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Abstract—In the new age of cyberwars, system designers have
come to recognize the merits of building critical systems on top
of small kernels for their ability to provide strong isolation at
system level. This is due to the fact that enforceable isolation is
the prerequisite for any reasonable security policy. Towards this
goal we examine some internals of Fiasco.OC, a microkernel of
the prominent L4 family. Despite its recent success in certain high-
security projects for governmental use, we prove that Fiasco.OC
is not suited to ensure strict isolation between components meant
to be separated.

Unfortunately, in addition to the construction of system-wide
denial of service attacks, our identified weaknesses of Fiasco.OC
also allow covert channels across security perimeters with high
bandwidth. We verified our results in a strong affirmative way
through many practical experiments. Indeed, for all potential use
cases of Fiasco.OC we implemented a full-fledged system on its
respective archetypical hardware: Desktop server/workstation on
AMD64 x86 CPU, Tablet on Intel Atom CPU, Smartphone on
ARM Cortex A9 CPU. The measured peak channel capacities
ranging from ∼13500 bits/s (Cortex-A9 device) to ∼30500 bits/s
(desktop system) lay bare the feeble meaningfulness of Fi-
asco.OC’s isolation guarantee. This proves that Fiasco.OC cannot
be used as a separation kernel within high-security areas.

I. INTRODUCTION

Over the past years, electronic devices have found their way
into virtually every aspect of our daily lives, changing the way
we communicate, work, and spend our leisure time. Even the
latest wave – the triumph of smartphones and tablets – could
qualify as a technological revolution. On the downside, it is
obvious that radical changes of that magnitude involve many
security risks. Already a severe threat before, malware has now
a good chance to become one of the principal roadblocks for
further innovations. These concerns are further fueled by the
trend towards a very small number of commodity systems with
ubiquitous network connectivity. Here, the former provides an
enlarged attack surface while the latter exposes the respective
systems to remote adversaries. As if the threat from criminal
circles was not bad enough, the situation has been further
worsened by targeted attacks — also known as cyberwar. Long
on financial, technical, and even social resources and expertise,
the entities behind these attacks were long thought to not

have difficulties overcoming standard security measures, cf.
[1]. Recent reports on highly advanced attacks corroborate this
assumption [2]–[4].

To counter such attacks, efforts have been launched to im-
prove the security of existing operating systems, with SELinux
being a prominent example, cf. [5]. Not only has that proven
a lengthy process, but it has also raised questions regarding
further increases in system complexity and limited backward
compatibility with existing software. Consequently, completely
rebuilding the system architecture from ground up offers a
worthwhile alternative path, which was sometimes followed.
But often one considered other tasks, cf. [6]. A more rigorous
approach – building systems on small secure kernels – has
been long acknowledged both in industry, security agencies,
cf. [7], and of course in academia [8], [9], yet adopting them
was limited by insufficient resources and lacking performance
of considered systems. Over the recent years, the huge per-
formance increase has largely rendered these concerns moot.
Moreover, a very strong commercial interest in small kernels
has just recently started. To name only a few publicly known
efforts we refer the interested reader to [10]–[14].

Owing to their architectural elegance and small size, micro-
kernels are often automatically embraced as “secure”, yet this
blind trust is often too optimistic. Indeed, in this paper, we will
show that Fiasco.OC, a popular third-generation microkernel
of the venerable L4-family, does not deliver on that very
promise. This is particularly interesting as Fiasco.OC is used
in multiple projects for its assumed ability to enforce strict
isolation, among them secure laptops [14]–[16] and secure
mobile devices [17], [18], some of them highly praised [19],
[20]. We would like to emphasize that Fiasco.OC, unlike its
closed-source competitors, encourages scrutiny by third parties
as its source code is publicly available [21].

A. Attack Model

Before we proceed, we would like to formulate the as-
sumptions regarding the underlying system architecture and the
assumed capabilities of hypothetical adversaries. We envision
a system (see Figure 1) with (at least) two compartments where
the communication between them is understood to strictly



(a) Effective isolation (b) Ineffective isolation

Fig. 1: Attack scenario using covert channels

An effectively isolating microkernel can prevent data from being passed
between compartments, even if both of them have already been compromised
by adversary (case (a)). If the microkernel is ineffective in enforcing this
isolation, data may be first passed between compartments and then leaked out
to a third party in violation of a security policy prohibiting this (case (b)).

obey a security policy. In particular, the policy may state that
no communication between any two compartments shall be
possible. An organization may require that assets can only
be sent through protected links and can only processed in
compartments that have no access to unprotected networks.
Under these provisions, the confidentiality of data should be
preserved as long as the isolation between compartments is
upheld.

As for the attacker, we consider highly determined ad-
versaries with superior technical and organizational resources
who have managed to place malware into all compartments.
To achieve that, the adversaries may either directly attack
Internet-facing compartments or draw on insider support in
the targeted organizations to sneak in malware (Trojan horse).
The attacker’s goal is it to leak (potentially classified or
even highly classified) data from the isolated compartment
to a compartment with access to the Internet. From there, he
eventually will be able to exfiltrate data to a place of his choice.

Regarding the system, we assume that the microkernel
has no low-level implementation bugs and the system’s con-
figuration is sound, that is, there are no (authorized) direct
communication channels between isolated compartments and
the sum of all assigned kernel quotas is less than the amount
of kernel memory available in the system.

B. Contributions

Following the classical research directions on covert chan-
nels, cf. [22], we identify so far unknown weaknesses in
Fiasco.OC’s kernel memory subsystem. These substantially
undermine all efforts to isolate subsystems in security critical
systems built on top of Fiasco.OC. In the rest of the paper, we
develop real-world covert channels based on those weaknesses
found in Fiasco.OC’s kernel memory management. Following
[23] we measured the capacity of the respective channels for
meaningful system configurations to gain a better understand-
ing of their applicability and severity.

C. Outline

The remainder of the present paper is structured as follows.
After some required background informations in Section II, we
will describe the identified weaknesses of Fiasco.OC’s memory
subsystem in Section III with an emphasis on educational
clarity. This is followed by a description in Section IV as to
how the described attack principle can be turned into working
covert channels. A special real-world attack scenario involving
a paravirtualized Linux will be presented in Section V before
we present our experiments undertaken to test the viability
of the approach in general and the capacity of the individual
channels in particular in Section VI. The paper concludes with
a related work section and some final observations.

