
Publicly Verifiable Non-Interactive Arguments
for Delegating Computation

Omer Paneth∗ Guy N. Rothblum†

December 4, 2014

Abstract

We construct publicly verifiable non-interactive arguments that can be used to delegate polyno-
mial time computations. These computationally sound proof systems are completely non-interactive
in the common reference string model. The verifier’s running time is nearly-linear in the input
length, and poly-logarithmic in the complexity of the delegated computation. Our protocol is based
on graded encoding schemes, introduced by Garg, Gentry and Halevi (Eurocrypt 2012). Security is
proved under a falsifiable and arguably simple cryptographic assumption about graded encodings.
All prior publicly verifiable non-interactive argument systems were based on non-falsifiable knowl-
edge assumptions. Our new result builds on the beautiful recent work of Kalai, Raz and Rothblum
(STOC 2014), who constructed privately verifiable 2-message arguments. While building on their
techniques, our protocols avoid no-signaling PCPs, and we obtain a simplified and modular analysis.

As a second contribution, we also construct a publicly verifiable non-interactive argument for
(logspace-uniform) computations of bounded depth. The verifier’s complexity grows with the depth
of the circuit. This second protocol is adaptively sound, and its security is based on a falsifiable
assumption about the hardness of a search problem on graded encodings (a milder cryptographic
assumption). This result builds on the interactive proof of Goldwasser, Kalai and Rothblum (STOC
2008), using graded encodings to construct a non-interactive version of their protocol.

∗Boston University. Email: omer@bu.edu. Supported by the Simons award for graduate students in theoretical computer
science and an NSF Algorithmic foundations grant 1218461.
†Stanford University. Email: rothblum@alum.mit.edu. Part of this work was done at Microsoft Research, Silicon

Valley. This work was supported by the DARPA PROCEED program. Opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of DARPA.

Contents

1 Introduction 1
1.1 Non-Interactive Arguments for P . 2
1.2 Non-Interactive Arguments for Bounded-Depth Computations 4
1.3 Graded Encoding Schemes and Security Assumptions 4

1.3.1 Curve Encryption Assumption over Symmetric GEs 5
1.3.2 Hardness Assumption over Asymmetric GEs 6

1.4 Further Related Work . 7

2 Technical Overview 7
2.1 Non-Interactive Arguments for P . 8

2.1.1 Basic Protocol and Partial Assignment Generator for Q = 3 8
2.2 Non-Interactive Arguments for Bounded Depth . 10

2.2.1 Non-Interactive Sum-Check Argument . 11

3 Tools and Definitions 12
3.1 Graded Encodings . 12

3.1.1 Symmetric Graded Encodings . 12
3.1.2 Asymmetric Graded Encodings . 14

3.2 Curves, Manifolds and their Encodings . 16
3.2.1 Curve Encryption . 17
3.2.2 Semantic Security of Curve . 17
3.2.3 Avoiding Encoding Re-Randomization . 19

3.3 (Publicly-Verifiable) Non-Interactive Arguments . 21
3.4 Ring-Independent Arithmetic Circuits. 21
3.5 Multi-linear Extension. 22
3.6 Uniform and Constructible Circuits . 22
3.7 Encoded Polynomials . 24

4 Non-Interactive Arguments for P 25
4.1 Completeness and Soundness . 26

4.1.1 Basic Protocol Completeness and Soundness 26
4.1.2 Full Protocol Completeness and Soundness . 27

4.2 The Basic Protocol . 27
4.2.1 The Circuit φbx . 27
4.2.2 The Challenge Generator GenBP . 28
4.2.3 The Prover PBP . 29
4.2.4 The Verifier VBP . 30

4.3 The Basic Protocol’s Soundness and Assignment Generator 31
4.4 The Augmented Circuit . 35

4.4.1 Construction . 35
4.4.2 Proof of Claim 4.4 (Augmented Soundness) . 38

5 Non-Interactive Arguments for Bounded-Depth Computations 44
5.1 Non-Interactive Sum-Check Sub-Protocol . 44

5.1.1 Interface . 45
5.1.2 Completeness and Soundness . 46
5.1.3 Construction . 47
5.1.4 Soundness: Proof of Claim 5.2 . 49

2

5.2 Non-Interactive 2-to-1 Sub-Protocol . 51
5.2.1 Interface . 51
5.2.2 Completeness and Soundness . 53
5.2.3 Construction . 54
5.2.4 Proof of Claim 5.5 . 56

5.3 Non-Interactive Bare-Bones Delegation Protocol . 57
5.3.1 Interface . 58
5.3.2 Completeness and Soundness . 59
5.3.3 Construction . 61
5.3.4 Proof of Claim 5.8 . 66

5.4 Non-Interactive Arguments for Bounded-Depth Computations 69
5.4.1 Non-Interactive Arguments for NL . 70
5.4.2 Bounded Depth Computations . 71

6 Acknowledgements 73

1 Introduction

The power of efficiently verifiable proof systems is a foundational issue in the study of computation.
A central goal is constructing proof systems that can be used by a powerful prover to convince a weak
verifier of the correctness of a complex computational statement. Beyond its foundational importance
in the theory computation, this question has real-world applications, such as delegating computation. In
this setting, a powerful server (playing the role of the prover) can run a complex computation for a much
weaker client (playing the role of the verifier), and provide a proof of the output’s correctness. For such
a proof to be applicable to the delegation scenario, we require: (i) super-efficient verifier: in particular,
verification should not require re-excuting the computation, and (ii) poly-time proof: generating the
proof should not require much more computational resources than just running the computation.

A similar question was raised by Babai, Lund, Fortnow and Szegedy [BFLS91] in the PCP set-
ting. Kilian [Kil92] and Micali [Mic94] gave the first candidate scheme for delegating computation.
The question re-emerged in the theoretical literature in the work of Goldwasser, Kalai and Rothblum
[GKR08], and has since become become the focus of a rich body of research spanning both theory and
systems. See the recent survey by Walfish and Blumberg [WB13].

We focus on proof systems for proving the membership of an input x in a language L. The “holy
grail” for delegating computations is fully non-interactive proofs, comprised of a single message sent
from the prover to the verifier, as in classic NP proofs. Unfortunately, there are serious barriers to
constructing such proofs for delegating general deterministic computations (in particular, even without
the poly-time proof property, they imply general non-deterministic speedups for deterministic compu-
tations). Instead, we focus on computationally sound proofs in the common reference string model, a
prevalent model in the cryptographic literature:

1. We require only computational soundness. Soundness is only required to hold against efficient
cheating provers. Computationally sound proof systems are commonly called argument systems.

2. We use a (public) common reference string (CRS), generated in advance by a trusted authority (or
by the verifier herself). This CRS can be used (repeatedly) by different parties to verify proofs.

Under these relaxations, we maintain the requirements for super-efficient verification (including the
time to generate the CRS) and poly-time proofs. Both the prover and the verifier have access to the
CRS, but neither has access to the secret coins used to generate the CRS. We refer to such a system as
a (publicly verifiable) non-interactive argument (for delegating computation). For the remainder of this
work, we use the term non-interactive argument as shorthand. (We note that past work has occasion-
ally referred to 2-message protocols with private-key verification as non-interactive arguments. Unless
explicitly stated otherwise, all non-interactive arguments in this work are publicly verifiable.) Such non-
interactive argument are especially attractive for delegating computation, as any untrusted server can
simply use the CRS to generate proofs and send them off (non-interactively and asynchronously), to be
verified at the clients’ convenience. The fundamental question that motivates our work is:

Do there exist publicly verifiable non-interactive arguments for delegating computations?

Past work, starting with [Mic94], constructed publicly-verifiable non-interactive arguments under
non-falsifiable assumptions (and even for non-deterministic computations).1 In a beautiful recent work,
Kalai, Raz and Rothblum [KRR14] constructed a privately verifiable 2-message argument for delegating
polynomial-time computations, assuming a sub-exponentially secure PIR scheme. Private verifiability
means that only the verifier, who generated the challenge message using secret coins, can verify that a
proof is valid. Our focus, on the other hand, is on public verifiability.

1A “falsifiable” assumption [Nao03] is one that can be efficiently refuted. Falsifiability is a basic “litmus test” for crypto-
graphic assumptions.

1

This work. We construct non-interactive arguments for delegating computations based on graded en-
coding schemes (see Garg, Gentry and Halevi [GGH13]). Security is proved under simple and falsifiable
polynomial-time hardness assumptions about graded encodings. We obtain:

• A (publicly verifiable) non-interactive argument that can be used to delegate any deterministic
polynomial-time computation.

• A (publicly verifiable) non-interactive argument for delegating bounded-depth computations. While
this second protocol doesn’t support as rich a family of computations as the first protocol, we prove
its security under a milder hardness assumption. Moreover, it can be shown to be adaptively se-
cure: security holds even against an adversary who chooses the input x as a function of the CRS.
To the best of our knowledge, this is the first construction of a non-interactive delegation scheme
that has adaptive soundness under a falsifiable polynomial-time hardness assumption.

While our main focus is on the public verifiability property, we also note that no prior constructions
of non-interactive arguments (publicly verifiable or privately verifiable) were known to be secure under
polynomial-time hardness assumptions, even with non-adaptive soundness.

We elaborate briefly on graded encodings (GE), which provide cryptographic hard-to-invert encod-
ings for the elements of a certain ring. The hard-to-invert (probabilistic) encodings support homomor-
phic evaluation of low-degree algebraic expressions over the encoded elements. The GE also allows
zero-tests: testing whether a low-degree expression evaluates to zero. Evaluating expressions whose
degree exceeds a set threshold is assumed to be hard.

At a (very) high level, both of our constructions rely heavily on techniques from the interactive proof
and PCP literature. These techniques are used to obtain a low-degree (non-cryptographic) algebraic
encoding of the delegated computation. Using the Graded Encoding Scheme, the CRS specifies hard-to-
invert cryptographic encryptions of queries into the algebraically encoded computation. On one hand,
the honest prover can (homomorphically) compute encrypted answers to the encrypted queries because
the algebraic encoding of the computation is low degree, and the GE supports low-degree operations on
the encrypted queries. On the other hand, the GE’s security prevents a cheating prover from learning
information about the queries and breaking soundness. The public verification procedure runs a low-
degree procedure on the encrypted queries from the CRS and on the proof. The check returns 0 when it
succeeds, and the verifier can test for this using the GE zero-test procedure.

Our first constructions is greatly inspired by the recent work of [KRR14], who achieved privately
verifiable non-interactive arguments (albeit using only PIR schemes, rather than GEs). We remark that
our analyses are significantly simpler than [KRR14]. We also attempt to abstract the key ideas inspired
by their proof, and provide a modular presentation.

Organization. We proceed with informal statements and a discussion of our main results in Sections
1.1 and 1.2. We give an overview of graded encodings and our cryptographic assumptions in Section
1.3. Further related work is discussed in Section 1.4. We provide a technical overview of some key ideas
and techniques in Section 2. The remainder of the paper gives the results in full detail.

1.1 Non-Interactive Arguments for P

Our main result is a non-interactive argument for delegating polynomial-time computations.

Informal Theorem 1.1 (See Theorem 4.5). Assume the existence of a Graded Encoding Scheme satisfy-
ing Assumption 1.4. Let L be a language that is computable by a Turing Machine in time t(n). Let κ be a
security parameter and n = poly(κ) an input length. There exists a (publicly verifiable) non-interactive
argument for L where:

1. The prover runs in time poly(t(n), κ).

2

2. The verifier runs in time n · poly(log(t(n)), κ).

3. The time to generate the CRS, as well as the lengths of the CRS and the proof, are poly(log(t(n)), κ).

We elaborate on Assumption 1.4 in Section 1.3.1. We emphasize that we only assume polynomial
time hardness. Soundness is non-adaptive: the input x is specified independently of the CRS. As is
usually the case for argument systems, we can use complexity leveraging to make the protocol adaptively
secure, but this requires assuming sub-exponential time hardness.

Background. One can view our construction as inspired by a tantalizing idea of Aiello et al [ABOR00]
for constructing private-key non-interactive arguments using a PIR scheme or Fully Homomorphic En-
cryption (FHE). Their idea was to have the verifier encrypt queries to a PCP using the PIR scheme
or FHE. The honest prover could answer according to the honest PCP proof and convince the veri-
fier. The hope was that since a cheating prover couldn’t tailor its answer to one query depending on
other queries’s values, the non-interactive argument would inherit the PCP’s soundness. Dwork et al.
[DLN+04] showed that this intuition for security was quite problematic (see below). Nonetheless, a
beautiful series of works [KR09, KRR13, KRR14] has taken inspiration from the [ABOR00] idea to
great effect.

Semantically secure queries and public verifiability. Security concerns aside, the [ABOR00] idea
may seem to be inherently linked to private verifiability. If the encrypted queries are semantically
secure, how could they convey useful information to the verifier, who doesn’t know the secret key, and
is trying to decide whether to accept the proof? In particular, the following attack seems problematic. A
cheating prover, given query-encryptions, could pick an input in the language, and generate an accepting
proof Π. It could also generate a proof Π∗ that makes the verifier reject. It can then change Π to Π∗

bit-by-bit, and use public verifiability to observe which bit change is the first to make the verifier reject.
That bit must have been queried, and the query-encryption seems to have been broken.

One of our conceptual contributions is showing that public-verifiability is possible even if the query-
encryption is semantically secure. We overcome the above difficulty by utilizing a specific query-
encryption scheme with algebraic structure and additional properties. We also apply this query-encryption
scheme to a carefully constructed PCP-like proof. The prover’s message contains more than just the an-
swers to the encrypted queries. In particular, the bit-by-bit cheating strategy of the prover above would
be detected (and would make the verifier reject) well before the changes reach any encrypted query. In
this, our work differs from previous works such as [KRR14], which focused on general transformations
obtained by applying any PIR scheme to any PCP with strong enough soundness properties (see below).

Security via public verifiability. Coming back to security of the [ABOR00] transformation, Dwork
et al. [DLN+04] showed that proving its security is made problematic by signaling prover strategies
[KRR14]. To see this problem, consider a verifier that sends encryptions of two queries q1, q2 to the
prover, who sends back (encrypted) anwers a1, a2. Certainly, the distribution of a1 cannot depend
(noticeably) on q2, or the prover would break the semantic security of q2’s encryption. However, a more
subtle attack is not ruled out: a1 and a2 could be drawn from a joint distribution, that depends jointly on
(q1, q2), but whose marginal on a1 is independent of q2. This type of behavior is known as a “signaling
strategy”. It is unclear how to show that provers who follow a “signaling strategy” break the query-
encryptions. Moreover, standard PCPs are not secure against provers who use signaling strategies.
Despite this problematic state of affairs, the works of [KR09, KRR13, KRR14] were able to leverage the
[ABOR00] idea, using PCPs with a careful and sophisticated soundness analysis that withstand signaling
attacks. These are known as “no-signaling” PCPs.

For us, public verifiability goes hand-in-hand with a simpler construction and analysis. A key insight
is that in our setting (unlike the private verification setting of past works) it is possible to publicly
observe whether or not a proof Π is convincing (with respect to a given CRS). In particular, if a prover
P∗ can convince the verifier given a real CRS, generated to encrypt random queries, then P∗ must also

3

convince the verifier on a simulated CRS, generated to encrypt any arbitrary collection of queries. This
is because the encryption is semantically secure, and the prover’s success is publicly observable even
without knowing the secret key. We leverage this powerful guarantee in the security proof. It greatly
simplifies our analysis (compared with [KRR14]), and in particular it allows us to avoid no-signaling
PCPs. In fact, we avoid even the construction of standard PCPs and do not use low-degree tests. We
do note, however, that our construction and security proof draw extensively on those of [KRR14]. Most
significantly, their “augmented circuit transformation” plays a key role in our proof. As an additional
contribution, our security proof abstracts some of the main ideas and steps in the [KRR14] construction,
and is (arguably) simpler and more modular.

See Section 2.1 for a taste of the techniques, and Section 4 for the full details.

1.2 Non-Interactive Arguments for Bounded-Depth Computations

Our second contribution is a protocol for bounded-depth computations. We follow [GKR08] and focus
our attention on languages that are computable by log-space uniform circuits of bounded depth. For
this more restricted (but still very rich) family of computations, we obtain a protocol with improved
security. First, we base security on the hardness of a search problem on GEs, rather than on a decisional
assumption. Second, the resulting scheme is adaptively sound: even a cheating prover who first sees the
CRS, and picks the input x adaptively as a function of the CRS, cannot make the verifier accept when
x /∈ L.

Informal Theorem 1.2 (See Theorem 5.13). Assume the existence of a Graded Encoding Scheme where
Assumption 1.6 holds. Let L be a language that is computable by a log-space uniform circuit ensemble
of depth D(n) and size S(n). Let κ be the security parameter and n = poly(κ) an input length. There
exists a (publicly verifiable) non-interactive argument for L with adaptive soundness, where:

1. The prover runs in time poly(S(n), κ).

2. The verifier runs in time n · poly(D(n), κ).

3. The time to generate the CRS , as well as the lengths of the CRS and the proof, are poly(D(n), κ).

We elaborate on Assumption 1.6 in Section 1.3.2. Our starting point is the (information theoretically
secure) interactive proof of [GKR08]. At a high level, the CRS contains hard-to-invert cryptographic
encodings of the GKR verifier’s interactive queries. If these queries were sent to a cheating prover in the
clear and in advance, it would be easy to find convincing answers that make the GKR verifier accept.
We show, however, that any cheating prover who can make the GKR verifier accept using only these
cryptographic encodings of the queries, must be breaking the security of the GE.

We emphasize that, in this second protocol, the cryptographic encodings are not semantically secure.
In particular, we cannot argue (as above) that the prover cannot distinguish the real CRS from a simulated
CRS tailored to include specific queries. Instead, we make extensive use of the GKR protocol’s algebraic
structure to show that finding a cheating proof necessitates solving a hard search problem on GEs. This
allows us to achieve adaptive security based on a milder hardness assumption.

1.3 Graded Encoding Schemes and Security Assumptions

Graded (multi-linear) encoding schemes were introduced by Garg, Gentry and Halevi [GGH13]. By
now there are several candidate constructions [GGH13, CLT13, GGH14]. They come in symmetric and
asymmetric variants, and we use both types. The delegation protocol for polynomial-time computations
uses symmetric GEs, and the protocol for bounded-depth computation uses asymmetric GEs. We give a

4

brief overview on GEs and give informal statements of our cryptographic assumptions. See Section 3.1
for details on GEs and our assumptions.

A brief overview. A GE is specified by a degree parameter δ and public parameters pp, which define
an underlying ring R (for us R is always Zp for some prime p exponential in the security parameter).
The GE includes a collection Λ of levels for encodings. For symmetric GEs, the levels are integers and
Λ = [0, δ]. For asymmetric GEs, there is an additional dimension parameter κ, and the levels are vectors
of integers in Λ = [0, δ]κ. In both cases, any ring element α ∈ R can be encoded in any level v ∈ Λ.
Such an encoding is denoted by [α]v (there are many encodings for each ring elements in each level).

Using GEs we can perform: (i) Additions and subtractions on encodings in the same level, where
[α]v ± [β]v = [α± β]v, (ii) a zero test, taking an input encoding [α]v in any level in Λ, and outputting
whether α = 0, (iii) multiplications, where [α]v · [β]u = [α · β]v+u. In the asymmetric case, the
summation of levels is performed pointwise. If (v+u) /∈ Λ, then multiplication fails, (iv) sampling the
encoding of a uniformly random ring element encoded in different (and non-zero) levels of Λ.2

1.3.1 Curve Encryption Assumption over Symmetric GEs

Our non-interactive arguments for P use symmetric GEs, and a “curve encryption” primitive. An m-
dimensional curve of degree δ over the ring R is a function γ : R → Rm, which can be written as
γ(t) =

∑
i∈[0,δ] ~αi · ti, where for each i we have ~αi = (αi,1, . . . , αi,m) ∈ Rm. We also consider

encoded curves, where the items in each ~α are encoded:

[γ]` =
{

[αi,j]`
}
i∈[0,δ],j∈[m]

.

The security requirement is that a level-1 encoding of a curve that passes through a given point
w ∈ {0, 1}m, but is otherwise a random curve, completely hides w. We assume this for curves of the
maximal degree δ that the GE supports.

Definition 1.3 (Curve Encryption). A curve encryption scheme is given by a procedure Curve such that:

• Functionality. For w ∈ {0, 1}m, taking ([γ]1 , [t]0) ← Curve(pp,w), we get that γ is a random
m-dimensional curve of degree δ such that γ(t) = w.

• Semantic Security. For every two points w0,w1 ∈ {0, 1}m, taking:

(
[
γb
]

1
,
[
tb
]

0
)← Curve(pp,wb),

for every b ∈ {0, 1}, no PPT adversary can distinguish the distributions of
[
γ0
]
1

and
[
γ1
]
1

(without seeing
[
t0
]
0

or
[
t1
]
0
).

Definition 1.3 specifies the (distribution of) encoded values, but it does not specify how the encod-
ings are sampled. Indeed, curve encryption can be instantiated via several different constructions, which
sample the encodings in a variety of ways. We consider two instantiations below. The first is a candidate
that we conjecture to be secure in all known secure GEs. The second instantiation can be proven secure
based on a simple and natural decisional base-group assumption over GEs that support re-randomization.

Candidate construction. We provide a candidate construction for curve encryption that we conjecture
to be secure for all known GE candidates.

Assumption 1.4. The construction given in Section 3.2.3 is a secure curve encryption (according to
Definition 1.3).

2Random sampling in arbitrary encoding levels is not a completely standard operation, but to the best of our knowledge,
can be instantiated in known schemes without allowing any known attacks. See Remark 3.8.

5

This construction can be shown to be secure in the generic GE model, see Brakerski and Rothblum
[BR14]. To the best of our knowledge, no non-generic attacks on GEs are known, unless the adversary
can use re-randomization parameters or non-trivial encodings of 0. Neither of these is released by
our candidate. Even if this candidate is broken by future attacks, curve encryption remains a simple,
plausible and falsifiable GE primitive.

Candidate construction from the Polynomial Resolution assumption. We also construct curve en-
cryption where security can be based on a simple and natural decisional base-group assumption on
GEs that support re-randomization. We call this the “Polynomial Resolution (PR) Assumption”, see
below and in Section 3.2.2. We note that several recent attacks on known GE candidates [GGH13,
CHL+14, GHMS14, BWZ14, CLT14] leverage re-randomization to break security. In particular, these
attacks also rule out the security of our polynomial resolution assumption in all known candidates that
allow re-randomization. Still, this state of affairs seems quite fluid: more attacks may be discovered, as
may further secure candidates. We are hopeful that secure candidates that allow re-randomization will
emerge, and we view our security proof based on the PR assumption as an important contribution in
showing how to directly instantiate the curve encryption primitive from a simple and natural assumption
on GEs that allow re-randomization.

In a nutshell, the Polynomial Resolution assumption states that for a GE with degree bound δ, it
is hard to evaluate a random (univariate) encoded polynomial of degree δ on an encoded input. The
encodings of all δ + 1 coefficients (α0, . . . , αδ) and of the evaluation point t are given in level 1. Note
that evaluating the polynomial at t requires total degree (δ + 1) (whereas the GE only supports degree
δ). Moreover, we make a decisional assumption: we assume that it is difficult to distinguish a random
encoding of the correct evaluation point (in level 1) from the encoding of a uniformly random and
independent ring element z.

Assumption 1.5 (Polynomial Resolution (PR) Assumption, see Assumption 3.4). There exists a symmet-
ric GE with degree bound δ s.t. the following two distributions are computationally indistinguishable:(

[α0]1 , . . . , [αδ]1 , [t]1 ,

[
y =

δ∑
i=0

αi · ti
]

1

)
c
≈ ([α0]1 , . . . , [αδ]1 , [t]1 , [z]1) ,

Where α0, . . . , αδ, t, z are independent and uniformly random ring elements, and where all the encod-
ings above are random level-1 encodings of their respective ring elements.

1.3.2 Hardness Assumption over Asymmetric GEs

Our non-interactive arguments for bounded-depth computations use asymmetric GEs and a new hardness
assumption. Roughly speaking, we assume that given an encoding [α]ei of a random element, where ei
is the i-th unit vector, it is hard to find encodings [β]v , [γ]u s.t. (β · αj = γ), v[i] = 0, u[i] < j.

We note that a milder assumption would simply say that it is hard to find an encoding [γ]u such that
both (αj = γ) and (u[i] < j). We make the adversary’s job easier by allowing it to use an encoding of
β, but we insist that the i-th dimension of this encoding’s level be 0.

We conjecture that the assumption holds over all known GE candidates [GGH13, CLT13, GGH14,
BWZ14]. Note that the adversary never receives re-randomization parameters, so we are not susceptible
to the attacks in [GGH13, CHL+14, GHMS14, BWZ14, CLT14]. Note also that the assumption holds
in the generic GE model.

Assumption 1.6 (see Assumption 3.10). For an asymmetric GE specified by pp, with κ dimensions, for
any PPT Adv and any i ∈ [κ], j ∈ [0, δ], let [α]ei be a random level-ei encoding:

Pr
pp,[α]ei

[
[β]v , [γ]u ← Adv(pp, [α]ei) ;

(
β · αj = γ

)
, (β 6= 0) , (v[i] = 0) , (u[i] < j)

]
= negl ,

6

where u,v ∈ Λ (and thus the relation
(
β · αj = γ

)
can be tested efficiently, and the assumption is

falsifiable).

1.4 Further Related Work

There are several interactive schemes for delegating computation. Starting with the interactive argu-
ments of Kilian (using [Kil92] (as generalized by Micali [Mic94]), which apply even to non-deterministic
computations. Goldwasser, Kalai and Rothblum [GKR08] constructed interactive proofs for bounded-
depth deterministic computations. Rothblum, Vadhan and Wigderson [RVW13] constructed interactive
proofs of proximity, with sublinear time verification, for bounded-depth computations.

A line of works that we discuss extensively above constructs privately verifiable two-message argu-
ments for delegating computation assuming subexponentially hard PIR or FHE schemes [KR09, KRR13,
KRR14]. Several recent works construct publicly-verifiable non-interactive arguments for delegating
(even non-deterministic) computation under non-falsifiable assumptions (see above), see for example
[Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13] and more. Gentry and Wichs [GW11] showed
that there are barriers to constructing succinct non-interactive arguments for non-deterministic com-
putations. These barriers are not applicable to delegation schemes, since those focus on deterministic
computations.

A separate line of works consider non-interactive delegation schemes in a pre-processing model,
where the verifier is efficient in an amortized sense [GGP10, CKV10, AIK10, PRV12]. Another promis-
ing body of research, starting with [CTY11], focuses on practical efficiency and concrete implementa-
tions of delegation schemes.

Related and independent works. A recent sequence of works [BGT14, CHJV14, LP14, KLW14],
all independent of our work, construct publicly-verifiable delegation schemes based on indistinguisha-
bility obfuscation. [GLSW14] showed that indistinguishability obfuscation can be based on the sub-
exponential hardness of the Multilinear Subgroup Elimination problem in GEs. The work of [KLW14]
obtains non-interactive protocols for general polynomial-time computations and can be based on the sub-
exponentially hard Subgroup Elimination. The works [BGT14, CHJV14, LP14] obtain non-interactive
delegation protocols for bounded-space computations based on the sub-exponentially hard Subgroup
Elimination. The protocols of [BGT14, LP14] can be based on polynomial hardness of Subgroup Elim-
ination, a falsifiable assumption, but this comes at the price of adding an additional message to the
protocol: They get a two-message protocol, where the first message depends on the input x, rather than
a non-interactive scheme in the CRS model.

