40 together with the
key expansion, whereas in decryption mode the multiplicative depth is already
80. This is due to the fact that the last round key rk10 (which is used �rst
in decryption) has already a multiplicative depth of 40. In order to decrease
the multiplicative depth in this mode we have implemented a di�erent key ex-
pansion procedure for decryption, called further on decryption key expansion.
Decryption key expansion starts from the last round key rk10, which is read
as input, and performs the usual key expansion in the opposite direction. The
multiplicative depth of AES decryption with the modi�ed key expansion proce-
dure gets down to 40. This modi�cation of the AES algorithm does not alter
its security.
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We have implemented the AES-128 in di�erent execution modes: encryption
or decryption with derived round keys (key schedule) or read round keys. The
C++ implementation of AES is done at bit-level. Optimized circuits from [5]
are used for S-box and reverse S-box3. The Armadillo compiler builds a boolean
circuit from the C++ code. There are 128 input nodes in the boolean circuit for
the input data block and either 128 input nodes for the initial round key (rk0
for encryption/rk10 for decryption) or 1408 for the expanded round keys. The
number of output nodes is 128 (one for each bit in the output data block). The
generated boolean circuit has 5440 AND nodes for the encryption/decryption
rounds and 1360 AND nodes for the key expansion part. As said earlier the
multiplicative depth is 40 in all the modes.

Further on we provide a C++ code sample, used as input to our compiler,
which performs the key schedule procedure in encryption mode (KeySchedule
function):

void KeySchedule(Integer8 ** key , Integer8 *** roundKeys) {
Integer8 temp [4];

/* First round key is the cipher key itself */

for (unsigned int c = 0; c < 4; c++) {
for (unsigned int r = 0; r < 4; r++) {

roundKeys [0][r][c] = key[r][c];
if (c == 3) temp[r] = key[r][c];

}
}

/* Compute next rounds keys from previous ones */

for (unsigned int rnd = 1; rnd < 11; rnd++) {
for (unsigned int c = 0; c < 4; c++) {

if (c == 0) ScheduleCore(temp , rnd);
for (unsigned int r = 0; r < 4; r++) {

roundKeys[rnd][r][c] =
roundKeys[rnd - 1][r][c] ^ temp[r];

temp[r] = roundKeys[rnd][r][c];
}

}
}

}

The C++ KeySchedule function takes as input a pointer key to the cipher
key arranged in a 4×4 matrix. Parameter roundKeys is used to output derived
round keys. Integer8 is a typedef for a 8-bit SlicedInteger variable type.
As we can see the implementation is simple and straightforward. If we replace
Integer8 by a standard 8-bit variable type (for example unsigned char) the
same C++ code will compute round keys on non-encrypted data.

We have executed the AES-128 decryption algorithm with reverse key sched-
ule (generated by the Armadillo back-end) on a mid-end 48-core server (4 x
AMD Opteron 6172 processors with 64GB of RAM). No ciphertext batching is
employed. Although batching will permit to substantially increase the through-
put (i.e. the number of processed AES blocks per unit of time) the latency

3A straightforward S-box implementation using a truth-table has given a multiplicative
depth of 10 after ABC optimizations. We had decided to use the optimized by hand S-box
circuit because an AES circuit with a multiplicative depth 100 would have given an execution
~10 times slower (estimation) than for the multiplicative depth 40.
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will increase too. Refer to [18] for a more detailed discussion of latency versus
throughput in the case of homomorphic encryption. FHE scheme security pa-
rameter λ is 128 and the used cyclotomic polynomial is Φ2048 (x) = x1024 + 1.
Other FHE parameters are derived automatically following the procedure de-
scribed in [10]. Obtained polynomial coe�cient size is approximatively 23kbits,
which corresponds to a 5.6MB ciphertext. The FHE key generation procedure
takes 18 sec., FHE encryption of one bit 8 sec. and FHE decryption of one bit
0.2 sec. The obtained execution time for AES decryption is of approximatively
18 minutes, RAM memory usage is under 40GB. The same execution time is
obtained for the AES encryption algorithm.