II. BACKGROUND

This section serves to recall some covert channel facts and
also to give some educational background on Fiasco.OC. Espe-
cially, its subtle kernel memory management details are highly
complex yet vital to understanding the findings presented in
this paper.

A. Covert channel background

The issue of information leakage over covert channels came
first to public attention when Lampson described the problem
in 1973 [24]. A widely used description of covert channel is
that used in [22]:

A covert channel is a path of communication that was
not designed to be used for communication.

Since then, covert channels have been a frequent topic of
scientific research, cf. [5], [10], [22], [23], [25], [26].

In 1987, Millen [23] came up with a theoretical approach to
estimate the capacity of covert channels. The US Department
of Defence (DoD) acknowledged the threat and extended their
Rainbow Series in 1993 with a classification scheme for covert
channels [25].

Shared resources, such as caches [27], CPU [28], network
subsystems [29], [30], or memory management [31], [32], are
not only prevalent in all modern systems, but also run the
risk of being the conduit for covert channel communication.
Hardware-based covert channels exploit the fact that almost
all processor resources are shared among processes in a very
tightly coupled way. These shared resources can be used to
construct covert communication. Osvik et al. showed that
observing cache behaviour can be used to attack particular
implementations of the AES encryption standard [33]. On
the IA-64 architecture, the spontaneous deferral feature can
be abused to facilitate information leakage [34]. However,
not only shared processor resources are prone to information
leakage, covert channels can also appear due to deficiencies in
operating systems. This is particularly notable as advanced sys-
tem architectures employ hypervisors or other small isolation
kernels with the goal of enforcing strict security policies. The
memory deduplication feature in modern VMs is exploitable
[31], [32], such that it allows to create very high-bandwidth
channels. Lalande et al. [35] prove that it is possible to form
covert channels with various Linux subsystems, such as shared
settings, system logs, thread enumeration, processor statistics,



processor frequency, only to name a few. They use these
to leak private information in Android applications. Timing-
based covert channels use varying timing events in a system
to encode information [29]. Cabuk et al. [36] propose two
statistical methods to detect timing variance in IP traffic to
construct a covert channel.

B. Fiasco.OC Background

Fiasco.OC [21], a member of the venerable L4 family
developed at the TU Dresden (Germany), has many attractive
features. Besides its relatively small size – between 20 kSLOC
and 35 kSLOC depending on the configuration – it supports
the construction of secure systems by offering a security
model based on capabilities [37]. Apart from its own merits,
Fiasco.OC is distinguished from other microkernels by its
accompanying user-level framework L4Re [38], which pro-
vides both libraries and system components aiding in the
construction of a highly compartmentalized system.

Long before virtualization came out of its mainframe niche,
L4Linux [39], a port of Linux onto Fiasco, which eventually
evolved into Fiasco.OC, demonstrated that the encapsulation
of a whole operating system was possible on commodity
hardware without devastating performance. Since then, this
useful ability has been extended [40] and complemented with
support for hardware-assisted virtualization [41], [42].

Fiasco currently runs only on x86 and ARM-based plat-
forms, however the case can be made that these two are the
most relevant platforms nowadays. Its support for the rapidly
evolving ARM ecosystem opens up countless opportunities.
Unlike other microkernels with L4 heritage, such as OKL4 or
seL4 [43], for which the source code is not available, Fiasco
is distributed under the GNU General Public License (GPL)
v2. Nevertheless, Fiasco.OC is used in a number of academic
and commercial projects [14], many of which target security
critical environments.

C. Memory Management

In order to gain a better understanding of the context, it
is useful to revisit the relevant aspects of Fiasco.OC’s design
and implementation with respect to memory management in
more detail. As with many other L4-like kernels, in Fiasco.OC,
a noteworthy dichotomy between user-memory and kernel-
memory management exists. Like the first L4 kernel, cf.
[9], Fiasco.OC seeks restrict its functionality to mechanisms,
upon which policies can be implemented by user-level servers
depending on the specific needs of the applications at hand. L4
pioneered this principle in that it succeeded in moving the man-
agement of user-level memory completely out of the kernel. To
that end, all L4-related kernel provide three mechanisms: first,
page faults are exported to user-level, usually by having the
kernel synthesize a message on behalf of the faulting thread.
Second, a mechanism whereby the right to access page can be
delegated (L4 terminolgy: map) between tasks and, finally, a
mechanisms to revert that sharing (unmap). Since pages can be
recursively mapped, the kernel needs to track this operation,
otherwise the unmap might not completely revoke all derived
mappings. The kernel data structure used for this purpose is
usually called mapdb, an abbreviation for mapping database.

The situation is quite different for kernel memory, for
which Fiasco.OC provides no direct management mechanism.
When, in the course of a syscall, kernel memory is requested
or released, the kernel turns to its internal allocators, each
of which implements its own allocation strategy. As kernel
memory is limited, a mechanism is required to prevent users
from monopolizing this resource. Towards this goal, Fiasco.OC
uses a quota mechanism. Each task is associated with a quota
object, which represents the amount of kernel memory that
is available for all activities in that task1. Whenever a user
activity, e.g. a syscall, prompts the kernel to create a kernel
object, the kernel first checks whether the active quota covers
the requested amount of memory. If this is not the case,
the syscall fails. For each initial (user-level) subsystem2 the
amount of available kernel memory is specified in the startup
script. It is the sole responsibility of the system integrator to
specify quota values whose sum is not larger than the amount
of kernel memory available for the system at hand.

Intuitively, properly set quotas should ensure that each
subsystem can use the share of kernel memory allocated for
it regardless of the activity of other subsystems. However, due
to fragmentation, it may happen that the allocators cannot find
a contiguous memory range large enough to accommodate
the requested object. We will show that the combination of
Fiasco.OC’s design and implementation gives an attacker to
opportunity to bring about fragmentation on purpose, which,
in turn, allows him to tie down kernel memory far beyond
what his quota should allow, effectively rendering the quota
mechanism useless. The implications are twofold: not only can
an attacker deprive subsystems of resources, the tight resource
conditions also allows him to establish a high-bandwidth covert
channel with a conspirator who resides in a subsystem with
which no communication is allowed per system policy.