Comparing with our work, our first result is a fully non-interactive protocol in the CRS model for
any polynomial-time computation, rather than bounded space as in [BGT14, CHJV14, LP14]. Security
is based on a falsifiable polynomial-time hardness assumption, whereas [KLW14] need sub-exponential
hardness. We do note, however, that the assumptions are incomparable. On one hand, Indistinguisha-
bility Obfuscation is a more richly studied primitive than our new assumptions. On the other hand, it
is a “heavy hammer” in terms of the concrete assumptions required and the expensive constructions.
Comparing with our second result, the classes of depth-bounded and space-bounded computations are
incomparable. In terms of security, our protocol achieves adaptive soundness. All other works require
sub-exponential hardness assumptions to achieve adaptive soundness. For security, we only assume the
hardness of a natural search problem on GEs. This assumption is arguably more plausible than the
security of indistinguishability obfuscators or of decisional hardness assumption in GEs.

2 Technical Overview

We give an overview of some of the techniques and insights behind Informal Theorems 1.1 and 1.2.

7

2.1 Non-Interactive Arguments for P

In this section we give an overview of our techniques that give non-interactive arguments for polynomial-
time computations. A key component of this result, is generating locally consistent partial assignments
for a set of algebraic constraints. We outline this contribution below. See Section 4 for full details.

Globally consistent assignments ([BFLS91]). The following proof verification primitive is a corner-
stone of PCP constructions. Let R be a ring, and m ∈ N. Let f : R3m+3 → R be an easy-to-compute
low-degree arithmetic circuit. A prover claims to know a function X : {0, 1}m → {0, 1} such that:

∀w1, w2, w3 ∈ {0, 1}m, f(w1, w2, w3, X(w1), X(w2), X(w3)) = 0 (1)

A proof should convince the verifier that there exists an exponential (in m) global assignment to the
values {X(w)}w∈{0,1}m that is consistent in the sense that it satisfies all 23m algebraic constraints in
Equation (1). The verifier’s complexity is only polynomial in m. PCP proofs for statements of this type
are key in constructing PCPs for general non-deterministic computations.

Locally consistent partial assignments. In the non-interactive argument setting, we cannot construct
quite as strong a primitive as the one described above (and we do not obtain a general result for nonde-
terministic computations). Rather, abstracting one of the main steps of the [KRR14] construction, we
aim for a somewhat relaxed guarantee for the above setting.

We construct a non-interactive argument that, rather than proving the existence of a global consis-
tent assignment as above, proves that there exists a (probabilistic) locally-consistent partial assignment
generator Assign. The assignment generator receives as its input Q queries w1, . . . , wQ ∈ {0, 1}m, for
Q = polylog(n). It generates a (distribution on) partial assignments (a1, . . . , aQ) ∈ {0, 1}Q to all Q of
these queries, and provides two important guarantees:

1. Local consistency: For every sequence of Q queries (w1, . . . , wQ), all the algebraic constraints
involving triplets of queries in (w1, . . . , wQ) are simultaneously satisfied:

Pr
(a1,...,aQ)←Assign(w1,...,wQ)

[∃q1, q2, q3 ∈ [Q] : f(wq1 , wq2 , wq3 , aq1 , aq2 , aq3) 6= 0] = negl

2. No-Signaling: The distribution of the values assigned to a specific set of wires is independent of
the other wires that are queried (up to some negligible distinguishing factor).

Formally, if two query vectors w and w′ agree on a subset T of their queries, then the distributions
of Assign’s answers on w and on w′, when restricted to the wires in T , are computationally
indistinguishable.

We construct a “basic delegation protocol” that proves the existence of a locally-consistent partial
assignment generator as described above. Namely, we can obtain such a generator from any prover that
convinces the verifier to accept (with noticeable probability). The main challenge is proving local con-
sistency. Once we construct Assign as above, we combine it with the “augmented circuit transformation”
of [KRR14] to complete the proof of Informal Theorem 1.1. We also provide a modular construction
simplifying the presentation and the analysis of this transformation. We proceed with a sketch of some
of the ideas behind the “basic protocol”. Full details are in Section 4.2.

2.1.1 Basic Protocol and Partial Assignment Generator for Q = 3

The most important property of the basic protocol is that any prover P∗, who convinces the verifier
to accept with noticeable probability, can be used to construct a locally-consistent partial assignment
generator Assign as above, for Q = polylog(n). Here we sketch a simplified protocol, from which we

8

derive an assignment generator for Q = 3, and some of the ideas behind the proof of security. Assign
guarantees the following relaxed property:

∀w1, w2, w3 ∈ {0, 1}m : Pr
(a1,a2,a3)←Assign(w1,w2,w3)

[f(w1, w2, w3, a1, a2, a3) 6= 0] = negl . (2)

Setup (honest prover). Take X̃ : Rm → R to be a low-degree extension of the correct global assign-
ment X : {0, 1}m → {0, 1}. For an input z = (w1, w2, w3) ∈ R3m, define the polynomial:

P0(z) = f(z, X̃(w1), X̃(w2), X̃(w3)) . (3)

The prover’s goal is convincing the verifier that this polynomial is 0 over {0, 1}3m. To do so, we define
a sequence of linearized polynomials {Pj : R3m → R}j∈[3m] as follows.

∀j ∈ [3m], Pj(z) =
∑

yj∈{0,1}

β(yj , zj) · Pj−1(z1, . . . , zj−1, yj , zj+1, . . . , z3m) , (4)

where β is a low-degree arithmetic circuit over the ring R that tests for equality over boolean inputs. By
construction, P3m is the multi-linear extension of P0. If P0 is 0 over {0, 1}3m, then P3m should be 0 for
all z ∈ R3m. Indeed, for j = 3m we require that:

P3m(z) = 0 . (5)

The challenge generator GenBP . The CRS includes (encodings of) three uniformly random low-degree
curves γ1, γ2, γ3 : R→ Rm. These curves are all encoded in the first level of the GE.

The prover PBP . The (honest) proof Π includes (encodings of) polynomials computed as follows:

• Restrictions X̃1, X̃2, X̃3 of the polynomial X̃ to the curves γ1, γ2, and γ3.

• Restrictions {P (1,2,3)
j }j∈[0,3m] of the polynomials {Pj}j∈[0,3m] to the concatenated three-variate

manifold γ(t1, t2, t3) = (γ1(t1), γ2(t2), γ3(t3)).

Moreover, for the restriction of Pj , the prover leaves the j-th coordinate free, adding a fourth variable
that can be used to “set” this coordinate. For the restrictions of X̃ , the prover leaves the first coordinate
free, adding a second variable that can be used to “set” this coordinate (see more on this below).

Note that, for completeness, it is important that the polynomials X̃ and Pj all have low degree. This
enables the (honest) prover to compute (encodings of) their restriction to the encoded curves in the CRS.

The verifier VBP . The verifier receives the encoded curves γ1, γ2, γ3, and the above restrictions of X̃
and of the polynomials {Pj}j∈[0,3m]. The verifier defines P3m(z) ≡ 0 (so that Equation (5) holds by
definition). It then checks that Equations (3) and (4) hold for these restricted polynomials. Checking
Equation (4) requires computing each polynomial Pj−1 restricted to the manifold γ, but with the j-th
coordinate replaced by 0 and by 1. Similarly, checking Equation (3) requires computing the polynomial
X̃ restricted to the curves γ1, but with the first coordinate replaced by 0 and 1. (this is why the prover
leaves these coordinates “free” as described above).

Security proof sketch. To prove soundness, we need to use a convincing prover P∗ to construct a
locally-consistent partial assignment generator Assign satisfying Equation (2). To start, suppose that P∗

convinces VBP with high probability in the above protocol (the probability is over the coins of GenBP
and P∗). On input (w1, w2, w3) ∈ {0, 1}3m, the assignment generator creates a “simulated” CRS′,
whose curves pass through (w1, w2, w3). That is, at some uniformly random inputs t∗1, t

∗
2, t
∗
3 ∈ R, it

holds that {γi(t∗i) = wi}i∈[3]. Assign feeds this simulated CRS′ to P∗ to get a proof:

Π′ =
{
X̃1, X̃2, X̃3, {P (1,2,3)

j }j∈[0,3m]}
}

.

9

Assign checks that Π′ makes VBP accept, and if so, it extracts from Π′ the (un-encoded) values:

(a1, a2, a3)←
(
X̃1(t∗1), X̃2(t∗2), X̃3(t∗3)

)
.

This uses the fact that the answers should be boolean, and so their encodings can be inverted using the
zero-testing procedure (testing for equality to 0 and to 1). Note that for the honest prover, indeed we get:{

X̃i(t∗i) = X̃(wi)
}
i∈[3]

.

It remains to show that Assign satisfies Equation (2). First, note that by semantic security of the
encoded curves (see Definition 1.3), the simulated CRS′ is indistinguishable from the real CRS. In
particular, the verifier’s acceptance probability should be roughly similar in both settings (this is one
place where we use public verifiability: anyone can test whether the verifier accepts or rejects a proof).
Thus, with high probability Π′ should make VBP accept (when using CRS′). In particular, Equation (4)
should hold for for all j’s, and for all inputs on the restricted polynomials Pj . Note, however, that by
construction:

∀z ∈ {0, 1}3m : Pj(z) = Pj−1(z) .

In particular, since the restricted polynomials satisfy these equations on all inputs, the equations are true
on the input (t∗1, t

∗
2, t
∗
3), where the curves γ1, γ2, γ3 pass through (w1, w2, w3) ∈ {0, 1}3m. On this input,

we have that P (1,2,3)
j = P

(1,2,3)
j−1 . In particular:

∀j ∈ [3m] :
(
P

(1,2,3)
j (t∗1, t

∗
2, t
∗
3) = 0

)
⇒
(
P

(1,2,3)
j−1 (t∗1, t

∗
2, t
∗
3) = 0

)
.

(We abuse notation here by ignoring the “free” variable. We can set this free variable to agree with the
curve, see Section 4.2). Recall moreover that P (1,2,3)

3m , 0, so we conclude that P (1,2,3)
0 (t∗1, t

∗
2, t
∗
3) = 0

on {0, 1}3m. Since the verifier checked that (3) holds everywhere, it will also hold on this input, and we
conclude that in this case Assign’s output (a1, a2, a3) satisfying (f(w1, w2, w3, a1, a2, a3) = 0).

Note that this happens whenever the P∗ succeeds and generates an accepting proof Π′. Even if
P∗ only succeeds with inverse polynomial probability, we can run it with many independently sampled
CRSs until it succeeds. On the first successful iteration, Assign extracts the partial assignment. Similarly
to the above, this procedure will succeed with overwhelming probability.

2.2 Non-Interactive Arguments for Bounded Depth

In this section we give an overview of the techniques used to prove Informal Theorem 1.2. In a nutshell,
this is a non-interactive version of the [GKR08] interactive proof. The CRS includes graded encodings
of all the GKR verifier’s queries. While these encodings are not semantically secure (e.g. they allow
equality testing), we use the specific algebraic properties of the GKR protocol to show that breaking
soundness implies solving a hard problem on graded encodings.

We abstract a key component of our argument system: a non-interactive variant of the famous Sum-
Check Protocol [LFKN90]. Sum-check protocols play a key role in the GKR interactive proof, and are
“inherited” in our non-interactive argument. The full protocol is in Section 5. It is significantly more
complex than the simple sum-check component given below. Much of this additional complexity is due
to the need to carefully compose (non-interactive) sub-protocols, whose outputs are themselves encoded.
These encoded sub-protocol outputs are then fed as (encoded) inputs into further sub-protocols. The
encoding levels need to be carefully managed due to the bounded degree supported by the GE.

Interactive sum-check ([LFKN90]). Let R be a ring, and m ∈ N. Let f : Rm → R be an easy-to-
compute arithmetic circuit of individual degree δ, and c ∈ R a value. A prover claims that:∑

w∈{0,1}m
f(w) = c . (6)

10

A proof should convince the verifier that these exponentially many (in m) summands sum to c. The
verifier’s complexity is only polynomial in m (and in δ). Proofs for statements of this type are key in
constructing interactive proofs (and PCPs) for general computations.

2.2.1 Non-Interactive Sum-Check Argument

In a nutshell, we transform the canonical protocol of [LFKN90] into a non-interactive argument by
sending encodings of all the verifier’s challenges in the CRS.

The challenge generator GenSC . The CRS includes encodings of random ring elements {[ri]ei}i∈{1,...,m}.
The i-th ring element is encoded in the level corresponding to the i-th unit vector.

The prover PSC . For i ∈ [m], the honest prover uses the encoded items {[ri]ei} to generate encodings
of the polynomials:

gi(ξ) =
∑

wi+1,...,wm∈{0,1}

f(r1, . . . , ri−1, ξ, wi+1, . . . , wm) .

We emphasize that these are univariate polynomials of degree δ. Note that the prover’s claim in Equa-
tion (6) is that (g1(0) + g1(1)) = c. Note also that gm(ξ) = f(r1, . . . , rm−1, ξ). Each encoded polyno-
mial gi is sent as a list of encoded coefficients {[gi,j]vi

}j∈[δ+1], where:

gi(ξ) =

δ∑
j=0

gi,j · ξj ,

and the level vi is only non-zero in its first i− 1 coordinates.

The verifier VSC . The verifier receives encoded polynomials {g∗i }i∈[m], and tests that:

g∗1(0) + g∗1(1) = c (7)

∀i ∈ [m− 1] : g∗i (ri) = g∗i+1(0) + g∗i+1(1) (8)

g∗m(rm) = f(r1, . . . , rm) (9)

If all these test pass, the verifier accepts. Note that these tests can be run over the encoded polynomials
and encoded inputs {[ri]ei} in CRS.

A soundness property. Suppose that a cheating prover P∗ convinces the verifier to accept with notice-
able probability. Let {gi}i∈[m] be the correct polynomials, as they would have been computed by the
honest prover algorithm. Let {g∗i }i∈[m] be the (cheating) polynomials sent by P∗. We will show that for
some i ∈ [m] it must be the case that:

g∗i 6≡ gi, g∗i (ri) = gi(ri) (10)

and the coefficients {g∗i,j} of g∗i are given in a level vi such that vi[i] = 0 (see above).
Looking ahead, we show based on Assumption 1.6 that given the encoding of a random element

[ri]ei , finding a level-vi encoding of a low-degree non-zero polynomial that vanishes on ri is hard
contradicting Equation (10).

Proving that Equation (10) holds for some i ∈ [m] follows the (information theoretic) soundness
proof for the sum-check protocol. The prover P∗ is cheating, and so:

((g∗1(0) + g∗1(1)) 6= (g1(0) + g1(1))) ⇒ g∗1 6≡ g1 .

Moreover, because VSC’s tests in (8) pass, we know that for every i ∈ [m− 1]:

(g∗i (ri) 6= gi(ri)) ⇒ g∗i+1 6≡ gi+1 .

11

Finally, because VSC’s tests in (7) we have that:

g∗m(rm) = gm(rm) .

From the above equations, we conclude that there must exists i ∈ [m] such that Equation (10) holds.

Security reduction sketch. The proof of the argument system’s soundness is via a reduction that uses
any cheating prover P∗ to break Assumption 1.6. Fix i ∈ [m] whose existence is promised in Equa-
tion (10). The reduction gets as input an encoding [α]ei . It uses P∗ to output encodings [β]v and [γ]u
such that (β · αk) = γ for k ∈ [δ], where v[i] = 0 and u[i] < k.

The reduction operates by generating a CRS whose i-th encoding is set to ri ← α. For i′ 6= i, it sets
ri′ to be the encoding of a uniformly random element in level ei′ . The CRS is generated according to
the right distribution, and so P∗ should generate a cheating proof Π∗, containing coefficients {g∗i,j} such
that Equation (10) holds (the encoding levels are as in PSC).

The security reduction computes the correct coefficients {gi,j} in time 2m (in our applications m
will be logarithmic). Let k be the largest power such that g∗i,k 6= gi,k. We have that:

k∑
j=0

g∗i,j · αj =

k∑
j=0

gi,j · αj .

Which implies: (
g∗i,k − gi,k

)
· αk =

k−1∑
j=1

(
gi,k − g∗i,k

)
· αj ,

(with
(
g∗i,k − gi,k

)
6= 0). Now, taking:

β = (g∗i,k − gi,k), γ =
k−1∑
j=1

(
gi,k − g∗i,k

)
· αj ,

we have, as required, that (β ·αk) = γ. Moreover, we can compute the encoding of β in level vi, where
vi[i] = 0, and the encoding of γ in u = (vi + (k − 1) · ei). As required, u[i] < k.

3 Tools and Definitions

3.1 Graded Encodings

Graded (multi-linear) encoding schemes were introduced by Garg, Gentry and Halevi [GGH13]. We
use two variants of graded encodings: symmetric and asymmetric. Symmetric graded encodings are
used in the delegation protocol for P computations in Section 4. The asymmetric variant is used in the
delegation protocol for bounded depth computations in Section 5.

3.1.1 Symmetric Graded Encodings

In symmetric graded encodings, the level of an encoding is an integer.

Definition 3.1. [Symmetric Graded Encoded Scheme] A symmetric graded encoding scheme is associ-
ated with a tuple of PPT algorithms (InstGen, Samp,Encode, reRand,Add,Sub,Mult, isZero):

12

• Instance Generation: InstGen takes as input the security parameter 1n and a degree parameter
δ, and outputs public parameters pp, which define an underlying ring R and re-randomization
parameters rp. We restrict our attention to graded encoding schemes where R is Zp and p
is a prime of size exponential in n. The public parameters pp determine a collection of sets
{Eαl : l ∈ [0, δ], α ∈ R}.

• Sampling: Samp takes as input the public parameters pp, and outputs a level-zero encoding in
Eα0 where α is a uniformly distributed element in R.

• Encoding: Encode takes as input the public parameters pp, the re-randomization parameters rp,
a level-zero encoding u ∈ Eα0 and an index of a level l ∈ [δ] and outputs an encoding in Eαl .

• Re-Randomization: reRand takes as input the public parameters pp, the re-randomization pa-
rameters rp, and an encoding u ∈ Eαl and outputs another encoding u′ ∈ Eαl . Moreover, for any
two encodings u1, u2 ∈ Eαl the outputs of reRand on u1 and on u2 are statistically close.

• Addition: Add takes as input the public parameters pp and two encodings u1 ∈ Eα1
l and u2 ∈

Eα2
l such that u1, u2 are in the same level l, and outputs an encoding in Eα1+α2

l .

• Subtraction: Sub takes as input the public parameters pp and two encodings u1 ∈ Eα1
l and

u2 ∈ Eα2
l such that u1, u2 are in the same level l, and outputs an encoding in Eα1−α2

l .

• Multiplication: Mult takes as input the public parameters pp and encodings u1 ∈ Eα1
l1

and
u2 ∈ Eα2

l2
such that l1 + l2 ∈ [0, δ], and outputs an encoding in Eα1·α2

l1+l2
.

• Zero testing: isZero takes as input the public parameters pp and an encoding in Eαδ and outputs
1 if and only if α = 0.

We also assume that the public parameters pp include a trivial encoding of 0 and an encoding in E1
1 .

We often denote an element in Eαl by [α]l.

Remark 3.2 (The re-randomization parameters). For security purposes we separate between the public
parameters and the re-randomization parameters. Without the re-randomization parameters the scheme
becomes more secure, however it no longer supports encoding of elements in levels that are higher than
the 0-level, or re-randomization of encodings (see [GGH13] for more details). We note that since the
public parameters include an encoding in E1

1 it is always possible to raise the level of an encoding.
However, the resulting encoding is not a random one, and we do not assume that it is secure.
Remark 3.3 (Noisy encodings). In existing graded encoding candidates [GGH13, CLT13], the encodings
have noise that grows with the number of operations performed. When the noise becomes too large
functionality is lost. In our applications we can set the noise parameters such that honest parties never
reach the noise ceiling. To simplify notations we omit the noise management from the interface of the
graded encodings.

The Polynomial Resolution assumption. We formulate a new hardness assumption on symmetric
graded encoding schemes. Roughly speaking, we assume that if the maximal level is δ, then given a
level-1 encoding of a random element t ∈ R, and level-1 encodings of random coefficients α0, . . . , αδ ∈
R of a degree δ polynomial, it is hard to distinguish a level-1 encoding of the polynomial’s evaluation at
t from a level-1 encoding of a random ring element.

Assumption 3.4 (Polynomial Resolution (PR)). Let δ = δ(n) be a polynomial degree bound, where
n ∈ N is the security parameter. For every PPTM adversary Adv, the following two distributions are
indistinguishable:(

pp, rp, [α0]1 , . . . , [αδ]1 , [t]1 ,

[
y =

δ∑
i=0

αi · ti
]

1

)
c
≈ (pp, rp, [α0]1 , . . . , [αδ]1 , [t]1 , [z]1) ,

13

where (in both distributions) the ring elements α0, . . . , αδ, t, z are independent and uniformly random,
and where all the parameters and encodings are sampled as follows:

1. Sample pp, rp← InstGen(1n, δ)

2. Using the operation Samp sample random level-0 encodings:

[α1]0 , . . . , [αδ]0 , [t]0 , [z]0 .

3. Using the operations Add, Sub,Mult, obtain an encoding [y]0 where:

y =
∑
i∈[0,δ]

αi · ti .

4. Using the operation Encode, reRand obtain random level-1 encodings:

[α1]1 , . . . , [αδ]1 , [t]1 , [y]1 , [z]1 .

Remark 3.5 (Avoiding re-randomization). Note that in Assumption 3.4 the adversary gets access to
the re-randomization parameters rp. For this reason, Assumption 3.4 is known to be false in certain
candidate graded encoding constructions [GGH13, CHL+14]. Very recently, Boneh et al. proposed
an immunization techniques that modifies those candidates to allow re-randomization [BWZ14]. No
attacks on the immunized schemes are known at this time. Still, in Section 3.2.3 we give an alternative
assumption that suffices for our applications. There the adversary is not given the re-randomization
parameters, and we conjecture that security holds in all known GE candidates.

3.1.2 Asymmetric Graded Encodings

In asymmetric graded encodings, the level of an encoding is a vector in Nκ. We define a partial order
over levels.

Definition 3.6 (Partial order over Nκ). For κ ∈ N and tow vectors v,u ∈ Nκ we define:

v ≤ u ⇔ ∀i ∈ [κ] : v[i] ≤ u[i] .

In what follows we use the following notation: for δ ∈ N and v,u ∈ Nκ let v + u be the point-wise
addition of v and u, and let δ · v be the vector v where every coordinate is multiplied by δ. Define the
following set:

Λ(κ, δ) , {v ∈ Nκ : ∀i ∈ [κ],v[i] ≤ δ} .

For i ∈ [κ] let ei(κ) be the vector in Nκ that is 0 everywhere except for the i-th coordinate, where it is
1, and let si(κ) be the vector:

si(κ) =
∑
j∈[i]

ei(κ) .

When κ is clear from the context we simply write ei and si.

Definition 3.7 (Asymmetric Graded Encoded Scheme). An asymmetric graded encoding scheme is as-
sociated with a tuple of PPT algorithms (InstGen, Samp,Encode,Add,Sub,Mult, isZero) as follows:

• Instance Generation: InstGen takes as input the security parameter 1n and multi-linearity pa-
rameters κ, δ, and outputs public parameters pp, which define an underlying ring R. We restrict
our attention to graded encoding schemes where R is Zp and p is a prime of size exponential in
n. The public parameters pp determine a collection of sets {Eαv : v ∈ Λ(κ, δ), α ∈ R}.

14

• Sampling: Samp takes as input the public parameters pp and an index of a level v ∈
{
~0
}
∪

{ei}i∈[κ], and outputs an encoding in Eαv where α is a uniformly distributed element in R.

• Addition: Add takes as input the public parameters pp and two encodings u1 ∈ Eα1
v and u2 ∈

Eα2
v such that u1, u2 are in the same level v, and outputs an encoding in Eα1+α2

v .

• Subtraction: Sub takes as input the public parameters pp and two encodings u1 ∈ Eα1
v and

u2 ∈ Eα2
v such that u1, u2 are in the same level v, and outputs an encoding in Eα1−α2

v .

• Multiplication: Mult takes as input the public parameters pp and encodings u1 ∈ Eα1
v1

and
u2 ∈ Eα2

v2
such that v1 + v2 ∈ Λ(κ, δ), and outputs an encoding in Eα1·α2

v1+v2
.

• Zero testing: isZero takes as input the public parameters pp and an encoding in Eαv for v ∈
Λ(κ, δ) and outputs 1 if and only if α = 0.

We also assume that the public parameters pp include a trivial encoding of 0 and an encoding in E1
ei

for all i ∈ [κ]. We often denote an element in Eαv by [α]v.

Remark 3.8 (Sampling random encodings). Note that unlike in the symmetric graded encoding formu-
lation (Definition 3.1), here we do not generate re-randomization parameters, and do not support the
operations Encode, reRand. Instead we support an operation Samp that samples a random encoding of
random elements not only in level zero, but also in any level ei for i ∈ [κ]. Roughly, the operation
Samp can be implemented by publishing in the public parameters many random encodings of random
elements under the different levels. To sample a random encoding in some level, the operation Samp
sums a random subset of the encodings in this level. Publishing this extra information in the public
parameters in not known to reduce the security of existing candidates [GGH13, CLT13]. This sampling
procedure was suggested by Brakerski [Bra14].

Remark 3.9 (Noisy encodings). In existing garaged encoding candidates [GGH13, CLT13] encodings
have noise that grows with the number of operations performed. When the noise becomes too large
functionality is lost. In our applications we can set the noise parameters such that honest parties never
reach the noise ceiling. To simplify notations we omit the noise management from the interface of the
graded encodings.

The hardness assumption. We formulate a new hardness assumption on asymmetric graded encoding
schemes. Roughly speaking, we assume that given an encoding [α]ei of a random element, where ei is
the i-th unit vector, it is hard to find encodings [β]v , [γ]u s.t. (β · αj = γ), v[i] = 0, u[i] < j.

We note that a milder assumption would simply say that it is hard to find an encoding [γ]u such that
both (αj = γ) and (u[i] < j). We make the adversary’s job easier by allowing it to use an encoding of
β, but we insist that the i-th dimension of this encoding’s level be 0.

Assumption 3.10. Let κ = κ(n), δ = δ(n) be polynomials, where n ∈ N is a security parameter. For
every poly-size adversary Adv, for every i ∈ [κ], j ∈ [δ] and for every v,u ∈ Λ such that v[i] = 0 and
u[i] < j:

Pr


pp← InstGen(1n, κ(n), δ(n));
[α]~0 ← Samp(pp);
[α]ei ← Encode(pp, [α]~0 , ei);

[β]v , [γ]u ← Adv(pp, [α]ei);(
β · αj = γ

)
∧ (β 6= 0)

 ≤ µ(n) ,

where arithmetic is over the underlying ring R defined by pp.

15

Remark 3.11. Assumption 3.10 is falsifiable [Nao03]. We can efficiently check whether the encodings
returned by Adv satisfy the equation β · αj = γ (and β 6= 0). This condition can be verified using
the public parameters pp and the operations Add, Sub,Mult, isZero, applied to the adversary’s output
encodings. This is because, by the conditions on v,u we have (v + j · ei) ∈ Λ and u ∈ Λ. Note that
in particular, this does not require finding the encoded ring elements β, γ or knowing the description of
the ring R. For simplicity of notations we do not explicitly describe this efficient verification procedure
as part of Assumption 3.10.

Remark 3.12. We note that since we do not publish any non-trivial encodings of zero as part of our
public parameters (there are no re-randomization parameters), the known “weak discrete logarithm”
attacks [GGH13, CHL+14] do not apply. In particular, under our formulation of asymmetric graded
encodings, there are no known attack on Assumption 3.10 for existing graded encoding candidates.