5 Related works

Several domain speci�c languages for secure multi-party computation (SMC)
have been proposed in the literature, an non-exhaustive list of such includes
[7, 16, 4, 11, 3]. SMC is a cryptographic model in which n parties compute a
common function, for example Yao's garbled circuits. In these models the com-
munication between parties is proportional to circuit size to evaluate, whilst in
FHE schemes the communication is proportional only to input data size. VIFF
[7] is a framework built on-top of Python language which allows to easily specify
SMCs. The arithmetic (boolean) circuit to execute is speci�ed by the user. No
circuit optimization is done by the framework, so it is up to the user to do this.
The CBMC-GC [16, 11] is a C language compiler and framework for perform-
ing secure two-party computations (STC). It is an extension of the bit-precise
model checker used to verify ANSI C source code. CBMC-GC transforms a C
program into an optimized boolean circuit which can be executed by a STC
platform (garbled circuits). Sharemind [4, 3] is a framework for MPC. It can be
seen as a virtual machine which perform multi-party computations. Applica-
tions can be written in a high-level language SecreC (C extension) or in assembly
language for the Sharemind virtual machine. The Armadillo front-end described
in this paper most closely resembles to the VIFF framework. Both systems use
a programmatic extension of an high-level language (C++ for Armadillo and
Python for VIFF) to facilitate the use of cryptographic constructions (MPC
and FHE). Armadillo's front-end also automatically bit-slices high-level C++
instructions. Unlike the VIFF framework, in Armadillo a middle-end is used to
optimize obtained boolean circuits.

Homomorphic execution implementations for the bit-sliced AES decryption
algorithm were previously reported in [14, 8]. The authors implemented the AES
decryption but no key schedule procedure is done. The 11 round keys are inputs
to the AES circuit. The size of the boolean circuit is smaller by 25% in this case.
Without the key schedule procedure the authors did not have to cope with the
multiplicative depth 80 of the usual AES decryption implementation. A direct
comparison of execution performance between these implementations and our is
inappropriate because of di�erent FHE schemes. One of the objectives of [14, 8]
was to increase the AES execution throughput by using batching techniques. In
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contrast to this, our objective was to decrease the latency. That is why we have
employed explicit parallelization of boolean circuit execution and no batching.
We shall also note that both these implementations are using the NTL library
for polynomial arithmetic. The NTL library has a restricted support for multi-
threading, so an explicit parallelization of boolean circuit execution is most likely
impossible in current conditions. And last but not least, we have implemented
the AES algorithm in a high-level language, compared to the manual AES circuit
implementation.

Conclusions and perspectives

In this paper we have presented the Armadillo compilation chain used for compil-
ing privacy-preserving applications. The compilation chain consists of 3 phases:
high-level language (C++) code transformation to a boolean circuit (front-end),
optimization of the boolean circuit (middle-end) and execution of this circuit
on encrypted data using homomorphic encryption (back-end). The implemen-
tation of applications using the homomorphic encryption in back-end becomes
easier with Armadillo. We have implemented the AES-128 algorithm in order
to show this. The execution latency of AES algorithm is only 18 minutes which
represents an advancement compared to existing homomorphic AES implemen-
tations. For the AES decryption algorithm we have introduced a modi�cation
in the key schedule procedure in order to decrease the multiplicative depth of
circuit from 80 to 40. Although the compilation chain allows to build homo-
morphic encryption based applications and seems complete much future work
have to be done. In what follows we shall elaborate some perspectives which
seem promising to us.

We have restricted ourselves to binary operations (boolean AND and XOR)
of FHE primitives, although FHE allows to perform operations homomorphically
on integers modulo t for t > 2 or more generally in other �nite �elds. This
aspect of homomorphic encryption is not taken into account in our compilation
chain. Using for example Z256 as plain-text permits to execute homomorphically
addition and multiplication operations modulo 256 directly, which for some
applications will provide a performance increase. Another aspect of our front-
end is that the high-level code is directly transformed into a boolean circuit,
although passing by some sort of intermediate representation (e.g. arithmetic
circuit) will provide more optimization possibilities and potentially a smaller
boolean circuit afterwards.

The current middle-end uses existing boolean circuit optimization tool (ABC)
from the �eld of hardware synthesis. As said earlier the objectives of circuit op-
timization for homomorphic encryption and hardware synthesis di�er. That is
why we execute two optimization scripts and keep the obtained circuit which
has the smallest multiplicative depth. We think that there is more research to
be done in this direction, thus on optimization of boolean circuits with multi-
plicative depth as primary objective and number of multiplications as secondary
objective.
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Available FHE libraries in the compiler back-end should be diversi�ed in
order to be able to chose the FHE library which is the most adapted to the
developed application. The current parallel boolean circuit execution back-end
supports only shared-memory architectures. A promising perspective will be
the development of a back-end for distributed-memory architectures.
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