D. Fiasco.OC Implementation

1) Allocators: At the lowest level, kernel memory is man-
aged by a buddy allocator. Since the size of kernel objects
varies markedly, ranging from 32 bytes to 16 kB, and is not
in all cases a power of two, allocating them directly from
the buddy allocator would cause fragmentation over time.
Thus, to limit the risk of fragmentation and boost locality of
allocations, many objects are not directly allocated from the
buddy allocator but are managed through slab allocators, which
in turn are supplied with memory by the buddy allocator. Slab
allocators, eighteen in total, accommodate only objects of the
same type. On system startup, a certain amount of physical
memory, ranging from 8% to 16% of the system’s memory,
depending on the amount memory in the system, is reserved
for kernel use and fed into the buddy allocator.

Of the ten slab allocators for mapping trees (described
below), eight are vulnerable to user-induced object placement.
The two smallest are impervious to this attack as there is no
way to shrink a mapping tree so small that it would be moved
out into a allocator for smaller mapping trees. not size falls
below the threshold below which they would be moved out of

1Quota objects can be shared among multiple tasks.
2A user-level subsystem, a group of collaborating tasks, is not to be

confused with a kernel subsystem, such as the (kernel) memory subsystem of
Fiasco.OC. As it is widely used in the community, we refrain from introducing
a new term.
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the second smallest allocator, making the two smallest map-
ping tree allocators impervious to placement manipulations.
That leaves the other eight mapping tree allocators as targets.
Of the remaining slab allocators, only three are of interest:
ipc gate, irq, factory. The other allocators hold objects that
have associated objects, for which an attacker cannot easily
influence the place. For example, a task object has always
an associated pagetable, which is allocated directly from the
buddy allocator.

2) Hierarchical Address Spaces: Fiasco.OC’s implementa-
tion of the mapdb seeks to minimize its size. Each physical
page that is used as user memory is tracked through compact
representation of a tree — the mapping tree — in a depth-first
pre-order encoding. Each mapping can be represented by two
machine words holding a pointer to its task, the virtual address
of the mapping and the depth in the mapping tree3. Figure 2
illustrates the principle.

While this representation saves space compared to other
implemntations using pointer-linked data structures, it brings
about an object that potentially grows and shrinks considerably,
depending on the number of mappings of that page.

If the number of mappings exceeds the size identifier
of the mapping tree, the kernel allocates a bigger tree, into
which it moves the existing mappings along with the new

3Since a page address is always aligned to the page size, the lower bits of
the mapping address can be used for the depth in the mapping tree.

f o r each s l a b a l l o c a t o r s do
s t r i d e = s i z e o f ( s l a b ) / s i z e o f ( o b j e c t )
whi le n o t q u o t a e x h a u s t e d do

i f ( c o u n t e r mod s t r i d e ) == 0 do
a l l o c a t e pe rmanen t k e r n e l o b j e c t

e l s e
a l l o c a t e t e m p o r a r y k e r n e l o b j e c t

f i
i n c r e m e n t c o u n t e r

done
f r e e a l l t e m p o r a r y k e r n e l o b j e c t s

done
Listing 1: Memory depletion

one. Conversely, when a thread revokes mappings, the kernel
invalidates tree entries. Shrinking the tree, which involves
moving it into a smaller data structure, takes place when the
number of active entries is smaller than a quarter of the tree’s
capacity.

The combination of object whose size can be easily manip-
ulated from user-level prompting the allocation of ever larger
containers (mapping trees) and the known allocation strategy
within slabs allows it to mount an attack on Fiasco.OC’s kernel
memory subsystem.

III. UNINTENDED CHANNELS

In this section we present so far undocumented issues with
Fiasco’s kernel memory management, which can be exploited
to open up unintended communication channels. They were
not anticipated by the designers and hence cannot be controlled
by existing mechanisms. As a result, no security policy can be
enforced on them.

A. Allocation Channels

As described in section II-C, an agent’s kernel memory
consumption is to be controlled by a quota mechanism. While
the quota accounts for objects created on behalf of an agent,
it does not capture the unused space in the slabs. It can be
assumed that object creation is random enough that over time
all slabs are evenly filled and that configuring a system with
only half of its memory made available by quotas properly
addresses the issue of fragmentation. Yet, a malicious agent is
capable of causing a situation where this empty space accounts
for more than 50% by deliberately choosing the order in which
objects are created and destroyed. The algorithm to achieve
that end is shown in Listing 1, with Figure 3 providing a
graphical illustration of the process. To illustrate the point,
both the agent’s quota and the amount of used kernel quota
are assumed to be zero. To accommodate the first object, the
kernel allocates a new slab which is then used for subsequent
allocations of that type (1). The process repeats (2). It is crucial
which objects are released, the figure showing two possibilities.
If the two remaining objects reside in the same slab, the second
slab is not needed anymore and its memory can be reclaimed
by the system allocator. In case the objects are allocated in
different slabs, both slabs have to be kept. If repeated, an agent
can cause the system to enter a state where it is filled with
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Depending on the order in which objects are created and destroyed, the number
of slabs used to accommodate them can vary.

scores of slabs with only one object. While allocation requests
for objects whose slab caches have nearly-empty slabs can
be served easily, no new slabs can be allocated. An attacker
would deliberately skip a frequently used object type during
the fillup-attack, leaving the system with the few slabs for this
type of object. This limited capacity is then used up later and
no new slabs can be allocated.

It bears mentioning that the quota ballooning attack can
not only be used for setting up communication channels but
also for starving a system of any free memory in the buddy
allocator. In addition to an initial sweep, a malicious agent
would run periodically to gobble up memory that has been
released by other parts of the system in the meantime. For
systems where some components continuously allocate and
release pagetables from the buddy allocator as to repopulate
their address spaces – L4Linux is the archetypal example –
ballooning the quota can be used to make these components
seize up.

If objects could be shifted between slabs, a system could
move objects such that only few slabs are fully populated,
emptying others in the process. The memory of the newly
empty slabs could then be reclaimed and returned to the
underlying system allocator. Yet, Fiasco does not possess such
an ability!

The amount of memory that can be tied down depends
on four factors: the number of vulnerable slab caches, the
number of objects held in their individual slabs, the order in
which slabs are attacked, and, for objects with variable size
such as mapping trees, on the minimal size required for the

object to stay in a certain slab. In our experiments, we could
tie down six times the amount of the assigned quota. In a
system with two subsystem where the available kernel memory
is equally divided, a factor of two is enough to starve the
system completely.