Valid encoded inputs to arithmetic circuits. Let f be an arithmetic circuit taking n inputs and let:{
[xi]vi

}
i∈[n]

,

be an input for f encoded under public parameters pp where levels are taken from the set Λ(κ, δ). We
say that the encoded input is valid for f if it is possible to use the operations Add,Sub,Mult to evaluate
f on the encoded input such that the level of the output and of every intermediate result is in Λ(κ, δ).
The output level of f , given an encoded input, is the level of the output encoding obtained by evaluating
f on the encoded input. Given a partial encoded input, which contains encoding of some of the input
variables but not all of them, we say that a partial encoded input is valid for f , if given level-0 encodings
of the missing input variables, the resulting (full) encoded input is valid for f . The output level of f with
given a partial encoded input is defined similarly.

3.2 Curves, Manifolds and their Encodings

For m, δ ∈ N, Let Γ(m, δ) be the set:

Γ(m, δ) =

{
d ∈ [0, δ]m :

∑
i∈m

di ≤ δ

}
.

We view each d ∈ Γ(m, δ) as describing an m-variate of total degree δ. An m-variate manifold γ of
dimension m′ and degree δ is given by a set of elements:

γ =
{
αi,d ∈ R : i ∈ [m′],d ∈ Γ(m, δ)

}
.

such that for every i ∈ [m′]:

γi(t1, . . . tm) =
∑

d∈Γ(m,δ)

αi,d · td1
1 . . . tdm

m .

Operations on manifolds. Given m-variate manifolds γ1, γ2, we denote by
(
γ1, γ2

)
the concatenated

2m–variate manifold:(
γ1, γ2

)
(t1, . . . , t2m) =

(
γ1(t1, . . . , tm), γ2(tm+1, . . . , t2m)

)
.

Given an m-variate manifold γ1 of dimension m′ and an m′-variate manifold γ2 of dimension m′′, we
denote by γ2 ◦ γ1 the composed m-variate manifold of dimension m′′:

γ2 ◦ γ1(t1, . . . tm) = γ2(γ1
1(t1, . . . tm), . . . , γ1

m′(t1, . . . tm)) .

16

Given an m-variate manifold γ of dimension m′ and i ∈ [m′], we denote by γi→s the (m + 1)-variate
manifold where the i-th output is overwritten by the (m+ 1)-th input s:

γi→s(t1, . . . , tm, s) = (γ1(t1, . . . , tm), . . . , γi−1(t1, . . . , tm), s, γi+1(t1, . . . , tm), . . . , γm′(t1, . . . , tm)) .

In what follows, we often think of an m-variate polynomial as an m-variate manifold of dimension
1. A curve of dimension m is simply a univariate manifold of that same dimension.

Let γ = {αi,d} be a manifold. Given public parameters pp for a symmetric grade encoding scheme
and level ` we consider an encoded manifold:

[γ]` =
{

[αi,d]`
}
.

3.2.1 Curve Encryption

In this section we define a procedure Curve, which generates semantically secure curve encryptions
over symmetric GEs (see the overview in Section 1.3.1). This procedure uses re-randomization, and in
Section 3.2.2 we show that its security can be based on the Polynomial Resolution Assumption (As-
sumption 3.4).

The procedure Curve. The procedure Curve samples a random level-1 encoded curve of dimension
m and degree δ that passes though a specific point. Given public parameters pp, re-randomization
parameters rp, degree parameter δ, and a point w = (w1, . . . , wm) ∈ {0, 1}m :

1. Curve uses the operation Samp to sample level-zero encodings of random elements:{
[αi,d]0

}
i∈[m],d∈[δ]

, [t]0 .

2. Curve uses the operation Add, Sub,Mult, to obtain the encodings:{
[αi,0]0

}
i∈[m]

,

such that for every i ∈ [m]:
αi,0 = wi −

∑
j∈[δ]

αi,j · tj .

Note that when wi = 1, we use a level-1 encoding of 1 (available in pp) to compute the (encoded)
value of αi,0.

3. Use the operations Encode, reRand, Curve obtains random level-1 encodings:

[γ]1 =
{

[αi,j]1
}
i∈[m],j∈[0,δ]

,

Finally, Curve outputs the encoded curve [γ]1 and the encoded input [t]0.

3.2.2 Semantic Security of Curve

In this section we prove that, under Assumption 3.4, the Curve procedure is semantically secure, and
completely hides the point w.

Lemma 3.13. Let m, δ be polynomial. Assuming a symmetric graded encoding scheme satisfying As-
sumption 3.4, there exists a negligible function µ such that for every poly-size adversary Adv, for every
n ∈ N, and for every w0,w1 ∈ {0, 1}m(n), where m(n) = poly(n):

Pr


b← {0, 1};
pp, rp← InstGen(1n, δ(n));
[γ]1 , [t]0 ← Curve(pp, rp, δ(n),wb);
b′ ← Adv(pp, rp, [γ]1);
b = b′

 ≤ 1

2
+ µ(n) ,

17

Proof. Assume towards contradiction that there exists a polynomial p and a poly-size adversary Adv
such that for infinitely many values of n ∈ N , there exist w0, w1 ∈ {0, 1}m(n) such that:

Pr


b← {0, 1};
pp, rp← InstGen(1n, δ(n));
[γ]1 , [t]0 ← Curve(pp, rp, δ(n),wb);
b′ ← Adv(pp, [γ]1);
b = b′

 ≥ 1

p(n)
. (11)

Next, we construct an adversary Adv′ that breaks Assumption 3.4. Fix n ∈ N, and w0,w1 ∈ {0, 1}m
such that Equation (11) holds. Adv′ is given public parameters pp with an underlying field Zp, re-
randomization parameters rp, and level-1 encodings:

[α0]1 , . . . , [αδ]1 , [t]1 ,

sampled from one of the following distributions:

Case 1. α0, . . . , αδ, t are independently random elements in Zp.

Case 2. α1, . . . , αδ, t are independently random elements in Zp and:

α0 = −
∑
i∈[δ]

αi · ti .

Equivalently, α0, . . . , αδ, t are independently random elements in Zp such that:∑
i∈[0,δ]

αi · ti = 0 .

Adv′ samples a bit b← {0, 1}, and constructs an encoded curve [γ′]1 that is distributed as in the output of
Curve(pp, rp, δ(n),wb) in Case 1 and independently of b in Case 2. Adv′ will then execute the adversary
Adv on pp and the encoded curve [γ′]1 and output 1 iff Adv output b. It follows from Equation (11) that
Adv breaks Assumption 3.4. Next we construct the encoded curve [γ′]1 and prove that it is distributed
as required.

Let t be the vector:
t =

(
1, t, t2, . . . , tδ(n)

)T
.

(Where the arithmetics here in in what follows is over Zp.) Let B be the matrix:

B =



α0 −t 0 · · · 0

1 −t
...

... 0 1
. . . 0

...
. . . −t

αδ 0 · · · 0 1


. (12)

We will rely on the following property of the matrix B.

Claim 3.14. Let R ∈ Zm×(δ+1)
p be a random matrix.

1. If: ∑
d∈[0,δ]

αd · td 6= 0 ,

then B is regular with all but negligible probability and in particular, R ·B is uniform.

18

2. If: ∑
d∈[0,δ]

αd · td = 0 ,

R ·B is a uniform matrix such that R ·B · t = 0.

Proof. Part 1 follows from the fact that:

det(B) =
∑
d∈[0,δ]

αd · td .

Part 2 holds since: ∑
d∈[0,δ]

αd · td = 0 ,

implies that B is of rank δ and that B · t = 0.

Using its input encodings Adv′ computes [B]1, a matrix that contains level-1 encodings of the el-
ements of B. Using the operation Samp, Adv′ samples a matrix R ∈ Zm×(δ+1)

p of random level-0
encodings:

[R]0 =
{

[ri,d]0
}
i∈[m],d∈[0,δ]

.

Let:
W =

{
w′i,d

}
i∈[m],d∈[0,δ]

∈ Zm×(δ+1)
p ,

be a matrix who’s first column encodes wb and is zero everywhere else. That is, for every i ∈ [m],
w′i,0 = wb[i] and for every d ∈ [1, δ], w′i,d = 0. Adv′ obtains the encoded matrix [W]1. Using the
operations Add, Sub,Mult, Adv′ computes the encoded matrix [R ·B + W]1. Adv′ uses the operation
reRand to re-randomize every encoding in [R ·B + W]1. We think of this matrix as defining the m-
dimensional degree δ encoded curve [γ′]1.

Next we prove that [γ′]1 is distributed correctly in both cases. It follows from Claim 3.14, Part 1 that
in Case 1, the matrix R ·B and therefore also the matrix R ·B+W are uniform. Since [γ′]1 consists of
random encodings of the elements of R ·B + W (that is, encoding that have been re-randomized using
the operation reRand) the distribution [γ′]1 is statistically close to a random curve that is independent of
b.

It follows from Claim 3.14, Part 1 that in Case 2, R ·B is a uniform matrix such that R ·B · t = 0.
Therefore, R · B + W is a uniform matrix such that R · B · t = wT . Since [γ′]1 consists of random
encodings of the elements of R ·B+W it follows that the distribution [γ′]1 is statistically close the the
output of Curve(pp, rp, δ(n),wb).

3.2.3 Avoiding Encoding Re-Randomization

As discussed in Remark 3.5, we would like to prove a version of Lemma 3.13 based on a weaker variant
of the Polynomial Resolution Assumption (Assumption 3.4), where the adversary is not given the re-
randomization parameters rp. The difficulty is that when using Lemma 3.13 to prove the security of
the delegation protocol in Section 4, the reduction needs to execute the procedure Curve. Therefore,
the reduction needs access to the re-randomization parameters. In fact, even the reduction from the the
semantic security of encoded curves to Assumption 3.4 described in the proof of Lemma 3.13 needs
access to the re-randomization parameter.

In this section we formulate an alternative assumption stating that there exist a procedure Curve′ that
samples a curve passing though a given point even without the re-randomization parameters. To support
this assumption, we give a candidate implementation for the procedure Curve′, which we conjecture to
be secure for all existing graded encoding constructions.

19

In order to sample encoded curves without the use of the re-randomization parameters (and with-
out the operations Encode, reRand) we assume that the symmetric graded encoding scheme supports a
strong version of the sampling operation that can sample encodings also in level 1. Specifically, we con-
sider the operation Samp that takes as input the public parameters pp and an index of a level ` ∈ {0, 1},
and outputs an encoding in Eα` where α is a uniformly distributed element in the ring underlying pp. We
assume that this element contains sufficient noise to “mask” encodings with smaller noise that may be
added to it. Roughly, the operation Samp can be implemented by publishing in pp many random level-1
encodings of uniformly random elements. To sample a random encoding in level 1, the operation Samp
sums a random subset of these encodings. Publishing this extra information in the public parameters is
not known to reduce the security of existing candidates [GGH13, CLT13, GGH14] (see Remark 3.5).
We start by formulating the assumption that a semantically secure curve encryption exists.

Assumption 3.15. There exists a efficient procedure Curve′ satisfying the following properties:

• Functionality. Given public parameters pp, a degree parameter δ and a point w ∈ {0, 1}m, Curve′

outputs an encoded curve [γ]1 of dimension m and degree δ as well as an encoding [t]0 such that
γ is random curve condition on γ(t) = w.

• Semantic Security. Let m, δ be polynomial. There exists a negligible function µ such that for
every poly-size adversary Adv, for every n ∈ N, and for every w0,w1 ∈ {0, 1}m(n), where
m(n) = poly(n):

Pr


b← {0, 1};
pp, rp← InstGen(1n, δ(n));
[γ]1 , [t]0 ← Curve′(pp, δ(n),wb);
b′ ← Adv(pp, [γ]1);
b = b′

 ≤ 1

2
+ µ(n) ,

Candidate instantiation. We consider the following candidate instantiation for the procedure Curve′.
Given public parameters pp, a degree parameter δ and a point w = (w1, . . . , wm) ∈ {0, 1}m, Curve′ is
defined as follows:

1. Curve′ uses the operation Samp to sample a level-0 encoding [t]1.

2. Curve′ uses the operation Samp to sample level-1 encodings of random elements:{
[βi,d]1

}
i∈[m],d∈[δ]

.

3. Curve′ uses the operation Add,Sub,Mult, to obtain the encodings:

[γ]1 =
{

[αi,d]1
}
i∈[m],d∈[0,δ]

.

such that for every i ∈ [m]:

αi,0 = wi − t · βi,1 , αi,δ = βi,δ ,

and for every d ∈ [δ − 1]:
αi,d = βi,d − t · βi,d+1 .

Note that when wi = 1 we use a level-1 encoding of 1 (available in pp) to compute the (encoded)
value αi,0.

Finally, Curve′ outputs the encoded curve [γ]1 and the encoded input [t]0.

20

3.3 (Publicly-Verifiable) Non-Interactive Arguments

We define (publicly verifiable) non-interactive arguments with adaptive and non-adaptive soundness. By
default, when we speak of arguments we refer to non-adaptive soundness unless we explicitly mention
otherwise.

Definition 3.16 (Non-Interactive Argument: Adaptive and Non-Adaptive). A tuple of PPT algorithms
(Gen,P,V) are a (publicly verifiable) non-interactive argument for a language L with non-adaptive (or
adaptive) soundness if they are as follows. Let k = k(n) be a polynomial. For security parameter
n ∈ N, and for instance x ∈ {0, 1}k, Gen(1n) outputs a string CRS, P(CRS, x) outputs a proof Π
and V(CRS, x,Π) outputs one bit indicating acceptance or rejection. We require completeness and
non-adaptive (or, respectively, adaptive) soundness:

• Completeness. There exists a negligible function µ such that for every n ∈ N, and for every
x ∈ L ∩ {0, 1}k:

Pr

 CRS← Gen(1n);
Π← P(CRS, x);
V(CRS, x,Π) = 1

 ≥ 1− µ(n) .

• Non-Adaptive Soundness. for every pair of poly-size circuits P∗1,P
∗
2 there exists a negligible func-

tion µ such that for every n ∈ N:

Pr


CRS← Gen(1n);
x∗ ← P∗1(1

n);
Π∗ ← P∗2(CRS, x

∗);
V(CRS, x∗,Π∗) = 1 ∧ x∗ /∈ L

 ≤ µ(n) .

• Adaptive Soundness. for every pair of poly-size circuits P∗1,P
∗
2 there exists a negligible function µ

such that for every n ∈ N:

Pr


CRS← Gen(1n);
x∗ ← P∗1(CRS);
Π∗ ← P∗2(CRS, x

∗);
V(CRS, x∗,Π∗) = 1 ∧ x∗ /∈ L

 ≤ µ(n) .

• Poly-Time Argument. The running time of P is at most poly(n, k).

3.4 Ring-Independent Arithmetic Circuits.

In this section we define ring-independent arithmetic circuits. These are arithmetic circuits that evaluate
to the same values on the boolean hypercube when evaluated over any ring. We choose to work with ring-
independent arithmetic circuits since they can be evaluated over encoded inputs, where the evaluator may
not know the underlying ring, and the evaluation is independent of the encoding parameters’ underlying
ring.

Definition 3.17 ((Strongly) Ring-Independent Arithmetic Circuit). An arithmetic circuit C with addi-
tion, subtraction and multiplication gates and with constants in {0, 1} is ring-independent if there exists
a boolean function f : {0, 1}n → {0, 1} such that for every ring R and for every input x ∈ {0, 1}n we
have that C(x) = f(x) when C is evaluated over R. In this case we say that the circuit C computes the
boolean function f .

We say that C is strongly ring-independent the sub-circuit computing any internal wire in C is
ring-independent.

21

Fact 3.18. Let f, g be a pair of ring-independent arithmetic circuits on n inputs.

1. The circuit computing f · g is ring independent.

2. If for every x ∈ {0, 1}n, at least one of the two values f(x), g(x) is zero, then f + g is ring
independent.

3.5 Multi-linear Extension.

For a boolean function f : {0, 1}n → {0, 1} and a ring R, we define the multi-linear extension f̃R, a
multi-linear polynomial that agrees with f on all inputs in {0, 1}n. We show how to compute f̃R over
any ring R using a single ring-independent circuit (this circuit always agrees with f over the hypercube,
but its values outside the hypercube will vary from ring to ring).

Let βn be a ring-independent, multi-linear arithmetic circuit with 2n inputs described by the follow-
ing arithmetic expression:

βn(x1, . . . , xn, y1, . . . , yn) =
∏
i∈[n]

xiyi + (1− xi)(1− yi) .

observe that βn computes the identity function over input pairs from the hypercube. For every x,y ∈
{0, 1}n, βn(x,y) = 1 iff x = y. (When n is clear from the context we simply write β.)

The the multi-linear extension f̃R is defined by the following ring-independent, multi-linear arith-
metic circuit:

f̃(x) =
∑

y∈{0,1}n
βn(x,y) · f(y) . (13)

Since for every x ∈ {0, 1}n there exist only one value of y ∈ {0, 1}n such that βn(x,y) 6= 0, it follows
by Fact 3.18 that f̃ is a ring-independent arithmetic circuit computing f .

3.6 Uniform and Constructible Circuits

In this section we specify the notions of uniform and of constructible circuit ensembles, which will be
used in our protocols. We then review a proof that polynomial-time computation can be decided by a
constructible circuit ensemble.

Definition 3.19 (t-Uniform Circuit Ensemble). Let {Ck}k∈N be an ensemble of boolean circuits that
consist only of fan-in 2 AND gates and of NOT gates. We say that the ensemble is t-uniform for a
function t : N→ N if there exists a Turing Machine that on input 1k runs in time t(k) and outputs Ck.

Definition 3.20 (Constructible Circuit Ensemble). Let {Ck}k∈N be an ensemble of boolean circuits that
consist only of fan-in 2 AND gates and of NOT gates. We say that the ensemble is constructible if it is
polynomial-time uniform (and in particular has polynomial sized circuits), and there exists an ensemble
of ring-independent arithmetic circuits

{
ãndk, ñotk

}
k∈N

as follows:

• The circuit ãndk takes as input three wire labels u, v, w ∈ {0, 1}log(|Ck|) in Cn. It outputs 1 if u is
the output wire of an AND gate with input wires v, w.

• The circuit ñotk takes as input two wire labels u, v ∈ {0, 1}log(|Ck|) in Ck. It outputs 1 if u is the
output wire of a NOT gate with input wire v.

Moreover, we require that ãndk, ñotk are polylog(k)-uniform circuit ensembles with polylog(k) degree.

22

Claim 3.21 (From Turing Machines to Constructible Circuits). Every language that can be computed
by a Turing Machine running in time t(k) and space s(k) can be computed by a constructible circuit
ensemble {Ck}k∈N of depth O(t(k)) and width O(s(k)).

We will show constructibility by NC1 circuits. By the following remark this suffices for the notion
of constructibility given in Definition 3.20.

Remark 3.22. To show that an ensemble {Ck} of boolean circuits is constructible, as per Definition
3.20, it suffices to show that the functions ãndk and ñotk, restricted to boolean inputs, can be computed
by polylog(k)-uniform NC1 boolean circuits (of depth O(log log(k))).

This is because, for any ring, replacing AND gates by multiplication and NOT gates by subtrac-
tion from 1, gives a ring-independent arithmetic circuit computing the functions ãndk, ñotk. For NC1

boolean circuits, the degree of the resulting ring-independent circuit is bounded by polylog(k).

Proof of Claim 3.21. We recall the well-known construction of circuits from Turing Machines. Let T
be a Turing Machine running in time t(k) and space s(k). We show that the language computed by T
can be computed by a constructible circuit ensemble {Ck} of depth O(t(k)) and width O(k + s(k)).

We assume that T is an oblivious Turing Machine [PF79] with an input tape and a work/output
tape. We assume further that the position of the machine’s reading heads in the i-th step (on the reading
tape and on the work tape) can be computed by uniform NC1 circuits of size polylog(k). Note that
an arbitrary Turing machine can be made oblivious, e.g. by using the trivial transformation that makes
a complete pass over the work and input tapes for every step of the original machine. Let q be the
(constant) size of the Turing machine’s state space, and σ the (constant) size of its alphabet.

For input length k, fix the circuit C = Ck, and set t = t(k), s = s(k). The circuit C has a “sub-
circuit” for each step of the computation. The i-th sub-circuit has (k + q + (σ · s)) input wires carrying
the computation’s input x, the TM state Qi−1, and the contents of the work tape after the (i− 1)-th step.
The i-th sub-circuit also has (k+ q+ (σ · s)) output wires, carrying x, the TM state Qi, and the contents
of the work tape after the i-th step.

Let α(i) ∈ [k] be the location of the input tape reading head before step i, and β(i) ∈ [s] the location
of the work tape reading head before step i. The “active inputs” for the i-th step are the wires carrying
the state Qi−1, the α(i)-th bit of the input, and the β(i)-th symbol in the work tape (the active inputs’
bit values are carried on O(1)wires). In computing the i-th step’s output, the input bits are unchanged.
The i-th state Qi is computed by a constant-size sub-circuit that operates on the active inputs. The
work tape is unchanged, except for the β(i)-th symbol, which is computed by a constant-size sub-circuit
thatoperates on the active inputs. These two constant-size circuits can be computed in constant time
form the Turing Machine’s description.

Constructibility. Each wire is labeled with its time-step i. For the i-th sub-circuit, each of its output
wires is a function ofO(1) input wires, and the input wires relevant to each output wire can be computed
using α(i) and β(i) (by anNC1 circuit of size polylog(k)). The constant-size sub-computation for each
output wire is then computed by a circuit constructible in constant time. We obtain the subcircuit per-
forming the i-th computation step by composing the “outer” circuit described using gates that perform
the constant-size operations for computing each output symbol, with an “inner” boolean circuit imple-
menting these constant-size operations. To do this, we concatenate the labels for the outer and inner
circuits, and use a wiring predicate that computes the AND of the outer and the inner circuits’ wiring
predicates. The resulting wiring predicate can be computed by a uniform NC1 circuit of polylog(k)
size.

Complexity. The resulting circuit C has depth O(t(k)) and width O(k + s(k)).

23

3.7 Encoded Polynomials

In this section we consider multivariate polynomials, where some of the input variables have been fixed.
We show how to compute the coefficients of the resulting restricted polynomial (as a function of the
fixed variables). We use this procedure to compute the (encodings of) coefficients of polynomials when
the fixed inputs are encoded under a GE scheme. (Naturally, when we consider encoded inputs, we can
only obtain encoded coefficients).

Notation. For a multi-variate polynomial g(t) : Rk → R of total degree δ, we use:

Γ(δ) =

{
d ∈ [0, δ]k :

∑
i∈k

di ≤ δ

}
.

to denote the set of monomials with total degree δ. For t ∈ Rk, d ∈ Γ(δ) we denote by td the value
of the monomial d on input t:

td =
∏
i∈[δ]

tdi
i .

We use αd(g) to denote the coefficient of the monomial d in the multi-variate polynomial g. Thus, we
can write:

g(t) =
∑

d∈Γ(δ)

αd(g) · td .

Also, for two monomials d1,d2, we use (d1 + d2) to denote the point-wise sum.

Computing coefficients. Claim 3.23 below shows how to compute the coefficients of a restricted poly-
nomial, when some of the input variables have been fixed. Later in this work, when given encodings of
the fixed variables, we follow the proof of this claim to obtain encodings of these coefficients.

Claim 3.23. Let f(t, s) : Rk+m → R be an arithmetic circuit computing a multivariate polynomial on
(k + m) variables, separated into two input vectors t ∈ Rk and s ∈ Rm. Let δt and δs be the total
degrees of f in the variables in t, s (respectively). Fixing any input s, viewing f as a function of t, we
can decompose it as follows:

f(t, s) =
∑

d∈Γ(δt)

(αd(f)(s)) · td .

For every monomial d ∈ Γ(δt), the coefficient αd(f)(s), viewed as a function of s, can be computed by
an arithmetic circuit of total degree δs and size O(δ2k

t · |f |). Given a description of f and the monomial
d, this circuit can be constructed in time poly(δkt , |f |).

Proof. To construct a circuit computing αd(f)(s), we proceed by induction over the circuit f . In the
base case, for constant or input variables the claim is trivial. Let φ be the top gate of a sub-circuit with
total degree δ, and φ1, φ2 be its children, of total degrees δ1, δ2. When the top gate is an addition gate,
and φ = φ1 + φ2, we simply have

αd(φ) = αd(φ) + αd(φ) .

When the top gate is a multiplication gate, and φ = φ1 · φ2, we have:

αd(φ) =
∑

d1+d2=d

αd1(φ) · αd2(φ) .

In both cases, by induction the total degree (in s) remains bounded by (δ1 + δ2) ≤ δ. The number of
monomials is at most δkt , and so, by induction, the size is at most:

O
(

(δkt · δkt · poly(|φ1|)) + (δkt · δkt · poly(|φ2|)) + δkt

)
= O(δ2k

t · |f |) .

24

4 Non-Interactive Arguments for P

We construct a publicly-verifiable non-interactive argument system for any polynomial-time computa-
tion. Let L ba a language in P , decidable by a constructible circuit ensemble {Ck}k∈N (see Section 3.6).
The non-interactive argument proves statements of the form: Ck(x) = 1.

Similarly to [KRR14], we separate our description and analysis of the protocol into two steps:

Step 1. First, we build a “basic protocol” with a weak soundness property. If a prover P∗ can make the
verifier accept that C(x) = 1 (with noticeable probability), then we use this P∗ to generate assignments
for any small set S of C’s wires, and these assignments will be locally consistent (see below).

In slightly more detail, we obtain from P∗ a Q-local consistent (partial) assignment generator
Assign. This is a probabilistic algorithm that takes as input a sequence of Q wire labels S ∈ [|C|]Q, and
outputs (a distribution on) boolean assignments to those wires (in {0, 1}Q). We obtain such an assign-
ment generator for Q = polylog(|x|). With high probability the assignments generated by Assign are
locally consistent in the following sense:

1. Assignments made to any and all input wires are consistent with the inputs x.

2. Assignments made to intermediate wires are locally consistent with the wires’ gates. In particular,
if S includes input wires u, v for and AND gate, and output wire w for the same gate, then the
assignment given to w is the conjunction of the assignments given to u and to v. Similarly, if S
includes the input wire u and output wire w of a NOT gate, then the assignment given to w is the
negation of the assignment given to u.

3. The assignment given to the output wire is always 1.

We emphasize that locally consistent assignments need not be consistent with C(x)’s actual com-
putation. Indeed, it is not immediately obvious why the existence of a locally-consistest assignment
generator implies that there exists a globally consistent accepting assignment.3

Finally, the assignment generator is also required to be computationally no-signaling (see [KRR13]):
the distribution of the values assigned to a specific set of wires is independent of the other wires that are
queried (up to some negligible distinguishing factor). In particular, if two sets S and S′ both contain a
subset T of wire-queries, then the distributions of Assign’s answers on S and on S′, when restricted to
the wires in T , are computationally indistinguishable.

A similar statement holds for the protocol of [KRR13, KRR14]. We note that, while our protocol is
inspired by theirs, it is quite different. The proof of the existence of Assign with the above properties is
also quite different from theirs.

Step 2. To prove that when the verifier accepts indeed C(x) = 1, we use the augmented circuit con-
struction from [KRR14]. We describe this as a transformation from any constructible circuit ensemble
{Ck} to another constructible circuit ensemble {C ′k} computing the same function. If there exists a local
assignment generator as above for C ′k, then it must be that C ′(x) = 1 (and thus C(x) = 1). The final
protocol simply executes the “basic protocol” above on the augmented circuit C ′. If the verifier accepts
with noticeable probability, then we are guaranteed that there exists a local assignment generator for C ′k
and therefore C(x) = 1.

The transformation we describe follows the construction and the proof of [KRR14]. In terms of
exposition, we give a modular presentation of the construction and its soundness proof following the
above two steps. We also add an explicit proof of constructibility for the augmented circuit, which
simplifies the final protocol (for more details see Remark 4.7).

3[KRR13] do prove such an implication for assignment generators that have a no-signaling property (see below) and when
the circuit width is smaller than Q. They use this to argue soudnmness for space-bounded computations.

25

4.1 Completeness and Soundness

We proceed to formalize the notion of a local assignment generator and the claims made above. The
basic protocol is presented in Section 4.2, and its soundness is proved in Section 4.3. The construction
and soundness of the augmented circuit are in Section 4.4.

4.1.1 Basic Protocol Completeness and Soundness

The basic protocol is given by a trio of algorithms (GenBP ,PBP ,VBP). It’s completeness is formalized
as follows:

Claim 4.1 (Basic Protocol Completeness). For every constructible ensemble of circuits {Ck}k∈N, the
protocol (GenBP ,PBP ,VBP) given in Section 4.2, satisfies the following completeness property.

For every input x ∈ {0, 1}k such that Ck(x) = 1:

Pr
CRS←GenBP (1n,1k)

[1← VBP (CRS, x,PBP (CRS, x))] = 1 .

To formalize the basic protocol’s weak soundness property, we first formalize the definition of a
local assignment generator:

Definition 4.2 (Local Assignment Generator). Let n ∈ N be a security parameter, {Ck}k∈N a con-
structible circuit ensemble, {xn}n∈N an input sequence such that k(n) = |xn| = poly(n) and S(n) =
|Ck(n)|.

A Q-local assignment generator Assign for {xn} is a probabilistic polynomial-time Turing Machine
that takes as input a security parameter 1n and a vector w ∈ [S(n)]Q(n) of Ck(n)’s wires, and outputs
(a distribution over) assignments a ∈ {0, 1}Q(n).

Taking Q = Q(n), we require that:

• Everywhere Q-Local Consistency. For every wire-vector w = (w1, . . . , wQ) ∈ [S(n)]Q, with
probability 1− negl(n) over a draw:

(a = (a1, . . . , aQ))← Assign(1n,w) ,

the assignment a is locally consistent with the computation of C. That is, for every i, j, k ∈ [Q]:

1. If wi = wj , then ai = aj .

2. If wi, wj are the input wires of an AND gate and wk is its output wire, then ak = ai · aj .
3. If wi is the input wire of a NOT gate and wj is its output wire, then aj = 1− ai.
4. If wi is an input wire in Ck(n) then the value ai is consistent with xn.

5. If wi is the output wire of Ck(n), then ai = 1.

• No-signaling. For every poly-size distinguisher D and every subset T ⊆ [Q] of the Q queries , for
every w0,w1 ∈ [S(n)]Q such that w0|T = w1|T :∣∣∣∣ Pr

a0←Assign(1n,w0)

[
D(a0|T) = 1

]
− Pr

a1←Assign(1n,w1)

[
D(a1|T) = 1

]∣∣∣∣ ≤ negl(n) .

The soundness of the basic delegation protocol says that if the verifier accepts the proof with notice-
able probability, then there exists a local assignment generator for the computation.

26

Claim 4.3 (Basic Protocol Soundness). For every constructible ensemble of circuits {Ck}k∈N the pro-
tocol (GenBP ,PBP ,VBP) given in Section 4.2, instantiated with a Graded Encoding Scheme satisfying
Assumption 3.4, satisfies the following property.

For every poly-size circuit P∗, for every sequence of inputs {xn}n∈N where |xn| = poly(n), and for
every polynomial p, if for every large enough n ∈ N:

Pr
CRS←GenBP (1n,1k)

[1← VBP (CRS, xn,P
∗(CRS, xn))] ≥ 1

p(n)
,

then there exists Q-local-assignment generator for {xn} as per Definition 4.2, where Q = O(log6 n).

The proof of the claim is given in Section 4.3.

4.1.2 Full Protocol Completeness and Soundness

We define the augmented circuit transformation used in the full protocol and its properties.

Claim 4.4 (Augmented Circuits). Let {Ck}k∈N be a constructible ensemble of boolean circuits. There
exists an augmented ensemble {C ′k}k∈N with following properties:

1. The augmented ensemble {C ′k} is also constructible.

2. For all input lengths k ∈ N and inputs x ∈ {0, 1}k: Ck(x) = C ′k(x).

3. (Augmented Soundness.) For every sequence of inputs {xn}n∈N such that k(n) = |xn| = poly(n),
if there is anQ-local assignment generator for {xn} whereQ = O(log6 n), then for all but finitely
many n’s: Ck(n)(xn) = 1.

The proof of the claim is given in Section 4.4.

The augmented protocol. Let {Ck}k∈N be a constructible ensemble of circuits and let {C ′k}k∈N be
the augmented constructible ensemble given by Claim 4.4. Let (GenAP ,PAP ,VAP) be the protocol
(GenAP ,PAP ,VAP) given in Section 4.2 arguing about the augmented ensemble {C ′k}. By combining
Claim 4.3 and 4.4 we derive the soundness of the augmented protocol:

Theorem 4.5. The Protocol (GenAP ,PAP ,VAP) instantiated with a Graded Encoding Scheme satisfy-
ing Assumption 3.4, is a non-interactive argument with non-adaptive soundness as per Definition 3.16.

4.2 The Basic Protocol

In this section we construct the basic delegation protocol (GenBP ,PBP ,VBP). Let {Ck}k∈N be a con-
structible ensemble of circuits. Let S(k) = 2m(k) = poly(k) be the size of Ck (we assume without loss
of generality that S(k) is a power of 2). Before describing the procedures GenBP ,PBP ,VBP we define
an ensemble of ring-independent circuits {φk} that describes the structure of Ck.

4.2.1 The Circuit φbx

For every input x ∈ {0, 1}k, let ϕx be a 3-CNF boolean formula such that ϕx(y1, . . . , yS(k)) = 1 iff the
wire-assignments y1, . . . , yS(k) describe the correct computation of the circuit C(x) and also C(x) = 1.
More specifically, ϕx contains the following clauses:

• Input clauses: For every input wire, there is a clause verifying that the value of this wire is consis-
tent with x.

27

• Gate clauses: For every set of wires (of size 2 or 3) that are connected to a gate in C, there are
clauses verifying that the values of these wires are consistent with the gate.

• Output clause: There is a clause verifying that value of the output wire is 1.

• Boolean clauses: For every wire, except for the output wire, there is a (seemingly redundant)
clause verifying that value of the wire is either 0 or 1.

We remark that the boolean clauses are added so that ϕx can also be used to verify the consistency
of partial assignments that may contain general ring elements (we elaborate in the security proof).

For every triplet of bits b = (b1, b2, b3) ∈ {0, 1}3, let φbx : {0, 1}3m → {0, 1}, be a boolean function
such that for every triplet of wires w1, w2, w3 ∈ {0, 1}m, φbx(w1, w2, w3) = 1 iff ϕx contains the clause:

(yw1 = b1) ∨ (yw2 = b2) ∨ (yw3 = b3) ,

and otherwise φbx(w1, w2, w3) = 0.

Claim 4.6 (Efficient Computation of φbx). For every b ∈ {0, 1}3, the function φbx can be computed by a
uniform ensemble of ring-independent circuits with degree δ(k) = polylog(k) and size Õ(k).

Proof. The circuit for φbx computes the sum of 4 ring-independent sub-circuits, each checking if the
input represents a specific type of clause contained in ϕ. Since every input represents at most one
type of clause, φbx is ring independent (Claim 3.18). Checking for boolean clauses and for the output
clause can be implemented by a uniform ring-independent circuit of polylog(k) degree and polylog(k)
size. Checking for input clauses can be implemented by a uniform ring-independent circuit of degree
polylog(k) degree and Õ(k) size. Since Ck is a constructible ensemble, checking for gate clauses can
be implemented by a uniform ring-independent circuit of polylog(k) degree and polylog(k) size, using
the wiring predicates of Ck (see Definition 3.20).

Remark 4.7. By considering a constructible ensemble {Ck}, we are able to prove

Claim 4.8. (claim.phi-easy). This will be used to argue that the verifier VBP can efficiently evaluate φbx
(on encoded inputs). This defers from the protocol of [KRR14] where they only argue that the ensemble
{Ck} is log-space uniform and therefore, the time to evaluate φbx may be as long as performing the
entire computation. The solution of [KRR14] is to delegate the computation of φbx to the prover using a
sperate delegation protocol for log-space computations.

4.2.2 The Challenge Generator GenBP

GenBP is given as input the security parameter 1n and the input size 1k. Let C = Ck, S = S(k), and
m = m(k). Let Q = O(log6 n) be a parameter defined as in Claim 4.3, and let δ = δ(k) (recall that
δ(k) is the degree of the circuit φbx). Let δ′ = 3m · (δ + 1). GenBP samples public parameters and
re-randomization parameters:

pp, rp← InstGen(1n, δ′) .

Let Zp be the underlying field of the public parameters pp. GenBP samples random curves passing
though 0m encoded in level 1 using the procedure Curve described in Section 3.2.1:

∀q ∈ [Q], [γq]1 , [t]1 ← Curve(pp, rp, δ′, 0m).

(The output [t]1 of Curve is ignored.) GenBP outputs the CRS that contains the public parameters pp
and the encoded curves [γ1]1 , . . . , [γQ]1.

The running time of GenBP and the length of CRS are poly(n,m(k)).

28

4.2.3 The Prover PBP

We start by introducing some notation. For an instance x ∈ L, let X : {0, 1}m → {0, 1} be a boolean
function such that for every wire w ∈ {0, 1}m, X(w) is the value of the wire w in the computation
C(x). Let X̃ be the ring-independent multi-linear extension of X (see Section 3.5).

For every b ∈ {0, 1}3 let Pb
0 be the arithmetic circuit given by the expression:

Pb
0 (w1, w2, w3) = φbx(w1, w2, w3) ·

∏
i∈[3]

(
1− β(bi, X̃(wi))

)
.

(Where β is the ring-independent circuit for computing the identity function on bits. See Section 3.5.)
For every j ∈ [3m], let Pb

j be the arithmetic circuit given by the expression:

Pb
j (z1, . . . , z3m) =

∑
y1,...yj∈{0,1}

β(y1, . . . yj , z1, . . . zj) · Pb
0 (y1, . . . yj , zj+1, . . . , z3m) .

It follows from Fact 3.18 that for every j ∈ [0, 3m], Pb
j is ring-independent. Note that, for every

j ∈ [0, 3m], Pb
j is multi-linear in its first j input variables, and of individual degree at most δ + 1 in

its last 3m − j input variables (since X̃ is multi-linear). Note also that since x ∈ L, Pb
0 (z) = 0 for

every z ∈ {0, 1}3m and b ∈ {0, 1}3. Therefore, for every j ∈ [3m], for every ring R, and for every
z ∈ Rj × {0, 1}3m−j , Pb

j (z) = 0 over R.
We continue our description of PBP . Given the input:

CRS =
(
pp,
(
[γ1]1 , . . . , [γQ]1

))
,

and an instance x ∈ L, PBP computes the polynomials:

X̃ ,
{
Pb
j

}
b∈{0,1}3,j∈[3m]

,

as above. For every q ∈ [Q] let X̃q(t, s) be the bivariate polynomial:

X̃q(t, s) = X̃ ◦
(
γ1→s
q

)
,

of degree at most (δ′ · (m− 1)) in t and linear in s.
For every q = (q1, q2, q3) ∈ [Q]3, b ∈ {0, 1}3 and j ∈ [3m], let Pb

j,q be the 4-variate polynomial:

Pb,q
j−1(t1, t2, t3, s) = Pb

j−1 ◦
(

(γq1 , γq2 , γq3)j→s
)
.

The degree of Pb,q
j−1 in the variables t1, t2, t3 is at most (δ′ ·m · (δ + 1)) (depending on the value of j),

and the degree in the variable s is at most δ + 1.
PBP uses the operations Add,Sub,Mult to obtain the encoded polynomials:

Π =

({[
X̃q
]
m−1

}
q∈[Q]

,

{[
Pb,q
j−1

]
(3m−j)(δ+1)+j−1

}
q∈[Q]3,b∈{0,1}3,j∈[3m]

)
,

where X̃q is encoded under the level m− 1 since X̃ is multi-linear, and the coefficients of the manifold
γ1→s
q are encoded in level 1 in all output coordinates, except for the first coordinate whose coefficients

are known in the clear. Similarly, Pb,q
j−1 is encoded under the level (3m− j)(δ + 1) + j − 1 since Pb

j−1

is multi-linear in its first j − 1 coordinates and of individual degree at most δ + 1 in its last 3m − j
coordinates, and since the coefficients of the manifold (γq1 , γq2 , γq3)j→s are encoded in level 1 in all
output coordinates, except for the j coordinate whose coefficients are known in the clear. Finally, PBP
outputs the proof Π.

The running time of PBP is poly(n, S(k)) the length of the proof is poly(n,m(k)).

29

4.2.4 The Verifier VBP

VBP is given as input the CRS:

CRS =
(
pp,
(
[γ1]1 , . . . , [γQ]1

))
,

the instance x and the proof:

Π =

({[
X̃q
]
m−1

}
q∈[Q]

,

{[
Pb,q
j−1

]
(3m−j)(δ+1)+j−1

}
q∈[Q]3,b∈{0,1}3,j∈[3m]

)
,

The verifier computes the following polynomials:

• For every q ∈ [Q], define X̃ ′q to be the univariate polynomial:

X̃ ′q , X̃ ◦ γq . (14)

Note that X̃ ′q(t) is just the polynomial X̃q(t, s) (as defined by the honest prover PBP), with the
variable s is restricted so as to agree with γq(t). That is:

X̃ ′q(t) ≡ X̃q(t, γq(t)[1]) ,

where γq(t)[1] denotes the first coordinate of the curve γq evaluated on t.

• For every q = (q1, q2, q3) ∈ [Q]3 and b ∈ {0, 1}3 and j ∈ [3m], define P ′b,qj−1 to be the 3-variate
polynomial:

P ′b,qj−1 , Pb
j−1 ◦ (γq1 , γq2 , γq3) . (15)

We have that:

P ′b,qj−1 (t1, t2, t3) ≡ Pb,q
j−1(t1, t2, t3, (γq1 , γq2 , γq3) (t1, t2, t3)[j]) , (16)

where (γq1 , γq2 , γq3) (t1, t2, t3)[j] denotes the j-th coordinate of the manifold (γq1 , γq2 , γq3) eval-
uated on t1, t2, t3.

• Define P ′b,q3m be the constant zero 3-variate polynomial:

P ′b,q3m ≡ 0 (17)

Following the above definitions, using the operations Add,Sub,Mult and the encodings in CRS and Π,
VBP obtains the encoded polynomials:{[

X̃ ′q
]
m

}
q∈[Q]

,

{[
P ′b,qj

]
(3m−j)(δ+1)+j

}
q∈[Q]3,b∈{0,1}3,j∈[0,3m]

.

Next, VBP verifies that for every q ∈ [Q]3, b ∈ {0, 1}3 the following identities hold:

P ′b,q0 (t1, t2, t3) ≡ φbx(γq1(t1), γq2(t2), γq3(t3)) ·
∏
i∈[3]

1− β(bi, X̃
′
qi(ti)) , (18)

∀j ∈ [3m] : P ′b,qj (t1, t2, t3) ≡
∑

y∈{0,1}

β(y, (γq1 , γq2 , γq3) (t1, t2, t3)[j]) · Pb,q
j−1(t1, t2, t3, y) . (19)

Note that VBP can verify these identities: it uses the operations Add,Sub,Mult and the circuit
φbx to compute the encoded polynomials as a list of encoded coefficients. It then uses the operations
Sub, isZero to test Equalities (18) and (19) for every q ∈ [Q]3, b ∈ {0, 1}3 and j ∈ [0, 3m]. If all these
tests pass, then VBP accepts. Otherwise, it rejects.

By Claim 4.6 the running time of VBP is poly(n,m(k)) · Õ(k).

30

4.3 The Basic Protocol’s Soundness and Assignment Generator

In this section we prove Claim 4.3. Let {Ck}k∈N be a constructible ensemble of circuits. Let P∗ be a
poly-size prover, let p be a polynomial and let {xn}n∈N be sequence of inputs such that k(n) = |xn| =
poly(n) and for all large enough n:

Pr
CRS←GenBP (1n,1k(n))

[1← VBP (CRS, xn,P
∗(CRS, xn))] ≥ 1

p(n)
. (20)

We construct a Q-local assignment generator Assign for {xn} where Q = O(log6 n) is as defined in the
claim statement.

Local assignment generator Assign. Fix n ∈ N and take k = k(n), S = S(k(n)),m = m(k(n)), Q =
Q(n). Recall that on input 1n and a vector of wires w = (w1, . . . , wQ) ∈ {0, 1}m·Q, the output of
Assign is a locally consistent partial assignment a ∈ {0, 1}Q for the wires in w.

We start by giving a high-level description of the assignment generator. On input (1n,w), the
generator Assign emulates GenBP , except that it samples the encoded curves γ1, . . . , γQ so that the q-th
curve passes through wq instead of though 0m:

∀q ∈ [Q], γq(tq) = wq,

where tq is a random and secret ring element. The curves are sampled using the sampling procedure
described in Section 3.2.1. By the semantic security of the curve sampling procedure (Lemma 3.13),
this change is not detectable by the prover P∗.

The generator Assign runs P∗ on a CRS generated as above, and checks that the proof generated
by P∗ is an accepting proof. If not, it simply generates a fresh CRS using the same procedure (with
curves passing through w) and tries again. After (2n · p(n)) attempts, if no accepting proof is found,
Assign aborts and outputs the all-0 assignment (this will only happen with negligible probability). Once
an accepting proof is found, Assign obtains the encoded polynomials {X̃ ′q}q∈[Q] as computed by VBP .
Then Assign recovers the q-th bit of the partial assignment as:

aq ← X̃ ′q(tq)

For each bit of the partial assignment, Assign tests if it is 0 or 1 (if not, Assign fails - this will only
happen with negligible probability)

The assignment generator. Assign(1n,w) repeats the following for up to 2n · p(n) iterations, until
some iteration produces an assignment. If no iterations succeed in producing an assignment, Assign
outputs the default assignment 0Q.

1. Sample public parameters and re-randomization parameters:

pp, rp← InstGen(1n, δ′) ,

as sampled by GenBP .

2. For every q ∈ [Q] sample an encoded curve passing though wq using the procedure Curve (see
Section 3.2.1):

[γq]1 , [tq]0 ← Curve(pp, rp, δ′) .

3. Set:
CRS =

(
pp,
(
[γ1]1 , . . . , [γQ]1

))
,

and run the prover P∗ to obtain:
Π← PBP (CRS, x) .

31

Verify that:
VBP (CRS, x,Π) = 1.

Otherwise, proceed to the next iteration.

4. Using the proof Π, obtain the encoded polynomial:{[
X̃ ′q
]
m

}
q∈[Q]

,

as computed by VBP (see Equation (14)).

5. Use the operation Add,Mult to obtain the encodings:{[
X̃ ′q(tq)

]
m

}
q∈[Q]

,

6. For every q ∈ [Q], use the operations Sub, isZero to test if X̃ ′q(tq) = 0 or if X̃ ′q(tq) = 1. If both
tests fail, outputs the default assignment 0Q.

7. Output the assignment: (
X̃ ′1(t1), . . . , X̃ ′Q(tQ)

)
.

Local assignment generator properties. We proceed to show that if indeed P∗ succeeds in making
VBP accept (with polynomial probability), that is, if Equation (20) holds, then Assign is a Q-local as-
signment generator for {xn} satisfying the everywhere Q-local consistency and no-signaling properties
in Definition 4.2

Everywhere Q-local consistency. In each iteration, Assign generates curves that pass through the wires
specified by w. The probability that P∗ generates a proof that VBP accepts remains almost unchanged
compared to random curves passing through 0m, and is at least 1/2p(n). This follows from the semantic
security of the curve encodings (Lemma 3.13). Otherwise, we could use P∗ and VBP to distinguish
random curves passing through 0m from ones passing through w. Thus, the probability that after (2n ·
p(n)) independent iterations P∗ doesn’t generate a proof that makes VBP accept is exp(−n).

To complete the local consistency proof, we show that in any iteration where P∗ generates a proof Π
that makes VBP accept, it is always the case that the assignments derived from Π are locally consistent.

Towards this end, recall that from the proof Π, the generator Assign obtains the encoding of the
polynomials {X̃ ′q}. For any triplet of queries q = (q1, q2, q3) ∈ [Q]3, let t1, t2, t3 to be the points
where the curves γq1 , γq2 , γq3 get values wq1 , wq2 , wq3 . We want to show that the triplet of assignments:

a1 ← X̃ ′q(t1), a2 ← X̃ ′q(t2), a3 ← X̃ ′q(t3)

are locally consistent, as per Definition 4.2.
In Claim 4.9 below, we show that for every b ∈ {0, 1}3, j ∈ [3m] it is always the case that:

P ′b,q0 (t1, t2, t3) = 0.

This implies local consistency as follows. From VBP ’s test in Equation (18) have that that:

0 = P ′b,q0 (t1, t2, t3)

= φbx(γq1(t1), γq2(t2), γq3(t3)) ·
∏
i∈[3]

1− β(bi, X̃
′
qi(ti))

= φbx(wq1 , wq2 , wq3) · (1− β(b1, a1)) · (1− β(b2, a2)) · (1− β(b3, a3)) .

32

This implies that for every clause in the 3-CNF ϕx that involves the assignments on wires wq1 , wq2 , wq3 ,
the bits values a1, a2, a3 assigned to those wires satisfy the clause. By the construction of ϕx, we
conclude that the values assigned to a1, a2, a3 are locally consistent (as per Definition 4.2).

Claim 4.9 below completes the proof of local consistency:

Claim 4.9 (VBP Accept ⇒ Consistency). For every input x ∈ {0, 1}k and every wire-vector w =
(w1, . . . , wQ) ∈ [S(n)]Q, for every challenge CRS generated by Assign(1n,w), if VBP accepts the
proof Π← P∗(x,CRS), then the following holds.

For every q = (q1, q2, q3) ∈ [Q]3,b ∈ {0, 1}3, let P ′b,q0 be the encoded polynomial computed by
VBP from Π via Equation (18), and let t1, t2, t3 be the points where the curves γq1 , γq2 , γq3 get values
wq1 , wq2 , wq3 . We have that:

P ′b,q0 (t1, t2, t3) = 0

Proof. We begin with notations. We take t = (t1, t2, t3), and z = (γq1 , γq2 , γq3)(t1, t2, t3). Note
z = (wq1 , wq2 , wq3) ∈ {0, 1}3m is a boolean vector.

Following VBP ’s computations of the encoded polynomials:{[
P ′b,qj

]
(3m−j)(δ+1)+j

}
q∈[Q]3,b∈{0,1}3,j∈[0,3m]

,

by the fact that VBP accepts, we know that for every b ∈ {0, 1}3, j ∈ [3m]:

P ′b,qj (t1, t2, t3) =
∑

y∈{0,1}

β(y, (γq1 , γq2 , γq3) (t1, t2, t3)[j]) · Pb,q
j−1(t1, t2, t3, y) (21)

=
∑

y∈{0,1}

β(y, z[j]) · Pb,q
j−1(t1, t2, t3, y) (22)

= Pb,q
j−1(t1, t2, t3, z[j]) (23)

= P ′b,qj−1 (t1, t2, t3) (24)

Where Equality (21) follows from VBP ’s test in Equation (19). Equality (22) is by definition of z.
Equality (23) follows because z is a boolean vector. Finally, Equality (24) follows by the definition of
P ′b,qj−1 (see Equation (16)).

We conclude that under the conditions in the Claim’s statement:

∀b ∈ {0, 1}3, j ∈ [3m] : P ′b,qj (t1, t2, t3) = P ′b,qj−1 (t1, t2, t3) (25)

Also, by VBP ’s test in Equation (17), we have:

∀b ∈ {0, 1}3 : P ′b,q3m (t1, t2, t3) = 0 (26)

From Equations (26) and (25), we conclude that

∀b ∈ {0, 1}3 : P ′b,q0 (t1, t2, t3) = 0

No-signaling. The no-signaling property of Assign follows rather directly from the semantic security of
the encoded curves (Lemma 3.13) by a standard hybrid argument.

33

Assume toward contradiction that there exists a polynomial p1 and a poly-size distinguisher D such
that for infinitely many values of n ∈ N, there exists a set T ⊆ [Q], and wire vectors w0,w1 ∈ {0, 1}m·Q
such that that w0|T = w1|T and:∣∣∣∣ Pr

a←Assign(1n,w)
[D(a|T) = 1]− Pr

a←Assign(1n,w)
[D(a|T) = 1]

∣∣∣∣ ≥ 1

p1(n)
. (27)

Let δ′ = δ′(n) be a degree parameter defined as in the procedure GenBP and let:

pp, rp← GenBP (1n, δ′) .

For every w ∈ {0, 1}m let [γw]1 be the encoded curve generated by Curve(pp, rp, δ′,w).
We use the D to construct another distinguisher D′ such that:∣∣∣∣∣∣∣∣

Pr

[
D′
(
pp, rp,

{[
γw0

q

]
1

}
q∈[Q]\T

)
= 1

]
−

Pr

[
D′
(
pp, rp,

{[
γw1

q

]
1

}
q∈[Q]\T

)
= 1

]
∣∣∣∣∣∣∣∣ ≥

1

n · p(n) · p1(n)
. (28)

(Recall that the polynomial p defined the success probability of the adversary P∗ as per Equation (20).)
We get a contradiction to Lemma 3.13 by a standard hybrid argument.

To prove Equation (28) we consider a sequence of hispid distributions. Recall that the strategy of
Assign proceeds in at most n ·p(n) iterations until an assignment is produced. For every i ∈ [0, n ·p(n)]
let ai be an assignment produced by the assignment generator that follows the strategy of Assign(1n,w0)
for the first i iterations, and the strategy of Assign(1n,w1) for the rest of the iterations. By Equation (27)
we have that for some i ∈ [n · p(n)]:∣∣Pr

[
D(ai|T) = 1

]
− Pr

[
D(ai−1|T) = 1

]∣∣ ≥ 1

n · p(n) · p1(n)
. (29)

Fix such i. The distinguisher D′ is defined as follows. Given as input parameters pp, rp and encoded
curves: {[

γwb
q

]
1

}
q∈[Q]\T

,

for some b ∈ {0, 1}, D′ emulates the assignment generator Assign as follows. In the first i − 1 itera-
tions D′ follows the strategy of Assign(1n,w0) except it it uses its input parameters pp, rp instead of
sampling parameters on its own in Step 1. From the i + 1-th iteration onwards, D′ follows the strategy
of Assign(1n,w1) using the parameters pp, rp. If an assignment a is obtained in one of these iterations,
D′ obtains a|T .

In the i-th iteration, D′ emulates Assign using the parameters pp, rp except that in Step 3 it samples
CRS as follows. For every q ∈ T , D′ samples:

γw0
q
1, [tq]0 ← Curve(pp, rp, δ′,w0

q) .

The challenge CRS consists of the sampled curves as well as the input curves:{[
γw0

q

]
1

}
q∈T

,
{[
γwb

q

]
1

}
q∈[Q]\T

.

Since w0|T = w1|T we have that CRS is distributed as in the execution of Assign(1n,wb). Using the
challenge CRS, D′ continues to emulates the i-th iteration of Assign. If an accepting proof is produced
in Step 4, since D′ only has tq for q ∈ T , it continues to emulates Steps 5,6 and 7 only for q ∈ T and
obtains an the assignment a|T .

34

Finally D′ outputs the same as D(a|T). We argue that the assignment a|T is indistinguishable from
ai|T if b = 0 and from ai−1|T if b = 1. This, together with (29) proves (28) and concludes the proof of
the no-signaling property.

Assume without loss of generality that b = 0. The only deference between the distributions a|T
and ai|T is that when sampling ai|T , if in the i-th iteration of Assign an accepting proof is produced in
Step 4 but for some q ∈ [Q] \ T both tests in Step 6 fail, then ai|T is set to the default assignment, while
ai|T will not (since D′ only emulates Step 6 for q ∈ T). However, following the proof of Claim 4.9 this
event only happens with negligible probability.