B. Mapping-tree Channels

In addition to the allocation channels described in the
previous section, there is another implementation artifact that
can be misused as a communication channel. As described in
section II-D, Fiasco tracks user-level pages in tree-like data
structures, so called mapping trees. Available in various sizes,
the mapping tree data structure grows and shrinks as the page
it tracks is mapped into and unmapped from address spaces.
During an unmap, the kernel uses it to find the part of the
derivation tree that is below the unmapped page, if any, and
unmaps it as well. Although the mapping tree structure is
dynamically resizable, Fiasco imposes an upper bound, thus
limiting the number of mappings that can exist of a physical
page in the system. At first glance, this might not seem to be an
issue because isolated subsystems are not meant to share pages
to begin with. However, L4Re, the user-level OS framework
running on top of Fiasco.OC, provides a number of services,
among them a runtime loader, which is not unlike the loader
for binaries linked against dynamic libraries on Linux (ld.so).
Experimentally, we found that 18 pages are shared this way
among all subsystems that are started through the regular L4Re
startup procedure.

IV. CHANNEL CONSTRUCTION

In this section, we explain how to construct a high
bandwidth covert channel. We also devise more sophisticated
channels to work around problems impeding stability and
transmission rates, which allow us to establish a reliable and
fast covert channel even in difficult conditions. Three of the
proposed channels rely on the fact that a malicious thread is
able to use up more kernel memory than its quota allows. The
remaining channel exploits a limit in a shared data structure.
All of them share a similar principle for sending and receiving
data, as shown in Listing 2 and Listing 3. Data bits are
expressed as xy , x being the bit value and y being the base.

A. Page Table Channel

The Page Table Channel (PTC) requires an initial prepara-
tion as described in Section III-A. Following this, the channel
can be modulated in two ways: for sending a 12, the sender
allocates page tables from the kernel allocator, for transferring
a 02, it waits for one interval. To facilitate page table allocation,
a helper task is created by the sender and pages are mapped
into its address space. These pages are placed in such a
way that each page requires the allocation of a new page
table. The receiver can detect the amount of free memory
in the kernel allocator by performing the same steps as the
sender. The number of page tables available to the receiver is
inversely proportional to the number of page tables held by the
sender. This knowledge can be used to distinguish between the
transmission of a 12 and a 02. At the end of every interval, the
sender has to release the page tables it holds. Unmapping the
pages from the helper task is not sufficient because Fiasco.OC
does not release page tables during the lifetime of a task.



Instead, the helper task has to be destroyed and recreated. The
implications of this will be discussed in detail in our evaluation
in Section VI-A1.

B. Slab Channel

The slab channel (SC) uses contention for object slots in
slabs to transfer data. For this purpose, we set up the channel
as described in section III and subsequently perform channel
specific preparations. One slab is selected to hold mapping
trees for the transmission. This slab is filled with mapping
trees until only one empty slot remains, which is used for the
actual transmission. Figure 4 shows the principle. To transfer
a 12, the sender needs to fill this last slot. Assuming a slab
of size 4KB for the transmission, it causes a mapping tree
residing in a slab of 2KB to grow, until the it exceeds its
maximum size and the kernel moves it into a bigger slab –
the one intended for transmission. The receiver can determine
which bit was sent by performing the same operation as the
sender. If this fails, the receiver interprets this as a 12 and as
02 otherwise.

Sender Receiver

Mapping tree

Slab

X

0
2

Sender Receiver

Sender Receiver

Initial state

receive 1
2

receive

Fig. 4: Transmission in the slab channel

The sender fills or leaves empty the last spot in a slab; the receiver reads the
value be trying to move an object into that spot and checking the return code
indicating the success or failure of the operation.

f o r each b i t do
whi le n o t c l o c k t i c k mod x do

s l e e p
done
i f b i t == 1 then

c h a n n e l s p e c i f i c m a p
s l e e p
c h a n n e l s p e c i f i c u n m a p

e l s e
s l e e p 1 t i c k

f i
done

Listing 2: Clock-synchronized sender

whi le r e c e i v i n g do
whi le c l o c k t i c k mod x do

s l e e p
done
i f c h a n n e l s p e c i f i c m a p then

a d d 0 t o b i t s
e l s e

a d d 1 t o b i t s
f i
c h a n n e l s p e c i f i c u n m a p

done
Listing 3: Clock-synchronized receiver

C. Mapping Tree Channel

The Mapping Tree Channel (MTC) exploits the fact that
applications started by L4Re share 18 read-only pages. A size
constraint imposed by the maximal size of the mapping tree
– the data structure whereby an individual page is tracked –
limits the number of times a page can be mapped to 2047.
When this maximum is reached, any attempt to create new
mappings of the page will fail. In the most basic form, the
communication partners agree on one shared page, which they
then use as a conduit. In the preparatory phase, the mapping
tree of the chosen page will be filled such that only room for
a single entry remains. Creating these mappings is possible
because the shared pages are regular and are not subject to
mapping restrictions.4 To transfer a 12, the sender creates a
mapping of the chosen shared page, maxing out its mapping
count. The receiver, concurrently trying to create a mapping,
fails as result. Conversely, a 02 is indicated by no mapping
created by the sender so that the receiver’s operation succeeds.
Compared to the other two channels, the MPC incurs low
overhead. Unlike the SC, an MPC transmission requires at
most three operations. In contrast to the PTC, no costly task
destruction is necessary.

D. Channel Optimizations

Since the step rate of clock-synchronized channels is lim-
ited by Fiasco.OC’s 1000Hz timer resolution, the only path to
higher bandwidths is to increase the number of bits transmitted
per step. To that end, we devised two methods that allow
for increased channel bandwidth at the cost of higher CPU
utilization.

1) Multi-channel transmission: The bandwidth can be triv-
ially boosted if the number of sub channels is increased.
The underlying assumption here is that several of them are
available. Fiasco.OC maintains multiple slabs, each of which
can constitute a channel. An attacker can now choose between
using a slab for tying down kernel memory or use it as a
communication channel. Likewise, the existence of multiple
shared pages can be exploited.

2) Multi-bit transmission: A different approach is to trans-
mit multiple bits per channel and step. For that, a channel needs

4There are regions in Fiasco.OC tasks, such as the user-level TCB
(UTCB) that, while being accessible, cannot be mapped.



to be capable of holding 2n states, n being the number of bits 5.
Channel levels can be realized by occupancy levels, assuming
the underlying channel resource can be allocated in increments.
The number of operations to bring up and sense these levels
grows exponentially with the number of bits. For that reason,
multi-channel schemes, where the number of operations grows
linearly with the number of bits, might be preferable. However,
the number of available sub channels is limited.