4.4 The Augmented Circuit

In this section we review the augmented circuit transformation from [KRR14]. We show that the aug-
mented circuit remains constructible, and prove the soundness property stated in Claim 4.4.

4.4.1 Construction

We follow the augmented circuit construction from [KRR14]. For each layer of the circuit, we augment
it with a computation of its low-degree extension (LDE), and with a (seemingly redundant) computation
of low degree tests (LDTs) on this extension. We also verify that every low-degree test in every level is
successful.

In reviewing this construction, we take care to explicitly label the circuit wires so as to ensure con-
structibility of the augmented circuit (see Definition 3.20). While [KRR14] argued log-space uniformity
for the entire augmented circuit, we consider “gate-by-gate uniformity”, and show how to verify the
wiring of each gate in poly-logarithmic time and degree. (In fact, we show constructibility using an
NC1 circuit of poly-logarithmic size, see Remark 3.22).

Let {Ck}k∈N be a constructible circuit ensemble. Fix an input length k and the circuit C = Ck of
depth T = T (k) and width S = S(k). Let G be a finite field of characteristic 2 and size O(log2 S). Let
H ⊂ G be a subfield of G of size logS, and fix the dimension m = (logS/ log logS), so that |H|m = S
and m · |H| < (|G| − 1)/2. (We assume without loss of generality that (logS), (logS/ log logS) are
integers.)

We assume that C is a layered circuit. Note that any constructible circuit ensemble can be trans-
formed into a constructible ensemble of layered circuits by adding “dummy gates” to each layer. This
transformation increases the width of the circuit, introducing a quadratic size overhead.

Each layer of the original circuit C is augmented using a constructible sub-circuit AUG : {0, 1}S →
{0, 1}poly(S). We start by describing the sub-circuit AUG as an arithmetic circuit over G and show that
is it constructible. We define constructibility for an arithmetic circuit similarly to the case of boolean
circuits (Definition 3.20). The only difference is that the wiring predicates are for arithmetic addition,
multiplication and inversion gates. After describing AUG as an arithmetic circuit, we explain how to
turn it into a boolean circuit in a way that preserves constructibility.

The sub-circuit AUG is composed of two steps: computing an LDE of that layer’s computation, and
then running LDTs. Each step is performed by a constructible arithmetic sub-circuit over G. We proceed
with a description of these sub-circuits:

The LDE sub-circuits. To compute the LDE, we treat AUG’s S-bit input as a function V : Hm → {0, 1},
and compute the LDE Ṽ ∈ Gm. For h ∈ Hm, the input wire carrying V (h) is labeled (INP,h). For
each a ∈ Gm, the (LDE,a)-subcircuit of AUG computes the value Ṽ (a), and its output wire is labeled
(LDE,a).

Recall the definition of the LDE:

Ṽ (a) =
∑

h∈Hm

I(a,h) · V (h), (30)

35

Where I is the identify function over Hm. For each h ∈ Hm, the sub-circuit computes the value:

I(a,h) =
∏
i∈[m]

∏
h′∈H\{hi}

(ai − h′)
(hi − h′)

, (31)

using a straightforward and constructible (LDE,a, IDN,h)-subcircuit (whose output wire is labeled
(LDE,a, IDN,h)). Given the intermediate values {I(a,h)}h∈Hm , the value of Ṽ (a) is computed as
in Equation (30), using a constructible subcircuit whose inputs are on the wires:

{(LDE,a, IDN,h), (INP,h)}h∈Hm .

The LDT sub-circuits. In its second (and seemingly redundant) step, the circuit AUG runs a low-degree
test to verify that the restriction of Ṽ to every line L : G → Gm is a univariate polynomial of degree
m · |H| (at most). For each line L specified by a,b ∈ Gm, the (LDT,a,b) sub-circuit checks that the
restriction of Ṽ to the line:

L(t) = (a · t) + b

has degree at most m · |H|. We denote the polynomial obtained using this restriction by:

γ(t) = Ṽ (L(t)).

The input to this sub-circuit are the |G| values {Ṽ (L(t))}t∈G, carried on wires:

{(LDE,y)}y=(a·t+b),t∈G .

The output wire is labeled (LDT,a,b). Note that these input wire labels can be recognized (and com-
puted) by a circuit of O(|G|3) size and O(log |G|) depth (e.g. using a hardwired truth table for all
possible (a,b,y)). This will be used by the circuit’s wiring predicate.

The low-degree test is performed by considering an arbitrary subset of field elements H′ ⊂ G, of size
|H′| = (m · |H|+ 1). We use interpolation to compute a polynomial γ′(t) of degree |H′| − 1 = m · |H|,
which agrees with the values of γ(t) on the subset H′. We then verify that γ′(t) = γ(t) also for all
t ∈ G \H′. This test passes if and only if the original polynomial γ(t) has degree at most m · |H|.

The interpolation of γ′ is done using the equation:

γ′(t) =
∑
s∈H′

I(t, s) · Ṽ (L(s)), (32)

where I is the identity function, defined as in Equation (31):

I(t, s) =
∏

s′∈H′\{s}

(t− s′)
(s− s′)

,

The (LDT,a,b)-subcircuit begins by computing the values {γ(t) = Ṽ (a · t + b)}t∈G using a con-
structible circuit with output wire (LDT,a,b, γ, t). This computation of γ’s values uses the fact that the
labels {(LDE,y)}y=(a·t+b),t∈G can be recognized by an NC1 circuit of size poly(|G|) (see above).

We also compute the values of {γ′(t)}t∈G (as in Equation (32), using a sub-circuit with output wire
(LDT,a,b, γ′, t). To do this, we begin by computing {I(t, s)}t∈G,s∈H′ , taking the label (LDT,a,b, IDN, t, s)
to be the output wire of the (straightforward) constructible sub-circuit computing this value (for t, s).
We also compute {Ṽ (L(s))}s∈H′ using a constructible circuit with output wire (LDT,a,b, Ṽ , s) (again
using the fact that the wiring predicate can recognize labels on the line L). Finally, we can compute the
{γ′(t)} values using a constructible sub-circuit that takes as its input the wires

{(LDT,a,b, IDN, t, s), (LDT,a,b, Ṽ , s)}t∈G,s∈H′

36

and performs the computation of Equation (32).
The final output on wire (LDT,a,b) is computed by a constructible circuit whose inputs are on the

wires {(LDT,a,b, γ, t), (LDT,a,b, γ′, t)}t∈G testing that for every t ∈ G, γ(t) = γ(t′).

Constructibility of the AUG sub-circuit The sub-circuit AUG takes as input wires {(INP,h)}h∈Hm

encoding the computation of a lyer in original circuit C. It output the wires {(LDE,h)}h∈Hm computed
by the LDE sub-circuits and the wires {LDT,a,b}a,b∈Gm computed by the LDT sub-circuits. The LDE
and LDT sub-circuits are themselves constructed from (constant number of) smaller constractable sub-
sircuits as described above. The wiring predicate for AUG simply computs the disjunction of wiring
predicates for all these sub-circuits, which remains an NC1 boolean circuit of poly(|G|) size.

Turning AUG into a boolean circuit. Next we describe how to turn AUG into a constructible boolean
circuit AUGb. This is done by replacing arithmetic gates by boolean implementations of the finite field
operations. We view this translation as a “composition” of an “external” circuit using arithmetic gates,
with an “internal” boolean circuits implementing the arithmetic gates. The conversion from arithmetic
to boolean maintains constructibility because the boolean implementations are themselves constructible.

Specifically, for every type of arithmetic gate A let
{
CAk
}

be a constructible “internal” ensemble of
boolean circuits implementing the gate A over G (note that the field G depends on k) the circuit AUGb

is constructed by concatenating wire labels for AUGb with those for CA. The wiring predicate for a
boolean gate B of AUGb is computed by checking if that: (i) the external wires are connected to a gate
A in the external circuit (this check is performed using the wiring predicates of all gates in AUGb), and
(ii) the internal wires are connected to a gate of type B in CA (this check is performed using the wiring
predicates of the gate B in the ensemble

{
CAk
}

).
Another technical point is that we use elements from the field G, and even vectors in Gm, to label

wires in the arithmetic circuit AUGb. These labels can be converted to and from boolean strings using
an NC1 circuit of poly(|G|) size (e.g. using a fixed translation table to translate one field element at a
time). We treat this translation as being (implicitly) performed by the wiring predicates whenever it is
needed.

Complexity of AUGb. The boolean implementations of the arithmetic gates have size poly(|G|) and
depth log |G|. Moreover, since G has characteristic 2, addition can actually be implemented by a boolean
circuit with constant depth and fan-in 2.

The arithmetic circuit computing (LDE,a) uses depth ofO(logm·polylog|G|) to compute the Iden-
tity function, and depth O(m · log |H|) for computing the sum in (30). The size is poly(|G|m). Trans-
lating the arithmetic circuit into a boolean circuit we get total depth O(logS) and total size poly(S).
(This uses the fact that addition over fields of characteristic 2 can be implemented using constant depth
fan-in 2 circuits). The arithmetic circuit computing (LDT,a,b) has depth O(log |G|) and size O(|G|2).
Translating the arithmetic circuit into a boolean circuit we get total depth O(poly log log(S)), and total
size O(log6 S). Overall the circuit AUGb is of total depth O(logS), and total size poly(S).

The augmented circuit C ′. The complete construction of the augmented C ′ simply augments each
layer using AUGb. Numbering layers from bottom (input) to top (output), the augmented circuit runs the
original circuit’s `-th layer computation on the LDE computed by AUGb on the prior layer (restricted to
the values in Hm). Finally, we also add an AND gate that checks that, for all layers, all the low degree
tests were successful. This is an AND of T · poly(S) bits accumulated throughout the computation.

The wires are labelled as follows. We append ` to the all wires dealing with the `-th layer. The Hm

input wires to layer ` are labeled {(`− 1, LDE,h)}h∈Hm . The computation of the original circuit’s `-th
layer is performed on this input, carried forward on the wires labeled {(`, INP,h)}h∈Hm , and fed as
input to the `-th iteration of AUGb, whose outputs are on wires {(`, LDE,h)}h∈Hm .

The wiring predicates for C ′ are computed accordingly from the wiring predicates of the original
circuit C and of AUGb. Finally, the AND testing that all low-degree tests is also constructible in a
straightforward manner. The constructibility of C ′ follows.

37

Complexity ofC ′. The augmented construction increases the size of each layer ofC by a poly(S) factor,
and its depth by a O(log(S)) factor. The final AND computation has O(log T) depth and T · poly(S)
size. We conclude that |C ′| = O(|C| · T · poly(S)).

4.4.2 Proof of Claim 4.4 (Augmented Soundness)

In this section we prove that the augmented circuit transformation described in Section 4.4.1 satisfies
the properties in Claim 4.4. Properties 1 and 2 follow by construction. We focus on proving Property 3
(augmented soundness).

Let {Ck} be a circuit ensemble, take {C ′k} to be the augmented circuit ensemble, as described in
Section 4.4.1. Let Assign be a Q-local assignment generator, as in Definition 4.2, for the augmented
circuit ensemble {C ′k} on a sequence of inputs {xn}n∈N, where Q(n) = O(log6 n). Fix a large enough
security parameter n ∈ N, the instance x = xn of length k = k(n), the circuit C = Ck of depth T and
width S, and the augmented circuit C ′ = C ′k.

We prove that C ′(x) = 1. This also implies C(x) = 1 (because C,C ′ are functionally equivalent).

Setup and notations. Take Q = Q(n), and let G,H and m be as defined in the construction of C ′.
Let bx be the assignment to the wires of C ′ defined by the computation of C ′(x). For a set W of wires
in C ′, s.t. |W | ≤ Q, let R(W) be a random sample from the distribution Rn,w (where w ∈ [|C ′|]Q is
a lexicographically ordered vector containing the wires in W). For a set of wires W and for a sample
b ← R(W) we say that b is correct on a subset W ′ ⊆ W of wires, if the assigned values b|′W are
consistent with the computation C ′(x). We denote this event by CR(b,W ′).

Recall that we viewed the augmented circuit as an arithmetic circuit over G (see Section 4.4.1). We
use this view in the soundness proof below. For a wire labeled L in the arithmetic circuit (carrying an
element g ∈ G), we use W (L) to denote the set of log |G| “boolean” wires in C ′ (carrying bits that
encode the field element g). For a set of (“arithmetic”) wires B, let W (B) denote the corresponding set⋃

L∈BW (L) of (“boolean”) wires in C ′. For a sample b ← R(W (B)), and for L ∈ B, denote by b(L)
the element in G that is encoded by the assignment to the wires in W (L).

The random variables Z` and “good” wires. For each layer ` ∈ [T] of the original circuit C, we
keep track of c random variables. These random variables are sampled by picking c = log2(n) in-
dependent and uniformly random points in the LDE of layer `. We denote these random variables by
Z` = (z`,1, . . . , z`,c), where each z`,i is independently random in Gm. These random variables will be
used in the analysis of the augmented circuit construction. In the soundness proof, we consider (and an-
alyze) various events defined over these random variables. We emphasize that the randomness is always
taken over the choice of these points in Z` (unless we explicitly note otherwise).

Let B` be the set of labels {(`, LDE, z`,i)}i∈[c] carrying the field elements in the chosen coordinates
of layer `’s LDE. As defined above, W (B`) is the set of (boolean) wires in C ′ carrying the bits encoding
these field elements. We use |W (B`)| = (log |G| · c) to denote the size of this set, and we abuse
notation by using this even before the set B` is sampled (because its size is fixed in advance). Let b
be an assignment to the chosen points in the LDE, sampled from R(W (B`)). Let CR` be the event
CR(b,W (B`)), indicating that the assignment in b is correct on W (B`).

Let W be a set of wires such that (|W | + |W (B`)|) ≤ Q. For a layer ` ∈ [T] we say that W is
p-good for layer ` if:

Pr
b←R(W∪W (B`))

[¬CR(b,W) | CR(b,W (B`))] ≤ p .

That is, conditioned on a choice of B`, on the sampling of the assignment b from R(W ∪W (B`)), and
on b being correct on W (B`), the assignment b is also correct on W with all but probability (at most)
p. When the layer ` is clear from the context we simply say that W is p-good. If W is µ(n)-good for
some negligible function µ, we simply say that W is good.

38

Proof overview. We follow the outline of the proof in [KRR14]. The main step is showing that, for
every layer ` ∈ [T], the event CR` occurs with overwhelming probability. The proof is by induction on
the layer. The base case of the input layer is proved in Claim 4.12. In the inductive step (Claim 4.13), we
prove that that for every layer ` ∈ [T − 1], the probability of CR`+1 is negligibly close to the probability
of CR` (this is sufficient because the number of layers is polynomial). We conclude the proof by showing
that if in the output layer CR` occurs with overwhelming probability, then C ′(x) = 1 (Claim 4.14).

In the proof of the inductive step, we show that, for any layer ` and any point a ∈ Gm in the LDE of
layer `, the (set of wires representing) point a is “good for layer `”. That is, when we read the assignment
to a together with the assignments to Z`, if the assignments to Z` were correct, then with overwhelming
probability the values read in a are also correct.

The intuition for this is through a mental experiment. Suppose that we read more points, indeed
suppose that we chose c random lines passing through a, and read all the (c · |G|) points on all these
lines. In that scenario, with overwhelming probability, the restriction of the values read to the lines
would be low-degree polynomials, because of the LDTs that the augmented circuit runs on all such
lines: by local consistency, if we read the wires performing this test, the test should pass, and by no-
signalling, the test should still pass even when we don’t read the wires performing the LDT. Moreover,
if the value read for a is not correct, then all these low-degree polynomials are not equivalent to the
correct (low-degree) polynomials, and so the read polynomials must be far from the correct polynomials
(by the Schwartz-Zippel Lemma).Picking the points Z` to be uniformly random points, one point on
each (random) line, the probability that they are all correct is exp(−c), which is negligible. Thus, in
this mental experiment (where we read many random lines), the probability that the points in Z` are all
correct but a is not correct, is negligible. By the no-signalling property, this probability is maintained
even when we only read the points in Z`, and don’t read the remainder of the lines (note that indeed
in both cases the distribution of points in Z` is uniformly random). Note that this required reading the
values of (c · |G|) points, or

(c · |G|) · log |G| = O(log2(n) · log2(S) · log log(S)) = O(log4(n) · log log(n)) ≤ Q

wires of C ′ (carrying boolean values).
The above argument shows that, conditioned on the assignment being correct on Z`, it is correct

on any point a in the `-th layer with probability close to 1. We emphasize that this negligible failure
probability (conditioned on CR`) does not grow with the layer (or with the probability the CR` doesn’t
occur). To complete the inductive step, we show that conditioned on CR`, we also have that any point in
Z`+1 is correct with all but negligible probability. This uses local consistency, which holds for every gate
in the computation of layer (` + 1)’s LDE from the LDE of layer `. Local consistency guarantees that,
for each gate in this computation, the probability of an error in the output wire (conditioned on CR`), is
at most the sum of error probabilities in the input wires (conditioned on CR`). Since the computation of
the LDE has only logarithmic depth, we get that the accumulated error probability for each point in Z`+1

(conditioned on CR`) remains negligible. Taking a union bound over all points in Z`+1, we get that they
are all correct with all but negligible probability (conditioned on CR`). The inductive step follows.

Full proof. We start by proving a useful claim, showing that a good set of wires remains good when
read together with other wires.

Claim 4.10. Let ` ∈ [T] be a layer such that Pr[CR`] ≥ 0.9. LetW be a set such that |W∪W (B`)| ≤ Q,
and let W ′ ⊆W . Let:

b← R(W ∪W (B`)) , b′ ← R(W ′ ∪W (B`)) .

Then: ∣∣Pr[¬CR(b,W ′) | CR(b,W (B`))]− Pr[¬CR(b′,W ′) | CR(b′,W (B`))]
∣∣ ≤ negl(n) .

39

Proof. Let a, b, a′, b′ denote the probabilities:

a = Pr[¬CR(b,W ′) ∧ CR(b,W (B`))] ,

b = Pr[CR(b,W (B`))] ,

a′ = Pr[¬CR(b′,W ′) ∧ CR(b′,W (B`))] ,

b′ = Pr[CR(b′,W (B`))] .

Since the event CR` occurs with probability at least 0.9 it follows from the no-signaling property of
Assign that b ≥ 0.9 − negl(n) and b′ ≥ 0.9 − negl(n). By the no-signaling property of of Assign, we
have that |a− a′| ≤ negl(n) and |b− b′| ≤ negl(n). Overall we have that:∣∣∣∣ab − a′

b′

∣∣∣∣ =
|ab′ − a′b|

bb′
=
|ab′ − a′b′ + a′b′ − a′b|

bb′
≤ b′ |a− a′|+ a′ |b′ − b|

bb′
≤ negl(n) .

The claim follows, because:

a

b
= Pr[¬CR(b,W ′) | CR(b,W (B`))] ,

a′

b′
= Pr[¬CR(b′,W ′) | CR(b′,W (B`))] ,

Corollary 4.11.

1. For a layer ` ∈ [T] such that Pr[CR`] ≥ 0.9, if a set W is good, then every set W ′ ⊆ W is also
good.

2. For any sets W,W ′ such that |W ∪W ′| ≤ Q, if W and W ′ are both p-good then W ∪W ′ is
(2p+ negl(n))-good.

Main claims. The statement of Claim 4.4 follows from the following claims:

Claim 4.12 (Induction base). For the input layer we have that Pr[CR1] ≥ 1− negl(n).

Claim 4.13 (Induction step). For a level ` ∈ [T − 1], such that Pr[CR`] ≥ 0.9, we have that:

Pr[CR`+1] ≥ Pr[CR`]− negl(n) .

Claim 4.14. If in the output layer Pr[CRT] ≥ 1− negl(n) then C ′(x) = 1.

We defer the proofs of Claims 4.12 and 4.14 (see below), and begin with Claim 4.13:

Proof of Claim 4.13 (induction step). Fix a layer ` ∈ [T − 1] such that Pr[CR`] ≥ 0.9. The proof will
relies on the following claims:

Claim 4.15. For every a ∈ Gm, the set W ((`, LDE,a)) is good.

Claim 4.16. For every a ∈ Gm, the set W ((`+ 1, LDE,a)) is good.

Before proving the claims we use them to complete the proof of Claim 4.13. By Claim 4.16, for every
i ∈ [c], the wire set W ((` + 1, LDE, z`+1,i)) is good. Since c = log2 n, it follows from Corollary 4.11
that the set W (B`+1) is good. That is, conditioned on CR`, we have that CR`+1 occurs with all but
negligible probability. This implies that the probability of CR`+1 is at most negligibly smaller than that
of CR`. To see this, take b← R(W (B` ∪B`+1)). Let α, β denote the probabilities:

α = Pr[CR(b,W (B`))] , β = Pr[CR(b,W (B`+1))] .

40

By the no-signaling property of Assign, we have that:

|Pr[CR`]− α| ≤ negl(n) , |Pr[CR`+1]− β| ≤ negl(n) .

Therefore, to prove the claim, it is sufficient to prove that β ≥ α − negl(n). Since the set W (B`+1) is
good we have that:

Pr[CR(b,W (B`+1))|CR(b,W (B`))] ≥ 1− negl(n) .

Therefore:

β ≥ Pr[CR(b,W (B`))] · Pr[CR(b,W (B`+1))|CR(b,W (B`))]

≥ α · Pr[CR(b,W (B`+1))|CR(b,W (B`))]

≥ α · (1− negl(n))

≥ α− negl(n),

as required. To complete the proof of Claim 4.13, it remains to prove Claims 4.15 and 4.16.

Proof of Claim 4.15. Let:
b← R(W (B`) ∪W ((`, LDE,a))) .

Since the event CR` occurs with probability at least 0.9, it follows from the no-signaling property that
CR(b,W (B`) occurs with probability at least 0.9− negl. Therefore, it suffices to prove that:

Pr [¬CR(b,W ((`, LDE,a))) ∧ CR(b,W (B`))] ≤ negl(n) . (33)

For every line L : G → Gm, let B(L) be the set {(`, LDE, L(t))}t∈G of wire labels computing the
LDE of level ` on the line L. We start by proving that for every line, with overwhelming probability the
valued assigned to the line correspond to a low degree polynomial:

Claim 4.17. For every line L : G → Gm, let b ← R(W (B(L))). Except with probability negl(n) the
function γ : G→ G given by:

γ(ζ) = b((`, LDE, L(ζ))) ,

is a polynomial of degree at most m · |H|.

Proof. LetL be defined by a,b ∈ Gm and letBLDT be the set of wire labels in the sub-circuit computing
(`, LDT,a,b). Recall that the augmented circuit computes the AND of all the LDT sub-circuits’ outputs,
using a tree of ANDs. On this tree, consider the path from the root to the sub-circuit (`, LDT,a,b). The
length of this path is O(log(T) + log(S)) = O(log n). Let WAND be the set of all O(log n) wires
connected to one of the AND gates on this path. Let WL be the set:

WL = W (B(L)) ∪W (BLDT) ∪WAND .

Note that |WL| = O(log6(n)) ≤ Q. Let b′ ← R(WL) and let γ′ : G→ G be the function:

γ′(ζ) = b′((`, LDE, L(ζ))) .

By the everywhere local-consistency property of Assign, and by the construction of C ′, it follows that
except with probability negl(n), the low degree test for the line L passes. Therefore, γ′ is a polynomial
of degree m · |H|. We obtained γ′ by querying all the wires in the LDT and on the path from the LDT to
the AND of LDTs (in addition to the points on the line L), as opposed to γ, which is obtained when we
only queried the points on the line L. Still, by the no-signaling property of Assign, the probability that
γ is a polynomial of degree m · |H| is also negl(n).

41

For every i ∈ [c] let zi = z`,i and let Li be random line that passes though a and zi. Let ti ∈ G be
such that Li(ti) = zi. Note that since zi is random, ti is random even conditioned on Li. Let Ba be the
set of labels of all the lines Li:

B′ =
⋃
i∈[c]

B(Li) .

(Note that B` ⊂ B′). Observe that |W (B′)| = c · |G| = O(log4 n) ≤ Q. Let b′ ← R(W (B′)), and
recall that bx denotes the correct assignment defined by the computation C ′(x). For every i ∈ [c] let
γi, γ

′
i : G→ G be the functions:

γi(ζ) = bx((`, LDE, Li(ζ))) , γ′i(ζ) = b′((`, LDE, Li(ζ))) .

Conditioned on the event ¬CR(b′,W ((`, LDE,a))) we have that for all i ∈ [c], γi 6≡ γ′i. By the no-
signaling property of Assign, by Claim 4.17 and by the Union bound, we have that with overwhelming
probability, γ′i is of degree m · |H| for every i ∈ [c]. Also, by construction γi is always of low degree.
We conclude that γi 6≡ γ′i, and γi, γ′i are of degree at most m · |H|. By the Schwartz-Zippel Lemma, for
each i ∈ [c], with probability at least 1− m·|H|

|G| > 0.5 over the choice of ti, we have that γi(ti) 6= γ′i(ti),
and b′ is not correct on zi. It follows that:

Pr
[
¬CR(b′,W ((`, LDE,a))) ∧ CR(b′,W (B`))

]
≤ 2−c + negl(n) = negl(n) .

Equation (33) follows from the the no-signaling property of Assign.

Proof of Claim 4.16. We prove that for every w ∈ W ((` + 1, LDE,a)), {w} is good. Since |W (` +
1, LDE,a)| = log |G| = O(log log n), the claim follows using Corollary 4.11.

For every w ∈ W ((` + 1, LDE,a)), let D be the sub-circuit of C ′, computing the low-degree
extension of layer (`+ 1), whose output wire is w. Every input wire win of D is in W ((`, LDE,a′)) for
some a′ ∈ Hm ⊂ Gm. By Claim 4.15, every input wire win of D is good.

Consider an AND gate in D (the case of NOT gates is handled similarly). Suppose the gate has
input wires w1, w2 and output wire w3, such that {w1} , {w2} are both p-good for some p. Let b ←
R({w1, w2, w3} ∪W (B`)). By Claim 4.10, since {w1} , {w2} are both p-good we have that:

∀i ∈ {1, 2} : Pr[¬CR(b, {wi}) | CR(b,W (B`))] ≤ p+ negl(n) .

It follows that:

Pr[¬CR(b, {w1}) ∨ ¬CR(b, {w2}) | CR(b,W (B`))] ≤ 2p+ negl(n) .

By the everywhere local-consistency property of Assign, we conclude that except with probability
negl(n), when b is correct on {w1, w2} it is also correct on {w3}. Therefore:

Pr[¬CR(b, {w3}) | CR(b,W (B`))] ≤ 2pnegl(n) ,

Where we emphasize that the negl(n) factor above is fixed, depending on the security parameter, and
does not depend on the initial error probability p (which may itself also be negligible). It follows from
Claim 4.10 that {w3} is (2p + negl(n))-good. By induction on the depth of the sub-circuit D we have
that {w} is µ-good, where:

µ = 2O(log(n)) · negl(n) = negl(n).

42

Proof of Claim 4.12 (induction base). We prove that for every w ∈W (B1):

Pr
b←R({w})

[¬CR(b, {w})] ≤ negl(n) .

Since |W (B1)| = c · log |G| = O(log2(n) · log log n), the claim follows from the no-signaling property
of Assign together with a Union bound.

For every w ∈W (B1), let D be a sub-circuit of C ′ computing the LDE of layer 1 (the input), whose
output wire is w, and such that every input wire win of D is an input wire of C ′. Note that the depth of
D is O(log(S)) = O(log(n)). It follows from the everywhere local-consistency property of Assign that
for every input wire win of D:

Pr
b←R({win})

[¬CR(b, {win})] ≤ negl(n) .

Consider an AND gate in D (the case of NOT gates is handled similarly) with input wires w1, w2

and output wire w3, such that:

∀i ∈ {1, 2} : Pr
b←R({wi})

[¬CR(b, {wi})] ≤ p .

Let b← R({w1, w2, w3} ∪W (B`)). By the no signaling property of Assign we have:

∀i ∈ {1, 2} : Pr[¬CR(b, {wi})] ≤ p+ negl(n) .

Therefore:
Pr[¬CR(b, {w1}) ∨ ¬CR(b, {w2})] ≤ 2p+ negl(n) .

By the everywhere local-consistency property of Assign, with all but negligible probability, when b is
correct on {w1, w2} it is also correct on {w3}. Therefore:

Pr[¬CR(b, {w3})] ≤ 2p+ negl(n) .

By the no-signaling property of Assign:

Pr
b←R({w3})

[¬CR(b, {w3})] ≤ 2p+ negl(n) .

By induction on the depth of the sub-circuit D we conclude that:

Pr
b←R({w})

[¬CR(b, {w})] ≤ 2O(log(n)) · negl(n) = negl(n) .

Proof of Claim 4.14. Let w be the output wire of C ′ and let a ∈ Hm such that w ∈ W ((T, LDE,a)) is
a wire in the LDE of the circuit’s output layer. Since Pr[CRT] ≥ 0.9, it follows from Claim 4.15 and
from Corollary 4.11 that {w} is good for layer T . That is, for b← R({w} ∪W (BT)):

Pr [¬CR(b,W) | CR(b,W (BT))] ≤ negl(n) .

Since Pr[CRT] ≥ 1− negl(n) it follows from the no-signaling property of Assign that:

Pr [CR(b,W (BT))] ≥ 1− negl(n) .

Therefore:
Pr [CR(b,W)] ≥ 1− negl(n) .

By the everywhere local-consistency property of Assign we have that except with negligible probability,
b assigns the value 1 to w. We conclude that the correct value of w is 1, that is, C ′(x) = 1.

43

5 Non-Interactive Arguments for Bounded-Depth Computations

In this section we present our delegation protocol for bounded depth computations. We start by con-
structing the non-interactive Sum-Check protocol as described in Section 2.2 (see Section 5.1). We also
construct a 2-to-1 sub-protocol (see Section 5.2). Using these sub-protocols as building blocks, we con-
structs a “Bare-Bones” delegation protocol (Section 5.3). In Section 5.4 we instantiate the Bare-Bones
delegation protocol in different ways to get delegation protocols for bounded depth computations.

The Sum-Check, 2-to-1, and Bare-Bones sub-protocols are all used as building blocks in the final
delegation protocol for bounded-depth computations, as was the case in [GKR08]. We use graded
encodings to make each of the sub-protocols (and the resulting delegation protocol) non-interactive, and
to compose them in a non-interactive manner. This complicates matters, because we need to run the
sub-protocols on encoded inputs, obtained as the outputs of other sub-protocols. Thus, we construct the
sub-protocols to allow (part of) their input to be encoded under a GE. In composing sub-protocols to
form the full delegation protocol, we take care to ensure that these encodings’ levels are “low enough”
to allow the (honest) prover to perform the computations required by the protocol.

We also note that sometimes the encoded inputs used by the (honest) prover might be quite large,
larger even than the desired running time of the verifier. In these cases, the verifier won’t ever need to
access this large encoded portion of the input, it will only be used by the (honest) prover.

5.1 Non-Interactive Sum-Check Sub-Protocol

This section describes a non-interactive sum-check sub-protocol (GenSC ,PSC ,VSC). Let n ∈ N be a
security parameter. Let δ = δ(n), κ = κ(n) be polynomials and let:

pp← InstGen(1n, κ, δ) ,

be parameters for an asymmetric graded encoding scheme. Let Zp be the underlying field of the public
parameters pp. The sum-check sub-protocol depends on the public parameters pp, and the soundness of
protocol holds only for honestly generated parameters. Let:

f : Z`1p × Z`2p → Zp ,

be a multi-variate low degree polynomial (represented as an arithmetic circuit).
Informally, the sum-check sub-protocol takes as input encodings of z ∈ Z`1p , c ∈ Zp and outputs

encodings of wout ∈ Z`2p , cout ∈ Zp. When the verifier accepts, she is guaranteed that if the input
specified a false underlying claim, then the output also specifies a false underlying claim:

c 6=
∑

w∈{0,1}`2

f(z,w) ⇒ cout 6= f(z,wout)

The verifier in the sum-check sub-protocol will only require as input the encoding of c, but not
encodings of z. Therefore, the complexity of the verifier is independent of `1 (z does, however, appear
in the protocol’s “output claim”. This output claim is implicit to the verifier).

The inputs and outputs of the sum-check sub-protocol are encoded under the public parameters
pp. The parameter m1 describes the number of dimensions used in the levels of input encodings. The
parameter m2 describes the number of additional dimensions used internally within the protocol. In
particular, the level of each input encoding is zero in all coordinates higher than m1, and the levels of
each encoding computed internally and of each output encoding is zero in all coordinates higher than
m1 +m2. Note that it will always be the case that m2 = `2.

44

5.1.1 Interface

In this section we define the interfaces of the protocol and formulate its soundness property.

The challenge generator GenSC .

Input:

1. A security parameter 1n and parameters m1,m2.

2. Public parameters for an asymmetric graded encoding:

pp← InstGen(1n, κ, δ) .

We require that κ ≥ m1 +m2.

Output: A challenge CRS.

Complexity: The running time of GenSC is poly(n). The challenge CRS is of length m2 · poly(n).

The prover PSC .

Input:

1. The public parameters pp.

2. The challenge CRS.

3. An arithmetic circuit f taking `1 + `2 inputs. f should contain only addition subtraction and
multiplication gates and use only the constants {0, 1}. f should be of individual degree at most δ
in every variable. We also require that `2 = m2 (for the GenSC procedure’s input m2).

4. An encoded input:
x =

({
[zi]vi

}
i∈[`1]

, [c]v

)
,

where: {
[zi]vi

}
i∈[`1]

,

is a valid partial input for f and v is the output level of f for this partial input (recall the definitions
of a valid encoded input and output level in Section 3.1). Additionally we require that for every
i ∈ [`1], vi is zero in all coordinates higher than m1.

Output:

1. An encoded output:

y =

(
wout =

{[
wout
i

]
em1+i

}
i∈[`2]

,
[
cout
]
v+u

)
,

where:
u =

∑
j∈[`2]

δ · em1+j .

2. A proof Π for the fact that:

c 6=
∑

w∈{0,1}`2

f(z,w) ⇒ cout 6= f(z,wout) .

45

Complexity: The running time of PSC is poly(n, |f |, 2`2). The proof Π is of length δ · `2 · poly(n).

The verifier VSC .

Input:

1. The public parameters pp.

2. The challenge CRS.

3. Part of the encoded input xV = [c]v.

4. The encoded output y.

5. The proof Π.

Output: 1 if the proof is accepted and 0 otherwise.

Complexity: The running time of VSC is δ · `2 · poly(n).

5.1.2 Completeness and Soundness

The protocol’s completeness and soundness properties are stated in Claims 5.1 and 5.2 below. Com-
pleteness guarantees that if the input statement (defined by the encoded input and the function f) is
correct, then the output statement (defined by the encoded output) is also correct. Soundness guarantees
that if the input statement is incorrect, then w.h.p. either the verifier rejects, or the output statement is
also incorrect (we prove adaptive soundness for adversarially chosen input statements).

Claim 5.1 (Completeness). The sum-check protocol described in Section 5.1.3 satisfies the following
property. Let f be an arithmetic circuit, and let κ, δ, `1, `2,m1,m2 be parameters as defined in the
protocol interface (Section 5.1.1). Let InpSamp be an algorithm that gets as input public parameters pp
and outputs an encoded input:

x =
({

[zi]vi

}
i∈[`1]

, [c]v

)
,

as defined in the protocol interface and such that:

c =
∑

w∈{0,1}`2

f(z1, . . . , z`1 ,w) ,

where the arithmetic, as well as the evaluation of f are over the field Zp underlying pp. Then:

Pr



pp← InstGen(1n, κ, δ);
CRS← GenSC(1n, pp, (m2,m1));
x← InpSamp(pp);
y,Π← PSC(pp,CRS, f, x);
1← VSC(pp,CRS, xV, y,Π);
OUT

 = 1 ,

where:

xV = [c]v , y =

({[
wout
i

]
em1+i

}
i∈[`2]

,
[
cout
]
v+u

)
,

and OUT is the event that:
cout = f(z1, . . . , z`1 , w

out
1 , . . . , wout

`2) ,

where the evaluation of f is over the field Zp underlying pp.

46

Claim 5.2 (Adaptive Soundness). Assuming an asymmetric graded encoding scheme satisfying Assump-
tion 3.10, the sum-check protocol described in Section 5.1.3 satisfies the following property. For every
pair of poly-size circuits P∗1,P

∗
2 there exists a negligible function µ such that for every n ∈ N:

Pr



pp← InstGen(1n, κ, δ);
CRS← GenSC(1n, pp, (m2,m1));
f, x← P∗1(pp,CRS);
y∗,Π∗ ← P∗2(pp,CRS, f, x);
1← VSC(pp,CRS, xV, y

∗,Π∗);
CHEAT

 ≤ µ(n) ,

where:

x =
({

[zi]vi

}
i∈[`1]

, [c]v

)
, xV = [c]v , y∗ =

({
[w∗i]em1+i

}
i∈[`2]

, [c∗]v+u

)
,

f is as required in the protocol interface (Section 5.1.1), and CHEAT is the event that:c 6= ∑
w∈{0,1}`2

f(z1, . . . , z`1 ,w)

 ∧ c∗ = f(z1, . . . , z`1 , w
∗
1, . . . , w

∗
`2) ,

where the arithmetic, as well as the evaluation of f are over the field Zp underlying pp.

Remark 5.3. Similarly to Remark 3.11, observe that the events OUT and CHEAT can be tested in
polynomial time using the public parameters pp, and using the operations Add,Sub,Mult, isZero on the
input and output encodings x, y. For simplicity, we define the events as conditions on the values:

z,w∗, c, c∗ ,

(which cannot be efficiently computed from the input and output encoding), rather than explicitly de-
scribing the efficient testing procedure.

5.1.3 Construction

In this section we specify the strategies GenSC ,PSC and VSC .

The challenge generator GenSC . Given the public parameters pp for the graded encoding scheme and
the parameters m1,m2, GenSC uses the operation Samp to obtain the set of encodings:

CRS =
{

[ri]em1+i

}
i∈[`2]

,

where r1, . . . , r`2 are independent and uniform in Zp (pp’s underlying field). GenSC outputs CRS.

The prover PSC . Recall that the prover’s input includes the public parameters pp, the challenge CRS,
the arithmetic circuit f , and the encoded input x where:

CRS =
{

[ri]em1+i

}
i∈[`2]

.

x =
({

[zi]vi

}
i∈[`1]

, [c]v

)
,

In what follows the arithmetic is over Zp.

47

For every i ∈ [`2], for the elements z1, . . . , z`1 defined by the input encoding, and for the elements
r1, . . . , ri−1 defined by the encodings in CRS, let gi be the univariate polynomial:

gi(ξ) =
∑

wi+1,...,w`2
∈{0,1}

f(z1, . . . , z`1 , r1, . . . , ri−1, ξ, wi+1, . . . , w`2) ,

and let {gi,j}j∈[0,δ] be the coefficients of gi:

gi(ξ) =
δ∑
j=0

gi,j · ξj . (34)

The proof consists of the encodings of these coefficients:

Π =
{

[gi,j]v+ui−1

}
i∈[`2],j∈[0,δ]

,

where u0 is the all-zero level and for i ∈ [`2]:

ui =
∑
i′∈[i]

δ · em1+i′ .

See below on how the prover computes these encoding. The output encodings are:

y =

({[
wout
i

]
em1+i

}
i∈[`2]

,
[
cout
]
v+u

)
,

where:
wout
i = ri , cout = f(z, wout

1 , . . . , wout
`2) .

PSC outputs the encodings y and the proof Π.
To compute the encodings of {gi,j} in the proof Π, we use arithmetic circuits {fi,j}i∈[`2],j∈[0,δ]

taking `1 + `2 − 1 inputs, such that:

f(z,w) =
∑
j∈[0,δ]

fi,j(z, w1, . . . wi−1, wi+1, . . . , w`2) · wji .

Note that a circuit for fi,j can be efficiently computed from f and that the encoded input for f is valid
also for fi,j , see Section 3.7. Now observe that:

gi,j =
∑

wi+1,...,w`2
∈{0,1}

fi,j(z1, . . . , z`1 , r1, . . . , ri−1, wi+1, . . . , w`2) . (35)

And indeed Equation (34) holds. Following Equation (35), and using the circuit for fi,j and the opera-
tions Add,Sub,Mult on the input encodings and the encoding in CRS

The verifier VSC . Recall that the verifier’s input includes:

1. The public parameters pp.

2. The challenge:
CRS =

{
[ri]em1+i

}
i∈[`2]

.

3. Part of the encoded input xV = [c]v.

48

4. The encoded output:

y =

({[
wout
i

]
em1+i

}
i∈[`2]

,
[
cout
]
v+u

)
,

5. The proof:
Π =

{
[gi,j]v+ui−1

}
i∈[`2],j∈[0,δ]

.

Following Equation (34), and using the operations Add, Sub,Mult on the input encodings, VSC obtains:{
[gi(ri)]v+ui

, [gi(0) + gi(1)]v+ui−1

}
i∈[`2]

,

Using the operations Sub, isZero on the above encodings, the encodings in CRS, and the input and
output encodings, VSC tests that:

c = g1(0) + g1(1) (36)

∀i ∈ [`2 − 1] : gi(ri) = gi+1(0) + gi+1(1) (37)

∀i ∈ [`2] : ri = wout
i (38)

g`2(r`2) = cout (39)

VSC accepts iff all tests pass.

5.1.4 Soundness: Proof of Claim 5.2

Proof. Assume towards contradiction that there exists a pair of poly-size circuits (P∗1,P
∗
2) and a poly-

nomial p such that for infinitely many values of n ∈ N, the event CHEAT occurs with probability at
least 1

p(n) . Fix such n. We show that there exist an adversary Advi that wins the security game in As-
sumption 3.10 with probability 1

p(n)·`2 . For every i ∈ [`2], consider the adversary Advi that gets public
parameters pp and an encoding [r]em1+i

of a random element r. Advi starts by emulating the proce-
dure GenSC(1n, pp, (m2,m1)) except that instead of sampling the encoding [ri]em1+i

on its own, it uses
[r]em1+i

. That is, Advi obtains the encodings:

CRS =
{

[r1]em1+1
, . . . , [ri−1]em1+i−1

, [r]em1+i
, [ri+1]em1+i+1

, . . . , [rm2]em1+`2

}
.

Note that the CRS is distributed exactly as the output of GenSC(1n, pp, (m2,m1)). Next, Advi executes
P∗1(pp,CRS) and obtains:

f , x =
({

[zi]vi

}
i∈[`1]

, [c]v

)
.

Advi then executes P∗2(pp,CRS, f, x) and obtains output encodings and a proof:

y∗ =

({
[w∗i]em1+i

}
i∈[`2]

, [c∗]v+u

)
, Π∗ =

{[
g∗i,j
]
v+ui−1

}
i∈[`2],j∈[0,δ]

.

Advi also executes the honest prover PSC(pp,CRS, f, x) and obtains output encodings and a proof:

y =

({[
wout
i

]
em1+i

}
i∈[`2]

,
[
cout
]
v+u

)
, Π =

{
[gi,j]v+ui−1

}
i∈[`2],j∈[0,δ]

.

Next, Advi uses the operation Sub, isZero to find the maximal pair of indexes (i′, j) ∈ [`2] × [0, δ] in
lexicographical order such that g∗i′,j 6= gi′,j . If no such indexes are found or if i′ 6= i, Advi aborts.
Otherwise, Advi uses the operations Add,Sub,Mult on the encodings in CRS,Π,Π∗ to obtain:

[β]v+ui−1
, [γ]v+ui−1+(j−1)·em1+i

,

49

where
β = g∗i,j − gi,j , γ =

∑
j′<j

(gi,j′ − g∗i,j′)r
j′

i ,

and indeed:

(v + ui−1) [m1 + i] = 0

(v + ui−1 + (j − 1) · em1+i) [m1 + i] < j

Finally Advi outputs [β]v+ui−1
, [γ]v+ui−1+(j−1)·em1+i

.
Next we prove that for some i ∈ [`2], Advi wins the security game in Assumption 3.10 with proba-

bility 1
p(n)·`2 . For i ∈ [`2] let:

g∗i (ξ) =
∑
j∈[0,δ]

g∗i,j · ξj , gi(ξ) =
∑
j∈[0,δ]

gi,j · ξj ,

and let Ei be that event that g∗i 6≡ gi. Conditioned on the event CHEAT we have that:∑
w∈{0,1}`2

f(z,w) = g1(0) + g1(1) 6= c .

Conditioned on the event CHEAT, we also have that and that the verifier’s Test 36 passes and

g∗1(0) + g∗1(1) = c .

Therefore, g∗1 6≡ g1, and the event E1 must hold. Thus, Advi finds some (maximal) indices (i′, j) as
described above.

Let Gi be the event that CHEAT occurs and that i′ = i (that is, Advi does not abort). Conditioned
on Gi, i = i′ is the maximal index such that Ei holds. Therefore, in the case that i < `2 we have that
¬Ei+1 holds, and since the verifier’s Test 37 passes we have that:

g∗i (ri) = g∗i+1(0) + g∗i+1(1) = gi+1(0) + gi+1(1) = gi(ri) .

In the case that i = `2 we have that conditioned on Gi:

g∗`2(r`2) = c∗ (40)

= f(z,w∗) (41)

= f(z, r1, . . . , r`2) (42)

= f(z,wout) = cout = g`2(r`2) , (43)

where (40) follows from the fact that the verifier’s Test 39 passes, (41) follows from the event CHEAT,
(42) follows from the fact that the verifier’s Test 38 passes, and (43) follows from the definition of the
honest prove PSC . Overall, for every i ∈ [`2], we conclude that if we condition on Gi, we have that:

g∗i 6≡ gi , g∗i (ri) = gi(ri) .

Thus
0 =

∑
j′∈[0,δ]

(gi,j′ − g∗i,j′)r
j′

i .

Since j is the maximal index such that g∗i,j 6= gi,j , we have that:

0 =
∑

j′∈[0,j]

(gi,j′ − g∗i,j′)r
j′

i =⇒ (g∗i,j − gi,j)r
j
i =

∑
j′<j

(gi,j′ − g∗i,j′)r
j′

i ,

50

and we conclude that conditioned on Gi:

β · rji = (g∗i,j − gi,j)r
j
i =

∑
j′<j

(gi,j′ − g∗i,j′)r
j′

i = γ ,

and β 6= 0. Hence, Advi wins the security game.
It is left to show that (for some i ∈ [`2]) the event Gi occurs with noticeable probability. Recall that

the challenge CRS generated by Advi is distributed exactly as the output of GenSC(1n, pp, (m2,m1)),
and by our assumption, the event CHEAT occurs in the execution of Advi with probability at least 1

p(n) .
Conditioned on CHEAT, we know that E1 occurs, and thusGi′ occurs for some i′ ∈ [`2]. Since the view
of P∗1 and P∗2 and the event CHEAT are all independent of i, we conclude that conditioned on CHEAT,
there exists i ∈ [`2] such that the event G occurs with probability at least 1

p(n)·`2 .

5.2 Non-Interactive 2-to-1 Sub-Protocol

This section describes a non-interactive 2-to-1 sub-protocol (Gen2→1,P2→1,V2→1). Let n ∈ N be a
security parameter. Let δ = δ(n), κ = κ(n) be polynomials and let:

pp← InstGen(1n, κ, δ) ,

be parameters for an asymmetric graded encoding scheme. Let Zp be the underlying field for the public
parameters pp. The 2-to-1 sub-protocol will depend on the public parameters pp, and the soundness of
protocol will only hold for honestly generated parameters. Let:

f : Z`1p × Z`2p → Zp ,

be a multi-linear polynomial (represented as an arithmetic circuit).
Informally, the 2-to-1 sub-protocol takes as input encodings of z ∈ Z`1p ,w1,w2 ∈ Z`2p , c1, c2 ∈ Zp

and outputs encodings of wout ∈ Z`p, cout ∈ Zp. When the verifier accepts, she is guaranteed that with
overwhelming probability it is the case that:(

c1 6= f(z,w1) ∨ c2 6= f(z,w2)
)
⇒ cout 6= f(z,wout) .

The verifier in the 2-to-1 sub-protocol will only require as input the encodings of w1,w2, c1, c2, but not
the encodings of z. Therefore, the complexity of the verifier is independent of `1.

The inputs and outputs of the 2-to-1 sub-protocol are encoded under the public parameters pp. The
parameter m describes the number of dimensions used in the levels of input encodings. The (m + 1)-
th coordinate is used internally by the protocol and its outputs. In particular, the level of each input
encoding is zero in all coordinates higher than m.

5.2.1 Interface

In this section we define the interfaces of the protocol and formulate its soundness property.

The challenge generator Gen2→1.

Input:

1. A security parameter 1n and a parameter m.

2. Public parameters for an asymmetric graded encoding:

pp← InstGen(1n, κ, δ) .

We require that κ ≥ m+ 1 and that δ ≥ `2.

51

Output: A challenge CRS.

Complexity: Gen2→1’s running time and output length are poly(n).

The prover P2→1.

Input:

1. The public parameters pp.

2. The challenge CRS.

3. A multi-linear arithmetic circuit f taking `1+`2 inputs. f should contain only addition subtraction
and multiplication gates and use only the constants {0, 1}.

4. An encoded input:

x =

({
[zi]vi

}
i∈[`1]

,
{[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
,

where: {
[zi]vi

}
i∈[`1]

∪
{[
w1
i

]
v`1+i

}
i∈[`2]

,
{

[zi]vi

}
i∈[`1]

∪
{[
w2
i

]
v`1+i

}
i∈[`2]

,

are a valid partial input for f and v is the output level of f for these partial inputs (recall the
definitions of a valid encoded input and output level in Section 3.1). Additionally we require that
for every i ∈ [`1 + `2], vi is zero in all coordinates higher than m.

Output:

1. An encoded output:

y =

({[
wout
i

]
v(`1+i)+em+1

}
i∈[`2]

,
[
cout
]
v+`2·em+1

)
.

2. A proof Π for the fact that:(
c1 6= f(z,w1) ∨ c2 6= f(z,w2)

)
⇒ cout 6= f(z,wout) .

Complexity: The running time of P2→1 is poly(n, `, |f |), the lengths of y and Π are ` · poly(n).

The verifier V2→1.

Input:

1. The public parameters pp.

2. The challenge CRS.

3. Part of the encoded input x:

xV =

({[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
,

4. The encoded output y.

5. The proof Π.

Output: 1 if the proof is accepted and 0 otherwise.

Complexity: The running time of V2→1 is poly(n, `2).

52

5.2.2 Completeness and Soundness

The protocol’s completeness and soundness properties are stated in Claims 5.4 and 5.5 below. Com-
pleteness guarantees that if the input statement (defined by the encoded inputs and the function f) is
correct, then the output statement (defined by the encoded output) is also correct. Soundness guarantees
that if the input statement is incorrect, then w.h.p. either the verifier rejects, or the output statement is
also incorrect (we prove adaptive soundness for adversarially chosen input statements).

Claim 5.4 (Completeness). The 2-to-1 protocol described in Section 5.2.3 satisfies the following prop-
erty. Let f be an arithmetic circuit, and let κ, δ, `1, `2,m be parameters as defined in the protocol
interface (Section 5.2.1). Let InpSamp be an algorithm that gets as input public parameters pp and
outputs an encoded input:

x =

({
[zi]vi

}
i∈[`1]

,
{[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
,

as defined in the protocol interface and such that:

c1 = f(z1, . . . , z`1 , w
1
1, . . . , w

1
`2) , c2 = f(z1, . . . , z`1 , w

2
1, . . . , w

2
`2) ,

where the evaluation of f are over the field Zp underlying pp.
Then:

Pr



pp← InstGen(1n, κ, δ);
CRS← Gen2→1(1n, pp,m);
x← InpSamp(pp);
y,Π← P2→1(pp,CRS, f, x);
1← V2→1(pp,CRS, xV, y,Π);
OUT

 = 1 ,

where xV is as defined above, where:

y =

({[
wout
i

]
vi+em+1

}
i∈[`2]

,
[
cout
]
v+`·em+1

)
,

and where OUT is the event that:

cout = f(z1, . . . , z`1 , w
out
1 , . . . , wout

`2) ,

where f is evaluated over the underlying field Zp of pp.

The adaptive soundness of the 2-to-1 sub-protocol says that if the statement defined by the encoded
input is incorrect then either the verifier rejects, or the statement defined by the encoded output is also
incorrect.

Claim 5.5 (Adaptive Soundness). Assuming an asymmetric graded encoding scheme satisfying Assump-
tion 3.10, the 2-to-1 protocol described in Section 5.2.3 satisfies the following property. for every pair
of poly-size circuits P∗1,P

∗
2 there exists a negligible function µ such that for every n ∈ N:

Pr



pp← InstGen(1n, κ, δ);
CRS← Gen2→1(1n, pp,m);
f, x← P∗1(pp,CRS);
y∗,Π∗ ← P∗2(pp,CRS, f, x);
1← V2→1(pp,CRS, xV, y

∗,Π∗);
CHEAT

 ≤ µ(n) ,

53

where xV is as defined above, where:

x =

({
[zi]vi

}
i∈[`1]

,
{[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
,

y∗ =

({
[w∗i]v(`1+i)+em+1

}
i∈[`2]

, [c∗]v+`2·em+1

)
,

f is as required in the protocol interface (Section 5.2.1), and where CHEAT is the event that:(
c1 6= f(z, w1

1, . . . , w
1
`2) ∨ c2 6= f(z, w2

1, . . . , w
2
`2)
)
∧ c∗ = f(z, w∗1, . . . , w

∗
`2) ,

where z = (z1, . . . , z`1) and f is evaluated over the underlying field Zp of pp.

Remark 5.6. Similarly to Remark 3.11, observe that the events OUT and CHEAT can be tested in
polynomial time using the public parameters pp, and using the operations Add, Sub,Mult, isZero on the
input and output encodings x, y. For simplicity, we define these events asconditions on the values:

z,w1, c1,w2, c2,w∗, c∗ ,

(which cannot be efficiently computed from the input and output encoding), rather than explicitly de-
scribing the efficient testing procedure.

5.2.3 Construction

In this section we specify the strategies Gen2→1,P2→1 and V2→1.

The challenge generator Gen2→1. Given the public parameters pp for the graded encoding scheme and
the parameter m, Gen2→1 uses the operation Samp to obtain the encoding:

CRS = [t]em+1
,

where t is a uniform element in Zp (the underlying field of pp). Gen2→1 outputs CRS.

The prover P2→1. Recall that the prover’s input includes the public parameters pp, the challenge CRS,
the arithmetic circuit f , and the encoded input x where:

CRS = [t]em+1
,

x =

({
[zi]vi

}
i∈[`1]

,
{[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
.

Let ~γ(ξ) be the line:
~γ(ξ) = ξ ·w1 + (1− ξ) ·w2 ,

that is, for every i ∈ [`2]:

~γ(ξ)[i] = ξ · w1
i + (1− ξ) · w2

i . (44)

For the elements z1, . . . , z`1 defined by the input encoding, let g(ξ) be the univariate polynomial:

g(ξ) = f(z1, . . . , z`1 , ~γ(ξ)) .

Since f is multi-linear, g is of degree `2. For every j ∈ [0, `2] let gj be g’s coefficients, i.e.:

g(ξ) =
∑

j∈[0,`2]

gj · ξj . (45)

54

The proof consists of encodings of these coefficients:

Π =
{

[gj]v
}
j∈[0,`2]

.