E. Transmission Modes

1) Clock-synchronized transmission: Under clock synchro-
nization, two agents make use of a shared clock to synchronize
their execution. Briefly, the sender and receiver share a notion
of points in time where certain actions have to be completed.
It is the responsibility of either party to make sure that its
activity (writing to the channel or reading from it) is completed
before the next point is reached as there are no additional
synchronization mechanisms whereby the other party could
detect that its peer’s activity was not finished.

Fiasco provides a sleep mechanism with a 1ms wake-up
granularity. Moreover, every task can map a special page, the
kernel info page (KIP), through which Fiasco exposes the
current system time, again with a 1ms granularity. This global
clock is very helpful for scenarios with long synchronization
periods that consist of multiple 1ms ticks.

On x86 platforms the time stamp counter (TSC), a high-
precision clock, is available by default, which can be used to
detect points in time within a time slice. If the sender and
receiver run on different processors, this mechanism can be
used to define synchronization points that are not aligned with
the 1ms time slices.

2) Self-synchronizing transmission: On systems under
heavy load, there is no guarantee that conspiring threads are
executed frequently enough as they compete with other threads
for execution time. Whenever an interval is missed by either
party, bits are lost and the transmission becomes desynchro-
nized. To alleviate this problem, we can either incorporate error
correction into the channel – at the cost of the bit-rate – or we
can design our channel to be independent of a common clock
source.

Under the self-synchronizing regime, sender and receiver
do not observe a shared clock. Instead, they dedicate some
of the available data channels to synchronization, effectively
turning them into spinlocks. Using this mechanism, we can
ensure that sender and receiver can indicate to each other
whether the other party is ready to write to or from the channel.
This process is illustrated in Figure 5.

One drawback of self-synchronization is that at least two
data channels have to be set aside for lock operations, reducing
the number of the channels for data transmission. Especially in
setups where data channels are rare, this can be a serious issue.
We take a look at the achievable bit rates in Section VI-B.

V. L4LINUX SCENARIOS

L4Linux [39] is a port of the Linux kernel onto L4 kernels,
with the latest version being widely used in combination with

5The levels can be spread over multiple channels, so as to be more flexible
regarding the levels required per channel.

Fig. 5: Self-synchronizing transmission
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Configurations of a virtualization stack with malware present in the system
where no data can be leaked. The presence of covert channels ((b),(c)) require
that more components be trustworthy so as to prevent information leaking out
of the isolated zone.

Fiasco.OC. L4Linux does not only allow running unmodified
Linux applications, it even supports the reuse of virtualization
solutions like KVM [41]. The combination of mature Linux
virtualization stacks, the strong isolation afforded by microker-
nels, which also reliably encapsulates VMs, and the excellent
performance of hardware-supported VMs have led to the use of
this architecture in production systems [14]. The requirement
of direct access to the Fiasco.OC kernel API required a Linux-
based agent to first gain control of the L4Linux kernel 6. We
will now show that even an application lacking this ability
can use the covert channel, albeit with lower bandwidth.
This has profound implications on the security situation as
shown in Figure 6, as it requires more components to be
trustworthy. A component is trustworthy if a desired behavior
– no information leakage in our case – is only achieved if
the component works as intended. Without covert channels,
only the microkernel would have to be trustworthy (Figure
6.a)7. In systems with covert channels that are not accessible
to Linux applications information cannot be leaked as long as
L4Linux works as expected (Figure 6.b). If Linux applications,
in the case at hand the user-level VMM, have access to the

6Only the task for the L4Linux kernel expose the Fiasco.API, the tasks used
for running Linux applications do not.

7under the assumption of a sound system configuration, see Section I-A



covert channels, then they also need to be trustworthy (Figure
6.c). The changes from 6.a over 6.b to 6.c increase the attack
surface exposed to a VM, which is in all cases assumed to be
untrusted.

We have designed both a Linux-based sender and receiver.
In either case, we use a clock-synchronized (Section IV-E1)
page table channel (Section IV-A). The following sections
describe the general principle of the sender and receiver, while
we evaluate our implementation in Section VI-D.

A. L4Linux sender

The initial preparation is performed by the agent on the
L4 side, as explained in Section III-A. Similarly to the regular
PTC sender, the L4Linux sender creates a helper task by
forking its own process, into which it maps memory in such a
way that every mapping requires the allocation of a new page
table. Since Linux processes are implemented by L4 tasks,
a page table request in Linux results also in a page table
allocation in Fiasco.OC. Thereby, the sender can control the
number of kernel pages tied up in Fiasco.OC by the number of
page tables it allocates in L4Linux. The receiver, an agent with
access to the Fiasco.OC API, is identical to the one described
in Section IV-A.

B. L4Linux receiver

As in the previous section, the channel setup is left to
the L4 agent. The L4Linux receiver process is more complex
because L4Linux hides Fiasco.OC syscalls that failed from
Linux applications. Thus, the Linux-based agent has to deduce
the system state, constructed by the sender, through vari-
ances in the timing behaviour of suitably chosen operations.
Specifically, the receiver forks two Linux processes that run
sequentially, synchronized over sockets by the main process.
Both of them allocate page tables by the method described in
the previous section. The first process is still in existence but
halted when the second process runs. The allocations of the
first process never fail, the purpose of its existence is a suitable
target for resource reclamation on the part of L4Linux.

If the sender, which is identical to the one described in
Section IV-A, did not deplete the kernel allocator, enough
resources are available in Fiasco.OC to supply all allocations
of the second process. In the other case, there is not enough
memory for the second Linux process to finish, triggering an
L4Linux resource reclamation cycle wherein the first process is
destroyed.8 As a result, the time it takes for the second process
to complete its operations either encompasses the time for a
task destruction (12) or not (02). Conveniently, owing to the
long RCU cycle involved in a task destruction, the difference
is large enough to be reliably measured. Figure 7 illustrates
this principle in detail.

VI. EVALUATION

To evaluate the feasibility of our approach and to measure
the achievable bandwidth of the various channel configura-
tions, we ran a number of a experiments on three different
hardware platforms:

8Only the L4 task belonging to the Linux process is destroyed, not the
Linux process itself. When L4Linux schedules it again, a new L4 task will be
created for it.
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In case an allocation can only satisfied if the resources of task are reclaimed,
then the time needed for the task destruction are visible to the allocating agent.