See below on how the prover computes these encodings. Using the operations Add,Sub,Mult on the
proof encodings and the encoding in CRS, P2→1 obtains the output encodings:

y =

({[
wout
i

]
v(`1+i)+em+1

}
i∈[`2]

,
[
cout
]
v+`2·em+1

)
,

where:
wout
i = ~γ(t)[i] , cout = g(t) .

P2→1 outputs the proof Π and the output encoding y.
To compute the proof encodings

{
[gj]v

}
, we use arithmetic circuits {fj}j∈[0,`2] taking `1 inputs,

such that:
f(z1, . . . , z`1 , ~γ(ξ)) =

∑
j∈[0,`2]

fj(z1, . . . , z`1) · ξj .

Note that a circuit for fj can be efficiently computed from f and that the encoded input for f is valid
also for fj , see Section 3.7. Now, for every j ∈ [0, `2], using the circuit for fj and the operations
Add, Sub,Mult on the input encodings P2→1 obtains [gj]v where:

gj = fj(z1, . . . , z`1) .

The verifier V2→1. Recall that the verifier’s input includes:

1. The public parameters pp.

2. The challenge:
CRS = [t]em+1

.

3. Part of the encoded input:

xV =

({[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
.

4. The encoded output:

y =

({[
wout
i

]
v(`1+i)+em+1

}
i∈[`2]

,
[
cout
]
v+`2·em+1

)
.

5. The proof:
Π =

{
[gj]v

}
j∈[0,`2]

.

Following Equations (44) and (45), and using the operations Add,Sub,Mult on the input encodings and
on the proof, V2→1 obtains:{

[~γ(t)[i]]vi+em+1
, [~γ(0)[i]]vi

, [~γ(1)[i]]vi

}
i∈[`]

[g(t)]v+`2·em+1
, [g(0)]v , [g(1)]v .

Using the operations Sub, isZero on the above encodings, and the input encodings, V2→1 tests that:

∀i ∈ [`] : ~γ(t)[i] = wout
i ~γ(0)[i] = w2

i ~γ(1)[i] = w1
i

g(t) = cout g(0) = c2 g(1) = c1

V2→1 accepts iff all tests pass.

55

5.2.4 Proof of Claim 5.5

Proof. Assume towards contradiction that there exists a pair of poly-size circuits (P∗1,P
∗
2) and a poly-

nomial p such that for infinitely many values of n ∈ N, the event CHEAT occurs with probability at
least 1

p(n) . Fix such n. We show that there exist an adversary Adv that wins the security game in As-
sumption 3.10 with probability 1

p(n) . Consider the adversary Adv that gets public parameters pp and an
encoding [t]em+1

of a random element t. Adv first obtains a the challenge:

CRS = [t]em+1
.

Note that CRS is distributed exactly as the output of Gen2→1(1n, pp,m). Next, Adv executes P∗1(pp,CRS)
and obtains:

f , x =

({
[zi]vi

}
i∈[`1]

,
{[
w1
i

]
v`1+i

,
[
w2
i

]
v`1+i

}
i∈[`2]

,
[
c1
]
v
,
[
c2
]
v

)
.

Adv then executes P∗2(pp,CRS, f, x) and obtains output encodings and a proof:

y∗ =

({
[w∗i]v(`1+i)+em+1

}
i∈[`2]

, [c∗]v+`2·em+1

)
, Π =

{[
g∗j
]
v

}
j∈[0,`2]

.

Adv also executes the honest prover P2→1(pp,CRS, f, x) and obtains output encodings and a proof:

y =

({[
wout
i

]
v(`1+i)+em+1

}
i∈[`2]

,
[
cout
]
v+`2·em+1

)
, Π =

{
[gj]v

}
j∈[0,`2]

.

Next, Adv uses the operation Sub, isZero, finds the maximal index j ∈ [0, `2] such that g∗j 6= gj . If no
such index is found, Adv aborts. Otherwise, Adv uses the operations Add,Sub,Mult on the encodings
in CRS,Π,Π∗ to obtain:

[β]v , [γ]v+(j−1)·em+1
,

where:
β = g∗j − gj , γ =

∑
j′<j

(gj′ − g∗j′)tj
′
.

Note that indeed:

v[m+ 1] = 0

(v + (j − 1) · em+1) [m+ 1] < j.

Finally Adv outputs [β]v , [γ]v+(j−1)·em+1
.

We prove that Advi wins the security game in Assumption 3.10 with probability 1
p(n) . Let:

g∗(x) =
∑

j∈[0,`2]

g∗j · xj , g(x) =
∑

j∈[0,`2]

gj · xj ,

and let E be that event that g∗(x) 6≡ g(x). Conditioned on the event CHEAT we have that:

g(1) = f(z,w1) 6= c1 ∨ g(0) = f(z,w2) 6= c2 .

Conditioned on the event CHEAT we also have that and that the verifier’s tests pass and

g∗(1) = c1 ∨ g∗(0) = c2 .

56

Therefore the event E must hold and Adv must find an index j as described. Conditioned on the event
CHEAT we also have that:

g∗(t) = c∗ (46)

= f(z,w∗) (47)

= f(z, ~γ(t)[1], . . . , ~γ(t)[`2]) (48)

= f(z,wout) = cout = g(t) , (49)

where (46) and (48) follow from the fact that the verifier’s tests pass and (47) follows from the event
CHEAT. Overall, we conclude that conditioned on CHEAT:

g∗ 6≡ g ∧ g∗(t) = g(t) .

Therefore, since j is the maximal index such that g∗j 6= gj , we have that conditioned on CHEAT:

β · tj = (g∗j − gj)tj =
∑
j′<j

(gj′ − g∗j′)tj
′

= γ ,

and β 6= 0. Hence, Adv wins the security game.
The challenge CRS generated by Adv is distributed exactly as the output of Gen2→1(1n, pp,m).

Thus, if indeed the cheating provers can make the event CHEAT occur with probability 1
p(n) , then Adv

wins the security game in Assumption 3.10 with probability 1
p(n) , contradicting the assumption.

5.3 Non-Interactive Bare-Bones Delegation Protocol

This section describes a bare-bones delegation protocol (GenBB,PBB,VBB). Let n ∈ N be a security
parameter. Let δ = δ(n), κ = κ(n) be polynomials and let:

pp← InstGen(1n, κ, δ) ,

be parameters for an asymmetric graded encoding scheme. Let Zp be the underlying field of the public
parameters pp. The sum-check sub-protocol depends on the public parameters pp, and the soundness of
protocol holds only for honestly generated parameters.

Let f be a layered fan-in 2, strongly ring-independent arithmetic circuit with k inputs. Let S be the
size of f and D be the depth of f and take m = logS. (For simplicity and without loss of generality we
assume that S is a power of 2.) We index every gate of f by a string in {0, 1}m. We number the layers
of f such that layer 0 is the output layer and layer D is the input layer. For every i ∈ [D] let:

addi, subi,multi : {0, 1}3m → {0, 1} ,

be functions such that addi(g1, g2, g3) = 1 if g1 is a gate in layer i − 1, g2, g3 are gates is in layer i
and g1 is adding the output of g2 and g3. Otherwise addi(g1, g2, g3) = 0. subi and multi are defined
similarly. Let δ′ be a degree parameter and let ãddi, s̃ubi, m̃ulti be ring-independent arithmetic circuits
of individual degree δ′ computing the functions addi, subi,multi.

Informally, the bare-bones delegation protocol takes as input encodings of x = (x1, . . . , xk) ∈
Zkp, c ∈ Zp, and outputs encodings of ring elements:{

zi, c
+
i , c
−
i , c
×
i

}
i∈[D]

,

When the verifier accepts, she is guaranteed that with overwhelming probability it is the case that:

f(x) 6= c ⇒
(
∃i ∈ [D] :

(
ãddi(zi) 6= c+

i

)
∨
(
s̃ubi(zi) 6= c−i

)
∨
(
m̃ulti(zi) 6= c×i

))
,

57

The inputs and outputs of the bare-bones delegation protocol are encoded under the public parame-
ters pp. The parameter ` describes the number of dimensions used in the levels of input encodings. The
protocol will internally use D ·m′ additional dimensions where m′ = 3m+ 1. We require that the input
encoding is valid for f (see Section 3.1) to ensure that the honest prover can evaluate f on the encoded
input. In fact we will need to choose δ to be twice as larger as what would be required to encode the
output level of f .

5.3.1 Interface

In this section we define the interfaces of the protocol and formulate its soundness property.

The challenge generator GenBB .

Input:

1. A security parameter 1n and parameters δ′,m,D, `.

2. Public parameters for an asymmetric graded encoding:

pp← InstGen(1n, κ, δ) ,

such that κ ≥ `+D ·m′ (where m′ = 3m+ 1), δ ≥ δ′ + 1 and δ ≥ m.

Output: A challenge CRS.

Complexity: The running time of GenBB is poly(n, δ′,m). The length of CRS is poly(n,m, δ′, D).

The prover PBB .

Input:

1. The public parameters pp.

2. The challenge CRS.

3. Ring-independent arithmetic circuits:{
ãddi, s̃ubi, m̃ulti

}
i∈[D]

,

each of degree δ, describing a layered, fan-in 2, strongly ring-independent arithmetic circuit f of
size S = 2m, depth D, and input length k. We assume throughout that these circuits are part of
f ’s description and are all of size at most poly(S).

4. An encoded input:
x =

({
[xi]vi

}
i∈[k]

, [c]v

)
,

where
{

[xi]vi

}
i∈[k]

is a valid partial input for f and v is the output level of f for this partial input
(recall the definitions of a valid encoded input and output level in Section 3.1). Additionally we
require that v ≤ δ

2 · s`. That is, v is at most δ2 in its first ` coordinates and is zero in the remaining
coordinates.

Output:

58

1. An encoded output:

y =

({
[wi,j]e`+(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

where for every i ∈ [D]:
ui =

∑
j∈[m′−1]

e`+(i−1)·m′+j .

2. A proof Π for the fact that:

f(x) 6= c ⇒
(
∃i ∈ [D] :

(
ãddi(wi) 6= c+

i

)
∨
(
s̃ubi(wi) 6= c−i

)
∨
(
m̃ulti(wi) 6= c×i

))
,

where x = (x1, . . . , xk) and for every i ∈ [D], wi =
(
wi,1, . . . , wi,m′−1

)
.

Complexity: The running time of PBB is poly(n, 2m, δ′). The length of Π is poly(n,m, δ′, D).

The verifier VBB .

Input:

1. The public parameters pp.

2. The challenge CRS.

3. The encoded input x.

4. The encoded output y.

5. The proof Π.

Output: 1 if the proof is accepted and 0 otherwise.

Complexity: The running time of VBB is k · poly(n, δ′,m).

5.3.2 Completeness and Soundness

The protocol’s completeness and soundness properties are stated in Claims 5.7 and 5.8 below. Complete-
ness guarantees that if the input statement (f(x) = c) is correct, then the output statement (defined by
the encoded outputs) is also correct. Soundness guarantees that if the input statement is incorrect, then
w.h.p. either the verifier rejects, or the output statement is also incorrect. We prove adaptive soundness
for adversarially chosen f , x and c.

Claim 5.7 (Completeness). The bare-bones delegation protocol described in Section 5.3.3 satisfies the
following property. Let f be an arithmetic circuit, and let κ, δ, δ′,m,D, ` be parameters as defined in
the protocol interface (Section 5.1.1). Let InpSamp be an algorithm that gets as input public parameters
pp and outputs an encoded input:

x =
({

[xi]vi

}
i∈[k]

, [c]v

)
,

as defined in the protocol interface, and such that:

c = f(x1, . . . , xk) ,

59

where the evaluation of f is over the field Zp underlying pp. Then:

Pr



pp← InstGen(1n, κ, δ);
CRS← GenBB(1n, pp, (δ′,m,D, `));
x← InpSamp(pp);
y,Π← PBB(pp,CRS, f, x);
1← VBB(pp,CRS, x, y,Π);
OUT

 = 1 ,

where

y =

({
[wi,j]e(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

and OUT is the event that:

∀i ∈ [D] :
(
ãddi(wi) = c+

i

)
∧
(
s̃ubi(wi) = c−i

)
∧
(
m̃ulti(wi) = c×i

)
,

where for every i ∈ [D], recall that wi =
(
wi,1, . . . , wi,m′−1

)
, and where the arithmetic circuits are

evaluated over the field Zp underlying pp.

Claim 5.8 (Adaptive Soundness). Assuming an asymmetric graded encoding scheme satisfying Assump-
tion 3.10, the bare-bones delegation protocol described in Section 5.3.3 satisfies the following property.
for every pair of poly-size circuits P∗1,P

∗
2 there exists a negligible function µ such that for every n ∈ N:

Pr



pp← InstGen(1n, κ, δ);
CRS← GenBB(1n, pp, (δ′,m,D, `));
f, x← P∗1(pp,CRS);
y∗,Π∗ ← P∗2(pp,CRS, f, x);
1← VBB(pp,CRS, x, y∗,Π∗);
CHEAT

 ≤ µ(n) ,

where f is given by the arithmetic circuits:{
ãddi, s̃ubi, m̃ulti

}
i∈[D]

,

and f satisfies the conditions stated in the interface (Section 5.3.1), and

y∗ =

({
[wi,j]e`+(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

and CHEAT is the event that:

f(x) 6= c ∧
(
∀i ∈ [D] :

(
ãddi(wi) = c+

i

)
∧
(
s̃ubi(wi) = c−i

)
∧
(
m̃ulti(wi) = c×i

))
,

where recall that x = (x1, . . . , xk) and for every i ∈ [D], wi =
(
wi,1, . . . , wi,m′−1

)
, and where the

arithmetic above is over the underlying field Zp of the public parameters pp.

Remark 5.9. Similarly to Remark 3.11, observe that the events OUT and CHEAT can be tested in
polynomial time using the public parameters pp, using the arithmetic circuits:{

ãddi, s̃ubi, m̃ulti
}
i∈[D]

,

and using the operations Add, Sub,Mult, isZero on the output encodings y. For simplicity, we define
these events as conditions on the values

{
wi, c

+
i , c
−
i , c
×
i

}
i∈[D]

(which cannot be efficiently computed
from the output encoding), rather than explicitly describing the efficient testing procedure.

60

5.3.3 Construction

In this section we specify the strategies GenBB,PBB and VBB .

The challenge generator GenBB . GenBB is given the security parameter 1n, public parameters pp and
the parameters δ,m,D, `. For every i ∈ [D], GenBB samples challenges CRSiSC ,CRS

i
2→1 for the sum-

check and 2-to-1 sub-protocols (Sections 5.1,5.2). The D executions of the sub-protocols use encodings
in different levels. Specifically, the protocol uses the last D ·m′ coordinates of the level vector, which
we think of as divided into D groups of m′ coordinates each.

1. The i-th sum-check sub-protocol uses the first m′ − 1 = 3m coordinates of the i-th group (the
input is encoded in the previous coordinates).

CRSiSC ← GenSC(1n, pp, (`+ (i− 1) ·m′,m′ − 1)) .

2. The i-th 2-to-1 sub-protocol uses the last coordinate of the i-th group (the input is encoded in the
previous coordinates).

CRSi2→1 ← Gen2→1(1n, pp, `+ (i ·m′)− 1) .

GenBB outputs the challenge CRS:

CRS =
(
pp,
{(

CRSiSC ,CRS
i
2→1

)}
i∈[D]

)
.

The prover PBB . Recall that the Prover’s input includes the public parameters pp, the challenge CRS,
the function f described by the ring-independent arithmetic circuits: {ãddi, s̃ubi, m̃ulti} for each i ∈
[D], and the encoded input:

x =
({

[xi]vi

}
i∈[k]

, [c]v

)
.

Since the encoded input is valid for f , the prover PBB can use the operations Add,Sub,Mult to
evaluate f on the encodings of the input x = (x1, . . . , xk). For every layer i ∈ [0, D] and for every wire
w ∈ {0, 1}m, if w is a wire of level i, let [xi,w]vi,w

be the encoding that PBB obtains for the wire z in
the evaluation of f(x). If w is not a wire of level i, let xi,w = 0 and let let vi,w be the all-zero level.
For every i ∈ [0, D],w ∈ {0, 1}m, we have that vi,w ≤ v ≤ δ

2 · s`. For every i ∈ [0, D], let Xi be a
vector of size 2m containing the values xi,w for every w ∈ {0, 1}m in some canonical order.

Let Ṽi be a multi-linear, ring-independent arithmetic circuit taking two inputs: Xi of length 2m and
z of length m (respectively). Ṽi computes the multilinear extension of Xi at coordinate z as follows:

Ṽi(Xi, z) =
∑

w∈{0,1}m
β(z,w) · xi,w . (50)

(See Section 3.5 for the definition of β and for the proof that Ṽi is ring-independent.) Note that for every
z ∈ {0, 1}m, Ṽi(Xi, z) = xi,z.

Let z0 ∈ {0, 1}m be the output wire of f , where we assume without loss of generality that z0 = 0m.
Let c0 = Ṽ0(X0, z0). To prove the statement f(x) = c, it is sufficient to prove the equivalent statement
c = c0. To this end, for every i ∈ [D], PBB obtains encoded values zi, ci and provides a proof Πi for
the fact that:

ci−1 6= Ṽi−1(Xi−1, zi−1) ⇒ ci 6= Ṽi(Xi, zi) .

These proofs let us proceed from each layer i − 1 to the next layer i. The last statement cD =
ṼD(XD, zD) has only to do with the circuit’s input, and can be verified directly by VBB in time
Õ(k) · poly(n).

61

The prover proceeds from the top (output) layer towards the bottom (input). For each layer i ∈ [0, D]
in order, PBB obtains encodings of:

zi = (zi,1, . . . , zi,m) ∈ {0, 1}m .

For every j ∈ [m], we use ti,j to denote the level under which the value zi,j is encoded and ti be to
denote under which the value ci is encoded. PBB maintains the invariant that the non-zero coordinates
of ti,j are in the range [`+ 1, `+ (i− 1) ·m′] that is:

∀k /∈ [`+ 1, `+ (i− 1) ·m′] : ti,j [k] = 0 . (51)

PBB also maintains that:

ti ≥
∑
j∈[m]

ti,j . (52)

PBB sets t0 = v and for every j ∈ [m], PBB sets t0,j to the all-zero level. (Note that Equations (51)
and (52) are satisfied.) PBB obtains the encodings:{

[z0,j]t0,j

}
j∈[m]

, [c0]t0 .

(For every j ∈ [m], the encoding [z0,j]t0,j is obtained using the fact that z0,j = 0 and [c0]t0 is just the
input encoding [c]v.)

Proceeding from layer i−1 to layer i. For every i ∈ [D] starting from i = 1, PBB obtains the encoded
values zi, ci and the proof Πi as follows:

1. Sum-Check from i− 1 to i: Let gi be an arithmetic circuit computing the following expression:

gi(Xi,w1) =
∑

w2,w3∈{0,1}m


ãddi(w1,w2,w3) ·

(
Ṽi(Xi,w2) + Ṽi(Xi,w3)

)
+ s̃ubi(w1,w2,w3) ·

(
Ṽi(Xi,w2)− Ṽi(Xi,w3)

)
+ m̃ulti(w1,w2,w3) ·

(
Ṽi(Xi,w2) · Ṽi(Xi,w3)

)
 .

If follows from the definition of the functions Ṽi, Ṽi−1, addi, subi,multi and from the fact that the
circuits ãddi, s̃ubi, m̃ulti are ring-independent that for for every z ∈ {0, 1}m:

gi(Xi, z) = xi−1,z . (53)

when the circuit gi is evaluated over the field Zp underlying pp.

Let:

fi(Xi, z,w1,w2,w3) =

= β(z,w1) ·


ãddi(w1,w2,w3) ·

(
Ṽi(Xi,w2) + Ṽi(Xi,w3)

)
+ s̃ubi(w1,w2,w3) ·

(
Ṽi(Xi,w2)− Ṽi(Xi,w3)

)
+ m̃ulti(w1,w2,w3) ·

(
Ṽi(Xi,w2) · Ṽi(Xi,w3)

)
 .

(54)

Combining Equation (53) and the definition of Ṽi−1 (see Equation (50)), we get that:

Ṽi−1(Xi−1, z) ≡
∑

w1,w2,w3∈{0,1}n
fi(Xi, z,w1,w2,w3) . (55)

62

PBB executes the sum-check prover:

PSC
(
pp,CRSiSC , fi, x

i
SC

)
,

where:

xiSC =

({
[xi,w]vi,w

}
w∈{0,1}m

∪
{

[zi−1,j]ti−1,j

}
j∈[m]

, [ci−1]ti−1

)
.

Note that for every w ∈ {0, 1}m, we have that vi,w ≤ δ
2 · s`. Since fi is of individual degree at

most 2 in every variable xi,w and since Equation (51) and Equation (52) hold, the partial encoded
input: {

[xi,w]vi,w

}
w∈{0,1}m

∪
{

[zi−1,j]ti−1,j

}
j∈[m]

,

is valid for fi. Since fi is of individual degree at most δ′ + 1 in its last 3m variables, it follows
that the input to PSC satisfies the requirements described in Section 5.1.

PSC returns an encoded output:

yiSC =

({
[wi,j]e`+(i−1)·m′+j

}
j∈[3m]

,
[
couti

]
ti−1+δ·ui

)
,

where:
ui =

∑
j∈[3m]

e`+(i−1)·m′+j .

PSC also returns the sum-check proof Πi
SC for the fact that:

ci−1 6=
∑

w1,w2,w3∈{0,1}m
fi(Xi, zi−1,w1,w2,w3) ⇒ couti 6= fi(Xi, zi−1,w

0
i ,w

1
i ,w

2
i)

where:

w0
i = (wi,1, . . . , wi,m) ,

w1
i = (wi,m+1, . . . , wi,2m) ,

w2
i = (wi,2m+1, . . . , wi,3m) .

2. Consistency of couti : To prove that:

couti = fi(Xi, zi−1,w
0
i ,w

1
i ,w

2
i) ,

PBB uses the arithmetic circuits ãddi, s̃ubi, m̃ulti and the operations Add,Sub,Mult to obtain the
encodings: [

c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

,
[
c1
i

]
ti−1+ui

,
[
c2
i

]
ti−1+ui

where:

c+
i = ãddi(w

0
i ,w

1
i ,w

2
i) ,

c−i = s̃ubi(w
0
i ,w

1
i ,w

2
i) ,

c×i = m̃ulti(w
0
i ,w

1
i ,w

2
i) .

and:

c1
i = Ṽi(Xi,w

1
i) ,

c2
i = Ṽi(Xi,w

2
i) .

(56)

63

3. 2-to-1: PBB obtains the encodings:{
[wi,m+j]ui,j

, [wi,2m+j]ui,j

}
j∈[m]

,

where:
ui,j = e`+(i−1)·m′+j + e`+(i−1)·m′+m+j + e`+(i−1)·m′+2m+j .

Note that: ∑
j∈[m]

ui,j = ui . (57)

(Note that we have an encoding of wi,j under the level e`+(i−1)·m′+j . We use encodings in the
higher level ui,j so that Equation (57) is satisfied.)

To prove that Equation (56) holds, PBB executes the 2-to-1 prover:

P2→1

(
pp,CRSi2→1, Ṽi, x

i
2→1

)
,

where:

xi2→1 =

({
[xi,w]vi,w

}
w∈{0,1}m

,
{

[wi,m+j]ui,j
, [wi,2m+j]ui,j

}
j∈[m]

,
[
c1
i

]
ti−1+ui

,
[
c2
i

]
ti−1+ui

)
.

Note that since for every z ∈ {0, 1}m, we have that vi,z is zero in all coordinates higher than `
and since Equation (57) hold, the partial encoded inputs:{

[xi,w]vi,w

}
w∈{0,1}m

∪
{

[wi,m+j]ui,j

}
j∈[m]

,
{

[xi,w]vi,w

}
w∈{0,1}m

∪
{

[wi,2m+j]ui,j

}
j∈[m]

,

are valid for fi and the output level of fi for these inputs is indeed ti−1 + ui.

P2→1 returns an encoded output:

yi2→1 =

({
[zi,j]ti,j

}
j∈[m]

, [ci]ti

)
,

where:
ti,j = ui,j + e`+i·m′ , ti = ti−1 + ui +m · e`+i·m′ .

These encodings are used in the next iteration. (Note that Equations (51) and (52) are satisfied.)

P2→1 also returns a 2-to-1 proof Πi
2→1 for the fact that:(

c1
i 6= Ṽi(w

1
i) ∨ c2

i 6= Ṽi(w
2
i)
)
⇒ ci 6= Ṽi(zi) ,

PBB outputs the encoded output:

y =

({
[wi,j]e`+(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

and the proof:

Π = {Πi}i∈[D] =
{(
xiVSC

, yiSC ,Π
i
SC , x

i
V2→1

, yi2→1,Π
i
2→1

)}
i∈[D]

,

where:

xiVSC
=

({
[zi−1,j]ti−1,j

}
j∈[m]

, [ci−1]ti−1

)
,

xiV2→1
=

({
[wi,m+j]ui,j

, [wi,2m+j]ui,j

}
j∈[m]

,
[
c1
i

]
ti−1+ui

,
[
c2
i

]
ti−1+ui

)
.

The verifier VBB . Recall that the verifier’s input includes:

64

1. The public parameters pp.

2. The challenge:
CRS =

(
pp,
{(

CRSiSC ,CRS
i
2→1

)}
i∈[D]

)
.

3. The encoded input:
x =

({
[xi]vi

}
i∈[k]

, [c]v

)
.

4. The encoded output:

y =

({
[wi,j]e`+(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

5. The proof:
Π =

{(
xiVSC

, yiSC ,Π
i
SC , x

i
V2→1

, yi2→1,Π
i
2→1

)}
i∈[D]

.

Let z0 = 0m be the output gate of f and let c0 = c. VBB obtains the output layer encodings:{
[z0,j]t0,j

}
j∈[m]

, [c0]t0 .

(For every j ∈ [m], the encoding [z0,j]t0,j is obtained using the fact that z0,j = 0 and [c0]t0 is just the
input encoding [c]v.)

The verifier proceeds to check the proofs for consistency. We note that the proofs supplied to the
verifier include encoded inputs and outputs, together with proofs that if the inputs specified false state-
ments, then (w.h.p.) the outputs also specify false statements. Recall, however, that the verifier does not
trust the prover who generated these proofs, and in particular the inputs and outputs are untrusted: the
input for each sub-protocol must be compared with the output of the previous sub-protocol to guarantee
consistency. With this in mind, the verifier operates as follows. For every i ∈ [D], let:

xiVSC
=

({
[z̄i−1,j]ti−1,j

}
j∈[m]

, [c̄i−1]ti−1

)
,

yiSC =

({
[w̄i,j]eell+(i−1)·m′+j

}
j∈[3m]

,
[
couti

]
ti−1+δ·ui

)
,

xiV2→1
=

({
[¯̄wi,m+j]ui,j

, [¯̄wi,2m+j]ui,j

}
j∈[m]

,
[
c1
i

]
ti−1+ui

,
[
c2
i

]
ti−1+ui

)
,

yi2→1 =

({
[zi,j]ti,j

}
j∈[m]

, [ci]ti

)
.

For every i ∈ [D], VBB performs the following tests:

1. VBB uses the operations Sub, isZero to verify that:

∀j ∈ [m] : z̄i−1,j = zi−1,j , c̄i−1 = ci−1 .

2. VBB verifies that the i-th sum-check proof is accepting:

1← VSC(pp,CRSiSC , [c̄i−1]ti−1
, yiSC ,Π

i
SC) .

3. VBB uses the operations Sub, isZero to verify that:

∀j ∈ [3m] : w̄i,j = wi,j .

65

4. VBB uses the operations Add, Sub,Mult, isZero to verify that:

couti = β(z̄i−1,1, . . . , z̄i−1,m, wi,1, . . . , wi,m)·
(
c+
i ·
(
c1
i + c2

i

)
+ c−i ·

(
c1
i − c2

i

)
+ c×i ·

(
c1
i · c2

i

))
.

5. VBB uses the operations Sub, isZero to verify that:

∀j ∈ [m] : ¯̄wi,m+j = w̄i,m+j ∧ ¯̄wi,2m+j = w̄i,2m+j .

6. VBB verifies that the i-th 2-to-1 proof is accepting:

1← V2→1(pp,CRSi2→1, x
i
V2→1

, yi2→1,Π
i
2→1) .

Finally, following Equation (50), VBB uses the input encodings and the operations Add,Sub,Mult, isZero
to verify that:

cD = ṼD(XD, zD,1, . . . , zD,m) . (58)

Recall that XD is simply the circuit’s input, which is available to the verifier (albeit in encoded form).
Note that in Equation (50), only k of the summands are non-zero, and so this final verification step can
be completed by the verifier in time that only depends linearly on k (and polynomially on n and D).

VBB accepts iff all tests pass.

5.3.4 Proof of Claim 5.8

Proof. Let (P∗1,P
∗
2) be a pair of poly-size circuits. To prove Claim 5.8, recall that we need to show that

there exists a negligible function µ such that for every security parameter n ∈ N:

Pr



pp← InstGen(1n, κ, δ);
CRS← GenBB(1n, pp, (δ′,m,D, `));
f, x← P∗1(pp,CRS);
y∗,Π∗ ← P∗2(pp,CRS, f, x);
1← VBB(pp,CRS, x, y∗,Π∗);
CHEAT

 ≤ µ(n) ,

where:

y∗ =

({
[wi,j]e`+(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

and CHEAT is the event that:

f(x) 6= c ∧
(
∀i ∈ [D] :

(
ãddi(wi) = c+

i

)
∧
(
s̃ubi(wi) = c−i

)
∧
(
m̃ulti(wi) = c×i

))
,

where recall that x = (x1, . . . , xk) and for every i ∈ [D] wi =
(
wi,1, . . . , wi,m′−1

)
, and where the

arithmetic above and in what follows is over the underlying field Zp of the public parameters pp.
Recall also the notation used in the construction. In the above experiment:

Π∗ =
{(
xiVSC

, yiSC ,Π
i
SC , x

i
V2→1

, yi2→1,Π
i
2→1

)}
i∈[D]

,

66

for every i ∈ [D], let:

xiVSC
=

({
[z̄i−1,j]ti−1,j

}
j∈[m]

, [c̄i−1]ti−1

)
,

yiSC =

({
[w̄i,j]eell+(i−1)·m′+j

}
j∈[3m]

,
[
couti

]
ti−1+δ·ui

)
,

xiV2→1
=

({
[¯̄wi,m+j]ui,j

, [¯̄wi,2m+j]ui,j

}
j∈[m]

,
[
c1
i

]
ti−1+ui

,
[
c2
i

]
ti−1+ui

)
,

yi2→1 =

({
[zi,j]ti,j

}
j∈[m]

, [ci]ti

)
.

and let:

zi = (zi,1, . . . , zi,m) ,

z̄i = (z̄i,1, . . . , z̄i,m) ,

w̄i = (w̄i,1, . . . , w̄i,3m) ,

¯̄w1
i = (¯̄wi,m+1, . . . , ¯̄wi,2m) ,

¯̄w2
i = (¯̄wi,2m1, . . . , ¯̄wi,3m) .

For every i ∈ [0, D] letXi and Ṽi be defined as in the honest prover strategy PBB . For every i ∈ [D]
let fi be defined as in Equation (54).

Define the following events:

CHEATiSC :

c̄i−1 6=
∑

w∈{0,1}3m
fi(z̄i−1,w)

 ∧ (couti = fi(z̄i−1, w̄i)
)

CHEATi2→1 :
((
c1
i 6= Ṽi(Xi, ¯̄wi,2)

)
∨
(
c2
i 6= Ṽi(Xi, ¯̄wi,3)

))
∧
(
ci = Ṽi(Xi, zi)

)
CHEATi :

(
ci−1 6= Ṽi−1(Xi−1, zi−1)

)
∧
(
ci = Ṽi(Xi, zi)

)
OUTi :

(
ãddi(wi) = c+

i

)
∧
(
s̃ubi(wi) = c−i

)
∧
(
m̃ulti(wi) = c×i

)
Let ACCEPT be the event that in the above experiment, the verifier VBB accepts the proof Π∗. When

ACCEPT occurs, Equation (58) holds:

cD = ṼD(XD, zD) .

We will show that there exist negligible function µ1 such that for every i ∈ [D]:

Pr
[
ACCEPT ∧ OUTi ∧ CHEATi

]
≤ µ1(n) . (59)

By a Union Bound, we then conclude that:

Pr [ACCEPT ∧ CHEAT] = Pr
[
ACCEPT ∧ OUT1 ∧ · · · ∧ OUTD ∧

(
c 6= Ṽ0(X0, z0)

)]
≤ D · µ1(n) ,

as required.
In the rest of the proof we will prove Equation (59). It is sufficient to prove that:

Pr
[
ci = Ṽi(Xi, zi) | ACCEPT ∧ OUTi ∧

(
ci−1 6= Ṽi−1(Xi−1, zi−1)

)]
≤ µ1(n) .

67

To this end, we assume that the event:

ACCEPT ∧ OUTi ∧
(
ci−1 6= Ṽi−1(Xi−1, zi−1)

)
,

holds, and we prove that:
Pr
[
ci = Ṽi(Xi, zi)

]
≤ µ1(n) .

Since the event ACCEPT holds all of VBB’s tests passes. Since Test 1 passes:

c̄i−1 6= Ṽi−1(Xi−1, z̄i−1) .

By Equation (55):
c̄i−1 6=

∑
w∈{0,1}3m

fi(Xi, z̄i−1,wi) .

Since VBB accepts the sum-check proof Πi
SC (Test 2), it follows from Claim 5.2 that for some negligible

function µ2:

Pr
[
CHEATiSC

]
= Pr

c̄i−1 6=
∑

w∈{0,1}3m
fi(Xi, z̄i−1,w)

 ∧ (couti = fi(Xi, z̄i−1, w̄i)
)

≤ µ2(n) .

(Otherwise we can turn P∗1 and P∗2 into adversaries that break the adaptive soundness of the sum-check
protocol.) Therefore:

Pr
[
couti = fi(Xi, z̄i−1, w̄i)

]
≤ µ2(n) ,

and since VBB’s Test 3 passes:

Pr
[
couti = fi(Xi, z̄i−1,wi)

]
≤ µ2(n) .

By the definition of fi (Equation (54)) and since he event OUTi holds and Test 4 passes:

Pr
[
c1
i = Ṽi(Xi,w

1
i) ∧ c2

i = Ṽi(Xi,w
2
i)
]
≤ µ2(n) ,

where
w1
i = (wi,m+1, . . . , wi,2m) , w2

i = (wi,2m+1, . . . , wi,3m) .

Since VBB’s Test 5 passes:

Pr
[
Ṽi(Xi, ¯̄w1

i) = c1
i ∧ Ṽi(Xi, ¯̄w2

i) = c2
i

]
≤ µ2(n) .

Since VBB accepts the 2-to-1 proof Πi
2→1 (Test 6), it follows from Claim 5.5 that for some negligible

function µ3:

Pr
[
CHEATi2→1

]
= Pr

[((
c1
i 6= Ṽi(Xi, ¯̄wi,2)

)
∨
(
c2
i 6= Ṽi(Xi, ¯̄wi,3)

))
∧
(
ci = Ṽi(Xi, zi)

)]
≤ µ3(n) .

(Otherwise we can turn P∗1 and P∗2 into adversaries that break the adaptive soundness of the 2-to-1
protocol.) By union bound, we have that for µ1 = µ2 + µ3:

Pr
[
ci = Ṽi(Xi, zi)

]
≤ µ1(n) .

68

5.4 Non-Interactive Arguments for Bounded-Depth Computations

In this section we instantiate the bare-bones delegation protocol (GenBB,PBB,VBB) from Section 5.3.
We obtain non-interactive publicly verifiable arguments for functions that are computable by log-space
uniform bounded-depth circuits.

Recall that in the Bare-Bones protocol, ãddi, s̃ubi, m̃ulti are bounded-degree and ring-independent
extensions of the functions that define the circuit computing f . The output of the bare-bones protocol is a
collection of encodings, and claims for the values of ãddi, s̃ubi, m̃ulti on those encodings. Completeness
and soundness of the bare-bones guarantee that if f(x) = 1 and the proof is generated properly, then the
claims are correct. If f(x) 6= 1, then w.h.p at least one of these claims will be false.

Thus, to instantiate the base-bones protocol, all that remains is to show how the verifier can check
the claimed values of ãddi, s̃ubi, m̃ulti. We can do this in two ways:

1. In Section 5.4.1 we consider functions f that are computable in (nondeterministic) logarithmic
space. These functions can be computed by circuits of polylogarithmic depth, where ãddi, s̃ubi, m̃ulti
can be computed by (uniform) circuits of polylogarithmic size and polylogarithmic degree δ′ (an
arithmetic circuit variant of the notion of constructible boolean circuits, see Definition 3.20).

For this class of functions, we can directly instantiate the non-interactive bare-bones protocol on
the un-encoded input x (there is no need to consider an encoded input). The verifier can explicitly
compute the values of ãddi, s̃ubi, m̃ulti on the encoded outputs of the bare-bones protocol. This
gives a publicly verifiable non-interactive argument for any language in NL.

This result is stated in Theorem 5.11. It is included mainly to facilitate exposition of our full result
for bounded-depth computations (see below).

2. In Section 5.4.2 we consider functions f that are computable by bounded-depth circuits that are
log-space uniform, i.e. the circuits’ description can be produced by a logspace Turing Machine
(in polynomial time).

Here we take the functions ãddi, s̃ubi, m̃ulti to be the unique multilinear extensions of the func-
tions addi, subi,multi that specify the circuit (see Section 3.5). For logspace-uniform circuits,
these multilinear extensions can also be computed in logarithmic space, as was done in [GKR08].
We emphasize that the time to compute these functions may be as large as the circuit size (or
larger). Thus, the verifier cannot compute these functions on her own. Instead, she runs the
bare-bones protocol, and obtains claims about these functions’ outputs (as given in the bare-bones
protocol’s output). These claims are verified using a separate tailored delegation protocol. The
verifier receives a separate proof, and uses it to verify the claimed values of these functions. This
(again) is as was done in [GKR08].

In our setting of non-interactive delegation, however, there is an additional difficulty. The func-
tions ãddi, s̃ubi, m̃ulti can be computed in logarithmic-space, and so we might hope to use the
protocol of Theorem 5.11 to delegate their computation (as was done in [GKR08]). In our set-
ting, however, the verifier only knows encodings of the inputs on which ãddi, s̃ubi, m̃ulti were
evaluated. Thus, we need to use the bare-bones protocol on encoded inputs. Note that this re-
quires the prover to be able to evaluate the delegated functions on the encoded inputs. This is
a (highly) non-trivial condition, and indeed the bare-bones protocol cannot be used to delegate
arbitrary log-space computations on encoded inputs, since those computations might be of very
high degree.

Fortunately, the computation of ãddi, s̃ubi, m̃ulti are not arbitrary log-space computations. In fact,
they can be computed by low-depth circuits whose outputs (and internal gates) are multilinear in
the inputs. Moreover, we show that these low-degree circuits that compute the ãddi, s̃ubi, m̃ulti
are themselves constructible (see Definition 3.20). Their wiring functions can be computed by

69

(uniform) circuits of polylogarithmic size and degree. Thus, we can use the Bare-Bones protocol
for encoded inputs to verify the computation of these functions. This gives publicly verifiable
non-interactive arguments for log-space uniform bounded-depth computations.

This result is stated in Theorem 5.13

Notation and setup. Before proceeding to show both of these instantiations, we briefly recall the nota-
tion from Section 5.3. Let f be a layered fan-in 2, strongly ring-independent arithmetic circuit with k
inputs. (For simplicity and without loss of generality we assume that S is a power of 2.) Index every
gate of f by a string in {0, 1}m. Number the layers of f such that layer 0 is the output layer and layer
D is the input layer.

For every i ∈ [D] let:
addi, subi,multi : {0, 1}3m → {0, 1} ,

be the functions that addi(g1, g2, g3) = 1 if g1 is a gate in layer i− 1, g2, g3 are gates is in layer i and g1

is adding the output of g2 and g3. Otherwise addi(g1, g2, g3) = 0. subi and multi are defined similarly.
Let δ be a degree parameter and let ãddi, s̃ubi, m̃ulti be ring-independent arithmetic circuits of de-

gree δ′ < δ computing the functions addi, subi,multi. We emphasize that these “algebraic extensions”
of the (boolean) functions addi, subi,multi need not compute the unique multilinear extensions. Rather,
they compute some arbitrary functions that agree with addi, subi,multi over boolean inputs. (In some
cases, however, we will use addi, subi,multi that compute the unique multilinear extensions of their
respective functions).

The bare-bones delegation protocol of Section 5.3 takes an input x for f and outputs encodings:({
[wi,j]e(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

The soundness guarantee is that if f(x) 6= 1, then the verifier is guaranteed that (w.h.p.) either she
will reject, or one of these output encodings specifies a false claim (see Claim 5.8):(

∃i ∈ [D] :
(
ãddi(wi) 6= c+

i

)
∨
(
s̃ubi(wi) 6= c−i

)
∨
(
m̃ulti(wi) 6= c×i

))
.

where for every i ∈ [D], recall that: wi =
(
wi,1, . . . , wi,m′−1

)
, and where the arithmetic above and in

what follows is over the underlying field Zp of the public parameters pp.
Observe that each encoding of an input wi,j to the functions ãddi, s̃ubi, m̃ulti is encoded at level

e(i−1)·m′+j . Thus, the graded encoding supports computations of degree δ > δ′ in each of these inputs.
The functions ãddi, s̃ubi, m̃ulti are of degree δ′ in each variable, and thus the graded encoding scheme
supports the computation of these functions on the encoded values wi,j . If the verifier can verify the
claims (on encoded inputs), either on her own, or using a non-interactive argument, then we obtain a
complete and sound argument system for verifying that f(x) = 1.

5.4.1 Non-Interactive Arguments for NL

We show that functions that can be computed inNL have low-depth circuits where there exist extensions
ãddi, s̃ubi, m̃ulti that can be computed in polylogarithmic time and degree. This is stated in Lemma 5.10
below. Combining this with the completeness and soundness of the bare-bones argument system (Claims
5.7 and 5.8), we obtain a publicly-verifiable argument system for any language in NL. This result is
stated in Theorem 5.11 below.

Lemma 5.10. Let L be a language computed by a non-deterministic Turing Machine T in time poly(k)
and space O(log k) (where k is the input length). There exists an ensemble of ring-independent arith-
metic circuits {fk} for computing L with O(log2 k)-depth and poly(k)-size.

70

Fix an input length k, a circuit f = fk of depth D and size S, and take m = logS. For every
i ∈ [D], there exist ring-independent circuits ãddi, s̃ubi, m̃ulti for computing addi, subi,multi. These
circuits have degree δ′ = polylog(k), can be constructed in polylog(k)-time, and can be evaluated (on
an input in some ring) using polylog(k) ring operations (additions, subtractions and multiplications).

Proof. The lemma follows from Lemma 4.1 in [GKR08]. They show the existence of an ensemble
as above of circuits over GF [2], where the functions addi, subi,multi are computed by constant depth
AC0 circuits of polylog(k) size, which can be generated and evaluated in polylog(k) time. The only
difference for us is that we want a ring-independent circuit ensemble computing the function, and we
want ring-independent circuits for computing ãddi, s̃ubi, m̃ulti:

Ring-independent ensemble. For an input length k, the circuit f = fk computes the adjacency matrix
of the graph comprising all poly(n) Turing Machine states on the given input x, and then checks for
a path from the starting state to an accepting state in this graph. This is done by a kind of repeated
squaring of the adjacency matrix.

To compute the initial adjacency matrix B (for the fixed input x), observe that each edge is either
always present (constant 1), never present (constant 0), equal to the i-th bit of x, or to the negation of
the i-th bit (i.e. 1− xi). All these assignments are ring-independent.

For “repeated squaring”, we use the matrix B2c−1
, where the [u, v]-th entry is 1 if there is a path of

length at most 2c−1 from u to v, and compute the matrix B2c , defined similarly but for paths of length
at most 2c. This computation is done using the ring-independent equation:

B2c [u, v] = 1−

(∏
w

[
1− (B2c−1

[u,w] ·B2c−1
[w, v])

])
,

which guarantees that the [u, v]-th entry ofB2c is 1 if there exists an intermediate node w such that there
are paths of length at most 2c−1 from u to w and from w to v. Otherwise, the [u, v]-th of B2c is 0.

Ring-independent ãddi, s̃ubi, m̃ulti. Lemma 4.1 of [GKR08] gives AC0 boolean circuits computing
addi, subi,multi. These can be converted to ring-independent circuits by replacing AND gates with
multiplication, and replacing NOT gates with subtraction from 1. The resulting ring-independent circuit
has degree polylog(k), can be constructed in polylog(k) time, and evaluated in polylog(k) ring oper-
ations (multiplication and subtraction). Note that converting the AC0 circuit to operate over the ring
maintains the time to construct (and evaluate) the circuit.

Theorem 5.11. Let L be a language in NL. The Bare-Bones protocol (GenBB,PBB,VBB) from Sec-
tion 5.3, instantiated with the circuits ãddi, s̃ubi, m̃ulti from Lemma 5.10, gives an adaptively sound
publicly-verifiable non-interactive argument system for L. For security parameter n and input length k:

• The challenge generator runs in time poly(n).

• The (honest) prover runs in time poly(n, k).

• The verifier runs in time k · poly(n).

5.4.2 Bounded Depth Computations

We show that for functions that can be computed by log-space uniform bounded-depth circuits, there
exist circuits implementing the functions ãddi, s̃ubi, m̃ulti whose computations can themselves be del-
egated. In particular, ãddi, s̃ubi, m̃ulti are implemented by constructible circuits of polylog depth and
polynomial size (see Definition 3.20). This is stated in Lemma 5.12. We then use these implementations
of ãddi, s̃ubi, m̃ulti to obtain a non-interactive argument for such low depth computations, as stated in
Theorem 5.13 below.

71

Lemma 5.12. Let L be a language computed by logspace-uniform circuits of polynomial size. There ex-
ist ring-independent circuits ãddi, s̃ubi, m̃ulti for computing the multilinear extensions of addi, subi,multi
as follows. The circuits for computing ãddi, s̃ubi, m̃ulti are constructible (see Definition 3.20), of
polylog depth, and their internal gates (and output gate) are all multilinear in the input.

Proof Sketch. We sketch a proof for addi. The constructions for subi,multi are similar. Recall that:

ãddi(z) =
∑

y∈{0,1}3m

β(z,y) · addi(y) . (60)

The circuit for computing ãddi can compute the values {addi(y)}y∈{0,1}3m . These computations may
have high degree (and there are polynomially many of them), but they are completely independent of
the circuit’s input! For each y ∈ {0, 1}3m, the circuit then computes the value βn(z,y) · addi(y), a
multilinear function of z. Finally, taking the sum as in Equation (60) maintains multilinearity in the
input.

To argue constructibility, we implement the log-space computations of the values {addi(y)}y∈{0,1}3m
using the constructible circuits for log-space computations, as built in the proof of Lemma 5.10. Given
these values, we can perform the multiplications and additions for Equation (60), while maintaining
constructibility in the straightforward way.

Theorem 5.13. Let L be a language computable by logspace-uniform circuits of Depth D(n) and poly-
nomial size. The Bare-Bones protocol (GenBB,PBB,VBB) from Section 5.3, instantiated with the sub-
protocol for delegating ãddi, s̃ubi, m̃ulti on encoded inputs from Lemma 5.12, gives an adaptively sound
publicly-verifiable non-interactive argument system for L. For security parameter n and input length k:

• The challenge generator runs in time poly(D,n).

• The (honest) prover runs in time poly(k, n).

• The verifier runs in time k · poly(D,n).

Proof Sketch. There are two parts to the non-interactive argument. First, we run the Bare-Bones Pro-
tocol on the original (log-space uniform) circuit C, as specified by the (unique) multilinear extensions
ãddi, s̃ubi, m̃ulti of the functions addi, subi,multi. This gives us a CRS CRS, a proof Π, and an encoded
output:

y =

({
[wi,j]e`+(i−1)·m′+j

}
i∈[D],j∈[m′−1]

,
{[
c+
i

]
δ′·ui

,
[
c−i
]
δ′·ui

,
[
c×i
]
δ′·ui

}
i∈[D]

)
,

where for every i ∈ [D]:
ui =

∑
j∈[m′−1]

e`+(i−1)·m′+j ,

and where verifier needs to verify that:(
∀i ∈ [D] :

(
ãddi(wi) = c+

i

)
∧
(
s̃ubi(wi) = c−i

)
∧
(
m̃ulti(wi) = c×i

))
This verification is performed using 3D further executions of the bare-bones protocol on the aobve
encoded inputs, one for each claim about the values of addi, subi,multi. These are composed in par-
allel with each other and with the above initial run of the bare-bones protocol on the original circuit.
The challenge generator generates a CRS CRS′ for running the bare-bones protocol on the circuits for

72

addi, subi,multi. The prover then uses CRS′ together with the encoded inputs (and outputs) in y to
generate proofs and outputs:

{Πadd,i,Πsub,i,Πmult,i}i∈[D] , {yadd,i, ysub,i, ymult,i}i∈[D]

The verifier can verify the claims in these 3D proofs and outputs on her own. To do so, we use the
fact proved in Lemma 5.12, that addi, subi,multi are multilinear in the encoded inputs, and are also
themselves constructible. Thus the prover and verifier can run the Bare-Bones protocol on the encoded
inputs, and the verifier can compute low-degree extensions of their wiring predicates in polylogarithmic
time and degree.

This gives a non-interactive argument for delegating the computation of the original circuit. The
composed CRS is simply

(CRS,CRS′),

the composed proof contains:(
Π, y, {Πadd,i,Πsub,i,Πmult,i, yadd,i, ysub,i, ymult,i}i∈[D]

)
and the composed verifier simply verifies both the original protocol and the 3D resulting claims.

6 Acknowledgements

We thank Zvika Brakerski for suggesting the secure sampling procedure in Remark 3.5, and for patiently
and tirelessly answering our questions about graded encodings. We also thank Yael Kalai and Ron
Rothblum for many helpful and illuminating conversations. Finally, thanks are also due to Mercury
Cafe, for ambiance, for inspiration and for happy hour.

References

[ABOR00] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan.
Fast verification of any remote procedure call: Short witness-indistinguishable one-round
proofs for np. In ICALP, pages 463–474, 2000.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Effi-
cient verification via secure computation. In Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part I, pages 152–163, 2010.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31, 1991.

[BGT14] Nir Bitansky, Sanjam Garg, and Sidharth Telang. Succinct randomized encodings and their
applications. Cryptology ePrint Archive, Report 2014/771, 2014. http://eprint.
iacr.org/.

73

http://eprint.iacr.org/
http://eprint.iacr.org/

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Theory of Cryptography - 11th Theory of Cryptography Con-
ference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages 1–25,
2014.

[Bra14] Zvika Brakerski. Personal communication, 2014.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against
zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014. http://eprint.
iacr.org/.

[CHJV14] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguisha-
bility obfuscation of iterated circuits and ram programs. Cryptology ePrint Archive, Report
2014/769, 2014. http://eprint.iacr.org/.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. Cryptology ePrint Archive, Report
2014/906, 2014. http://eprint.iacr.org/.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of compu-
tation using fully homomorphic encryption. In Advances in Cryptology - CRYPTO 2010,
30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Pro-
ceedings, pages 483–501, 2010.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In CRYPTO (1), pages 476–493, 2013.

[CLT14] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis of two can-
didate fixes of multilinear maps over the integers. Cryptology ePrint Archive, Report
2014/975, 2014. http://eprint.iacr.org/.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming inter-
active proofs. PVLDB, 5(1):25–36, 2011.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with
low communication. In Theory of Cryptography - 9th Theory of Cryptography Conference,
TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 54–74, 2012.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold. Suc-
cinct proofs for NP and spooky interactions. Unpublished manuscript, 2004. http:
//www.cs.bgu.ac.il/˜kobbi/papers/spooky_sub_crypto.pdf.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lat-
tices. In EUROCRYPT, pages 1–17, 2013.

[GGH14] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. Cryptology ePrint Archive, Report 2014/645, 2014. http://eprint.iacr.
org/.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, pages 465–482, 2010.

74

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-
grams and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

[GHMS14] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing without zeroes:
Cryptanalyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929, 2014. http://eprint.iacr.org/.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 113–
122, 2008.

[GLSW14] Craig Gentry, Allison Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309, 2014. http://eprint.iacr.org/.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, pages 99–108, 2011.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, pages 723–732, 1992.

[KLW14] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfus-
cation for turing machines with unbounded memory. Cryptology ePrint Archive, Report
2014/925, 2014. http://eprint.iacr.org/.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Advances
in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 143–159, 2009.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In
STOC, pages 565–574, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the
power of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. In 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 2–10, 1990.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Theory of Cryptography - 9th Theory of Cryptography Confer-
ence, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 169–189,
2012.

[LP14] Huijia Lin and Rafael Pass. Succinct garbling schemes and applications. Cryptology ePrint
Archive, Report 2014/766, 2014. http://eprint.iacr.org/.

75

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 436–453,
1994.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd
Annual International Cryptology Conference, pages 96–109, 2003.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In Theory of Cryptography
- 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21,
2012. Proceedings, pages 422–439, 2012.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Symposium on Theory of Computing Confer-
ence, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 793–802, 2013.

[WB13] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them: from theoretical possibility to near-practicality. Electronic Colloquium on Computa-
tional Complexity (ECCC), 20:165, 2013.

76

	Introduction
	Non-Interactive Arguments for P
	Non-Interactive Arguments for Bounded-Depth Computations
	Graded Encoding Schemes and Security Assumptions
	Curve Encryption Assumption over Symmetric GEs
	Hardness Assumption over Asymmetric GEs

	Further Related Work

	Technical Overview
	Non-Interactive Arguments for P
	Basic Protocol and Partial Assignment Generator for Q=3

	Non-Interactive Arguments for Bounded Depth
	Non-Interactive Sum-Check Argument

	Tools and Definitions
	Graded Encodings
	Symmetric Graded Encodings
	Asymmetric Graded Encodings

	Curves, Manifolds and their Encodings
	Curve Encryption
	Semantic Security of Curve
	Avoiding Encoding Re-Randomization

	(Publicly-Verifiable) Non-Interactive Arguments
	Ring-Independent Arithmetic Circuits.
	Multi-linear Extension.
	Uniform and Constructible Circuits
	Encoded Polynomials

	Non-Interactive Arguments for P
	Completeness and Soundness
	Basic Protocol Completeness and Soundness
	Full Protocol Completeness and Soundness

	The Basic Protocol
	The Circuit bx
	The Challenge Generator GenBP
	The Prover PBP
	The Verifier VBP

	The Basic Protocol's Soundness and Assignment Generator
	The Augmented Circuit
	Construction
	Proof of Claim 4.4 (Augmented Soundness)

	Non-Interactive Arguments for Bounded-Depth Computations
	Non-Interactive Sum-Check Sub-Protocol
	Interface
	Completeness and Soundness
	Construction
	Soundness: Proof of Claim 5.2

	Non-Interactive 2-to-1 Sub-Protocol
	Interface
	Completeness and Soundness
	Construction
	Proof of Claim 5.5

	Non-Interactive Bare-Bones Delegation Protocol
	Interface
	Completeness and Soundness
	Construction
	Proof of Claim 5.8

	Non-Interactive Arguments for Bounded-Depth Computations
	Non-Interactive Arguments for NL
	Bounded Depth Computations

	Acknowledgements