• PandaBoard [44], ARM Cortex, A9 1.0Ghz, 2 cores.

• MinnowBoard [45], Intel Atom E640, 1.0Ghz, 1 core,
2 hyperthreads.

• Desktop-grade PC, AMD Athlon X2, 2.4Ghz, 2 cores.

All three platforms are equipped with 1GB of RAM. The
PandaBoard comes with an OMAP4430 SoC (System-on-a-
Chip), which features two ARM Cortex A9 cores, which are
widely used in smartphones and tablets. The Atom is pitched
by Intel at the mobile market, among others. Our rationale to
include a third, more powerful platform was based to have a
substitute for future, faster mobile processors.

With the exception of one setup, we used Fi-
asco.OC/L4Re [21], [38] version r54 (both) and L4Linux [46]
version r39. For the experiment involving L4Linux on ARM,
we used Fiasco.OC/L4Re version r63 and L4Linux version
r46.

In our measurement setups, we used two agents (sender and
receiver) implemented as native L4Re applications, with the
system setup such that they did not have direct communication
channels between them. In the setups involving Linux, one
agent was implemented as a Linux application. Unless stated
otherwise, the sender transmits packets of four bytes. The first
byte holds a continuously incremented counter value followed
by three bytes with a CRC checksum. The receiver feeds the
received bits into a queue and checks whether the latest 32 bits
contain a valid CRC checksum. All transmission rates reported
in this section reflect the number of bits transmitted per time
interval, including the checksum bits. The ”channel states” row
in our tables lists the number of states n a channel needs to
support in order to transmit log2 n bits per interval. We want to
point out that using a CRC checksum across all measurements
was only used to be able to detect transmission errors, it
is no indication of whether or not a channel is potentially



lossy. Specifically, clock-synchronized channels are vulnerable
to transmission errors depending on the system’s load situation
whereas self-synchronized channels transmit all data error-free
regardless of other activities.

A. Clock-synchronized transmission

In this section, we evaluate all transmission methods that
belong to the category of clock-synchronized channels under
various aspects. We start with the basic capacities we observed,
investigate the effects of using multiple processors and analyze
the effects of individual improvements, such as transmission
with multiple channels or multiple bits at a time. Finally, we
take a look at the CPU utilization of our transmissions and
what conclusions we can draw from these numbers in regards
to channel speed, reliability, stealth and scalability.

1) Base Channel Capacities: Our first setup implements
the PTC, as introduced in Section IV-A as our most basic trans-
mission method. We soon noticed during our experiments that
enabling SMP support results in lower bit rates when compared
to uni-processor setups. This counter-intuitive observation can
be explained by taking a closer look at the time required to
perform the individual operations for sending and receiving, as
implemented by the PTC. On SMP enabled setups, the destruc-
tion of the helper task takes significantly longer, for which the
reason can be found in Fiasco.OC internals. It employs a read-
copy-update (RCU) [47], a synchronization method incurring
low overhead while also being simple. The downside of the
approach are additional latencies for individual operations
because an operation can only terminate after a grace period
has elapsed. In Fiasco.OC, this grace period is 3 ms long.
On MP systems, this affects clock-synchronized transmission
methods that involve frequent object destructions. The PTC
in particular suffers from this circumstance and achieves on
uniprocessor system more than twice the bit compared to SMP
systems, as shown in Table I. With a duration of two ticks for
a read and write operation, SMP systems require at least five
to six ticks for reliable transmission due to the delay, with
the AMD system never needing more than five. As indicated
by the slightly lower bit rate for the MinnowBoard, the object
destruction on this platform occasionally requires an additional
tick. In contrast, both platforms yield the same bit rate on
uniprocessor setups, transmitting at a constant 500 bits/s rate.
The SC (Section IV-B) operates in principle similar to the PTC
but does not require a potentially costly object destruction. The
effects of this improvement are reflected by the measurement
results in Table II. The transmission rate is solely limited by
the amount of data that can be written to and read from the
channel within a transmission interval, which depends on the
time required to create and delete mappings.

The last column shows our final optimization of this trans-
mission method, which increases the frequency by replacing
the KIP clock with the high resolution TSC for synchronization
purposes. This allows us to increase the frequency and fit the
write and read operations for one bit into 1000 ms, yielding
1000 bits/s on the desktop system and on the MinnowBoard.

2) Multi-channel/multi-bit: The amount of data that can
be transmitted per time interval determines the maximum bit
rate, a major limiting factor against which we introduced multi-
bit transmission in Section IV-D2. This enables us to transmit

TABLE I: PTC results

Platform UP MP

AMD
channel states(#) 2 32 2 16
period (clock ticks) 2 3 5 5
capacity (bits/s) 500 1666 200 800

MinnowBoard
channel states(#) 2 4 2 16
period (clock ticks) 2 2 6 6
capacity (bits/s) 500 1000 167 667

TABLE II: SC results

Platform UP TSC + MP

AMD
channel states(#) 2 2
period (clock ticks) 2 1
capacity (bits/s) 500 1000

MinnowBoard
channel states(#) 2 2
period (clock ticks) 2 1
capacity (bits/s) 500 1000

PandaBoard
channel states(#) 2
period (clock ticks) 2
capacity (bits/s) 500

multiple bits in every transmission interval, increasing the PTC
bit rate for an unmodified frequency on all platforms, both in
SMP and in UP setups. The exact numbers are presented in
Table I, reflecting that on a more powerful processor more bits
can be encoded per interval. The delaying effect of the object
destruction on SMP setups remains visible in the result.
Another channel type, the MTC (Section IV-C), employs
multiple sub channels. This optimization along with its distin-
guished reliance on a different Fiasco.OC mechanism for trans-
mission makes it the fastest of our clocked channels. Table III
shows a maximum bit rate of 4000 bits/s on the x86 platforms
and 2000 bits/s on ARM. While both the MinnowBoard and the
AMD system manage a reliable transmission every 2 ticks, we
had to lower the frequency to every 4th tick on the PandaBoard.
During our investigation of this, we discovered that the time
required to send and receive a specific bit pattern is affected
by what was sent before. The next section covers this effect
in more detail.

TABLE III: MTC results

Platform 2 channels 8 channels

AMD
channel states(#) 2 2
period (clock ticks) 2 2
capacity (bits/s) 1000 4000

MinnowBoard
channel states(#) 2 2
period (clock ticks) 2 2
capacity (bits/s) 1000 4000

PandaBoard
channel states(#) 2 2
period (clock ticks) 2 4
capacity (bits/s) 1000 2000

3) CPU utilization: In clocked scenarios, the choice of
an optimal transmission frequency is very vital. What is
considered optimal heavily depends on the level of importance
attributed to the properties speed, reliance and stealth. As our
previous measurements showed, to prioritize either property,
it is important to take factors limiting the number of bits that



can be transmitted per interval into account. Apart from delays
imposed by the design, two major influencing factors are
clock frequency and utilization of the system processor. These
determine how fast mappings can be created and destroyed. In
order to improve reliance, we need to always assume the worst
case when estimating the number of bits that can be transmitted
safely per interval. To prioritize stealth, it is critical to know
the percentage of CPU utilization our transmission will incur.
Last but not least, to achieve high capacities, we need to know
the optimal ratio between bit rate and transmission frequency.

During our MTC (Section IV-C) experiments, we discov-
ered that when comparing mapping and unmapping operations,
the latter are by far the more expensive ones in terms of
CPU utilization. We investigated this in detail by counting
the CPU cycles spent while performing the individual steps
of the MTC 2-channel scenario for sending and receiving bit
patterns, as well as resetting the channel afterwards. Sending
and receiving both require mapping operations whereas the
reset step involves an unmap operation on the receiver side.
Whenever a bit sent over a channel differs from its predecessor,
the channel state needs to be adapted by the sender. This
is included in the time recorded for the send operation. We
limited our measurements to the x86 platforms, which lent
themselves to this effort due to the presence of the TSC on
x86.

With unmapping being more expensive than mapping,
sending a bit pattern of 002 following a pattern of 112 is
the most expensive pattern sequence since it requires both
(sub-)channels to be reset by the sender. On the receiver
side, the situation is slightly different. Since it resets the
mappings created for sampling every interval, the number of
unmap operations that must be performed is proportional to the
number of mappings created during sampling. This is affected
by the bits being sent as every 12 blocks the receiver from
creating mappings on the respective channel. Hence, the most
expensive pattern to receive is 002 as it allows the receiver
to create the maximum number of mappings on both (sub-
)channels. Table IV compares the percentage of CPU cycles
spent on sending and receiving the worst case pattern or pattern
sequence. We can use these values to tune our transmission
parameters towards the three properties mentioned at the start
of this section. It is apparent that there should be some room
for additional bits in order to optimize our transmission for
speed, as we stay well below 25% CPU utilization on both
platforms. On AMD, our experiments use only a tiny fraction
of the available CPU cycles, confirming that our configuration
of the MTC establishes a particularly stealthy and reliable
communication channel. Last but not least, it is obvious from
the numbers that the MTC scales very well with processor
performance as was expected.

TABLE IV: MTC worst case CPU utilization

Platform CPU Utilization
Send Receive

AMD 3.13% 5.65%
MinnowBoard 12.25% 17.54%

B. Self-synchronized transmission

We will now take a look at how well the self-synchronizing
transmission method described in Section IV-E2 performs. All
tests used maptree channels for both synchronization and data
transfer.

The results (Table V) show that for all three systems,
the channel capacity grows with the number of channels.
The apparently sub-linear scaling can be accounted for if,
instead of the channel capacity, the number of operations
(including synchronization) is taken into account. Transmitting
a bit requires two or three operations, depending on the
value to be transmitted. The synchronization overhead for two
transmission steps is five operations. So, going from one to
two data channels increases the number of Kashyap Thim-
marajuoperations between 44% (6.5/4.5) and 54% (8.5/5.5).
The measured increased data capacities (54% (Pandaboard,
5408/3511), 56% (Minnowboard, 3840/2448), 48% (AMD,
14738/9957) are commensurate.

In contrast, the channel capacities scale much poorer with
the number of (logical) cores used. We attribute this to resource
conflicts in the memory subsystem (cache, memory bandwidth)
as each operation has to scan through 16kB mapping tree. In
the case of the Minnowboard, we do not see any scaling at all,
which was to be expected as the used Atom E640 processor
only features a single core with hyperthreading.

TABLE V: Throughput depending on the number of transmis-
sion channels and number of cores used

Nr. of channels
(#)

Throughput
(bits/s)

Panda-
board

Minnow-
board AMD

1 3511 2448 9957
1+1 5605 2414 11940

2 5408 3840 14738
2+2 8782 3815 18592

4 7449 5368 19974
4+4 12166 5420 25492

8 9207 6697 24902
8+4 13569
8+8 6881 30582
16 10457 7637 28416

Self-synchronized transmission with maptree data channels. A single number in the #
of channels column indicates that a single pair (sender, receiver) was run on the same
core/logical core with the given number of data channels. A number pair is used for two
sender-receiver pairs running on different cores/logical cores. Since there are not enough
data channels for 8+8 combination on the Pandaboard, we used a 8+4 setup as widest
configuration there.

C. Impact of system load

Our previous experiments were run on systems without any
additional activities. As real-world systems are not idle all the
time, the question arises as to how load on the system impacts
the throughput of the covert channels. To answer this question,
we designed an experiment where we could dial a load and
measure the channel throughput under the given circumstances.
We used Fiasco with the fixed-priority scheduler, so that load
could be easily generated by a highly-prioritized thread that



alternated between legs of busy looping and sleeping. We
verified the correctness of this behavior by reading this thread’s
execution time, a figure provided by Fiasco.

As the results in Table VI show, the achievable throughput
is directly proportional to the CPU time available to the
conspiring agents. In keeping with the expectation for self-
synchronized transfers, all data arrived ungarbled.

TABLE VI: Throughput under load

System load Throughput
(%) (bits/s)
95.2 213
90 415
84 757
67 1516
50 2274
34 3078
25 3493
20 3720

16.7 3900
10 4252
5 4450
0 4731

Self-synchronized transmission with four maptree data channels on the Pandaboard. Only
one CPU is active.

D. L4Linux results

The L4Linux setup is based on a clock synchronized
method, hence we need to synchronize to a common clock
source. Since the frequency of the L4 KIP clock is well-known,
it is possible to synchronize on a predefined, constant pattern
sent by either side of the channel and calculating the clock
offset based on that. To simplify our experiments, we made the
KIP clock accessible to the L4Linux user space instead. The
delay caused by task destructions is inherently longer on SMP
systems, as explained in Section VI-A1, which is particularly
beneficial to the L4Linux receiver. It measures this delay as
part of its channel sensing routine. For both L4Linux sender
and receiver, we implemented a regular user space program
which performed the steps described in Section V. As our
main objective was to prove the feasibility of a covert channel
in L4Linux, we chose comparatively conservative parameters,
as Table VII shows.

TABLE VII: L4Linux results

Platform Receive Send

AMD
channel states(#) 2 2
period (clock ticks) 20 10
capacity (bits/s) 50 100

MinnowBoard
channel states(#) 2 2
period (clock ticks) 30 17
capacity (bits/s) 33 58

PandaBoard
channel states(#) 2 2
period (clock ticks) 30 30
capacity (bits/s) 33 33

VII. RELATED WORK

Ristenpart et al. [48] showed that constructing a cross-
VM side-channel is possible in Amazon’s EC2, prompting
further research on virtual machine infrastructure. Wu et
al. [49] use the EC2 as a host for covert communication.
Exploiting peculiarities of the underlying x86 platform, they
were able to achieve transmission rates of up to 100 bits/s.
Xu et al. [27] also leverage cache crosstalk to construct a
covert channel with channel capacities of up to 262 bits/s.
Suzaki et al. [32] examined various virtual machines and
discovered a side-channel in KVM based on the memory
deduplication feature, which merges same-content memory
pages, allowing for increased memory utilization. Based on
these findings, Xiao et al. [31] constructed a covert channel
with bandwidths of up to 1000 bits/s yet with a large memory
footprint of ∼ 400MB. Lipinski et al. [50] drew on work done
by Ristenpart et al. [48] and improved the method of hard
disk contention achieving a 1000 times higher steganographic
bandwidth compared to the 0.1 bits/s by Ristenpart et al.
Okamura [28] et al. examined the load-based covert channel
on the Xen hypervisor. Changes in execution time due to
sharing of a physical CPU led to an information leakage.
The constructed covert channel had bandwidth of ∼0.5 bits/s.
Lin et al. [51] propose two covert communication channels
based on the last PID and a temporary file in the Linux OS.
They construct three channel mechanisms to counter mitigation
techniques. The authors achieve bandwidths of up to 40 bits/s.
In comparison, we achieved significantly higher bandwidths of
up to 5000 bits/s, on a system that emphasizes isolation.

Murray et al. [52] showed that formal correctness proofs
of a general purpose kernel (seL4) can be extended to cover
information flow as well. The authors list a number of re-
striction, among them: support only for a single processor,
no device interrupts, and a global static schedule. Although
these assumptions might be common for deployed separation
kernels (as the authors claim), they impede system construction
compared to Fiasco. As such, the authors investigate a more
specialized system.

VIII. CONCLUSIONS

It was shown that Fiasco.OC, a widely known and used
third-generation microkernel, cannot deliver on isolation ex-
pectation in the face of a determined attacker. We have
identified three shared facilities whose control mechanisms
can be rendered ineffective (kernel allocator, object slabs)
or, worse, who lack them at all (mapping trees). In our
experiments, we showed the feasibility of using them as a
means of communication and achieved maximal channel ca-
pacities of up to ∼30000 bits/s, outstripping previously found
channels in VM environments by a fair margin. Our ongoing
experiments indicate that the achieved channel capacities are
only a provisional result and a more than twofold increase is
within reach with further refinements. Moreover, the trend to
faster processors with more cores suggests that the capacity of
the described channel types will only grow in the future.

The identified channels raise concerns about Fiasco.OC’s
role in devices with security requirements. For example,
the covert channel rates achieved on the Pandaboard (up to
∼ 13500 bits/s) lend plausibility to some disconcerting attack



scenarious against phones that offer encrypted VoIP calls.
Specifically, a Trojan horse may eavesdrop on the raw audio
data of an encrypted VoIP connection as they are processed
unencrypted in a protected compartment9. The bandwidth of
the covert channels needed to exfiltrate the call data into an
unprotected compartment is sufficient for voice calls if com-
pressed with modern algorithms, which need (∼ 4000 bits/s).

Although an exhaustive list of design changes suitable to
counter our attacks is beyond the scope of the paper, we
would like to touch on the topic. As a communication step
requires both conspirators to execute, it seems advisable to
introduce a mechanism along the lines of work done by Wu
et al. [53], whereby the switch rate between isolated domains
can be controlled. We acknowledge that such a scheme may
have a negative impact on throughput in scenarios where the
activity pattern of subsystem is bursty. In the light of Linux-
based systems, there cannot be any doubt about the need for
the ability to encapsulate Linux instances. However, endowing
Linux with the full microkernel API seems to be ill-advised
as the offered feature set is not fully needed, yet grows the
attack surface of the microkernel.

The inadequacy of Fiasco.OC’s memory subsystem rein-
vigorates the debate about whether system design shall be
driven by pragmatism or principle. Proponents of Fiasco’s
pragmatism often point to the wide range of functionality it
provides. Indeed, the support of multi-processors, the ability
to host Linux [46] on platforms without virtualization support,
and the availability of a user-level framework [38] make for
a system that lends itself to a wide range of applications.
In contrast, the emergence of seL4 [43], [54], [55], the first
general purpose kernel for which a formal correctness proof
could be produced, brings within reach the prospect that
systems can be constructed on error-free kernels. That said,
it should be kept in mind that as of yet the seL4 ecosystem
is in certain important aspects rather limited. For example,
although multiprocessor support has been considered [56], a
multiprocessor version of seL4 is not available. Moreover, the
discussed clustered multi-kernel (CMK) model raises questions
as to the implications on the user-level programming model.
As case in point, CMK was considered for Fiasco as well,
but then dismissed over concerns that the programming model
would diverge to much from the prevelant processor agnostic
models as found on Linux and Windows. In a similar vein,
the virtual machine monitor shipping with seL4 [57] does not
support the ARM architecture, which renders it unsuitable for
mobile devices. In any event, it will be interesting to examine
seL4 and watch its ecosystem evolve.

Small kernels have the tendency to inspire users confidence.
Yet, as demonstrated this trust might be misguided. Instead,
we encourage designers of security-conscious systems to scru-
tinize the merits of the OS kernels they use on reasonable
grounds, not promises or perceptions.
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